1
|
Ghith A, Bruning JB, Bell SG. The catalytic activity and structure of the lipid metabolizing CYP124 cytochrome P450 enzyme from Mycobacterium marinum. Arch Biochem Biophys 2023; 737:109554. [PMID: 36842492 DOI: 10.1016/j.abb.2023.109554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 02/28/2023]
Abstract
The CYP124 family of cytochrome P450 enzymes, as exemplified by CYP124A1 from Mycobacterium tuberculosis, is involved in the metabolism of methyl branched lipids and cholesterol derivatives. The equivalent enzyme from Mycobacterium marinum was investigated to compare the degree of functional conservation between members of this CYP family from closely related bacteria. We compared substrate binding of each CYP124 enzyme using UV-vis spectroscopy and the catalytic oxidation of methyl branched lipids, terpenes and cholesterol derivatives was investigated. The CYP124 enzyme from M. tuberculosis displayed a larger shift to the ferric high-spin state on binding cholesterol derivatives compared to the equivalent enzyme from M. marinum. The biggest difference was observed with cholesteryl sulfate which induced distinct UV-vis spectra in each CYP124 enzyme. The selectivity for oxidation at the ω-carbon of a branched chain was maintained for all substrates, except cholesteryl sulfate which was not oxidized by either enzyme. The CYP124A1 enzyme from M. marinum, in combination with farnesol and farnesyl acetate, was structurally characterized by X-ray crystallography. These ligand-bound structures of the CYP124 enzyme revealed that the polar component of the substrates bound in a different manner to that of phytanic acid in the structure of CYP124A1 from M. tuberculosis. However, closer to the heme the structures were similar providing an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation. The work here demonstrates that there were differences in the biochemistry of the CYP124 enzymes from these closely related bacteria.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, SA, 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, SA, 5005, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, SA, 5005, Australia.
| |
Collapse
|
2
|
Ghith A, Doherty DZ, Bruning JB, Russell RA, De Voss JJ, Bell SG. The Structures of the Steroid Binding CYP142 Cytochrome P450 Enzymes from Mycobacterium ulcerans and Mycobacterium marinum. ACS Infect Dis 2022; 8:1606-1617. [PMID: 35881654 DOI: 10.1021/acsinfecdis.2c00215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The steroid binding CYP142 cytochrome P450 enzymes of Mycobacterium species are involved in the metabolism of cholesterol and its derivatives. The equivalent enzyme from Mycobacterium ulcerans was studied to compare the degree of functional conservation between members of this CYP family. We compared substrate binding of the CYP142A3 enzymes of M. ulcerans and M. marinum and CYP142A1 from M. tuberculosis using UV-vis spectroscopy. The catalytic oxidation of cholesterol derivatives by all three enzymes was undertaken. Both CYP142A3 enzymes were structurally characterized by X-ray crystallography. The amino acid sequences of the CYP142A3 enzymes are more similar to CYP142A1 from M. tuberculosis than CYP142A2 from Mycolicibacterium smegmatis. Both CYP142A3 enzymes have substrate binding properties, which are more resemblant to CYP142A1 than CYP142A2. The cholest-4-en-3-one-bound X-ray crystal structure of both CYP142A3 enzymes were determined at a resolution of <1.8 Å, revealing the substrate binding mode at a high level of detail. The structures of the cholest-4-en-3-one binding CYP142 enzymes from M. ulcerans and M. marinum demonstrate how the steroid binds in the active site of these enzymes. They provide an explanation for the high selectivity of the enzyme for terminal methyl C-H bond oxidation to form 26-hydroxy derivatives. These enzymes in pathogenic Mycobacterium species are candidates for inhibition. The work here demonstrates that similar drug molecules could target these CYP142 enzymes from different species in order to combat Buruli ulcer or tuberculosis.
Collapse
Affiliation(s)
- Amna Ghith
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - Daniel Z Doherty
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| | - John B Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, Sydney, NSW 2234, Australia
| | - James J De Voss
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Stephen G Bell
- Department of Chemistry, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
3
|
López-Agudelo VA, Baena A, Barrera V, Cabarcas F, Alzate JF, Beste DJV, Ríos-Estepa R, Barrera LF. Dual RNA Sequencing of Mycobacterium tuberculosis-Infected Human Splenic Macrophages Reveals a Strain-Dependent Host-Pathogen Response to Infection. Int J Mol Sci 2022; 23:ijms23031803. [PMID: 35163725 PMCID: PMC8836425 DOI: 10.3390/ijms23031803] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis (TB) is caused by Mycobacterium tuberculosis (Mtb), leading to pulmonary and extrapulmonary TB, whereby Mtb is disseminated to many other organs and tissues. Dissemination occurs early during the disease, and bacteria can be found first in the lymph nodes adjacent to the lungs and then later in the extrapulmonary organs, including the spleen. The early global gene expression response of human tissue macrophages and intracellular clinical isolates of Mtb has been poorly studied. Using dual RNA-seq, we have explored the mRNA profiles of two closely related clinical strains of the Latin American and Mediterranean (LAM) family of Mtb in infected human splenic macrophages (hSMs). This work shows that these pathogens mediate a distinct host response despite their genetic similarity. Using a genome-scale host–pathogen metabolic reconstruction to analyze the data further, we highlight that the infecting Mtb strain also determines the metabolic response of both the host and pathogen. Thus, macrophage ontogeny and the genetic-derived program of Mtb direct the host–pathogen interaction.
Collapse
Affiliation(s)
- Víctor A. López-Agudelo
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
| | - Vianey Barrera
- Programa de Ingeniería Biológica, Universidad Nacional de Colombia, Sede Medellín, Medellín 050010, Colombia;
| | - Felipe Cabarcas
- Grupo Sistemas Embebidos e Inteligencia Computacional (SISTEMIC), Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Juan F. Alzate
- Centro Nacional de Secuenciación Genómica (CNSG), Sede de Investigación Universitaria (SIU), Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Dany J. V. Beste
- Department of Microbial Sciences, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7XH, UK;
| | - Rigoberto Ríos-Estepa
- Grupo de Bioprocesos, Facultad de Ingeniería, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Luis F. Barrera
- Grupo de Inmunología Celular e Inmunogenética (GICIG), Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia; (V.A.L.-A.); (A.B.)
- Correspondence:
| |
Collapse
|
4
|
A comparison of steroid and lipid binding cytochrome P450s from Mycobacterium marinum and Mycobacterium tuberculosis. J Inorg Biochem 2020; 209:111116. [PMID: 32473484 DOI: 10.1016/j.jinorgbio.2020.111116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 11/22/2022]
Abstract
The steroid lipid binding cytochrome P450 (CYP) enzymes of Mycobacterium tuberculosis are essential for organism survival through metabolism of cholesterol and its derivatives. The counterparts to these enzymes from Mycobacterium marinum were studied to determine the degree of functional conservation between them. Spectroscopic analyses of substrate and inhibitor binding for the four M. marinum enzymes CYP125A6, CYP125A7, CYP142A3 and CYP124A1 were performed and compared to the equivalent enzymes of M. tuberculosis. The sequence of CYP125A7 from M. marinum was more similar to CYP125A1 from M. tuberculosis than CYP125A6 but both showed differences in the resting heme spin state and in the binding modes and affinities of certain azole inhibitors. CYP125A7 did not show a significant Type II inhibitor-like shift with any of the azoles tested. CYP142A3 bound a similar range of steroids and inhibitors to CYP142A1. However, there were some differences in the extent of the Type I shifts to the high-spin form with steroids and a higher affinity for the azole inhibitors compared to CYP142A1. The two CYP124 enzymes had similar substrate binding properties. M. marinum CYP124 was characterised by X-ray crystallography and displayed strong conservation of active site residues, except near the region where the carboxylate terminus of the phytanic acid substrate would be bound. As these enzymes in M. tuberculosis have been identified as candidates for inhibition the data here demonstrates that alternative strategies for inhibitor design may be required to target CYP family members from distinct pathogenic Mycobacterium species or other bacteria.
Collapse
|
5
|
Parvati Sai Arun PV, Miryala SK, Rana A, Kurukuti S, Akhter Y, Yellaboina S. System-wide coordinates of higher order functions in host-pathogen environment upon Mycobacterium tuberculosis infection. Sci Rep 2018; 8:5079. [PMID: 29567998 PMCID: PMC5864717 DOI: 10.1038/s41598-018-22884-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/28/2018] [Indexed: 01/16/2023] Open
Abstract
Molecular signatures and their interactions behind the successful establishment of infection of Mycobacterium tuberculosis (Mtb) inside macrophage are largely unknown. In this work, we present an inter-system scale atlas of the gene expression signatures, their interactions and higher order gene functions of macrophage-Mtb environment at the time of infection. We have carried out large-scale meta-analysis of previously published gene expression microarray studies andhave identified a ranked list of differentially expressed genes and their higher order functions in intracellular Mtb as well as the infected macrophage. Comparative analysis of gene expression signatures of intracellular Mtb with the in vitro dormant Mtb at different hypoxic and oxidative stress conditions led to the identification of the large number of Mtb functional groups, namely operons, regulons and pathways that were common and unique to the intracellular environment and dormancy state. Some of the functions that are specific to intracellular Mtb are cholesterol degradation and biosynthesis of immunomodulatory phenolic compounds. The molecular signatures we have identified to be involved in adaptation to different stress conditions in macrophage environment may be critical for designing therapeutic interventions against tuberculosis. And, our approach may be broadly applicable for investigating other host-pathogen interactions.
Collapse
Affiliation(s)
| | - Sravan Kumar Miryala
- IOB-YU Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre Yenepoya University, Mangalore, Karnataka, India
| | - Aarti Rana
- Centre for Computational Biology and Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Dharamshala, India
| | - Sreenivasulu Kurukuti
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Hyderabad, India
| | - Yusuf Akhter
- Department of Biotechnology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, 226025, India
| | - Sailu Yellaboina
- IOB-YU Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre Yenepoya University, Mangalore, Karnataka, India.
| |
Collapse
|
6
|
Kavanagh ME, Chenge J, Zoufir A, McLean KJ, Coyne AG, Bender A, Munro AW, Abell C. Fragment Profiling Approach to Inhibitors of the Orphan M. tuberculosis P450 CYP144A1. Biochemistry 2017; 56:1559-1572. [PMID: 28169518 DOI: 10.1021/acs.biochem.6b00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Similarity between the ligand binding profiles of enzymes may aid functional characterization and be of greater relevance to inhibitor development than sequence similarity or structural homology. Fragment screening is an efficient approach for characterization of the ligand binding profile of an enzyme and has been applied here to study the family of cytochrome P450 enzymes (P450s) expressed by Mycobacterium tuberculosis (Mtb). The Mtb P450s have important roles in bacterial virulence, survival, and pathogenicity. Comparing the fragment profiles of seven of these enzymes revealed that P450s which share a similar biological function have significantly similar fragment profiles, whereas functionally unrelated or orphan P450s exhibit distinct ligand binding properties, despite overall high structural homology. Chemical structures that exhibit promiscuous binding between enzymes have been identified, as have selective fragments that could provide leads for inhibitor development. The similarity between the fragment binding profiles of the orphan enzyme CYP144A1 and CYP121A1, a characterized enzyme that is important for Mtb viability, provides a case study illustrating the subsequent identification of novel CYP144A1 ligands. The different binding modes of these compounds to CYP144A1 provide insight into structural and dynamic aspects of the enzyme, possible biological function, and provide the opportunity to develop inhibitors. Expanding this fragment profiling approach to include a greater number of functionally characterized and orphan proteins may provide a valuable resource for understanding enzyme-ligand interactions.
Collapse
Affiliation(s)
- Madeline E Kavanagh
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jude Chenge
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Azedine Zoufir
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Kirsty J McLean
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Anthony G Coyne
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andreas Bender
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Andrew W Munro
- Centre for Synthetic Biology of Fine and Specialty Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology, School of Chemistry, The University of Manchester , Manchester M1 7DN, United Kingdom
| | - Chris Abell
- Department of Chemistry, University of Cambridge , Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
7
|
Abuhammad A. Cholesterol metabolism: a potential therapeutic target in Mycobacteria. Br J Pharmacol 2017; 174:2194-2208. [PMID: 28002883 DOI: 10.1111/bph.13694] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 11/06/2016] [Accepted: 12/16/2016] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis (TB), although a curable disease, is still one of the most difficult infections to treat. Mycobacterium tuberculosis infects 10 million people worldwide and kills 1.5 million people each year. Reactivation of a latent infection is the major cause of TB. Cholesterol is a critical carbon source during latent infection. Catabolism of cholesterol contributes to the pool of propionyl-CoA, a precursor that is incorporated into lipid virulence factors. The M. tuberculosis genome contains a large regulon of cholesterol catabolic genes suggesting that the microorganism can utilize host sterol for infection and persistence. The protein products of these genes present ideal targets for rational drug discovery programmes. This review summarizes the development of enzyme inhibitors targeting the cholesterol pathway in M. tuberculosis. This knowledge is essential for the discovery of novel agents to treat M. tuberculosis infection. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
|
8
|
McLean KJ, Munro AW. Drug targeting of heme proteins in Mycobacterium tuberculosis. Drug Discov Today 2016; 22:566-575. [PMID: 27856345 DOI: 10.1016/j.drudis.2016.11.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 10/28/2016] [Accepted: 11/02/2016] [Indexed: 01/08/2023]
Abstract
TB, caused by the human pathogen Mycobacterium tuberculosis (Mtb), causes more deaths than any other infectious disease. Iron is crucial for Mtb to infect the host and to sustain infection, with Mtb encoding large numbers of iron-binding proteins. Many of these are hemoproteins with key roles, including defense against oxidative stress, cellular signaling and regulation, host cholesterol metabolism, and respiratory processes. Various heme enzymes in Mtb are validated drug targets and/or products of genes essential for bacterial viability or survival in the host. Here, we review the structure, function, and druggability of key Mtb heme enzymes and strategies used for their inhibition.
Collapse
Affiliation(s)
- Kirsty J McLean
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK
| | - Andrew W Munro
- School of Chemistry, The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
9
|
Devasundaram S, Raja A. Variable transcriptional adaptation between the laboratory (H37Rv) and clinical strains (S7 and S10) of Mycobacterium tuberculosis under hypoxia. INFECTION GENETICS AND EVOLUTION 2016; 40:21-28. [PMID: 26780642 DOI: 10.1016/j.meegid.2016.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/12/2015] [Accepted: 01/07/2016] [Indexed: 11/28/2022]
Abstract
Tuberculosis continues to be a major public health problem in many parts of the world, despite intensified efforts taken to control the disease. The remarkable success of M. tuberculosis as a pathogen is largely due to its ability to persist within the host for long periods. To develop the effective intervention strategies, understanding the biology of persistence is highly required. Accumulating evidences showed oxygen deprivation (hypoxia) as a potential stimulus for triggering the transition of M. tuberculosis to a non-replicating persistent state analogous to latency in vivo. To date, in vitro hypoxia experimental models used the laboratory adapted isolate H37Rv and very little is known about the behavior of clinical isolates that are involved during disease outbreaks. Hence, we compared the transcription profiles of H37Rv and two south Indian clinical isolates (S7 and S10) under hypoxia to find differences in gene expression pattern. The main objective of this current work is to find "differentially regulated genes" (genes that are down regulated in H37Rv but upregulated in both the clinical isolates) under hypoxia. Microarray results showed, a total of 502 genes were down regulated in H37Rv under hypoxia and 10 out of 502 genes were upregulated in both the clinical isolates. Thus, giving less importance to down regulated genes based on H37Rv model strain might exclude the true representative gene candidates in clinical isolates. Our study suggests the use of most prevalent clinical isolates for in vitro experimental model to minimize the variation in understanding the adaptation mechanisms of the strains.
Collapse
Affiliation(s)
- Santhi Devasundaram
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR) (Formerly Tuberculosis Research Centre), No.1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India
| | - Alamelu Raja
- Department of Immunology, National Institute for Research in Tuberculosis (ICMR) (Formerly Tuberculosis Research Centre), No.1, Mayor Sathiyamoorthy Road, Chetpet, Chennai 600 031, India.
| |
Collapse
|
10
|
A new microarray platform for whole-genome expression profiling of Mycobacterium tuberculosis. J Microbiol Methods 2013; 97:34-43. [PMID: 24365110 DOI: 10.1016/j.mimet.2013.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/30/2023]
Abstract
Microarrays have allowed gene expression profiling to progress from the gene level to the genome level, and oligonucleotide microarrays have become the platform of choice for large-scale, targeted gene expression studies. cDNA arrays and spotted oligonucleotide arrays have gradually given way to in situ synthesized oligonucleotide-based DNA microarrays for whole-genome expression profiling. With the identification of new coding and regulatory sequences, it is imperative that microarrays be updated to enable more complete expression profiling of genomes. We report here a new in situ synthesized oligonucleotide-based microarray platform for Mycobacterium tuberculosis that has been updated for the latest genome information and incorporates hitherto unannotated genes with described biological functions. This microarray has greater coverage of mycobacterial genes than any other array reported to date. We have also evaluated different labeled-target preparation methods and hybridization conditions for this new microarray to obtain high quality data and reproducible results. The new design has been rigorously validated for its specificity and performance using samples isolated from mycobacteria grown under different environment conditions. Further, the quality of the generated data has been compared with published data and is superior to that obtained using spotted oligonucleotide microarrays.
Collapse
|
11
|
Magombedze G, Dowdy D, Mulder N. Latent Tuberculosis: Models, Computational Efforts and the Pathogen's Regulatory Mechanisms during Dormancy. Front Bioeng Biotechnol 2013; 1:4. [PMID: 25023946 PMCID: PMC4090907 DOI: 10.3389/fbioe.2013.00004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/12/2013] [Indexed: 01/07/2023] Open
Abstract
Latent tuberculosis is a clinical syndrome that occurs after an individual has been exposed to the Mycobacterium tuberculosis (Mtb) Bacillus, the infection has been established and an immune response has been generated to control the pathogen and force it into a quiescent state. Mtb can exit this quiescent state where it is unresponsive to treatment and elusive to the immune response, and enter a rapid replicating state, hence causing infection reactivation. It remains a gray area to understand how the pathogen causes a persistent infection and it is unclear whether the organism will be in a slow replicating state or a dormant non-replicating state. The ability of the pathogen to adapt to changing host immune response mechanisms, in which it is exposed to hypoxia, low pH, nitric oxide (NO), nutrient starvation, and several other anti-microbial effectors, is associated with a high metabolic plasticity that enables it to metabolize under these different conditions. Adaptive gene regulatory mechanisms are thought to coordinate how the pathogen changes their metabolic pathways through mechanisms that sense changes in oxygen tension and other stress factors, hence stimulating the pathogen to make necessary adjustments to ensure survival. Here, we review studies that give insights into latency/dormancy regulatory mechanisms that enable infection persistence and pathogen adaptation to different stress conditions. We highlight what mathematical and computational models can do and what they should do to enhance our current understanding of TB latency.
Collapse
Affiliation(s)
- Gesham Magombedze
- National Institute for Mathematical and Biological Synthesis, University of Tennessee, Knoxville, TN, USA
| | - David Dowdy
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nicola Mulder
- Computational Biology Group, Department of Clinical Laboratory Sciences, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
12
|
Eisenreich W, Heesemann J, Rudel T, Goebel W. Metabolic host responses to infection by intracellular bacterial pathogens. Front Cell Infect Microbiol 2013; 3:24. [PMID: 23847769 PMCID: PMC3705551 DOI: 10.3389/fcimb.2013.00024] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/11/2013] [Indexed: 12/12/2022] Open
Abstract
The interaction of bacterial pathogens with mammalian hosts leads to a variety of physiological responses of the interacting partners aimed at an adaptation to the new situation. These responses include multiple metabolic changes in the affected host cells which are most obvious when the pathogen replicates within host cells as in case of intracellular bacterial pathogens. While the pathogen tries to deprive nutrients from the host cell, the host cell in return takes various metabolic countermeasures against the nutrient theft. During this conflicting interaction, the pathogen triggers metabolic host cell responses by means of common cell envelope components and specific virulence-associated factors. These host reactions generally promote replication of the pathogen. There is growing evidence that pathogen-specific factors may interfere in different ways with the complex regulatory network that controls the carbon and nitrogen metabolism of mammalian cells. The host cell defense answers include general metabolic reactions, like the generation of oxygen- and/or nitrogen-reactive species, and more specific measures aimed to prevent access to essential nutrients for the respective pathogen. Accurate results on metabolic host cell responses are often hampered by the use of cancer cell lines that already exhibit various de-regulated reactions in the primary carbon metabolism. Hence, there is an urgent need for cellular models that more closely reflect the in vivo infection conditions. The exact knowledge of the metabolic host cell responses may provide new interesting concepts for antibacterial therapies.
Collapse
Affiliation(s)
- Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Center of Isotopologue Profiling, Technische Universität München Garching, Germany
| | | | | | | |
Collapse
|
13
|
Cox RA, Garcia MJ. Adaptation of mycobacteria to growth conditions: a theoretical analysis of changes in gene expression revealed by microarrays. PLoS One 2013; 8:e59883. [PMID: 23593152 PMCID: PMC3625197 DOI: 10.1371/journal.pone.0059883] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Background Microarray analysis is a powerful technique for investigating changes in gene expression. Currently, results (r-values) are interpreted empirically as either unchanged or up- or down-regulated. We now present a mathematical framework, which relates r-values to the macromolecular properties of population-average cells. The theory is illustrated by the analysis of published data for two species; namely, Mycobacterium bovis BCG Pasteur and Mycobacterium smegmatis mc2 155. Each species was grown in a chemostat at two different growth rates. Application of the theory reveals the growth rate dependent changes in the mycobacterial proteomes. Principal Findings The r-value r(i) of any ORF (ORF(i)) encoding protein p(i) was shown to be equal to the ratio of the concentrations of p(i) and so directly proportional to the ratio of the numbers of copies of p(i) per population-average cells of the two cultures. The proportionality constant can be obtained from the ratios DNA: RNA: protein. Several subgroups of ORFs were identified because they shared a particular r-value. Histograms of the number of ORFs versus the expression ratio were simulated by combining the particular r-values of several subgroups of ORFs. The largest subgroup was ORF(j) (r(j) = 1.00± SD) which was estimated to comprise respectively 59% and 49% of ORFs of M. bovis BCG Pasteur and M. smegmatis mc2 155. The standard deviations reflect the properties of the cDNA preparations investigated. Significance The analysis provided a quantitative view of growth rate dependent changes in the proteomes of the mycobacteria studied. The majority of the ORFs were found to be constitutively expressed. In contrast, the protein compositions of the outer permeability barriers and cytoplasmic membranes were found to be dependent on growth rate; thus illustrating the response of bacteria to their environment. The theoretical approach applies to any cultivatable bacterium under a wide range of growth conditions.
Collapse
Affiliation(s)
- Robert Ashley Cox
- Division of Mycobacterial Research, National Institute for Medical Research, London, United Kingdom.
| | | |
Collapse
|
14
|
Skvortsov TA, Azhikina TL. [Adaptive changes of Mycobacterium tuberculosis gene expression during the infectious process]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [PMID: 23189553 DOI: 10.1134/s1068162012040139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Mycobacterium tuberculosis causes an infection in humans with clinical manifestations varying from asymptomatic carriage of bacteria to rapidly progressing tuberculosis. Infection outcomes depend on complex and still not fully understood interactions between the pathogenic bacteria and their host organism. Gene expression changes in response to host defense mechanisms are needed for M. tuberculosis survival and functioning. This review focuses on the analysis of dynamic changes in the M. tuberculosis transcriptome taking place during infection processes in host tissues. Presently available data on mycobacterial transcriptome changes obtained from different infection models are discussed. A major part of this review is devoted to the description of biochemical changes occurring in M. tuberculosis infection process, from the primary through latent infection to pathogen reactivation. At each stage of the infection, gene expression changes and induced bacterial metabolic variations are discussed.
Collapse
|
15
|
Gao CH, Yang M, He ZG. Characterization of a novel ArsR-like regulator encoded by Rv2034 in Mycobacterium tuberculosis. PLoS One 2012; 7:e36255. [PMID: 22558408 PMCID: PMC3338718 DOI: 10.1371/journal.pone.0036255] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 04/03/2012] [Indexed: 11/18/2022] Open
Abstract
The genome of Mycobacterium tuberculosis, the causative agent of tuberculosis, encodes a large number of putative transcriptional regulators. However, the identity and target genes of only a few of them have been clearly identified to date. In a recent study, the ArsR family regulator Rv2034 was characterized as a novel positive regulator of phoP. In the current study, we characterized the auto-repressive capabilities of Rv2034 and identified several residues in the protein critical for its DNA binding activities. We also provide evidence that Rv2034 forms dimers in vitro. Furthermore, by using DNaseI footprinting assays, a palindromic sequence was identified as its binding site. Notably, we found that the dosR promoter region contains the binding motif for Rv2034, and that Rv2034 positively regulates the expression of the dosR gene. The potential roles of Rv2034 in the regulation of lipid metabolism and hypoxic adaptation are discussed.
Collapse
Affiliation(s)
- Chun-hui Gao
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min Yang
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zheng-Guo He
- National Key Laboratory of Agricultural Microbiology, Center for Proteomics Research, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
16
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
17
|
The impact of transcriptomics on the fight against tuberculosis: focus on biomarkers, BCG vaccination, and immunotherapy. Clin Dev Immunol 2010; 2011:192630. [PMID: 21197423 PMCID: PMC3010624 DOI: 10.1155/2011/192630] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 11/16/2010] [Indexed: 11/18/2022]
Abstract
In 1882 Robert Koch identified Mycobacterium tuberculosis as the causative agent of tuberculosis (TB), a disease as ancient as humanity. Although there has been more than 125 years of scientific effort aimed at understanding the disease, serious problems in TB persist that contribute to the estimated 1/3 of the world population infected with this pathogen. Nonetheless, during the first decade of the 21st century, there were new advances in the fight against TB. The development of high-throughput technologies is one of the major contributors to this advance, because it allows for a global vision of the biological phenomenon. This paper analyzes how transcriptomics are supporting the translation of basic research into therapies by resolving three key issues in the fight against TB: (a) the discovery of biomarkers, (b) the explanation of the variability of protection conferred by BCG vaccination, and (c) the development of new immunotherapeutic strategies to treat TB.
Collapse
|
18
|
Fang X, Wallqvist A, Reifman J. Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. BMC SYSTEMS BIOLOGY 2010; 4:160. [PMID: 21092312 PMCID: PMC3225870 DOI: 10.1186/1752-0509-4-160] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Accepted: 11/23/2010] [Indexed: 11/16/2022]
Abstract
Background During infection, Mycobacterium tuberculosis confronts a generally hostile and nutrient-poor in vivo host environment. Existing models and analyses of M. tuberculosis metabolic networks are able to reproduce experimentally measured cellular growth rates and identify genes required for growth in a range of different in vitro media. However, these models, under in vitro conditions, do not provide an adequate description of the metabolic processes required by the pathogen to infect and persist in a host. Results To better account for the metabolic activity of M. tuberculosis in the host environment, we developed a set of procedures to systematically modify an existing in vitro metabolic network by enhancing the agreement between calculated and in vivo-measured gene essentiality data. After our modifications, the new in vivo network contained 663 genes, 838 metabolites, and 1,049 reactions and had a significantly increased sensitivity (0.81) in predicted gene essentiality than the in vitro network (0.31). We verified the modifications generated from the purely computational analysis through a review of the literature and found, for example, that, as the analysis suggested, lipids are used as the main source for carbon metabolism and oxygen must be available for the pathogen under in vivo conditions. Moreover, we used the developed in vivo network to predict the effects of double-gene deletions on M. tuberculosis growth in the host environment, explore metabolic adaptations to life in an acidic environment, highlight the importance of different enzymes in the tricarboxylic acid-cycle under different limiting nutrient conditions, investigate the effects of inhibiting multiple reactions, and look at the importance of both aerobic and anaerobic cellular respiration during infection. Conclusions The network modifications we implemented suggest a distinctive set of metabolic conditions and requirements faced by M. tuberculosis during host infection compared with in vitro growth. Likewise, the double-gene deletion calculations highlight the importance of specific metabolic pathways used by the pathogen in the host environment. The newly constructed network provides a quantitative model to study the metabolism and associated drug targets of M. tuberculosis under in vivo conditions.
Collapse
Affiliation(s)
- Xin Fang
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, US Army Medical Research and Materiel Command, Ft, Detrick, MD 21702, USA
| | | | | |
Collapse
|
19
|
Ward SK, Abomoelak B, Marcus SA, Talaat AM. Transcriptional profiling of mycobacterium tuberculosis during infection: lessons learned. Front Microbiol 2010; 1:121. [PMID: 21738523 PMCID: PMC3125582 DOI: 10.3389/fmicb.2010.00121] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Accepted: 10/12/2010] [Indexed: 12/12/2022] Open
Abstract
Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis.
Collapse
Affiliation(s)
- Sarah K Ward
- Department of Pathobiological Sciences, University of Wisconsin-Madison Madison, WI, USA
| | | | | | | |
Collapse
|
20
|
Abstract
Batch cultures have predominately been used for the study of physiology and gene expression in mycobacteria. This chapter describes the assembly of chemostats and the methodology that is being used for growing Mycobacterium tuberculosis in continuous culture, which provides the greatest control over experimental conditions. It is difficult to determine the underlying genetic changes that enable M. tuberculosis to adapt to the host environment, but in vitro experiments aid the interpretation of gene expression profiles of the bacillus in vivo. Selecting relevant host conditions for study presents a major challenge. Oxygen availability has been identified as an important environmental stimulus and is a simple parameter to adjust and monitor. Described here are continuous culture methods to determine the response of M. tuberculosis to low oxygen environments.
Collapse
Affiliation(s)
- Joanna Bacon
- TB Research, Health Protection Agency, CEPR, Porton Down, Salisbury SP4 OJG, UK.
| | | |
Collapse
|
21
|
McLean KJ, Belcher J, Driscoll MD, Fernandez CC, Le Van D, Bui S, Golovanova M, Munro AW. The Mycobacterium tuberculosis cytochromes P450: physiology, biochemistry & molecular intervention. Future Med Chem 2010; 2:1339-53. [PMID: 21426022 DOI: 10.4155/fmc.10.216] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The human pathogen Mycobacterium tuberculosis (Mtb) encodes 20 cytochrome P450 (P450) enzymes. Gene essentiality for viability or host infection was demonstrated for Mtb P450s CYP128, CYP121 and CYP125. Structure/function studies on Mtb P450s revealed key roles contributing to bacterial virulence and persistence in the host. Various azole-class drugs bind with high affinity to the Mtb P450 heme and are potent Mtb antibiotics. This paper reviews the current understanding of the biochemistry of Mtb P450s, their interactions with azoles and their potential as novel Mtb drug targets. Mtb multidrug resistance is widespread and novel therapeutics are desperately needed. Simultaneous drug targeting of several Mtb P450s crucial to bacterial viability/persistence could offer a new route to effective antibiotics and minimize the development of drug resistance.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocenter, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Driscoll MD, McLean KJ, Cheesman MR, Jowitt TA, Howard M, Carroll P, Parish T, Munro AW. Expression and characterization of Mycobacterium tuberculosis CYP144: common themes and lessons learned in the M. tuberculosis P450 enzyme family. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2010; 1814:76-87. [PMID: 20621636 DOI: 10.1016/j.bbapap.2010.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/26/2010] [Accepted: 05/27/2010] [Indexed: 10/19/2022]
Abstract
CYP144 from Mycobacterium tuberculosis was expressed and purified. CYP144 demonstrates heme thiolate coordination in its ferric form, but the cysteinate is protonated to thiol in both the carbon monoxide-bound and ligand-free ferrous forms (forming P420 in the former). Tight binding of various azole drugs was shown, with affinity for miconazole (K(d)=0.98 μM), clotrimazole (0.37 μM) and econazole (0.78 μM) being highest. These azoles are also the trio with the highest affinity for the essential CYP121 and for the cholesterol oxidase CYP125 (essential for host infection), and have high potency as anti-mycobacterial drugs. Construction of a Mtb gene knockout strain demonstrated that CYP144 is not essential for growth in vitro. However the deletion strain was more sensitive to azole inhibition in culture suggesting an important role for CYP144 in cell physiology and/or in mediating azole resistance. The biophysical and genetic features of CYP144 are compared to those of other characterized Mtb P450s, identifying both commonality in properties (including thiolate protonation in ferrous P450s) and intriguing differences in thermodynamic and spectroscopic features. Our developing knowledge of the Mtb P450s has revealed unusual biochemistry and gene essentiality, highlighting their potential as drug targets in this human pathogen.
Collapse
Affiliation(s)
- Max D Driscoll
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M17DN, UK
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Chowdhury RP, Saraswathi R, Chatterji D. Mycobacterial stress regulation: The Dps "twin sister" defense mechanism and structure-function relationship. IUBMB Life 2010; 62:67-77. [PMID: 20014234 DOI: 10.1002/iub.285] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
In this work, we have tried to emphasize the connection between mycobacterial growth and regulation of gene expression. Utilization of multiple carbon sources and diauxic growth helps bacteria to regulate gene expression at an optimum level so that the inhospitable conditions encountered during nutrient depletion can be circumvented. These aspects will be discussed with respect to mycobacterial growth in subsequent sections. Identification and characterization of genes induced under such conditions is helpful to understand the physiology of the bacterium. Although it is necessary to compare the total expression profile of proteins as they transit from vegetative growth to stationary phase, at times a lot of insights can be deciphered from the expression pattern of one or two proteins. We have compared the protein expression and sigma factor selectivity of two such proteins in M. smegmatis to understand the differential regulation of genes playing diverse function in the same species. Some newer insights on the structure and function of one of the Dps proteins are also explained.
Collapse
|
24
|
McLean KJ, Lafite P, Levy C, Cheesman MR, Mast N, Pikuleva IA, Leys D, Munro AW. The Structure of Mycobacterium tuberculosis CYP125: molecular basis for cholesterol binding in a P450 needed for host infection. J Biol Chem 2010; 284:35524-33. [PMID: 19846552 DOI: 10.1074/jbc.m109.032706] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We report characterization and the crystal structure of the Mycobacterium tuberculosis cytochrome P450 CYP125, a P450 implicated in metabolism of host cholesterol and essential for establishing infection in mice. CYP125 is purified in a high spin form and undergoes both type I and II spectral shifts with various azole drugs. The 1.4-A structure of ligand-free CYP125 reveals a "letterbox" active site cavity of dimensions appropriate for entry of a polycyclic sterol. A mixture of hexa-coordinate and penta-coordinate states could be discerned, with water binding as the 6th heme-ligand linked to conformation of the I-helix Val(267) residue. Structures in complex with androstenedione and the antitubercular drug econazole reveal that binding of hydrophobic ligands occurs within the active site cavity. Due to the funnel shape of the active site near the heme, neither approaches the heme iron. A model of the cholesterol CYP125 complex shows that the alkyl side chain extends toward the heme iron, predicting hydroxylation of cholesterol C27. The alkyl chain is in close contact to Val(267), suggesting a substrate binding-induced low- to high-spin transition coupled to reorientation of the latter residue. Reconstitution of CYP125 activity with a redox partner system revealed exclusively cholesterol 27-hydroxylation, consistent with structure and modeling. This activity may enable catabolism of host cholesterol or generation of immunomodulatory compounds that enable persistence in the host. This study reveals structural and catalytic properties of a potential M. tuberculosis drug target enzyme, and the likely mode by which the host-derived substrate is bound and hydroxylated.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
Rosłoniec KZ, Wilbrink MH, Capyk JK, Mohn WW, Ostendorf M, van der Geize R, Dijkhuizen L, Eltis LD. Cytochrome P450 125 (CYP125) catalyses C26-hydroxylation to initiate sterol side-chain degradation in Rhodococcus jostii RHA1. Mol Microbiol 2009; 74:1031-43. [PMID: 19843222 DOI: 10.1111/j.1365-2958.2009.06915.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cyp125 gene of Rhodococcus jostii RHA1 was previously found to be highly upregulated during growth on cholesterol and the orthologue in Mycobacterium tuberculosis (rv3545c) has been implicated in pathogenesis. Here we show that cyp125 is essential for R. jostii RHA1 to grow on 3-hydroxysterols such as cholesterol, but not on 3-oxo sterol derivatives, and that CYP125 performs an obligate first step in cholesterol degradation. The involvement of cyp125 in sterol side-chain degradation was confirmed by disrupting the homologous gene in Rhodococcus rhodochrous RG32, a strain that selectively degrades the cholesterol side-chain. The RG32 Omega cyp125 mutant failed to transform the side-chain of cholesterol, but degraded that of 5-cholestene-26-oic acid-3beta-ol, a cholesterol catabolite. Spectral analysis revealed that while purified ferric CYP125(RHA1) was < 10% in the low-spin state, cholesterol (K(D)(app) = 0.20 +/- 0.08 microM), 5 alpha-cholestanol (K(D)(app) = 0.15 +/- 0.03 microM) and 4-cholestene-3-one (K(D)(app) = 0.20 +/- 0.03 microM) further reduced the low spin character of the haem iron consistent with substrate binding. Our data indicate that CYP125 is involved in steroid C26-carboxylic acid formation, catalysing the oxidation of C26 either to the corresponding carboxylic acid or to an intermediate state.
Collapse
Affiliation(s)
- Kamila Z Rosłoniec
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, PO Box 14, 9750 AA Haren, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Ioanoviciu A, Meharenna YT, Poulos TL, Ortiz de Montellano PR. DevS oxy complex stability identifies this heme protein as a gas sensor in Mycobacterium tuberculosis dormancy. Biochemistry 2009; 48:5839-48. [PMID: 19463006 PMCID: PMC2756985 DOI: 10.1021/bi802309y] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DevS is one of the two sensing kinases responsible for DevR activation and the subsequent entry of Mycobacterium tuberculosis into dormancy. Full-length wild-type DevS forms a stable oxy-ferrous complex. The DevS autoxidation rates are extremely low (half-lives of >24 h) in the presence of cations such as K(+), Na(+), Mg(2+), and Ca(2+). At relatively high concentrations (100 mM), Cu(2+) accelerates autoxidation more than 1500-fold. Contrary to expectations, removal of the key hydrogen bond between the iron-coordinated oxygen and Tyr171 in the Y171F mutant provides a protein of comparable stability to autoxidation and similar oxygen dissociation rate. This correlates with our earlier finding that the Y171F mutant and wild-type kinase activities are similarly regulated by the binding of oxygen: namely, the ferrous five-coordinate complex is active, whereas the oxy-ferrous six-coordinate species is inactive. Our results indicate that DevS is a gas sensor in vivo rather than a redox sensor and that the stability of its ferrous-oxy complex is enhanced by interdomain interactions.
Collapse
Affiliation(s)
- Alexandra Ioanoviciu
- Department of Pharmaceutical Chemistry, University of California, 600 16Street, San Francisco, California 94158-2517
| | - Yergalem T. Meharenna
- Departments of Molecular Biology & Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900
| | - Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Chemistry, and Pharmaceutical Sciences, University of California, Irvine, Irvine, California 92697-3900
| | - Paul R. Ortiz de Montellano
- Department of Pharmaceutical Chemistry, University of California, 600 16Street, San Francisco, California 94158-2517
| |
Collapse
|
28
|
Deb C, Lee CM, Dubey VS, Daniel J, Abomoelak B, Sirakova TD, Pawar S, Rogers L, Kolattukudy PE. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS One 2009; 4:e6077. [PMID: 19562030 PMCID: PMC2698117 DOI: 10.1371/journal.pone.0006077] [Citation(s) in RCA: 336] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Accepted: 05/29/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) becomes dormant and phenotypically drug resistant when it encounters multiple stresses within the host. Inability of currently available drugs to kill latent Mtb is a major impediment to curing and possibly eradicating tuberculosis (TB). Most in vitro dormancy models, using single stress factors, fail to generate a truly dormant Mtb population. An in vitro model that generates truly dormant Mtb cells is needed to elucidate the metabolic requirements that allow Mtb to successfully go through dormancy, identify new drug targets, and to screen drug candidates to discover novel drugs that can kill dormant pathogen. METHODOLOGY/PRINCIPAL FINDINGS We developed a novel in vitro multiple-stress dormancy model for Mtb by applying combined stresses of low oxygen (5%), high CO(2) (10%), low nutrient (10% Dubos medium) and acidic pH (5.0), conditions Mtb is thought to encounter in the host. Under this condition, Mtb stopped replicating, lost acid-fastness, accumulated triacylglycerol (TG) and wax ester (WE), and concomitantly acquired phenotypic antibiotic-resistance. Putative neutral lipid biosynthetic genes were up-regulated. These genes may serve as potential targets for new antilatency drugs. The triacylglycerol synthase1 (tgs1) deletion mutant, with impaired ability to accumulate TG, exhibited a lesser degree of antibiotic tolerance and complementation restored antibiotic tolerance. Transcriptome analysis with microarray revealed the achievement of dormant state showing repression of energy generation, transcription and translation machineries and induction of stress-responsive genes. We adapted this model for drug screening using the Alamar Blue dye to quantify the antibiotic tolerant dormant cells. CONCLUSIONS/SIGNIFICANCE The new in vitro multiple stress dormancy model efficiently generates Mtb cells meeting all criteria of dormancy, and this method is adaptable to high-throughput screening for drugs that can kill dormant Mtb. A critical link between storage-lipid accumulation and development of phenotypic drug-resistance in Mtb was established. Storage lipid biosynthetic genes may be appropriate targets for novel drugs that can kill latent Mtb.
Collapse
Affiliation(s)
- Chirajyoti Deb
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Chang-Muk Lee
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Vinod S. Dubey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Jaiyanth Daniel
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Bassam Abomoelak
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Tatiana D. Sirakova
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Santosh Pawar
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Linda Rogers
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | - Pappachan E. Kolattukudy
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
- * E-mail:
| |
Collapse
|
29
|
Beste DJV, Espasa M, Bonde B, Kierzek AM, Stewart GR, McFadden J. The genetic requirements for fast and slow growth in mycobacteria. PLoS One 2009; 4:e5349. [PMID: 19479006 PMCID: PMC2685279 DOI: 10.1371/journal.pone.0005349] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 03/31/2009] [Indexed: 01/14/2023] Open
Abstract
Mycobacterium tuberculosis infects a third of the world's population. Primary tuberculosis involving active fast bacterial replication is often followed by asymptomatic latent tuberculosis, which is characterised by slow or non-replicating bacteria. Reactivation of the latent infection involving a switch back to active bacterial replication can lead to post-primary transmissible tuberculosis. Mycobacterial mechanisms involved in slow growth or switching growth rate provide rational targets for the development of new drugs against persistent mycobacterial infection. Using chemostat culture to control growth rate, we screened a transposon mutant library by Transposon site hybridization (TraSH) selection to define the genetic requirements for slow and fast growth of Mycobacterium bovis (BCG) and for the requirements of switching growth rate. We identified 84 genes that are exclusively required for slow growth (69 hours doubling time) and 256 genes required for switching from slow to fast growth. To validate these findings we performed experiments using individual M. tuberculosis and M. bovis BCG knock out mutants. We have demonstrated that growth rate control is a carefully orchestrated process which requires a distinct set of genes encoding several virulence determinants, gene regulators, and metabolic enzymes. The mce1 locus appears to be a component of the switch to slow growth rate, which is consistent with the proposed role in virulence of M. tuberculosis. These results suggest novel perspectives for unravelling the mechanisms involved in the switch between acute and persistent TB infections and provide a means to study aspects of this important phenomenon in vitro.
Collapse
Affiliation(s)
| | - Mateus Espasa
- FHMS, University of Surrey, Guildford, United Kingdom
| | - Bhushan Bonde
- FHMS, University of Surrey, Guildford, United Kingdom
| | | | | | | |
Collapse
|
30
|
Jandu N, Ho NKL, Donato KA, Karmali MA, Mascarenhas M, Duffy SP, Tailor C, Sherman PM. Enterohemorrhagic Escherichia coli O157:H7 gene expression profiling in response to growth in the presence of host epithelia. PLoS One 2009; 4:e4889. [PMID: 19293938 PMCID: PMC2654852 DOI: 10.1371/journal.pone.0004889] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 02/04/2009] [Indexed: 12/30/2022] Open
Abstract
Background The pathogenesis of enterohemorrhagic Escherichia coli (EHEC) O157∶H7 infection is attributed to virulence factors encoded on multiple pathogenicity islands. Previous studies have shown that EHEC O157∶H7 modulates host cell signal transduction cascades, independent of toxins and rearrangement of the cytoskeleton. However, the virulence factors and mechanisms responsible for EHEC-mediated subversion of signal transduction remain to be determined. Therefore, the purpose of this study was to first identify differentially regulated genes in response to EHEC O157∶H7 grown in the presence of epithelial cells, compared to growth in the absence of epithelial cells (that is, growth in minimal essential tissue culture medium alone, minimal essential tissue culture medium in the presence of 5% CO2, and Penassay broth alone) and, second, to identify EHEC virulence factors responsible for pathogen modulation of host cell signal transduction. Methodology/Principal Findings Overnight cultures of EHEC O157∶H7 were incubated for 6 hr at 37°C in the presence or absence of confluent epithelial (HEp-2) cells. Total RNA was then extracted and used for microarray analyses (Affymetrix E. coli Genome 2.0 gene chips). Relative to bacteria grown in each of the other conditions, EHEC O157∶H7 cultured in the presence of cultured epithelial cells displayed a distinct gene-expression profile. A 2.0-fold increase in the expression of 71 genes and a 2.0-fold decrease in expression of 60 other genes were identified in EHEC O157∶H7 grown in the presence of epithelial cells, compared to bacteria grown in media alone. Conclusion/Significance Microarray analyses and gene deletion identified a protease on O-island 50, gene Z1787, as a potential virulence factor responsible for mediating EHEC inhibition of the interferon (IFN)-γ-Jak1,2-STAT-1 signal transduction cascade. Up-regulated genes provide novel targets for use in developing strategies to interrupt the infectious process.
Collapse
Affiliation(s)
- Narveen Jandu
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Nathan K. L. Ho
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Kevin A. Donato
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Mohamed A. Karmali
- Laboratory of Foodborne Zoonosis, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Mariola Mascarenhas
- Laboratory of Foodborne Zoonosis, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Simon P. Duffy
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Chetankumar Tailor
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Philip M. Sherman
- Research Institute, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
31
|
Provvedi R, Palù G, Manganelli R. Use of DNA microarrays to study global patterns of gene expression. Methods Mol Biol 2009; 465:95-110. [PMID: 20560055 DOI: 10.1007/978-1-59745-207-6_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
DNA microarray technology represents an extremely powerful tool to understand the biology of Myobacterium tuberculosis and its interaction with the host. It opens up the possibility of monitoring the expression level of thousands of genes in parallel, thus the ability to test the effect on global transcription of different experimental conditions. Whole genome microarrays consist either of PCR amplicons or oligonucleotides representing every open reading frame in a genome printed on a slide in a high-density matrix. The gene identity and position of each spot is known and can be tracked.Transcription profiling experiments are designed to compare gene expression in bacteria exposed to two different conditions. The RNA from the two different cultures is extracted and reverse transcribed to obtain differentially labeled cDNA by incorporating dUTP or dCTP conjugated with either Cy5 or Cy3, two fluorophores able to emit fluorescence of two different wavelengths. Equal amounts of the two differentially labeled cDNA are mixed, applied to the array surface, and allowed to hybridize to the corresponding gene-specific target. The microarray is finally scanned to obtain two overlapping images each relative to the fluorescence emitted from each label. The images obtained are then analyzed by several software packages to identify and quantify the spots corresponding with the gene-specific probes. After image processing, the data are normalized and then analyzed to determine those genes whose differential expression between the two samples is statistically significant. However, the statistical analysis of microarray data alone is not usually considered enough to confirm differential expression of a gene, and validation with an independent technique, such as quantitative RT-PCR, is required.
Collapse
|
32
|
Shiloh MU, Manzanillo P, Cox JS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe 2008; 3:323-30. [PMID: 18474359 PMCID: PMC2873178 DOI: 10.1016/j.chom.2008.03.007] [Citation(s) in RCA: 173] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/19/2008] [Accepted: 03/26/2008] [Indexed: 01/19/2023]
Abstract
Mycobacterium tuberculosis (MTB) expresses a set of genes known as the dormancy regulon in vivo. These genes are expressed in vitro in response to nitric oxide (NO) or hypoxia, conditions used to model MTB persistence in latent infection. Although NO, a macrophage product that inhibits respiration, and hypoxia are likely triggers in vivo, additional cues could activate the dormancy regulon during infection. Here, we show that MTB infection stimulates expression of heme oxygenase (HO-1) by macrophages and that the gaseous product of this enzyme, carbon monoxide (CO), activates expression of the dormancy regulon. Deletion of macrophage HO-1 reduced expression of the dormancy regulon. Furthermore, we show that the MTB DosS/DosT/DosR two-component sensory relay system is required for the response to CO. Together, these findings demonstrate that MTB senses CO during macrophage infection. CO may represent a general cue used by pathogens to sense and adapt to the host environment.
Collapse
Affiliation(s)
- Michael U Shiloh
- Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | |
Collapse
|
33
|
La MV, Raoult D, Renesto P. Regulation of whole bacterial pathogen transcription within infected hosts. FEMS Microbiol Rev 2008; 32:440-60. [PMID: 18266740 DOI: 10.1111/j.1574-6976.2008.00103.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
DNA microarrays are a powerful and promising approach to gain a detailed understanding of the bacterial response and the molecular cross-talk that can occur as a consequence of host-pathogen interactions. However, published studies mainly describe the host response to infection. Analysis of bacterial gene regulation in the course of infection has confronted many challenges. This review summarizes the different strategies used over the last few years to investigate, at the genomic scale, and using microarrays, the alterations in the bacterial transcriptome in response to interactions with host cells. Thirty-seven studies involving 19 different bacterial pathogens were compiled and analyzed. Our in silico comparison of the transcription profiles of bacteria grown in broth or in contact with eukaryotic cells revealed some features commonly observed when bacteria interact with host cells, including stringent response and cell surface remodeling.
Collapse
Affiliation(s)
- My-Van La
- Unité des Rickettsies, Faculté de Médecine, 27 Boulevard Jean Moulin, Marseille, France
| | | | | |
Collapse
|
34
|
McLean KJ, Munro AW. Structural biology and biochemistry of cytochrome P450 systems in Mycobacterium tuberculosis. Drug Metab Rev 2008; 40:427-46. [PMID: 18642141 DOI: 10.1080/03602530802186389] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The global spread of tuberculosis (TB) has been fuelled by the development of strains of the causative bacterium (Mycobacterium tuberculosis, Mtb) that are resistant to all the leading drugs. New TB therapies are desperately needed, but recent genome sequence, genetic and protein characterization studies have helped identify novel Mtb drug targets and key biochemical pathways for strategic intervention. Of particular interest are the multiple cytochrome P450 (P450) enzymes encoded in the Mtb genome. Structural, biochemical and mechanistic studies on these systems have demonstrated their potential as antitubercular targets, as well as revealing novel aspects of P450 form and function.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, The University of Manchester, Faculty of Life Sciences, Manchester, M1, UK.
| | | |
Collapse
|
35
|
Global transcriptional profile of Mycobacterium tuberculosis during THP-1 human macrophage infection. Infect Immun 2007; 76:717-25. [PMID: 18070897 DOI: 10.1128/iai.00974-07] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During lung infection, Mycobacterium tuberculosis resides in macrophages and subverts the bactericidal mechanisms of these professional phagocytes. Comprehension of this host-pathogen relationship is fundamental for the development of new therapies to cure and prevent tuberculosis. In this work, we analyzed the transcriptional profile of M. tuberculosis infecting human macrophage-like THP-1 cells in order to identify putative bacterial pathogenic factors that can be relevant for the intracellular survival of M. tuberculosis. We compared the gene expression profile of M. tuberculosis H37Rv after 4 h and 24 h of infection of human macrophage-like THP-1 cells with the gene expression profile of the strain growing exponentially in broth cultures. We found 585 genes expressed differentially by intracellular M. tuberculosis. An analysis of the gene expression profile of M. tuberculosis inside THP-1 cells suggests the perturbation of the cell envelope as a major intracellular stress inside THP-1 macrophages.
Collapse
|
36
|
Rohde KH, Abramovitch RB, Russell DG. Mycobacterium tuberculosis Invasion of Macrophages: Linking Bacterial Gene Expression to Environmental Cues. Cell Host Microbe 2007; 2:352-64. [DOI: 10.1016/j.chom.2007.09.006] [Citation(s) in RCA: 302] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 08/17/2007] [Accepted: 09/18/2007] [Indexed: 12/31/2022]
|
37
|
Han Y, Qiu J, Guo Z, Gao H, Song Y, Zhou D, Yang R. Comparative transcriptomics in Yersinia pestis: a global view of environmental modulation of gene expression. BMC Microbiol 2007; 7:96. [PMID: 17963531 PMCID: PMC2231364 DOI: 10.1186/1471-2180-7-96] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2007] [Accepted: 10/29/2007] [Indexed: 12/22/2022] Open
Abstract
Background Environmental modulation of gene expression in Yersinia pestis is critical for its life style and pathogenesis. Using cDNA microarray technology, we have analyzed the global gene expression of this deadly pathogen when grown under different stress conditions in vitro. Results To provide us with a comprehensive view of environmental modulation of global gene expression in Y. pestis, we have analyzed the gene expression profiles of 25 different stress conditions. Almost all known virulence genes of Y. pestis were differentially regulated under multiple environmental perturbations. Clustering enabled us to functionally classify co-expressed genes, including some uncharacterized genes. Collections of operons were predicted from the microarray data, and some of these were confirmed by reverse-transcription polymerase chain reaction (RT-PCR). Several regulatory DNA motifs, probably recognized by the regulatory protein Fur, PurR, or Fnr, were predicted from the clustered genes, and a Fur binding site in the corresponding promoter regions was verified by electrophoretic mobility shift assay (EMSA). Conclusion The comparative transcriptomics analysis we present here not only benefits our understanding of the molecular determinants of pathogenesis and cellular regulatory circuits in Y. pestis, it also serves as a basis for integrating increasing volumes of microarray data using existing methods.
Collapse
Affiliation(s)
- Yanping Han
- State Key laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences, 20, Dongdajie, Fengtai, Beijing 100071, China.
| | | | | | | | | | | | | |
Collapse
|
38
|
Sundaramurthy V, Pieters J. Interactions of pathogenic mycobacteria with host macrophages. Microbes Infect 2007; 9:1671-9. [PMID: 18023233 DOI: 10.1016/j.micinf.2007.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, is one of the most deadly infectious diseases across the globe. The success of M. tuberculosis is related to its capacity to survive and replicate in macrophages, cells of the host innate immune system that are designed to detect and eliminate pathogens [1,2]. In this review, we will focus on the mechanisms used by the innate system of the host to detect and eliminate mycobacteria and the strategies used by M. tuberculosis to overcome host responses to establish a successful infection.
Collapse
|
39
|
Kendall SL, Withers M, Soffair CN, Moreland NJ, Gurcha S, Sidders B, Frita R, ten Bokum A, Besra GS, Lott JS, Stoker NG. A highly conserved transcriptional repressor controls a large regulon involved in lipid degradation in Mycobacterium smegmatis and Mycobacterium tuberculosis. Mol Microbiol 2007; 65:684-99. [PMID: 17635188 PMCID: PMC1995591 DOI: 10.1111/j.1365-2958.2007.05827.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Mycobacterium tuberculosis TetR-type regulator Rv3574 has been implicated in pathogenesis as it is induced in vivo, and genome-wide essentiality studies show it is required for infection. As the gene is highly conserved in the mycobacteria, we deleted the Rv3574 orthologue in Mycobacterium smegmatis (MSMEG_6042) and used real-time quantitative polymerase chain reaction and microarray analyses to show that it represses the transcription both of itself and of a large number of genes involved in lipid metabolism. We identified a conserved motif within its own promoter (TnnAACnnGTTnnA) and showed that it binds as a dimer to 29 bp probes containing the motif. We found 16 and 31 other instances of the motif in intergenic regions of M. tuberculosis and M. smegmatis respectively. Combining the results of the microarray studies with the motif analyses, we predict that Rv3574 directly controls the expression of 83 genes in M. smegmatis, and 74 in M. tuberculosis. Many of these genes are known to be induced by growth on cholesterol in rhodococci, and palmitate in M. tuberculosis. We conclude that this regulator, designated elsewhere as kstR, controls the expression of genes used for utilizing diverse lipids as energy sources, possibly imported through the mce4 system.
Collapse
Affiliation(s)
- Sharon L Kendall
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Mike Withers
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Catherine N Soffair
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Nicole J Moreland
- Laboratory of Structural Biology and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of AucklandAuckland, New Zealand.
| | - Sudagar Gurcha
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK.
| | - Ben Sidders
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Rosangela Frita
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
| | - Annemieke ten Bokum
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical MedicineLondon WC1E 7HT, UK.
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, EdgbastonBirmingham B15 2TT, UK.
| | - J Shaun Lott
- Laboratory of Structural Biology and Maurice Wilkins Centre for Molecular Biodiscovery, School of Biological Sciences, University of AucklandAuckland, New Zealand.
| | - Neil G Stoker
- Department of Pathology and Infectious Diseases, The Royal Veterinary CollegeRoyal College Street, London NW1 0TU, UK.
- For correspondence. E-mail: ; Tel. (+020) 7468 5272; Fax (+020) 7468 5306
| |
Collapse
|
40
|
McLean KJ, Dunford AJ, Neeli R, Driscoll MD, Munro AW. Structure, function and drug targeting in Mycobacterium tuberculosis cytochrome P450 systems. Arch Biochem Biophys 2007; 464:228-40. [PMID: 17482138 DOI: 10.1016/j.abb.2007.03.026] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Revised: 03/02/2007] [Accepted: 03/23/2007] [Indexed: 11/17/2022]
Abstract
The human pathogen Mycobacterium tuberculosis has made a dramatic resurgence in recent years. Drug resistant and multidrug resistant strains are prevalent, and novel antibiotic strategies are desperately needed to counter Mtb's global spread. The M. tuberculosis genome sequence revealed an unexpectedly high number of cytochrome P450 (P450) enzymes (20), and parallel studies indicated that P450-inhibiting azole drugs had potent anti-mycobacterial activity. This article reviews current knowledge of structure/function of P450s and redox partner systems in M. tuberculosis. Recent research has highlighted potential drug target Mtb P450s and provided evidence for roles of selected P450 isoforms in host lipid and sterol/steroid transformations. Structural analysis of key Mtb P450s has provided fundamental information on the nature of the heme binding site, P450 interactions with azole drugs, the biochemical nature of cytochrome P420, and novel mutational adaptations by which azole binding to P450s may be diminished to facilitate azole resistance.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | |
Collapse
|
41
|
Beste DJV, Laing E, Bonde B, Avignone-Rossa C, Bushell ME, McFadden JJ. Transcriptomic analysis identifies growth rate modulation as a component of the adaptation of mycobacteria to survival inside the macrophage. J Bacteriol 2007; 189:3969-76. [PMID: 17384194 PMCID: PMC1913408 DOI: 10.1128/jb.01787-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Accepted: 03/13/2007] [Indexed: 11/20/2022] Open
Abstract
The adaptation of the tubercle bacillus to the host environment is likely to involve a complex set of gene regulatory events and physiological switches in response to environmental signals. In order to deconstruct the physiological state of Mycobacterium tuberculosis in vivo, we used a chemostat model to study a single aspect of the organism's in vivo state, slow growth. Mycobacterium bovis BCG was cultivated at high and low growth rates in a carbon-limited chemostat, and transcriptomic analysis was performed to identify the gene regulation events associated with slow growth. The results demonstrated that slow growth was associated with the induction of expression of several genes of the dormancy survival regulon. There was also a striking overlap between the transcriptomic profile of BCG in the chemostat model and the response of M. tuberculosis to growth in the macrophage, implying that a significant component of the response of the pathogen to the macrophage environment is the response to slow growth in carbon-limited conditions. This demonstrated the importance of adaptation to a low growth rate to the virulence strategy of M. tuberculosis and also the value of the chemostat model for deconstructing components of the in vivo state of this important pathogen.
Collapse
Affiliation(s)
- D J V Beste
- School of Biomedical and Molecular Sciences, University of Surrey, Guildford GU2 7XH, UK
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
Analysis of the changing mRNA expression profile of Mycobacterium tuberculosis though the course of infection promises to advance our understanding of how mycobacteria are able to survive the host immune response. The difficulties of sample extraction from distinct mycobacterial populations, and of measuring mRNA expression profiles of multiple genes has limited the impact of gene expression studies on our interpretation of this dynamic infection process. The development of whole genome microarray technology together with advances in sample collection have allowed the expression pattern of the whole M. tuberculosis genome to be compared across a number of different in vitro conditions, murine and human tissue culture models and in vivo infection samples. This review attempts to produce a summative model of the M. tuberculosis response to infection derived from or reflected in these gene expression datasets. The mycobacterial response to the intracellular environment is characterised by the utilisation of lipids as a carbon source and the switch from aerobic/microaerophilic to anaerobic respiratory pathways. Other genes induced in the macrophage phagosome include those likely to be involved in the maintenance of the cell wall and genes related to DNA damage, heat shock, iron sequestration and nutrient limitation. The comparison of transcriptional data from in vitro models of infection with complex in vivo samples, together with the use of bacterial RNA amplification strategies to sample defined populations of bacilli, should allow us to make conclusions about M. tuberculosis physiology and host microenvironments during natural infection.
Collapse
Affiliation(s)
- Simon J Waddell
- Medical Microbiology, Division of Cellular & Molecular Medicine, St. George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK.
| | | |
Collapse
|
43
|
Sidders B, Withers M, Kendall SL, Bacon J, Waddell SJ, Hinds J, Golby P, Movahedzadeh F, Cox RA, Frita R, ten Bokum AMC, Wernisch L, Stoker NG. Quantification of global transcription patterns in prokaryotes using spotted microarrays. Genome Biol 2007; 8:R265. [PMID: 18078514 PMCID: PMC2246267 DOI: 10.1186/gb-2007-8-12-r265] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Revised: 11/01/2007] [Accepted: 12/13/2007] [Indexed: 11/18/2022] Open
Abstract
We describe an analysis, applicable to any spotted microarray dataset produced using genomic DNA as a reference, that quantifies prokaryotic levels of mRNA on a genome-wide scale. Applying this to Mycobacterium tuberculosis, we validate the technique, show a correlation between level of expression and biological importance, define the complement of invariant genes and analyze absolute levels of expression by functional class to develop ways of understanding an organism's biology without comparison to another growth condition.
Collapse
Affiliation(s)
- Ben Sidders
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Mike Withers
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Sharon L Kendall
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Joanna Bacon
- TB Research, CEPR, Health Protection Agency, Porton Down, Salisbury, SP4 0JG, UK
| | - Simon J Waddell
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Jason Hinds
- Medical Microbiology, Division of Cellular and Molecular Medicine, St George's University of London, Cranmer Terrace, Tooting, London, SW17 0RE, UK
| | - Paul Golby
- Veterinary Laboratories Agency, Woodham Lane, New Haw, Addlestone, Surrey, KT15 3NB, UK
| | - Farahnaz Movahedzadeh
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
- Institute for Tuberculosis Research College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois, 60612-7231, USA
| | - Robert A Cox
- Division of Mycobacterial Research, National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Rosangela Frita
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| | - Annemieke MC ten Bokum
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Lorenz Wernisch
- School of Crystallography, Birkbeck College, London, WC1E 7HX, UK
| | - Neil G Stoker
- Department of Pathology and Infectious Diseases, Royal Veterinary College, Royal College Street, London, NW1 0TU, UK
| |
Collapse
|
44
|
Rodrigue S, Brodeur J, Jacques PE, Gervais AL, Brzezinski R, Gaudreau L. Identification of mycobacterial sigma factor binding sites by chromatin immunoprecipitation assays. J Bacteriol 2006; 189:1505-13. [PMID: 17158685 PMCID: PMC1855719 DOI: 10.1128/jb.01371-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycobacterium tuberculosis and Mycobacterium bovis are responsible for infections that cause a substantial amount of death, suffering, and loss around the world. Still, relatively little is known about the mechanisms of gene expression in these bacteria. Here, we used genome-wide location assays to identify direct target genes for mycobacterial sigma factors. Chromatin immunoprecipitation assays were performed with M. bovis BCG for Myc-tagged proteins expressed using an anhydrotetracycline-inducible promoter, and enriched DNA fragments were hybridized to a microarray representing intergenic regions from the M. tuberculosis H37Rv genome. Several putative target genes were validated by quantitative PCR. The corresponding transcriptional start sites were identified for sigma(F), sigma(C), and sigma(K), and consensus promoter sequences are proposed. Our conclusions were supported by the results of in vitro transcription assays. We also examined the role of each holoenzyme in the expression of sigma factor genes. Our results revealed that many sigma factors are expressed from autoregulated promoters.
Collapse
Affiliation(s)
- Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l'Université, Sherbrooke, Québec, Canada J1K 2R1
| | | | | | | | | | | |
Collapse
|
45
|
Gordhan BG, Smith DA, Kana BD, Bancroft G, Mizrahi V. The carbon starvation-inducible genes Rv2557 and Rv2558 of Mycobacterium tuberculosis are not required for long-term survival under carbon starvation and for virulence in SCID mice. Tuberculosis (Edinb) 2006; 86:430-7. [PMID: 16376615 DOI: 10.1016/j.tube.2005.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/31/2005] [Accepted: 11/10/2005] [Indexed: 11/28/2022]
Abstract
Mycobacterium tuberculosis genes Rv2557 and Rv2558 have no known function. However, proteome, transcriptome and in situ hybridization studies have shown that these genes are significantly upregulated under carbon-starved conditions and in human granulomas, suggesting that they may play a role in persistence. Single and double deletion mutants of M. tuberculosis H37Rv in Rv2557 and/or Rv2558 were generated to explore their individual and/or collective role(s) in growth and survival. The mutants were assessed for growth and survival in vitro under normal and nutrient-deprived conditions and for virulence in the SCID mouse model. Although highly induced by carbon starvation, loss of Rv2557 and/or Rv2558 affected neither the long-term survival of M. tuberculosis under carbon-starved conditions in vitro, nor its virulence in SCID mice.
Collapse
Affiliation(s)
- Bhavna G Gordhan
- MRC/NHLS/WITS Molecular Mycobacteriology Research Unit, DST/NRF, School of Pathology of the University of the Witwatersrand, Johannesburg, South Africa.
| | | | | | | | | |
Collapse
|
46
|
Silberbach M, Burkovski A. Application of global analysis techniques to Corynebacterium glutamicum: New insights into nitrogen regulation. J Biotechnol 2006; 126:101-10. [PMID: 16698104 DOI: 10.1016/j.jbiotec.2006.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Revised: 01/24/2006] [Accepted: 03/29/2006] [Indexed: 11/16/2022]
Abstract
The regulation of nitrogen metabolism in the amino acid producer Corynebacterium glutamicum was subject of research for several decades. While previous studies focused on single enzymes or pathways, the publication of the C. glutamicum genome sequence gave a fresh impetus to research, since a global investigation of metabolism and regulation networks became possible based on these data. This communication summarizes the advances made by different studies, in which global analysis approaches were used to characterize the C. glutamicum nitrogen starvation response. A combination of bioinformatics approaches, transcriptome and proteome analyses as well as chemostat experiments revealed new insights into the nitrogen control network of C. glutamicum. C. glutamicum reacts to a limited nitrogen supply with a rearrangement of the cellular transport capacity, changes in metabolic pathways for nitrogen assimilation and amino acid biosynthesis, an increased energy generation and increased protein stability. With the aid of chemostat experiments, in which different growth rates were obtained by nitrogen limitation, general starvation effects could be distinguished from specific nitrogen limitation-dependent changes. The core adaptations on the level of transcription are controlled by the master regulator of nitrogen control, the TetR-type protein AmtR. This global regulator governs transcription of at least 33 genes via binding to a palindromic consensus motif (AmtR box). Genes with AmtR box-containing promoters were identified by genome-wide screening and validated, besides by other methods, by transcriptome analyses using DNA microarrays.
Collapse
Affiliation(s)
- Maike Silberbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Strasse 47, D-50674 Köln, Germany
| | | |
Collapse
|
47
|
Cappelli G, Volpe E, Grassi M, Liseo B, Colizzi V, Mariani F. Profiling of Mycobacterium tuberculosis gene expression during human macrophage infection: Upregulation of the alternative sigma factor G, a group of transcriptional regulators, and proteins with unknown function. Res Microbiol 2006; 157:445-55. [PMID: 16483748 DOI: 10.1016/j.resmic.2005.10.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2005] [Revised: 08/18/2005] [Accepted: 10/09/2005] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis is one of the most prolific pathogens worldwide, and its virulence resides in its capacity to survive in human macrophages. In the present study, we analyzed the gene expression profile of M. tuberculosis H37Rv in macrophages and synthetic medium at the whole genome level. Out of 3875 spots tested, 970 genes passed the statistical significance filter (t scores +/-2.5). A total of 22% of those assayed were found to be active genes (up- or downregulated), representing 5.5% of the whole MTB genome. Interestingly, 32.5% of the genes induced in our macrophage experiments are still classified as hypothetical proteins; 19.5% take part in the cell wall and processes (half of which are membrane proteins); 16% are involved in regulation and information pathways; and the PE family accounts for 3.6% of total induced genes. It is important to note that in the course of MTB replication in macrophages, we observed the upregulation of alternative sigma factor sigG and 13 MTB transcriptional regulators. The data for a selected group of upregulated genes were confirmed by real-time RT-PCR. The global MTB transcriptome described in this study suggests an intracellular MTB actively sensing its environment; it repairs and synthesizes its cell wall and DNA, so as to either repair oxidative and nitrosative damage and/or to augment its copy number and evade host cell killing. As far as we know, this is the first study describing MTB expression profiles using whole genome macroarrays during primary human macrophage infection.
Collapse
Affiliation(s)
- Giulia Cappelli
- Institute of Neurobiology and Molecular Medicine, National Research Council, Via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | | | | | | | | | | |
Collapse
|
48
|
McLean KJ, Clift D, Lewis DG, Sabri M, Balding PR, Sutcliffe MJ, Leys D, Munro AW. The preponderance of P450s in the Mycobacterium tuberculosis genome. Trends Microbiol 2006; 14:220-8. [PMID: 16581251 DOI: 10.1016/j.tim.2006.03.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2005] [Revised: 02/14/2006] [Accepted: 03/21/2006] [Indexed: 11/26/2022]
Abstract
The genome of Mycobacterium tuberculosis (Mtb) encodes 20 different cytochrome P450 enzymes (P450s). P450s are mono-oxygenases, which are historically considered to facilitate prokaryotic usage of unusual carbon sources. However, their preponderance in Mtb strongly indicates crucial physiological functions, as does the fact that polycyclic azoles (known P450 inhibitors) have potent anti-mycobacterial effects. Recent structural and enzyme characterization data reveal novel features for at least two Mtb P450s (CYP121 and CYP51). Genome analysis, knockout studies and structural comparisons signify important roles in cell biology and pathogenesis for various P450s and redox partner enzymes in Mtb. Elucidation of structure, function and metabolic roles will be essential in targeting the P450s as an 'Achilles heel' in this major human pathogen.
Collapse
Affiliation(s)
- Kirsty J McLean
- Manchester Interdisciplinary Biocentre, School of Chemical Engineering and Analytical Science and School of Life Sciences, University of Manchester, Jackson's Mill, Sackville Street, Manchester, UK, M60 1QD
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Jansen A, Yu J. Differential gene expression of pathogens inside infected hosts. Curr Opin Microbiol 2006; 9:138-42. [PMID: 16459132 DOI: 10.1016/j.mib.2006.01.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Accepted: 01/24/2006] [Indexed: 12/19/2022]
Abstract
DNA microarray is a useful technology for studying differential gene expression in the context of microbe-host interactions. This review concentrates on recent findings of the survival strategies of three intracellular pathogens: Shigella flexneri, Salmonella enterica serovar Typhimurium and Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Angela Jansen
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, United Kingdom
| | | |
Collapse
|
50
|
Houben ENG, Nguyen L, Pieters J. Interaction of pathogenic mycobacteria with the host immune system. Curr Opin Microbiol 2006; 9:76-85. [PMID: 16406837 DOI: 10.1016/j.mib.2005.12.014] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 12/23/2005] [Indexed: 01/15/2023]
Abstract
Pathogenic mycobacteria, in particular Mycobacterium tuberculosis, the causative agent of tuberculosis, have the remarkable capacity to circumvent destruction within one of the most hostile cell types of a vertebrate host: the macrophage. The ability of pathogenic mycobacteria to survive inside macrophages has been known for more than 30 years; yet, only recently have advances in molecular genetics, biochemistry, immunology, as well as global analysis of gene expression, started to unravel the strategies utilized by these pathogens for intracellular persistence. In addition, the definition of key molecules that are important for intracellular survival opens the possibility to develop new drugs to combat mycobacterial diseases.
Collapse
Affiliation(s)
- Edith N G Houben
- Biozentrum, University of Basel, Klingelbergstrasse 70, 4056 Basel, Switzerland
| | | | | |
Collapse
|