1
|
Fang Q, Liu Z, Wang K, Liu B, Nissa MU, Che J, Bao B. ΔFleQ of Aeromonas hydrophila generated as a live attenuated vaccine in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2025; 162:110361. [PMID: 40262689 DOI: 10.1016/j.fsi.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/05/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
Aeromonas hydrophila is a pathogen responsible for motile Aeromonas septicemia (MAS) in fish and an opportunistic pathogen that poses a significant threat to aquaculture and human health. Live attenuated vaccines are considered to be an effective and environmentally friendly method for the prevention and control of bacterial infectious diseases in aquaculture. The pathogenic mechanisms of bacterial flagella include assisting bacterial movement and attachment to the host's intestinal tract, as well as promoting biofilm formation. FleQ is a key gene that regulates flagellar assembly in A. hydrophila. In this study, we constructed the A. hydrophila ΔFleQ mutant and investigated its phenotypic characteristics, degree of attenuation, and immunogenicity in common carp through immersion immunization. The results indicated that the ΔFleQ mutant exhibited significantly diminished motility, hemolytic activity, biofilm formation, antibiotic resistance, capacity for intestinal colonization, and attenuated virulence compared to the wild-type (WT). RNA-seq analysis revealed that 3281 genes were differentially expressed in ΔFleQ mutant, including 356 upregulated and 302 downregulated genes. KEGG enrichment analysis and qRT-PCR validation indicated that genes associated with flagellar assembly, the two-component system, tyrosine metabolism, bacterial chemotaxis pathways were downregulated. The LD50 value of ΔFleQ (8.91 × 108 CFU/mL) was 28.2 times higher than that of the WT (3.16 × 107 CFU/mL). Fish immunized by immersion with ΔFleQ showed increased lgM responses and upregulated cytokine gene such as TNF-α, IL-1β, IL-6. Additionally, the relative percent survival (RPS) of ΔFleQ was 78.8 % in common carp following two immersion immunizations. These findings suggest that ΔFleQ could serve as a potential vaccine candidate for the prevention of diseases caused by A. hydrophila in common carp.
Collapse
Affiliation(s)
- Qitong Fang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China
| | - Zhuochen Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Kaile Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Binghong Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Meher Un Nissa
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinyuan Che
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| | - Baolong Bao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai, 201306, China.
| |
Collapse
|
2
|
Mandle HB, Jenab M, Gunter MJ, Tjønneland A, Olsen A, Dahm CC, Zhang J, Sugier PE, Rothwell J, Severi G, Kaaks R, Katzke VA, Schulze MB, Masala G, Sieri S, Panico S, Sacerdote C, Bonet C, Sánchez MJ, Amiano P, Huerta JM, Guevara M, Palmqvist R, Löwenmark T, Perez-Cornago A, Weiderpass E, Heath AK, Cross AJ, Vineis P, Hughes DJ, Fedirko V. Inflammation and gut barrier function-related genes and colorectal cancer risk in western European populations. Mutagenesis 2025; 40:48-60. [PMID: 38441165 PMCID: PMC11911009 DOI: 10.1093/mutage/geae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 04/04/2024] [Indexed: 03/21/2024] Open
Abstract
Gut barrier dysfunction and related inflammation are known to be associated with the development and progression of colorectal cancer (CRC). We investigated associations of 292 single-nucleotide polymorphisms (SNPs) from 27 genes related to endotoxins/lipopolysaccharide (LPS) sensing and tolerance, mucin synthesis, inflammation, and Crohn's disease with colon and rectal cancer risks. Incident CRC cases (N = 1374; colon = 871, rectum = 503) were matched 1:1 to controls nested within the European Prospective Investigation into Cancer and Nutrition cohort. Previously measured serum concentrations of gut barrier function and inflammation biomarkers (flagellin/LPS-specific immunoglobulins and C-reactive protein [CRP]) were available for a sub-set of participants (Ncases = 1001; Ncontrols = 667). Forty-two unique SNPs from 19 different genes were associated with serum biomarkers at Punadjusted ≤ 0.05 among controls. Among SNPs associated with a gut permeability score, 24 SNPs were in genes related to LPS sensing and mucin synthesis. Nine out of 12 SNPs associated with CRP were in genes related to inflammation or Crohn's disease. TLR4 was associated with colon cancer at the SNP level (nine SNPs, all Punadjusted ≤ 0.04) and at the gene level (Punadjusted ≤ 0.01). TLR4 rs10759934 was associated with rectal cancer but not colon cancer. Similarly, IL10 was associated with rectal cancer risk at an SNP and gene level (both Punadjusted ≤ 0.01), but not colon cancer. Genes and SNPs were selected a priori; therefore, we present unadjusted P-values. However, no association was statistically significant after multiple testing correction. This large and comprehensive study has identified gut barrier function and inflammation-related genes possibly contributing to CRC risk in European populations and is consistent with potential etiological links between host genetic background, gut barrier permeability, microbial endotoxemia, and CRC development.
Collapse
Affiliation(s)
- Hannah B Mandle
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
| | - Mazda Jenab
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
| | - Marc J Gunter
- Nutrition and Metabolism Branch, International Agency for Research on Cancer (IARC-WHO), 69372 Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Anne Tjønneland
- Diet, Cancer and Health, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, 1353 Copenhagen K, Denmark
| | - Anja Olsen
- Department of Public Health, University of Copenhagen, 1353 Copenhagen K, Denmark
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Christina C Dahm
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Jie Zhang
- Department of Public Health, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Pierre-Emmanuel Sugier
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
- Laboratoire de Mathématiques et de leurs Applications de Pau E2S UPPA, CNRS, 64013 Pau Cedex, France
| | - Joseph Rothwell
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm ‘Exposome and Heredity’ team, CESP U1018, 94807 Villejuif Cedex, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Verena A Katzke
- Division of Cancer Epidemiology, German Cancer Research Center, DKFZ, 69120 Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbruecke, 14469 Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, 14469 Nuthetal, Germany
| | - Giovanna Masala
- Institute for Cancer Research, Prevention and Clinical Network (ISPRO), 50139 Florence, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, 20133 Milan, Italy
| | - Salvatore Panico
- Dipartimento Di Medicina Clinica E Chirurgia, Federico II University, 80131 Naples, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, AOU Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Catalina Bonet
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Catalan Institute of Oncology (ICO), L’Hospitalet de Llobregat, 0890x Barcelona, Spain
- Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, 0890x Barcelona, Spain
| | - Maria-Jose Sánchez
- Escuela Andaluza de Salud Pública (EASP), 18011 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.18011 Granada, Spain
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Preventive Medicine and Public Health, University of Granada, 18071 Granada, Spain
| | - Pilar Amiano
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Ministry of Health of the Basque Government, Sub Directorate for Public Health and Addictions of Gipuzkoa, BioGipuzkoa Health Research Institute, Epidemiology of Chronic and Communicable Diseases Group, 20014 Donostia – San Sebastian, Spain
| | - José María Huerta
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Department of Epidemiology, Murcia Regional Health Council-IMIB, 30120, El Palmar, Murcia, Spain
| | - Marcela Guevara
- Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), 28029 Madrid, Spain
- Instituto de Salud Pública y Laboral de Navarra, 31003 Pamplona, Navarra, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Navarra, Spain
| | - Richard Palmqvist
- Department of Medical Biosciences, Umea University, 901 87 Umeå, Sweden
| | - Thyra Löwenmark
- Department of Medical Biosciences, Umea University, 901 87 Umeå, Sweden
| | - Aurora Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
| | - Elisabete Weiderpass
- Office of the Director, International Agency for Research on Cancer, 69366 Lyon Cedex 07, France
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Amanda J Cross
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, SW7 2AZ, UK
| | - Paolo Vineis
- MRC Centre for Environment and Health, School of public Health, Imperial College London, London W2 1PG, UK
- Italian Institute for Genomic Medicine (IIGM), 10060 Candiolo TO,Italy
| | - David J Hughes
- Cancer Biology and Therapeutics Group, School of Biomolecular and Biomedical Science, UCD Conway Institute, University College Dublin, Dublin 4, Ireland
| | - Veronika Fedirko
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA 30322, USA
- Department of Epidemiology, University of Texas M. D. Anderson Cancer Center, 77030 Houston, TX, USA
| |
Collapse
|
3
|
Du F, Lu Z, Wu Q, Zhang X, Zheng X, Zhang R, Wang Q. Treponema pallidum Flagellin FlaB3 Activates Inflammation and Inhibits Autophagy in HMC3 Cells via the TLR4 Pathway. ACS Infect Dis 2025; 11:773-783. [PMID: 40036177 DOI: 10.1021/acsinfecdis.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Neurosyphilis, a neurological manifestation of syphilis, is closely related to neuroinflammation. Autophagy, a fundamental cellular mechanism that mediates the degradation of intracellular components, plays a crucial role in immune regulation and inflammation. Microglia, resident immune cells in the brain, are central to these processes. However, the interplay between autophagy and neuroinflammation in the context of neurosyphilis remains poorly understood. In this research, the recombinant Treponema pallidum flagellin, FlaB3, was constructed to treat human microglia clone 3 (HMC3) cells and HMC3 cells in which TLR4 (Toll-like receptor 4) had been knocked down. We discovered that FlaB3 promotes IL-6 and IL-8 secretion through the TLR4 pathway. We also observed that FlaB3 regulates the expression of autophagy-related proteins Beclin1, LC3B, and P62 via the TLR4/PI3K/AKT/mTOR pathway, thereby inhibiting autophagy and autophagic flux in HMC3 cells. Subsequently, we discovered that the concentration of soluble amyloid β1-42 (Aβ1-42) was decreased in the cerebrospinal fluid of neurosyphilis patients. Immunofluorescence analysis further revealed that FlaB3 suppresses the degradation of Aβ by autophagosomes in HMC3 cells. Additionally, treatment with the autophagy activators Rapamycin and LY294002 decreased the levels of IL-6 and IL-8 secretion, indicating that autophagy modulates inflammation in HMC3 cells. In summary, our study demonstrates that FlaB3 promotes inflammation in HMC3 cells by inhibiting autophagy. This inhibition also impedes Aβ degradation, providing new insights into the pathogenesis of neurosyphilis.
Collapse
Affiliation(s)
- Fangzhi Du
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Zhiyu Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Qingyun Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Xu Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Xiaoli Zheng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| | - Ruili Zhang
- Department of Dermatology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210003, China
| | - Qianqiu Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing 210042, China
| |
Collapse
|
4
|
Kobeissy PH, Denève-Larrazet C, Marvaud JC, Kansau I. MicroRNA miR-27a-5p Reduces Intestinal Inflammation Induced by Clostridioides difficile Flagella by Regulating the Nuclear Factor-κB Signaling Pathway. J Infect Dis 2025; 231:e38-e46. [PMID: 39126324 PMCID: PMC11793073 DOI: 10.1093/infdis/jiae396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/27/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Clostridioides difficile is a major cause of nosocomial postantibiotic infections, often resulting in severe inflammation and watery diarrhea. Previous studies have highlighted the role of C. difficile flagellin FliC in activating Toll-like receptor 5 and triggering nuclear factor-κB (NF-κB) cell signaling, leading to the release of proinflammatory cytokines. However, the microRNA (miRNA)-mediated regulatory mechanisms underlying the FliC-induced inflammatory response remain unclear. METHODS miRNA expression levels were analyzed in Caco-2 intestinal epithelial cells following FliC stimulation and infection with the epidemic C. difficile R20291 strain or its unflagellated mutant by reverse transcription-quantitative polymerase chain reaction. Chemical inhibitors were used to block NF-κB signaling, and their impact on miR-27a-5p expression was assessed. Knockdown and overexpression experiments with miRNA inhibitor and mimic respectively were conducted to elucidate the functional role of miR-27a-5p in FliC-induced inflammatory responses. Additionally, a mouse model of C. difficile infection was treated with miR-27a-5p to evaluate its therapeutic potential in vivo. RESULTS miR-27a-5p showed significant FliC-dependent overexpression in Caco-2 cells. Inhibition of NF-κB signaling suppressed miR-27a-5p overexpression. Knockdown of miR-27a-5p increased NF-κB activation and cytokine production (tumor necrosis factor α and interleukin 8), while its overexpression had the opposite effect. Moreover, miR-27a-5p was overexpressed in the ceca of C. difficile-infected mice, correlating with intestinal interleukin 8 levels. Treatment of infected mice with the miR-27a-5p mimic reduced disease severity and intestinal inflammation. CONCLUSIONS miR-27a-5p plays a crucial role in regulating C. difficile-induced inflammation, suggesting its potential as a therapeutic target for controlling severe infection. These findings offer valuable insights into potential therapeutic strategies for managing C. difficile infection and associated inflammatory complications.
Collapse
Affiliation(s)
- Philippe Hussein Kobeissy
- Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Equipe Bactéries Pathogènes et Santé, Université Paris-Saclay, Orsay, France
- Department of Biological Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Cécile Denève-Larrazet
- Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Equipe Bactéries Pathogènes et Santé, Université Paris-Saclay, Orsay, France
| | - Jean-Christophe Marvaud
- Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Equipe Bactéries Pathogènes et Santé, Université Paris-Saclay, Orsay, France
| | - Imad Kansau
- Faculté de Pharmacie, Institut MICALIS (UMR 1319 Université Paris-Saclay, INRAE, AgroParisTech), Equipe Bactéries Pathogènes et Santé, Université Paris-Saclay, Orsay, France
| |
Collapse
|
5
|
Baquiran JIP, Quijano JB, van Oppen MJH, Cabaitan PC, Harrison PL, Conaco C. Microbiome Stability Is Linked to Acropora Coral Thermotolerance in Northwestern Philippines. Environ Microbiol 2025; 27:e70041. [PMID: 39887906 DOI: 10.1111/1462-2920.70041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 02/01/2025]
Abstract
Corals associate with a diverse community of prokaryotic symbionts that provide nutrition, antioxidants and other protective compounds to their host. However, the influence of microbes on coral thermotolerance remains understudied. Here, we examined the prokaryotic microbial communities associated with colonies of Acropora cf. tenuis that exhibit high or low thermotolerance upon exposure to 33°C (heated) relative to 29°C (control). Using 16S rRNA sequencing, we show that the microbial community structure of all A. cf. tenuis colonies was similar to each other at control temperature. Thermotolerant colonies, however, had relatively greater abundance of Endozoicomonas, Arcobacter, Bifidobacterium and Lactobacillus. At elevated temperature, only thermosensitive colonies showed a distinct shift in their microbiome, with an increase in Flavobacteriales, Rhodobacteraceae and Vibrio, accompanying a marked bleaching response. Functional prediction indicated that prokaryotic communities associated with thermotolerant corals were enriched for genes related to metabolism, while microbiomes of thermosensitive colonies were enriched for cell motility and antibiotic compound synthesis. These differences may contribute to the variable performance of thermotolerant and thermosensitive corals under thermal stress. Identification of microbial taxa correlated with thermotolerance provides insights into beneficial bacterial groups that could be used for microbiome engineering to support reef health in a changing climate.
Collapse
Affiliation(s)
- Jake Ivan P Baquiran
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
- Graduate School of Engineering and Science, University of the Ryukyus, Okinawa, Japan
| | - John Bennedick Quijano
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Madeleine J H van Oppen
- Australian Institute of Marine Science, Townsville MC, Queensland, Australia
- School of BioSciences, University of Melbourne, Parkville, Victoria, Australia
| | - Patrick C Cabaitan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Peter L Harrison
- Marine Ecology Research Centre, Southern Cross University, Lismore, New South Wales, Australia
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
6
|
Ali MG, Abdelhamid AG, Yousef AE. How colonizing alfalfa sprouts modulates the virulence of Shiga toxin-producing Escherichia coli. Int J Food Microbiol 2025; 428:110972. [PMID: 39608275 DOI: 10.1016/j.ijfoodmicro.2024.110972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/30/2024]
Abstract
Shiga toxin-producing Escherichia coli (STEC), a significant cause of foodborne illnesses, is often associated with the consumption of fresh produce, including alfalfa sprouts. This study was executed to determine how quickly STEC grows, adapts, and colonizes alfalfa sprouts during production and storage, and whether the pathogen's virulence and infectious doses are affected by physiological adaptation to sprouts as an environment. A reporter STEC O157:H7 EDL933 strain was developed to track the transcription of eae, a virulence gene involved in colonizing human intestinal enterocytes. When the seeds were inoculated with 2.1 × 103 CFU/g of the reporter strain, the pathogen's population increased to 1.5 × 106 CFU/g sprouts within 1.38 days and then remained stable during the remainder of the 5-day sprouting, indicating physiological adaptation to this environment. Seeds were inoculated with ∼108 CFU/g and subsequently treated with 2000 ppm calcium hypochlorite solution, followed by a water-rinse (treated seeds), or just rinsed with water (untreated seeds). After 5 days of sprouting, the resulting fresh sprouts were refrigerated for three days at 4 °C. Sprout samples were collected and treated with 2000 ppm calcium hypochlorite solution and rinsed thoroughly with water before counting internalized STEC, or just water-washed before measuring total STEC. The transcription of eae (normalized to cell count) was the highest on the second day of sprouting, but the transcription of other virulence and stress-related genes varied, with sodA being upregulated in STEC cells. Lethal dose 50 (LD50) to Galleria mellonella, a STEC infection animal model, was lower (i.e., virulence was higher) in total STEC collected from fresh sprouts produced from treated seeds, compared to that from untreated seeds (1.9 × 100 and 6.0 × 101 CFU/larva, respectively). Compared to refrigerated sprouts, the LD50 of STEC from freshly produced sprouts was lower. Based on these findings, it can be concluded that (a) STEC quickly adapts physiologically to sprouts as an environment, (b) transcription of STEC virulence genes changed during sprouts production but generally decreased during refrigeration, and (c) STEC from fresh sprouts grown from sanitizer-treated seeds were more virulent in the animal model, but STEC from refrigerated sprouts were less virulent.
Collapse
Affiliation(s)
- Mostafa G Ali
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt
| | - Ahmed G Abdelhamid
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Botany and Microbiology Department, Faculty of Science, Benha University, Benha, Egypt; Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Ahmed E Yousef
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Department of Microbiology, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
7
|
Afzal H, Murtaza A, Cheng LT. Structural engineering of flagellin as vaccine adjuvant: quest for the minimal domain of flagellin for TLR5 activation. Mol Biol Rep 2025; 52:104. [PMID: 39775323 PMCID: PMC11706886 DOI: 10.1007/s11033-024-10146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Flagellin stimulates Toll-like receptor 5 (TLR5), triggering both innate and adaptive immune responses, making it a potential vaccine adjuvant. On mucosal surfaces, flagellin induces a strong release of cytokines, chemokines, and immunoglobulins. When used in its free monomeric form, flagellin has been shown to enhance immune responses when combined with vaccine antigens. Further research demonstrated that genetically linking flagellin to the antigen provides a more consistent immune boost. However, the bulky structure of flagellin presents challenges in designing the antigen-adjuvant construct, leading to ongoing research to determine the minimal flagellin domain necessary for its adjuvant effect. Early findings suggest that only the D0 and D1 domains are required for immune enhancement. Functional analysis revealed that the TLR5-binding region is located in the D1 domain, while TLR5 dimerization and signaling require the presence of D0. Further reductions in the size of the D0 and D1 domains may be possible as deeper studies aim to identify the key residues responsible for TLR5 activation and immune enhancement. Additionally, flagellin is being tested as a hapten carrier alongside its established adjuvant role. Recently, significant advancements in flagellin application have been observed as it progresses through clinical studies as an adjuvant, anti-radiation, and anti-cancer agent.
Collapse
Affiliation(s)
- Haroon Afzal
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Asad Murtaza
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Li-Ting Cheng
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
8
|
Bao X, Wu J. Natural anti-adhesive components against pathogenic bacterial adhesion and infection in gastrointestinal tract: case studies of Helicobacter pylori, Salmonella enterica, Clostridium difficile, and diarrheagenic Escherichia coli. Crit Rev Food Sci Nutr 2024:1-46. [PMID: 39666022 DOI: 10.1080/10408398.2024.2436139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Antimicrobial resistance (AMR) poses a global public health concern. Recognizing the critical role of bacterial adhesion in pathogenesis of infection, anti-adhesive therapy emerges as a promising approach to impede initial bacterial attachment, thus preventing pathogenic colonization and infection. Natural anti-adhesive agents derived from food sources are generally safe and have the potential to inhibit the emergence of resistant bacteria. This comprehensive review explored diverse natural dietary components exhibiting anti-adhesive activities against several model enteric pathogens, including Helicobacter pylori, Salmonella enterica, Clostridium difficile, and three key diarrheagenic Escherichia coli (i.e., enterotoxigenic E. coli, enteropathogenic E. coli, and enterohemorrhagic E. coli). Investigating various anti-adhesive products will advance our understanding of current research of the field and inspire further development of these agents as potential nutraceuticals or adjuvants to improve the efficacy of conventional antibiotics.
Collapse
Affiliation(s)
- Xiaoyu Bao
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jianping Wu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
9
|
Wang Z, Kaplan RC, Burk RD, Qi Q. The Oral Microbiota, Microbial Metabolites, and Immuno-Inflammatory Mechanisms in Cardiovascular Disease. Int J Mol Sci 2024; 25:12337. [PMID: 39596404 PMCID: PMC11594421 DOI: 10.3390/ijms252212337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Cardiovascular diseases (CVDs) remain a leading cause of global morbidity and mortality. Recent advancements in high-throughput omics techniques have enhanced our understanding of the human microbiome's role in the development of CVDs. Although the relationship between the gut microbiome and CVDs has attracted considerable research attention and has been rapidly evolving in recent years, the role of the oral microbiome remains less understood, with most prior studies focusing on periodontitis-related pathogens. In this review, we summarized previously reported associations between the oral microbiome and CVD, highlighting known CVD-associated taxa such as Porphyromonas gingivalis, Fusobacterium nucleatum, and Aggregatibacter actinomycetemcomitans. We also discussed the interactions between the oral and gut microbes. The potential mechanisms by which the oral microbiota can influence CVD development include oral and systemic inflammation, immune responses, cytokine release, translocation of oral bacteria into the bloodstream, and the impact of microbial-related products such as microbial metabolites (e.g., short-chain fatty acids [SCFAs], trimethylamine oxide [TMAO], hydrogen sulfide [H2S], nitric oxide [NO]) and specific toxins (e.g., lipopolysaccharide [LPS], leukotoxin [LtxA]). The processes driven by these mechanisms may contribute to atherosclerosis, endothelial dysfunction, and other cardiovascular pathologies. Integrated multi-omics methodologies, along with large-scale longitudinal population studies and intervention studies, will facilitate a deeper understanding of the metabolic and functional roles of the oral microbiome in cardiovascular health. This fundamental knowledge will support the development of targeted interventions and effective therapies to prevent or reduce the progression from cardiovascular risk to clinical CVD events.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Robert C. Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Robert D. Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
10
|
Zeng YH, Li W, Xu H, Gong XX, Zhang YM, Long H, Xie ZY. Dual RNA-Seq Unveils Candidate Key Virulence Genes of Vibrio harveyi at the Early Stage of Infection in Hybrid Grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus). Microorganisms 2024; 12:2113. [PMID: 39597503 PMCID: PMC11596792 DOI: 10.3390/microorganisms12112113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Vibrio harveyi is a major bacterial pathogen that causes disease in aquaculture animals worldwide. Although V. harveyi consistently harbors a range of traditional virulence genes, it remains unclear which specific genes are crucial for virulence at different infection stages. Dual RNA-seq is a cutting-edge RNA sequencing technology that is ideal for investigating the gene expression patterns of pathogens within the host, which is highly effective in identifying key virulence genes. In previous artificial infection experiments, we have identified the liver of hybrid grouper (♀ Epinephelus polyphekadion × ♂ E. fuscoguttatus) as the main target organ for pathogenic V. harveyi GDH11385 during the initial infection phase. To further explore the key virulence factors of V. harveyi at the early stage of infection, the liver of the hybrid grouper infected with strain GDH11385 was analyzed here by dual RNA-seq. The transcriptome data were compared with that of in vitro cultured bacteria. The results showed that 326 and 1140 DEGs (differentially expressed genes) were significantly up- and down-regulated, respectively, at 4 h post-infection (hpi). Further pathway enrichment analyses revealed that these up-regulated DEGs in vivo were mainly enriched in siderophore biosynthesis and transport, type VI secretion system (T6SS), flagellar assembly, glycolysis/gluconeogenesis, and ribosome. Notably, all genes involved in the metabolism and utilization of vibrioferrin (a carboxylate class of siderophore produced by Vibrio), and most of the genes within one of three T6SSs, were significantly up-regulated in vivo. This indicates that siderophore-dependent iron competition and T6SS-mediated delivery of virulence factors are vital for the successful colonization of V. harveyi at the early stage of infection. This study provides more precise clues to reveal the virulence mechanism of V. harveyi during the initial phase of infection.
Collapse
Affiliation(s)
- Yan-Hua Zeng
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Wen Li
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - He Xu
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Xiao-Xiao Gong
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Yu-Mei Zhang
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Hao Long
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| | - Zhen-Yu Xie
- School of Marine Biology and Fisheries, Hainan University, Haikou 570228, China; (Y.-H.Z.); (W.L.); (H.X.); (X.-X.G.); (Y.-M.Z.); (H.L.)
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
- Hainan Provincial Key Laboratory for Tropical Hydrobiology and Biotechnology, Hainan University, Haikou 570228, China
| |
Collapse
|
11
|
Lillehoj EP, Yu Y, Verceles AC, Imamura A, Ishida H, Piepenbrink KH, Goldblum SE. Stenotrophomonas maltophilia provokes NEU1-mediated release of a flagellin-binding decoy receptor that protects against lethal infection. iScience 2024; 27:110866. [PMID: 39314239 PMCID: PMC11418149 DOI: 10.1016/j.isci.2024.110866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/03/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Stenotrophomonas maltophilia (Sm), a multidrug-resistant pathogen often isolated from immunocompromised individuals, presents its flagellin to multimeric tandem repeats within the ectodomain of mucin-1 (MUC1-ED), expressed on airway epithelia. Flagellated Sm increases neuraminidase-1 (NEU1) sialidase association with and desialylation of MUC1-ED. This NEU1-mediated MUC1-ED desialylation unmasks cryptic binding sites for Sm flagellin, increasing flagellin and Sm binding to airway epithelia. MUC1 overexpression increases receptor number whereas NEU1 overexpression elevates receptor binding affinity. Silencing of either MUC1 or NEU1 reduces the flagellin-MUC1 interaction. Sm/flagellin provokes MUC1-ED autoproteolysis at a juxtamembranous glycine-serine peptide bond. MUC1-ED shedding from the epithelium not only occurs in vitro, but in the bronchoalveolar compartments of Sm/flagellin-challenged mice and patients with ventilator-associated Sm pneumonia. Finally, the soluble flagellin-targeting, MUC1-ED decoy receptor dose-dependently inhibits multiple Sm flagellin-driven pathogenic processes, in vitro, including motility, biofilm formation, adhesion, and proinflammatory cytokine production, and protects against lethal Sm lung infection, in vivo.
Collapse
Affiliation(s)
- Erik P. Lillehoj
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yafan Yu
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
| | - Avelino C. Verceles
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Akihiro Imamura
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Hideharu Ishida
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Kurt H. Piepenbrink
- Department of Biochemistry, University of Nebraska, Lincoln, NE, USA
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Simeon E. Goldblum
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
12
|
Rajasekaran JJ, Krishnamurthy HK, Bosco J, Jayaraman V, Krishna K, Wang T, Bei K. Oral Microbiome: A Review of Its Impact on Oral and Systemic Health. Microorganisms 2024; 12:1797. [PMID: 39338471 PMCID: PMC11434369 DOI: 10.3390/microorganisms12091797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024] Open
Abstract
PURPOSE OF REVIEW This review investigates the oral microbiome's composition, functions, influencing factors, connections to oral and systemic diseases, and personalized oral care strategies. RECENT FINDINGS The oral microbiome is a complex ecosystem consisting of bacteria, fungi, archaea, and viruses that contribute to oral health. Various factors, such as diet, smoking, alcohol consumption, lifestyle choices, and medical conditions, can affect the balance of the oral microbiome and lead to dysbiosis, which can result in oral health issues like dental caries, gingivitis, periodontitis, oral candidiasis, and halitosis. Importantly, our review explores novel associations between the oral microbiome and systemic diseases including gastrointestinal, cardiovascular, endocrinal, and neurological conditions, autoimmune diseases, and cancer. We comprehensively review the efficacy of interventions like dental probiotics, xylitol, oral rinses, fluoride, essential oils, oil pulling, and peptides in promoting oral health by modulating the oral microbiome. SUMMARY This review emphasizes the critical functions of the oral microbiota in dental and overall health, providing insights into the effects of microbial imbalances on various diseases. It underlines the significant connection between the oral microbiota and general health. Furthermore, it explores the advantages of probiotics and other dental care ingredients in promoting oral health and addressing common oral issues, offering a comprehensive strategy for personalized oral care.
Collapse
Affiliation(s)
- John J. Rajasekaran
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | | | - Jophi Bosco
- Vibrant America LLC, Santa Clara, CA 95054, USA;
| | - Vasanth Jayaraman
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Karthik Krishna
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Tianhao Wang
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| | - Kang Bei
- Vibrant Sciences LLC, Santa Clara, CA 95054, USA; (H.K.K.); (V.J.); (K.K.); (T.W.); (K.B.)
| |
Collapse
|
13
|
Chen Y, Zhong J, Lu M, Yang C. Transient Expression Vector Construction, Subcellular Localisation, and Evaluation of Antiviral Potential of Flagellin BP8-2. Molecules 2024; 29:3876. [PMID: 39202955 PMCID: PMC11357009 DOI: 10.3390/molecules29163876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
This study used the DNA of Bacillus amyloliquefaciens Ba168 as a template to amplify the flagellin BP8-2 gene and ligate it into the fusion expression vector pCAMBIA1300-35S-EGFP after digestion for the construction of the expression vector pCAMBIA1300-EGFP-BP8-2. Next, using Nicotiana benthamiana as receptor material, transient expression was carried out under the mediation of Agrobacterium tumefaciens C58C1. Finally, the transient expression and subcellular localisation of flagellin BP8-2 protein were analysed using the imaging of co-transformed GFP under laser confocal microscopy. The results showed that flagellin BP8-2 was localised in the cell membrane and nucleus, and the RT-PCR results showed that the BP8-2 gene could be stably expressed in tobacco leaf cells. Furthermore, there was stronger antiviral activity against tobacco mosaic virus (TMV) infection in Nicotiana glutinosa than in BP8-2 and ningnanmycin, with an inhibitory effect of 75.91%, protective effect of 77.45%, and curative effect of 68.15%. TMV movement and coat protein expression were suppressed, and there was a high expression of PR-1a, PAL, and NPR1 in BP8-2-treated tobacco leaf. These results suggest that flagellin BP8-2 inhibits TMV by inducing resistance. Moreover, BP8-2 has low toxicity and is easily biodegradable and eco-friendly. These results further enrich our understanding of the antiviral mechanisms of proteins and provide alternatives for controlling viral diseases in agriculture.
Collapse
Affiliation(s)
- Yahan Chen
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (C.Y.)
| | - Jianxin Zhong
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (C.Y.)
| | - Meihuan Lu
- Microbial Resources of Research Center, Microbiology Institute of Shaanxi, Xi’an 710043, China;
| | - Chengde Yang
- College of Plant Protection, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (C.Y.)
| |
Collapse
|
14
|
Xue YX, Huang LJ, Wang HY, Peng JJ, Jin MK, Hu SL, Li HB, Xue XM, Zhu YG. Interaction of tetracycline and copper co-intake in inducing antibiotic resistance genes and potential pathogens in mouse gut. ENVIRONMENT INTERNATIONAL 2024; 186:108594. [PMID: 38527398 DOI: 10.1016/j.envint.2024.108594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
The widespread use of copper and tetracycline as growth promoters in the breeding industry poses a potential threat to environmental health. Nevertheless, to the best of our knowledge, the potential adverse effects of copper and tetracycline on the gut microbiota remain unknown. Herein, mice were fed different concentrations of copper and/or tetracycline for 6 weeks to simulate real life-like exposure in the breeding industry. Following the exposure, antibiotic resistance genes (ARGs), potential pathogens, and other pathogenic factors were analyzed in mouse feces. The co-exposure of copper with tetracycline significantly increased the abundance of ARGs and enriched more potential pathogens in the gut of the co-treated mice. Copper and/or tetracycline exposure increased the abundance of bacteria carrying either ARGs, metal resistance genes, or virulence factors, contributing to the widespread dissemination of potentially harmful genes posing a severe risk to public health. Our study provides insights into the effects of copper and tetracycline exposure on the gut resistome and potential pathogens, and our findings can help reduce the risks associated with antibiotic resistance under the One Health framework.
Collapse
Affiliation(s)
- Ying-Xin Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; College of Juncao Science and Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Li-Jie Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hong-Yu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jing-Jing Peng
- College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, Key Laboratory of Plant-Soil Interactions, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Ming-Kang Jin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Shi-Lin Hu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xi-Mei Xue
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
15
|
Liu Q, Dai Y, Wu X, Zhang Q, An X, Lai F. Lawsonia intracellularis flagellin protein LfliC stimulates NF-κB and MAPK signaling pathways independently of TLR5 interaction. Vet Microbiol 2024; 289:109960. [PMID: 38176089 DOI: 10.1016/j.vetmic.2023.109960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 12/05/2023] [Accepted: 12/19/2023] [Indexed: 01/06/2024]
Abstract
Lawsonia intracellularis, a Gram-negative obligate intracellular bacterium and etiologic agent of porcine proliferative enteropathy, was observed to have a long, single, and unipolar flagellum. Bacterial flagellar filament comprises thousands of copies of the protein flagellin (FliC), and has been reported to be recognized by Toll-like receptor (TLR5) to activate the NF-κB and MAPK signaling pathways, thereby inducing the expression of proinflammatory genes. Recently, two L. intracellularis flagellin proteins, LfliC and LFliC, were reported to be involved in bacterial-host interaction and immune response. Here, to further explore the role of LfliC in proinflammatory response, we purified LfliC, and found that its exposure could activate NF-κB signaling pathway in both HEK293T and IPI-FX cells, as well as activate MAPK p38 and ERK1/2 in HEK293T cells but not in IPI-FX cells. However, our yeast two-hybrid and co-immunoprecipitation assay results revealed that LfliC has no interaction with the porcine TLR5 ECD domain though it harbors the conserved D1-like motif required for the interaction. Moreover, LfliC was identified as a substrate of the virulence-associated type III secretion system (T3SS) by using the heterologous Y. enterocolitica system. Transient expression of LfliC also activated the NF-κB and MAPK signaling pathway in HEK293T cells. Collectively, our results suggest that both the exposure and expression of L. intracellularis LfliC can induce the NF-κB and MAPK signaling pathway in mammalian cells. Our findings may provide important implications and resources for the development of diagnostic tools or vaccines and dissection of the pathogenesis of L. intracellularis.
Collapse
Affiliation(s)
- Qianru Liu
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yimin Dai
- School of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xiaoyu Wu
- Collaborative Innovation Center of Postharvest Key Technology and Quality Safety of Fruits and Vegetables in Jiangxi Province, Nanchang, Jiangxi, China
| | - Qinghua Zhang
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xuejiao An
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China
| | - Fenju Lai
- School of Bioscience and Bioengineering, Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
16
|
Cardoza E, Singh H. From Stress Tolerance to Virulence: Recognizing the Roles of Csps in Pathogenicity and Food Contamination. Pathogens 2024; 13:69. [PMID: 38251376 PMCID: PMC10819108 DOI: 10.3390/pathogens13010069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
Be it for lab studies or real-life situations, bacteria are constantly exposed to a myriad of physical or chemical stresses that selectively allow the tolerant to survive and thrive. In response to environmental fluctuations, the expression of cold shock domain family proteins (Csps) significantly increases to counteract and help cells deal with the harmful effects of stresses. Csps are, therefore, considered stress adaptation proteins. The primary functions of Csps include chaperoning nucleic acids and regulating global gene expression. In this review, we focus on the phenotypic effects of Csps in pathogenic bacteria and explore their involvement in bacterial pathogenesis. Current studies of csp deletions among pathogenic strains indicate their involvement in motility, host invasion and stress tolerance, proliferation, cell adhesion, and biofilm formation. Through their RNA chaperone activity, Csps regulate virulence-associated genes and thereby contribute to bacterial pathogenicity. Additionally, we outline their involvement in food contamination and discuss how foodborne pathogens utilize the stress tolerance roles of Csps against preservation and sanitation strategies. Furthermore, we highlight how Csps positively and negatively impact pathogens and the host. Overall, Csps are involved in regulatory networks that influence the expression of genes central to stress tolerance and virulence.
Collapse
Affiliation(s)
| | - Harinder Singh
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS University, Vile Parle West, Mumbai 400056, India
| |
Collapse
|
17
|
Aminov R, Aminova L. The role of the glycome in symbiotic host-microbe interactions. Glycobiology 2023; 33:1106-1116. [PMID: 37741057 PMCID: PMC10876039 DOI: 10.1093/glycob/cwad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 09/13/2023] [Accepted: 09/21/2023] [Indexed: 09/25/2023] Open
Abstract
Glycosylation plays a crucial role in many aspects of cell biology, including cellular and organismal integrity, structure-and-function of many glycosylated molecules in the cell, signal transduction, development, cancer, and in a number of diseases. Besides, at the inter-organismal level of interaction, a variety of glycosylated molecules are involved in the host-microbiota recognition and initiation of downstream signalling cascades depending on the outcomes of the glycome-mediated ascertainment. The role of glycosylation in host-microbe interactions is better elaborated within the context of virulence and pathogenicity in bacterial infection processes but the symbiotic host-microbe relationships also involve substantive glycome-mediated interactions. The works in the latter field have been reviewed to a much lesser extent, and the main aim of this mini-review is to compensate for this deficiency and summarise the role of glycomics in host-microbe symbiotic interactions.
Collapse
Affiliation(s)
- Rustam Aminov
- The School of Medicine, Medical Sciences and Nutrition, Foresterhill Campus, Aberdeen AB25 2ZD, Scotland, United Kingdom
| | - Leila Aminova
- Midwest Bioprocessing Center, 801 W Main St, Peoria, IL, 61606-1877, United States
| |
Collapse
|
18
|
Gan Y, Zhao G, Wang Z, Zhang X, Wu MX, Lu M. Bacterial Membrane Vesicles: Physiological Roles, Infection Immunology, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301357. [PMID: 37357142 PMCID: PMC10477901 DOI: 10.1002/advs.202301357] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/19/2023] [Indexed: 06/27/2023]
Abstract
Bacterial or fungal membrane vesicles, traditionally considered as microbial metabolic wastes, are secreted mainly from the outer membrane or cell membrane of microorganisms. However, recent studies have shown that these vesicles play essential roles in direct or indirect communications among microorganisms and between microorganisms and hosts. This review aims to provide an updated understanding of the physiological functions and emerging applications of bacterial membrane vesicles, with a focus on their biogenesis, mechanisms of adsorption and invasion into host cells, immune stimulatory effects, and roles in the much-concerned problem of bacterial resistance. Additionally, the potential applications of these vesicles as biomarkers, vaccine candidates, and drug delivery platforms are discussed.
Collapse
Affiliation(s)
- Yixiao Gan
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Gang Zhao
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| | - Zhicheng Wang
- Department of Transfusion MedicineHuashan HospitalFudan UniversityShanghai200040P. R. China
| | - Xingcai Zhang
- John A. Paulson School of Engineering and Applied SciencesHarvard UniversityCambridgeMA02138USA
| | - Mei X. Wu
- Wellman Center for PhotomedicineMassachusetts General HospitalDepartment of DermatologyHarvard Medical School, 50 Blossom StreetBostonMA02114USA
| | - Min Lu
- Department of OrthopaedicsShanghai Key Laboratory for Prevention and Treatment of Bone and Joint DiseasesShanghai Institute of Traumatology and OrthopaedicsRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200240P. R. China
| |
Collapse
|
19
|
Shen B, Gu T, Shen Z, Zhou C, Guo Y, Wang J, Li B, Xu X, Li F, Zhang Q, Cai X, Dong H, Lu L. Escherichia coli Promotes Endothelial to Mesenchymal Transformation of Liver Sinusoidal Endothelial Cells and Exacerbates Nonalcoholic Fatty Liver Disease Via Its Flagellin. Cell Mol Gastroenterol Hepatol 2023; 16:857-879. [PMID: 37572735 PMCID: PMC10598062 DOI: 10.1016/j.jcmgh.2023.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND&AIMS: Gut bacteria translocate into the liver through a disrupted gut vascular barrier, which is an early and common event in the development of nonalcoholic fatty liver disease (NAFLD). Liver sinusoidal endothelial cells (LSECs) are directly exposed to translocated gut microbiota in portal vein blood. Escherichia coli, a commensal gut bacterium with flagella, is markedly enriched in the gut microbiota of patients with NAFLD. However, the impact of E coli on NAFLD progression and its underlying mechanisms remains unclear. METHODS The abundance of E coli was analyzed by using 16S ribosomal RNA sequencing in a cohort of patients with NAFLD and healthy controls. The role of E coli was assessed in NAFLD mice after 16 weeks of administration, and the features of NAFLD were evaluated. Endothelial to mesenchymal transition (EndMT) in LSECs induced by E coli was analyzed through Western blotting and immunofluorescence. RESULTS The abundance of gut Enterobacteriaceae increased in NAFLD patients with severe fat deposition and fibrosis. Importantly, translocated E coli in the liver aggravated hepatic steatosis, inflammation, and fibrosis in NAFLD mice. Mechanistically, E coli induced EndMT in LSECs through the TLR5/MYD88/TWIST1 pathway during NAFLD development. The toll-like receptor 5 inhibitor attenuated E coli-induced EndMT in LSECs and liver injury in NAFLD mice. Interestingly, flagellin-deficient E coli promoted less EndMT in LSECs and liver injury in NAFLD mice. CONCLUSIONS E coli promoted the development of NAFLD and promoted EndMT in LSECs through toll-like receptor 5/nuclear factor kappa B-dependent activation of TWIST1 mediated by flagellin. Therapeutic interventions targeting E coli and/or flagellin may represent a promising candidate for NAFLD treatment.
Collapse
Affiliation(s)
- Bo Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Gu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenyang Shen
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cui Zhou
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuecheng Guo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junjun Wang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Binghang Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianjun Xu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qidi Zhang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaobo Cai
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Dong
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Lungen Lu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
20
|
Yang S, Liu G, Savelkoul HFJ, Jansen CA, Li B. Mini-review: microbiota have potential to prevent PEDV infection by improved intestinal barrier. Front Immunol 2023; 14:1230937. [PMID: 37503350 PMCID: PMC10369048 DOI: 10.3389/fimmu.2023.1230937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) infection poses a significant threat to the global pig industry. Current prevention and control strategies are inadequate in protecting pigs from new PEDV variants. This review aims to examine the relationship between PEDV and intestinal microbes, and investigate whether modulating intestinal microbes could affect PEDV infection. The mechanisms by which various intestinal microbes affect viral infection were initially introduced. Intestinal microbes can influence enteric viral infection through direct contact, such as binding, or by affecting interferons (IFNs) production and the intestinal barrier. Influencing the intestinal barrier by microbes can impact PEDV infection in young piglets. To narrow down the range of microbes that may influence PEDV infection, this review summarized microbes that change after infection. Short chain fatty acids (SCFAs), bacterial cell components, and toxins from microbes were identified as important mediators affecting PEDV infection. SCFAs primarily strengthen the intestinal barrier and inhibit intestinal inflammation, while bacterial cell components and toxins are more likely to damage the intestinal barrier. Therefore, this review hypothesizes that fecal transplantation, which allows the host to colonize more SCFAs-producing microbes, may prevent PEDV infection. However, these hypotheses require further proof, and the transplantation of intestinal microbes in pigs requires more exploration.
Collapse
Affiliation(s)
- Shanshan Yang
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Guangliang Liu
- State Key Laboratory of Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Christine A. Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Bin Li
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Key Laboratory for Food Quality and Safety-State, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Ministry of Agriculture, Nanjing, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
21
|
Feng S, Zhang C, Chen S, He R, Chao G, Zhang S. TLR5 Signaling in the Regulation of Intestinal Mucosal Immunity. J Inflamm Res 2023; 16:2491-2501. [PMID: 37337514 PMCID: PMC10276996 DOI: 10.2147/jir.s407521] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023] Open
Abstract
Toll-like receptor 5 (TLR5) is a pattern recognition receptor that specifically recognizes flagellin and consequently plays a crucial role in the control of intestinal homeostasis by activating innate and adaptive immune responses. TLR5 overexpression, on the other hand, might disrupt the intestinal mucosal barrier, which serves as the first line of defense against harmful microbes. The intestine symbiotic bacteria, mucous layer, intestinal epithelial cells (IECs), adherens junctions (such as tight junctions and peripheral membrane proteins), the intestinal mucosal immune system, and cytokines make up the intestinal mucosal barrier. Impaired barrier function has been linked to intestinal illnesses such as inflammatory bowel disease (IBD). IBD is a persistent non-specific inflammatory illness of the digestive system with an unknown cause. It is now thought to be linked to infection, environment, genes, immune system, and the gut microbiota. The significance of immunological dysfunction in IBD has received more attention in recent years. The purpose of this paper is to explore TLR5's position in the intestinal mucosal barrier and its relevance to IBD.
Collapse
Affiliation(s)
- Shuyan Feng
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Chi Zhang
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Shanshan Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310006, People’s Republic of China
| | - Ruonan He
- Zhejiang Chinese Medical University, Hangzhou, 310053, People’s Republic of China
| | - Guanqun Chao
- Sir Run Run Shaw Hospital of Zhejiang University, Hangzhou, 310018, People’s Republic of China
| | - Shuo Zhang
- The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, People’s Republic of China
| |
Collapse
|
22
|
Losol P, Ji MH, Kim JH, Choi JP, Yun JE, Seo JH, Kim BK, Chang YS, Kim SH. Bronchial epithelial cells release inflammatory markers linked to airway inflammation and remodeling in response to TLR5 ligand flagellin. World Allergy Organ J 2023; 16:100786. [PMID: 37332524 PMCID: PMC10276272 DOI: 10.1016/j.waojou.2023.100786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/25/2023] [Accepted: 05/16/2023] [Indexed: 06/20/2023] Open
Abstract
Background/Aims Flagellin, which is abundant in gram-negative bacteria, including Pseudomonas, is reported to influence on inflammatory responses in various lung diseases. However, its effect on airway epithelial cells in contribution to asthma pathogenesis is not elucidated yet. We aimed to investigate the effect of TLR5 ligand flagellin on the transcriptomic profile of primary human epithelial cells and to determine the markers of airway inflammation. Methods Normal human bronchial epithelial (NHBE) cells were grown and differentiated in air-liquid interface (ALI) culture for 14-16 days. The cells were treated with flagellin in vitro at 10 and 100 ng/ml for 3 and 24 h. The conditioned media and cells were harvested to validate inflammatory markers involved in airway inflammation using ELISA, Western blot, and quantitative PCR methods. RNA-sequencing was performed to investigate the transcriptional response to flagellin in ALI-NHBE cells. Results Altered transcriptional responses to flagellin in differentiated bronchial epithelial cells were determined, including genes encoding chemokines, matrix metalloproteinases, and antimicrobial biomolecules. Pathway analysis of the transcriptionally responsive genes revealed enrichment of signaling pathways. Flagellin induced the mRNA expressions of proinflammatory cytokines and chemokines, and secretion of GM-CSF, CXCL5, CCL5 and CXCL10. Flagellin enhanced the protein expression of MMP-13 in TGF-β1 and TGF-β2 pretreated cell lysates and Wnt/β-catenin signaling. Conclusions These findings suggest that flagellin could be a potent inducer of inflammatory markers that may contribute to airway inflammation and remodeling.
Collapse
Affiliation(s)
- Purevsuren Losol
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Mi-Hong Ji
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin Hee Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jun-Pyo Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jeong-Eun Yun
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Jang-Ho Seo
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| | - Byung-Keun Kim
- Department of Internal Medicine, Korea University Medical Center Anam Hospital, Seoul, South Korea
| | - Yoon-Seok Chang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
- Medical Research Center, Seoul National University, Seoul, South Korea
| | - Sae-Hoon Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
23
|
Ge C, Liang X, Wu X, Wang J, Wang H, Qin Y, Xue M. Yellow mealworm (Tenebrio Molitor) enhances intestinal immunity in largemouth bass (Micropterus salmoides) via the NFκB/survivin signaling pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108736. [PMID: 37054764 DOI: 10.1016/j.fsi.2023.108736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/20/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to elucidate the mechanisms of yellow mealworm (Tenebrio Molitor, YM) in intestinal immunity and health. Largemouth bass, as an enteritis modeling animal, were fed 3 diets containing YM at 0% (YM0), 24% (YM24) and 48% (YM48). The YM24 group had reduced levels of proinflammatory cytokines, while the YM48 group experienced a negative impact on intestinal health. Next, the Edwardsiella tarda (E. tarda) challenge test consisted of 4 YM diets, 0% (EYM0), 12% (EYM12), 24% (EYM24), and 36% (EYM36). The EYM0 and EYM12 groups exhibited intestinal damage and immunosuppression by the pathogenic bacteria. However, the above adverse phenotypes were attenuated in the EYM24 and EYM36 groups. Mechanistically, the EYM24 and EYM36 groups enhanced intestinal immunity in largemouth bass via activating NFκBp65 and further upregulating survivin expression to inhibit apoptosis. The results identify a protective mechanism of YM as a novel food or feed source by improving intestinal health.
Collapse
Affiliation(s)
- Chunyu Ge
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China; Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Xiaofang Liang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoliang Wu
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jie Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hao Wang
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing, China
| | - Min Xue
- National Aquafeed Safety Assessment Center, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
24
|
Lim S, Yadunandan A, Khalid Jawed M. Bacteria-inspired robotic propulsion from bundling of soft helical filaments at low Reynolds number. SOFT MATTER 2023; 19:2254-2264. [PMID: 36916641 DOI: 10.1039/d2sm01398c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The bundling of flagella is known to create a "run" phase, where the bacteria moves in a nearly straight line rather than making changes in direction. Historically, mechanical explanations for the bundling phenomenon intrigued many researchers, and significant advances were made in physical models and experimental methods. Contributing to the field of research, we present a bacteria-inspired centimeter-scale soft robotic hardware platform and a computational framework for a physically plausible simulation model of the multi-flagellated robot under low Reynolds number (∼10-1). The fluid-structure interaction simulation couples the discrete elastic rods algorithm with the method of regularized Stokeslet segments. Contact between two flagella is handled by a penalty-based method. We present a comparison between our experimental and simulation results and verify that the simulation tool can capture the essential physics of this problem. Preliminary findings on robustness to buckling provided by the bundling phenomenon and the efficiency of a multi-flagellated soft robot are compared with the single-flagellated counterparts. Observations were made on the coupling between geometry and elasticity, which manifests itself in the propulsion of the robot by nonlinear dependency on the rotational speed of the flagella.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, 90095, USA.
| | - Achyuta Yadunandan
- Department of Electrical and Computer Engineering, University of California, Los Angeles, California, 90095, USA
| | - M Khalid Jawed
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, California, 90095, USA.
| |
Collapse
|
25
|
Akahoshi DT, Natwick DE, Yuan W, Lu W, Collins SR, Bevins CL. Flagella-driven motility is a target of human Paneth cell defensin activity. PLoS Pathog 2023; 19:e1011200. [PMID: 36821624 PMCID: PMC9990921 DOI: 10.1371/journal.ppat.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/07/2023] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
In the mammalian intestine, flagellar motility can provide microbes competitive advantage, but also threatens the spatial segregation established by the host at the epithelial surface. Unlike microbicidal defensins, previous studies indicated that the protective activities of human α-defensin 6 (HD6), a peptide secreted by Paneth cells of the small intestine, resides in its remarkable ability to bind microbial surface proteins and self-assemble into protective fibers and nets. Given its ability to bind flagellin, we proposed that HD6 might be an effective inhibitor of bacterial motility. Here, we utilized advanced automated live cell fluorescence imaging to assess the effects of HD6 on actively swimming Salmonella enterica in real time. We found that HD6 was able to effectively restrict flagellar motility of individual bacteria. Flagellin-specific antibody, a classic inhibitor of flagellar motility that utilizes a mechanism of agglutination, lost its activity at low bacterial densities, whereas HD6 activity was not diminished. A single amino acid variant of HD6 that was able to bind flagellin, but not self-assemble, lost ability to inhibit flagellar motility. Together, these results suggest a specialized role of HD6 self-assembly into polymers in targeting and restricting flagellar motility.
Collapse
Affiliation(s)
- Douglas T. Akahoshi
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Dean E. Natwick
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Sean R. Collins
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, California, United States of America
| | - Charles L. Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| |
Collapse
|
26
|
Uropathogenic Escherichia coli in Mexico, an Overview of Virulence and Resistance Determinants: Systematic Review and Meta-analysis. Arch Med Res 2023; 54:247-260. [PMID: 36725379 DOI: 10.1016/j.arcmed.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/03/2022] [Accepted: 01/12/2023] [Indexed: 01/31/2023]
Abstract
BACKGROUND Urinary tract infections (UTI) are one of the most common pathologies in Mexico and the majority are caused by uropathogenic Escherichia coli (UPEC). UPEC possesses virulence and resistance determinants that promote UTI development and affect diagnosis and treatment. This study aims to systematically review published reports of virulence genes, antibiotic resistance, and phylogenetic groups prevalent in clinical isolates of UPEC in the Mexican population. METHODS Systematic review with meta-analysis was performed following PRISMA guidelines. Articles in both English and Spanish were included. Total prevalence with a 95% confidence interval of each characteristic was calculated. Heterogeneity between studies and geographical areas was assessed by the Cochran Q test (Q), I-square (I2), and H-square (H2). Egger's test was used for risk of bias in publications and asymmetry evaluations. RESULTS Forty-two articles were analyzed. The most prevalent virulence genes were ecp (97.25%; n = 364) and fimH (82.34%; n = 1,422), which are associated with lower UTI, followed by papGII (40.98%; n = 810), fliC (38.87%; n = 319), hlyA (23.55%; n = 1,521), responsible for with upper UTI. More than 78.13% (n = 1,893) of the isolates were classified as multidrug-resistant, with a higher prevalence of resistance to those antibiotics that are implemented in the basic regimen in Mexico. The most frequently reported Extended Spectrum β-Lactamase (ESBL) was CTX-M-1 (55.61%; n = 392), and the predominant phylogroup was B2 (35.94%; n = 1,725). CONCLUSION UPEC strains are responsible for a large portion of both lower and upper UTI in Mexico, and their multi-drug resistance drastically reduces the number of therapeutic options available.
Collapse
|
27
|
Pokharel P, Dhakal S, Dozois CM. The Diversity of Escherichia coli Pathotypes and Vaccination Strategies against This Versatile Bacterial Pathogen. Microorganisms 2023; 11:344. [PMID: 36838308 PMCID: PMC9965155 DOI: 10.3390/microorganisms11020344] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Escherichia coli (E. coli) is a gram-negative bacillus and resident of the normal intestinal microbiota. However, some E. coli strains can cause diseases in humans, other mammals and birds ranging from intestinal infections, for example, diarrhea and dysentery, to extraintestinal infections, such as urinary tract infections, respiratory tract infections, meningitis, and sepsis. In terms of morbidity and mortality, pathogenic E. coli has a great impact on public health, with an economic cost of several billion dollars annually worldwide. Antibiotics are not usually used as first-line treatment for diarrheal illness caused by E. coli and in the case of bloody diarrhea, antibiotics are avoided due to the increased risk of hemolytic uremic syndrome. On the other hand, extraintestinal infections are treated with various antibiotics depending on the site of infection and susceptibility testing. Several alarming papers concerning the rising antibiotic resistance rates in E. coli strains have been published. The silent pandemic of multidrug-resistant bacteria including pathogenic E. coli that have become more difficult to treat favored prophylactic approaches such as E. coli vaccines. This review provides an overview of the pathogenesis of different pathotypes of E. coli, the virulence factors involved and updates on the major aspects of vaccine development against different E. coli pathotypes.
Collapse
Affiliation(s)
- Pravil Pokharel
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Sabin Dhakal
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - Charles M. Dozois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique (INRS), 531 Boul des Prairies, Laval, QC H7V 1B7, Canada
- Centre de Recherche en Infectiologie Porcine et Avicole (CRIPA), Faculté de Médecine Vétérinaire, Université de Montréal Saint-Hyacinthe, Saint-Hyacinthe, QC J2S 2M2, Canada
- Pasteur Network, Laval, QC H7V 1B7, Canada
| |
Collapse
|
28
|
Yang D, Zhao L, Li Q, Huang L, Qin Y, Wang P, Zhu C, Yan Q. flgC gene is involved in the virulence regulation of Pseudomonas plecoglossicida and affects the immune response of Epinephelus coioides. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108512. [PMID: 36587883 DOI: 10.1016/j.fsi.2022.108512] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/19/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
As a pathogen of cultured teleosts, Pseudomonas plecoglossicida has caused significant economic losses. flgC plays an important role in encoding flagellar basal-body rod proteins. Our previous studies revealed the high expression of P. plecoglossicida flgC in infected Epinephelus coioides. To explore the role of flgC in the virulence of P. plecoglossicida and the immune response of E. coioides to the infection of P. plecoglossicida, flgC gene of P. plecoglossicida was knocked down by RNA interference (RNAi). The results showed that the flgC gene in all four mutants of P. plecoglossicida was significantly knocked down, and the mutant with the best knockdown efficiency of 94.3% was selected for subsequent studies. Compared with the NZBD9 strain of P. plecoglossicida, the flgC-RNAi strain showed a significantly decrease in chemotaxis, motility, adhesion, and biofilm formation. Furthermore, compared with the E. coioides infected with the NZBD9 strain, the infection of flgC-RNAi strain resulted in the infected E. coioides a 1.5-day delay in the time of first death and an 80% increase in survival rate, far fewer white nodules upon the spleen surfaces, and lower pathogen load in the spleens. RNAi of flgC significantly influenced the metabolome and transcriptome of the spleen in infected E. coioides. KEGG enrichment analysis exhibited that the Toll-like receptor signaling pathway was the most enriched immune pathway; the most significantly enriched metabolic pathways were associated with Linoleic acid metabolism, Choline metabolism in cancer, and Glycerophospholipid metabolism. Further combined analysis of transcriptome and metabolome indicated significant correlations among pantothenate and CoA biosynthesis, beta-alanine metabolism, lysosome metabolites, and related genes. These results suggested that flgC was a pathogenic gene of P. plecoglossicida; flgC was associated with the regulation of chemotaxis, motility, biofilm formation, and adhesion; flgC influenced the immune response of E. coioides to the infection of P. plecoglossicida.
Collapse
Affiliation(s)
- Dou Yang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lingmin Zhao
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Qi Li
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Lixing Huang
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Yingxue Qin
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China
| | - Pan Wang
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Chuanzhong Zhu
- Key Laboratory of Aquatic Functional Feed and Environmental Regulation of Fujian Province, Fujian Dabeinong Aquatic Sci. & Tech. Co., Ltd., Zhangzhou, Fujian, 363503, China
| | - Qingpi Yan
- Fisheries College, Jimei University, Xiamen, Fujian, 361021, China.
| |
Collapse
|
29
|
Lim S, Du Y, Lee Y, Panda SK, Tong D, Khalid Jawed M. Fabrication, control, and modeling of robots inspired by flagella and cilia. BIOINSPIRATION & BIOMIMETICS 2022; 18:011003. [PMID: 36533860 DOI: 10.1088/1748-3190/aca63d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Flagella and cilia are slender structures that serve important functionalities in the microscopic world through their locomotion induced by fluid and structure interaction. With recent developments in microscopy, fabrication, biology, and modeling capability, robots inspired by the locomotion of these organelles in low Reynolds number flow have been manufactured and tested on the micro-and macro-scale, ranging from medicalin vivomicrobots, microfluidics to macro prototypes. We present a collection of modeling theories, control principles, and fabrication methods for flagellated and ciliary robots.
Collapse
Affiliation(s)
- Sangmin Lim
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yayun Du
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Yongkyu Lee
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Shivam Kumar Panda
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - Dezhong Tong
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| | - M Khalid Jawed
- Department of Mechanical & Aerospace Engineering, Westwood Plaza, University of California, Los Angeles, CA 90095, United States of America
| |
Collapse
|
30
|
Li Y, Zhu M, Liu Y, Luo B, Cui J, Huang L, Chen K, Liu Y. The oral microbiota and cardiometabolic health: A comprehensive review and emerging insights. Front Immunol 2022; 13:1010368. [PMID: 36466857 PMCID: PMC9716288 DOI: 10.3389/fimmu.2022.1010368] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 10/26/2022] [Indexed: 08/26/2023] Open
Abstract
There is mounting evidence demonstrating that oral dysbiosis causes periodontal disease and promotes the development of cardiovascular disease. The advancement of omics techniques has driven the optimization of oral microbiota species analysis and has provided a deeper understanding of oral pathogenic bacteria. A bi-directional relationship exists between the oral microbiota and the host, and oral-gut microbiota transfer is known to alter the composition of the gut microbiota and may cause local metabolic disorders. Furthermore, cardiovascular health can also be highly affected by oral microbiota functions and metabolites, including short-chain fatty acids (SCFAs), nitric oxide (NO), hydrogen sulfide (H2S), and some lipid metabolites. Studies have found that trimethylamine oxide (TMAO) may have adverse effects on cardiovascular health, whereas SCFAs, NO, and H2S have cardioprotective effects. SCFAs and H2S exert varying oral and cardiovascular effects, however reports on this specific topic remain controversial. Previous evidences are accustomed to summarizing the functions of oral microbiota in the context of periodontitis. The direct relationship between oral microbiota and cardiovascular diseases is insufficient. By systematically summarizing the methods associated with oral microbiota transplantation (OMT), this review facilitates an investigation into the causal links between oral microbiota and cardiovascular disease. The concomitant development of omics, bioinformatics, bacterial culture techniques, and microbiota transplantation techniques is required to gain a deeper understanding of the relationship between oral microbiota and cardiovascular disease occurrence.
Collapse
Affiliation(s)
- Yiwen Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Mengmeng Zhu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yanfei Liu
- The Second Department of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Binyu Luo
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Cui
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Luqi Huang
- China Center for Evidence-based Medicine of Traditional Chinese Medicine (TCM), China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Liu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
31
|
Shen Z, Luo W, Tan B, Nie K, Deng M, Wu S, Xiao M, Wu X, Meng X, Tong T, Zhang C, Ma K, Liao Y, Xu J, Wang X. Roseburia intestinalis stimulates TLR5-dependent intestinal immunity against Crohn's disease. EBioMedicine 2022; 85:104285. [PMID: 36182776 PMCID: PMC9526137 DOI: 10.1016/j.ebiom.2022.104285] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/04/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Methods Findings Interpretation Funding
Collapse
|
32
|
Luo Y, Xie Y, Chen J, Zhou J, Zhao F, Liu S, Zeng T, Xu M, Xiao Y. Treponema pallidum FlaA2 inducing the release of pro-inflammatory cytokines is mediated via TLR2 in keratinocytes. Microb Pathog 2022; 173:105879. [DOI: 10.1016/j.micpath.2022.105879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 11/01/2022] [Accepted: 11/09/2022] [Indexed: 11/14/2022]
|
33
|
Taylor M, Janasky L, Vega N. Convergent structure with divergent adaptations in combinatorial microbiome communities. FEMS Microbiol Ecol 2022; 98:6726631. [PMID: 36170949 DOI: 10.1093/femsec/fiac115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
Adaptation of replicate microbial communities frequently produces shared trajectories of community composition and structure. However, divergent adaptation of individual community members can occur and is associated with community-level divergence. The extent to which community-based adaptation of microbes should be convergent when community members are similar but not identical is, therefore, not well-understood. In these experiments, adaptation of combinatorial minimal communities of bacteria with the model host Caenorhabditis elegans produces structurally similar communities over time, but with divergent adaptation of member taxa and differences in community-level resistance to invasion. These results indicate that community-based adaptation from taxonomically similar starting points can produce compositionally similar communities that differ in traits of member taxa and in ecological properties.
Collapse
Affiliation(s)
- Megan Taylor
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Lili Janasky
- Biology Department, Emory University, Atlanta, GA, 30322, United States
| | - Nic Vega
- Biology Department, Emory University, Atlanta, GA, 30322, United States.,Physics Department, Emory University, Atlanta, GA, 30322, United States
| |
Collapse
|
34
|
Rainard P, Gilbert FB, Germon P. Immune defenses of the mammary gland epithelium of dairy ruminants. Front Immunol 2022; 13:1031785. [PMID: 36341445 PMCID: PMC9634088 DOI: 10.3389/fimmu.2022.1031785] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.
Collapse
|
35
|
Kelly JB, Carlson DE, Low JS, Thacker RW. Novel trends of genome evolution in highly complex tropical sponge microbiomes. MICROBIOME 2022; 10:164. [PMID: 36195901 PMCID: PMC9531527 DOI: 10.1186/s40168-022-01359-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 08/03/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Tropical members of the sponge genus Ircinia possess highly complex microbiomes that perform a broad spectrum of chemical processes that influence host fitness. Despite the pervasive role of microbiomes in Ircinia biology, it is still unknown how they remain in stable association across tropical species. To address this question, we performed a comparative analysis of the microbiomes of 11 Ircinia species using whole-metagenomic shotgun sequencing data to investigate three aspects of bacterial symbiont genomes-the redundancy in metabolic pathways across taxa, the evolution of genes involved in pathogenesis, and the nature of selection acting on genes relevant to secondary metabolism. RESULTS A total of 424 new, high-quality bacterial metagenome-assembled genomes (MAGs) were produced for 10 Caribbean Ircinia species, which were evaluated alongside 113 publicly available MAGs sourced from the Pacific species Ircinia ramosa. Evidence of redundancy was discovered in that the core genes of several primary metabolic pathways could be found in the genomes of multiple bacterial taxa. Across hosts, the metagenomes were depleted in genes relevant to pathogenicity and enriched in eukaryotic-like proteins (ELPs) that likely mimic the hosts' molecular patterning. Finally, clusters of steroid biosynthesis genes (CSGs), which appear to be under purifying selection and undergo horizontal gene transfer, were found to be a defining feature of Ircinia metagenomes. CONCLUSIONS These results illustrate patterns of genome evolution within highly complex microbiomes that illuminate how associations with hosts are maintained. The metabolic redundancy within the microbiomes could help buffer the hosts from changes in the ambient chemical and physical regimes and from fluctuations in the population sizes of the individual microbial strains that make up the microbiome. Additionally, the enrichment of ELPs and depletion of LPS and cellular motility genes provide a model for how alternative strategies to virulence can evolve in microbiomes undergoing mixed-mode transmission that do not ultimately result in higher levels of damage (i.e., pathogenicity) to the host. Our last set of results provides evidence that sterol biosynthesis in Ircinia-associated bacteria is widespread and that these molecules are important for the survival of bacteria in highly complex Ircinia microbiomes. Video Abstract.
Collapse
Affiliation(s)
- Joseph B Kelly
- Aquatic Ecology and Evolution, Limnological Institute University Konstanz, Konstanz, Germany.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| | - David E Carlson
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | - Jun Siong Low
- Institute of Microbiology,ETH Zürich, Zürich, Switzerland
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Robert W Thacker
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
- Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Panama City, Republic of Panama
| |
Collapse
|
36
|
Weng X, Mao Z, Fu HM, Chen YP, Guo JS, Fang F, Xu XW, Yan P. Biofilm formation during wastewater treatment: Motility and physiological response of aerobic denitrifying bacteria under ammonia stress based on surface plasmon resonance imaging. BIORESOURCE TECHNOLOGY 2022; 361:127712. [PMID: 35908635 DOI: 10.1016/j.biortech.2022.127712] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/24/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
A bacterial image analysis system based on surface plasmon resonance imaging was established to investigate the effect of bacterial motility on biofilm formation under high ammonia nitrogen at the single-cell level. The results showed that the bacterial mean rotation speed and vertical motility distance decreased with the increasing concentration of ammonia nitrogen. Ammonia nitrogen inhibited the metabolic activity of the bacteria, decreasing bacterial motility. Bacterial motility was negatively correlated with the biofilm-formation ability. The biofilm formation ability of Enterobacter cloacae strain HNR exposed to ammonia nitrogen was enhanced by reducing its movement and promoting EPS secretion. Genes related to the tricarboxylic acid cycle and oxidative phosphorylation were down-regulated, indicating inhibition of microbial energy metabolism. Genes related to bacterial secretion and lipopolysaccharide synthesis were up-regulated, facilitating the formation of biofilms and enabling the bacteria to resist ammonia nitrogen stress. This study provides new insights into the biofilm formation under ammonia stress.
Collapse
Affiliation(s)
- Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Zheng Mao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
37
|
Immunogenic Modification of Ligilactobacillus agilis by Specific Amino Acid Substitution of Flagellin. Appl Environ Microbiol 2022; 88:e0127722. [PMID: 36173204 PMCID: PMC9599256 DOI: 10.1128/aem.01277-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Ligilactobacillus agilis is a flagellated motile commensal microbe that resides in the gastrointestinal tract of mammals and birds. Flagellin, the major subunit protein of flagellar filament, from pathogenic bacteria is generally a proinflammatory molecule that stimulates immune cells via Toll-like receptor 5 (TLR5). Interestingly, the flagellins of L. agilis are known to be immunologically attenuated despite the fact that the structure of the proteins, including the TLR5 recognition site, is highly conserved among bacteria. The results of our previous study suggested that this is attributed to the differences in three specific amino acids within the conserved TLR5 recognition site; however, this hypothesis remains to be confirmed. In this study, a series of recombinant L. agilis flagellins, with amino acid substitutions at the TLR5 recognition site, were constructed, and their immunogenic activity was evaluated in vitro. Then, an L. agilis strain with an active immunogenic TLR5 recognition site was generated. In vitro and in vivo immunological studies revealed that the mutant L. agilis strain with the modified flagellin was more immunogenic than the wild-type strain. In conclusion, the specific amino acid residues in L. agilis flagellins likely contribute to the discrimination between pathogens and commensals by the host defense system. Additionally, the immunogenically potent L. agilis mutants may serve as a useful platform for oral vaccine delivery. IMPORTANCE The interactions between gut microbes and immune cells play an important role in the health and disease of hosts. Ligilactobacillus agilis is a flagellated commensal bacterium found in the gut of mammals and birds. However, the flagellin proteins of L. agilis are immunologically attenuated and barely induce TLR5-dependent inflammation, unlike the flagellins of several pathogenic bacteria. This study demonstrated that three specific amino acids in the flagellin protein are responsible for this low immunogenicity in L. agilis. The results obtained herein improve our understanding of the symbiosis between gut microbes and their hosts.
Collapse
|
38
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
39
|
Prada CF, Casadiego MA, Freire CCM. Evolution of Helicobacter spp: variability of virulence factors and their relationship to pathogenicity. PeerJ 2022; 10:e13120. [PMID: 36061745 PMCID: PMC9435515 DOI: 10.7717/peerj.13120] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/24/2022] [Indexed: 01/12/2023] Open
Abstract
Background Virulence factors (VF) are bacteria-associated molecules that assist to colonize the host at the cellular level. Bacterial virulence is highly dynamic and specific pathogens have a broad array of VFs. The genus Helicobacter is gram-negative, microaerobic, flagellated, and mucus-inhabiting bacteria associated with gastrointestinal inflammation. To investigate about their pathogenicity, several Helicobacter species have been characterized and sequenced. Since the variability and possible origin of VF in the genus are not clear, our goal was to perform a comparative analysis of Helicobacter species in order to investigate VF variability and their evolutionary origin. Methods The complete genomes of 22 Helicobacter species available in NCBI were analyzed, using computational tools. We identifyed gain and loss events in VF genes, which were categorized in seven functional groups to determine their most parsimonious evolutionary origin. After verifying the annotation of all VF genes, a phylogeny from conserved VF organized by Helicobacter species according to gastric Helicobacter species (GHS) or enterohepatic (EHS) classification was obtained. Results Gain and loss analysis of VF orthologous in Helicobacter ssp revealed the most possible evolutionary origin for each gene set. Microevolutionary events in urease and flagella genes were detected during the evolution of the genus. Our results pointed that acquisition of ureases and adherence genes and deletion of cytotoxins in some lineages, as well as variation in VF genes copy number, would be related to host adaptation during evolution of the Helicobacter genus. Our findings provided new insights about the genetic differences between GHS and EHS and their relationship with pathogenicity.
Collapse
Affiliation(s)
- Carlos F. Prada
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil,Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias., Universidad del Tolima, Tolima, Colombia
| | - Maria A. Casadiego
- Grupo de Investigación de Biología y Ecología de Artrópodos. Facultad de Ciencias., Universidad del Tolima, Tolima, Colombia
| | - Caio CM Freire
- Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos, Sao Paulo, Brazil
| |
Collapse
|
40
|
Self-assembled flagella protein nanofibers induce enhanced mucosal immunity. Biomaterials 2022; 288:121733. [PMID: 36038418 DOI: 10.1016/j.biomaterials.2022.121733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 12/28/2022]
Abstract
Nanofibers are potential vaccines or adjuvants for vaccination at the mucosal interface. However, how their lengths affect the mucosal immunity is not well understood. Using length-tunable flagella (self-assembled from a protein termed flagellin) as model protein nanofibers, we studied the mechanisms of their interaction with mucosal interface to induce immune responses length-dependently. Briefly, through tuning flagellin assembly, length-controlled protein nanofibers were prepared. The shorter nanofibers exhibited more pronounced toll-like receptor 5 (TLR5) and inflammasomes activation accompanied by pyroptosis, as a result of cellular uptake, lysosomal damage, and mitochondrial reactive oxygen species generation. Accordingly, the shorter nanofibers elevated the IgA level in mucosal secretions and enhanced the serum IgG level in ovalbumin-based intranasal vaccinations. These mucosal and systematic antibody responses were correlated with the mucus penetration capacity of the nanofibers. Intranasal administration of vaccines (human papillomavirus type 16 peptides) adjuvanted with shorter nanofibers significantly elicited cytotoxic T lymphocyte responses, strongly inhibiting tumor growth and improving survival rates in a TC-1 cervical cancer model. This work suggests that length-dependent immune responses of nanofibers can be elucidated for designing nanofibrous vaccines and adjuvants for both infectious diseases and cancer.
Collapse
|
41
|
Bacteria reduce flagellin synthesis to evade microglia-astrocyte-driven immunity in the brain. Cell Rep 2022; 40:111033. [PMID: 35793624 DOI: 10.1016/j.celrep.2022.111033] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/23/2022] Open
Abstract
The immune response of brain cells to invading bacteria in vivo and the mechanism used by pathogenic bacteria to escape brain immune surveillance remain largely unknown. It is believed that microglia eliminate bacteria by phagocytosis based on in vitro data. Here we find that a small percentage of microglia in the brain engulf neonatal meningitis-causing Escherichia coli (NMEC), but more microglia are activated to produce tumor necrosis factor alpha (TNFα), which activates astrocytes to secrete complement component 3 (C3) involved in anti-bacterial activity. To evade anti-bacterial activity of the immune system, NMEC senses low concentration of threonine in cerebrospinal fluid (CSF) to down-modulate the expression of flagellin and reduce microglial TNFα and astrocyte C3 production. Our findings may help develop strategies for bacterial meningitis treatment.
Collapse
|
42
|
Li Y, Wang Y, Liu J. Genomic Insights Into the Interspecific Diversity and Evolution of Mobiluncus, a Pathogen Associated With Bacterial Vaginosis. Front Microbiol 2022; 13:939406. [PMID: 35865929 PMCID: PMC9294530 DOI: 10.3389/fmicb.2022.939406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Bacterial vaginosis (BV) is a common vaginal infection and has been associated with increased risk for a wide array of health issues. BV is linked with a variety of heterogeneous pathogenic anaerobic bacteria, among which Mobiluncus is strongly associated with BV diagnosis. However, their genetic features, pathogenicity, interspecific diversity, and evolutionary characters have not been illustrated at genomic level. The current study performed phylogenomic and comparative genomic analyses of Mobiluncus. Phylogenomic analyses revealed remarkable phylogenetic distinctions among different species. Compared with M. curtisii, M. mulieris had a larger genome and pangenome size with more insertion sequences but less CRISPR-Cas systems. In addition, these two species were diverse in profile of virulence factors, but harbored similar antibiotic resistance genes. Statistically different functional genome profiles between strains from the two species were determined, as well as correlations of some functional genes/pathways with putative pathogenicity. We also showed that high levels of horizontal gene transfer might be an important strategy for species diversification and pathogenicity. Collectively, this study provides the first genome sequence level description of Mobiluncus, and may shed light on its virulence/pathogenicity, functional diversification, and evolutionary dynamics. Our study could facilitate the further investigations of this important pathogen, and might improve the future treatment of BV.
Collapse
|
43
|
Sheng YH, Hasnain SZ. Mucus and Mucins: The Underappreciated Host Defence System. Front Cell Infect Microbiol 2022; 12:856962. [PMID: 35774401 PMCID: PMC9238349 DOI: 10.3389/fcimb.2022.856962] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The mucosal surfaces that form the boundary between the external environment and the underlying tissue are protected by a mucus barrier. Mucin glycoproteins, both secreted and cell surface mucins, are the major components of the barrier. They can exclude pathogens and toxins while hosting the commensal bacteria. In this review, we highlight the dynamic function of the mucins and mucus during infection, how this mucosal barrier is regulated, and how pathogens have evolved mechanisms to evade this defence system.
Collapse
Affiliation(s)
- Yong Hua Sheng
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
| | - Sumaira Z. Hasnain
- Immunopathology Group, Mater Research Institute−The University of Queensland, Translational Research Institute, Brisbane, Qld, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Qld, Australia
- *Correspondence: Sumaira Z. Hasnain,
| |
Collapse
|
44
|
Alphonse N, Dickenson RE, Alrehaili A, Odendall C. Functions of IFNλs in Anti-Bacterial Immunity at Mucosal Barriers. Front Immunol 2022; 13:857639. [PMID: 35663961 PMCID: PMC9159784 DOI: 10.3389/fimmu.2022.857639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Type III interferons (IFNs), or IFNλs, are cytokines produced in response to microbial ligands. They signal through the IFNλ receptor complex (IFNLR), which is located on epithelial cells and select immune cells at barrier sites. As well as being induced during bacterial or viral infection, type III IFNs are produced in response to the microbiota in the lung and intestinal epithelium where they cultivate a resting antiviral state. While the multiple anti-viral activities of IFNλs have been extensively studied, their roles in immunity against bacteria are only recently emerging. Type III IFNs increase epithelial barrier integrity and protect from infection in the intestine but were shown to increase susceptibility to bacterial superinfections in the respiratory tract. Therefore, the effects of IFNλ can be beneficial or detrimental to the host during bacterial infections, depending on timing and biological contexts. This duality will affect the potential benefits of IFNλs as therapeutic agents. In this review, we summarize the current knowledge on IFNλ induction and signaling, as well as their roles at different barrier sites in the context of anti-bacterial immunity.
Collapse
Affiliation(s)
- Noémie Alphonse
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom.,Immunoregulation Laboratory, Francis Crick Institute, London, United Kingdom
| | - Ruth E Dickenson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Abrar Alrehaili
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Charlotte Odendall
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
45
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
46
|
Chen Y, Lv M, Liang Z, Liu Z, Zhou J, Zhang L. Cyclic di-GMP modulates sessile-motile phenotypes and virulence in Dickeya oryzae via two PilZ domain receptors. MOLECULAR PLANT PATHOLOGY 2022; 23:870-884. [PMID: 35254732 PMCID: PMC9104268 DOI: 10.1111/mpp.13200] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/23/2022] [Accepted: 02/08/2022] [Indexed: 05/03/2023]
Abstract
Dickeya oryzae is a bacterial pathogen causing the severe rice stem rot disease in China and other rice-growing countries. We showed recently that the universal bacterial second messenger c-di-GMP plays an important role in modulation of bacterial motility and pathogenicity, but the mechanism of regulation remains unknown. In this study, bioinformatics analysis of the D. oryzae EC1 genome led to the identification of two proteins, YcgR and BcsA, both of which contain a conserved c-di-GMP receptor domain, known as the PilZ-domain. By deleting all the genes encoding c-di-GMP-degrading enzymes in D. oryzae EC1, the resultant mutant 7ΔPDE with high c-di-GMP levels became nonmotile, formed hyperbiofilm, and lost the ability to colonize and invade rice seeds. These phenotypes were partially reversed by deletion of ycgR in the mutant 7ΔPDE, whereas deletion of bcsA only reversed the hyperbiofilm phenotype of mutant 7ΔPDE. Significantly, double deletion of ycgR and bcsA in mutant 7ΔPDE rescued its motility, biofilm formation, and virulence to levels of wild-type EC1. In vitro biochemical experiments and in vivo phenotypic assays further validated that YcgR and BcsA proteins are the receptors for c-di-GMP, which together play a critical role in regulating the c-di-GMP-associated functionality. The findings from this study fill a gap in our understanding of how c-di-GMP modulates bacterial motility and biofilm formation, and provide useful clues for further elucidation of sophisticated virulence regulatory mechanisms in this important plant pathogen.
Collapse
Affiliation(s)
- Yufan Chen
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Mingfa Lv
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhibin Liang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Zhiqing Liu
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| | - Lian‐Hui Zhang
- Guangdong Laboratory for Lingnan Modern AgricultureGuangzhouChina
- Guangdong Province Key Laboratory of Microbial Signals and Disease ControlIntegrative Microbiology Research CenterSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
47
|
Intranasal Immunization with Zika Virus Envelope Domain III-Flagellin Fusion Protein Elicits Systemic and Mucosal Immune Responses and Protection against Subcutaneous and Intravaginal Virus Challenges. Pharmaceutics 2022; 14:pharmaceutics14051014. [PMID: 35631599 PMCID: PMC9144594 DOI: 10.3390/pharmaceutics14051014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/25/2022] Open
Abstract
Zika virus (ZIKV) infections in humans are mainly transmitted by the mosquito vectors, but human-to-human sexual transmission is also another important route. Developing a ZIKV mucosal vaccine that can elicit both systemic and mucosal immune responses is of particular interest. In this study, we constructed a recombinant ZIKV envelope DIII (ZDIII) protein genetically fused with Salmonella typhimurium flagellin (FliC-ZDIII) as a novel mucosal antigen for intranasal immunization. The results indicated that the FliC-ZDIII fusion proteins formulated with E. coli heat-labile enterotoxin B subunit (LTIIb-B5) adjuvant greatly increased the ZDIII-specific IgG, IgA, and neutralizing titers in sera, and the ZDIII-specific IgA titers in bronchoalveolar lavage and vaginal fluids. Protective immunity was further assessed by subcutaneous and intravaginal ZIKV challenges. The second-generation FliCΔD3-2ZDIII was shown to result in a reduced titer of anti-FliC IgG antibodies in sera and still retained the same levels of serum IgG, IgA, and neutralizing antibodies and mucosal IgA antibodies without compromising the vaccine antigenicity. Therefore, intranasal immunization with FliCΔD3-2ZDIII fusion proteins formulated with LTIIb-B5 adjuvant elicited the greatest protective immunity against subcutaneous and intravaginal ZIKV challenges. Our findings indicated that the combination of FliCΔD3-2ZDIII fusion proteins and LTIIb-B5 adjuvant for intranasal immunization can be used for developing ZIKV mucosal vaccines.
Collapse
|
48
|
Molecular Characterization of Three Tandemly Located Flagellin Genes of Stenotrophomonas maltophilia. Int J Mol Sci 2022; 23:ijms23073863. [PMID: 35409223 PMCID: PMC8998449 DOI: 10.3390/ijms23073863] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 01/25/2023] Open
Abstract
Stenotrophomonas maltophilia is a motile, opportunistic pathogen. The flagellum, which is involved in swimming, swarming, adhesion, and biofilm formation, is considered a virulence factor for motile pathogens. Three flagellin genes, fliC1, fliC2, and fliC3, were identified from the sequenced S. maltophilia genome. FliC1, fliC2, and fliC3 formed an operon, and their encoding proteins shared 67–82% identity. Members of the fliC1C2C3 operon were deleted individually or in combination to generate single mutants, double mutants, and a triple mutant. The contributions of the three flagellins to swimming, swarming, flagellum morphology, adhesion, and biofilm formation were assessed. The single mutants generally had a compromise in swimming and no significant defects in swarming, adhesion on biotic surfaces, and biofilm formation on abiotic surfaces. The double mutants displayed obvious defects in swimming and adhesion on abiotic and biotic surfaces. The flagellin-null mutant lost swimming ability and was compromised in adhesion and biofilm formation. All tested mutants demonstrated substantial but different flagellar morphologies, supporting that flagellin composition affects filament morphology. Bacterial swimming motility was significantly compromised under an oxidative stress condition, irrespective of flagellin composition. Collectively, the utilization of these three flagellins for filament assembly equips S. maltophilia with flagella adapted to provide better ability in swimming, adhesion, and biofilm formation for its pathogenesis.
Collapse
|
49
|
Akahoshi DT, Bevins CL. Flagella at the Host-Microbe Interface: Key Functions Intersect With Redundant Responses. Front Immunol 2022; 13:828758. [PMID: 35401545 PMCID: PMC8987104 DOI: 10.3389/fimmu.2022.828758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/21/2022] [Indexed: 12/15/2022] Open
Abstract
Many bacteria and other microbes achieve locomotion via flagella, which are organelles that function as a swimming motor. Depending on the environment, flagellar motility can serve a variety of beneficial functions and confer a fitness advantage. For example, within a mammalian host, flagellar motility can provide bacteria the ability to resist clearance by flow, facilitate access to host epithelial cells, and enable travel to nutrient niches. From the host’s perspective, the mobility that flagella impart to bacteria can be associated with harmful activities that can disrupt homeostasis, such as invasion of epithelial cells, translocation across epithelial barriers, and biofilm formation, which ultimately can decrease a host’s reproductive fitness from a perspective of natural selection. Thus, over an evolutionary timescale, the host developed a repertoire of innate and adaptive immune countermeasures that target and mitigate this microbial threat. These countermeasures are wide-ranging and include structural components of the mucosa that maintain spatial segregation of bacteria from the epithelium, mechanisms of molecular recognition and inducible responses to flagellin, and secreted effector molecules of the innate and adaptive immune systems that directly inhibit flagellar motility. While much of our understanding of the dynamics of host-microbe interaction regarding flagella is derived from studies of enteric bacterial pathogens where flagella are a recognized virulence factor, newer studies have delved into host interaction with flagellated members of the commensal microbiota during homeostasis. Even though many aspects of flagellar motility may seem innocuous, the host’s redundant efforts to stop bacteria in their tracks highlights the importance of this host-microbe interaction.
Collapse
|
50
|
Ma Y, Zhang Y, Shan Z, Wang X, Xia X. Involvement of PhoP/PhoQ two-component system in biofilm formation in Cronobacter sakazakii. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|