1
|
Olivi L, Berger M, Creyghton RNP, De Franceschi N, Dekker C, Mulder BM, Claassens NJ, Ten Wolde PR, van der Oost J. Towards a synthetic cell cycle. Nat Commun 2021; 12:4531. [PMID: 34312383 PMCID: PMC8313558 DOI: 10.1038/s41467-021-24772-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 06/29/2021] [Indexed: 02/08/2023] Open
Abstract
Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | | | - Nicola De Franceschi
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | | | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | | | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
2
|
Angert ER. Challenges Faced by Highly Polyploid Bacteria with Limits on DNA Inheritance. Genome Biol Evol 2021; 13:6156627. [PMID: 33677487 PMCID: PMC8245194 DOI: 10.1093/gbe/evab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
Most studies of bacterial reproduction have centered on organisms that undergo binary fission. In these models, complete chromosome copies are segregated with great fidelity into two equivalent offspring cells. All genetic material is passed on to offspring, including new mutations and horizontally acquired sequences. However, some bacterial lineages employ diverse reproductive patterns that require management and segregation of more than two chromosome copies. Epulopiscium spp., and their close relatives within the Firmicutes phylum, are intestinal symbionts of surgeonfish (family Acanthuridae). Each of these giant (up to 0.6 mm long), cigar-shaped bacteria contains tens of thousands of chromosome copies. Epulopiscium spp. do not use binary fission but instead produce multiple intracellular offspring. Only ∼1% of the genetic material in an Epulopiscium sp. type B mother cell is directly inherited by its offspring cells. And yet, even in late stages of offspring development, mother-cell chromosome copies continue to replicate. Consequently, chromosomes take on a somatic or germline role. Epulopiscium sp. type B is a strict anaerobe and while it is an obligate symbiont, its host has a facultative association with this intestinal microorganism. Therefore, Epulopiscium sp. type B populations face several bottlenecks that could endanger their diversity and resilience. Multilocus sequence analyses revealed that recombination is important to diversification in populations of Epulopiscium sp. type B. By employing mechanisms common to others in the Firmicutes, the coordinated timing of mother-cell lysis, offspring development and congression may facilitate the substantial recombination observed in Epulopiscium sp. type B populations.
Collapse
|
3
|
Lorenzi JN, Lespinet O, Leblond P, Thibessard A. Subtelomeres are fast-evolving regions of the Streptomyces linear chromosome. Microb Genom 2019; 7:000525. [PMID: 33749576 PMCID: PMC8627663 DOI: 10.1099/mgen.0.000525] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/11/2021] [Indexed: 01/14/2023] Open
Abstract
Streptomyces possess a large linear chromosome (6-12 Mb) consisting of a conserved central region flanked by variable arms covering several megabases. In order to study the evolution of the chromosome across evolutionary times, a representative panel of Streptomyces strains and species (125) whose chromosomes are completely sequenced and assembled was selected. The pan-genome of the genus was modelled and shown to be open with a core-genome reaching 1018 genes. The evolution of Streptomyces chromosome was analysed by carrying out pairwise comparisons, and by monitoring indexes measuring the conservation of genes (presence/absence) and their synteny along the chromosome. Using the phylogenetic depth offered by the chosen panel, it was possible to infer that within the central region of the chromosome, the core-genes form a highly conserved organization, which can reveal the existence of an ancestral chromosomal skeleton. Conversely, the chromosomal arms, enriched in variable genes evolved faster than the central region under the combined effect of rearrangements and addition of new information from horizontal gene transfer. The genes hosted in these regions may be localized there because of the adaptive advantage that their rapid evolution may confer. We speculate that (i) within a bacterial population, the variability of these genes may contribute to the establishment of social characters by the production of 'public goods' (ii) at the evolutionary scale, this variability contributes to the diversification of the genetic pool of the bacteria.
Collapse
Affiliation(s)
- Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, F-54000 Nancy, France
| | | |
Collapse
|
4
|
|
5
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
6
|
Rolando M, Gomez-Valero L, Buchrieser C. Bacterial remodelling of the host epigenome: functional role and evolution of effectors methylating host histones. Cell Microbiol 2016; 17:1098-107. [PMID: 26031999 DOI: 10.1111/cmi.12463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 05/15/2015] [Accepted: 05/25/2015] [Indexed: 12/25/2022]
Abstract
The modulation of the chromatin organization of eukaryotic cells plays an important role in regulating key cellular processes including host defence mechanisms against pathogens. Thus, to successfully survive in a host cell, a sophisticated bacterial strategy is the subversion of nuclear processes of the eukaryotic cell. Indeed, the number of bacterial proteins that target host chromatin to remodel the host epigenetic machinery is expanding. Some of the identified bacterial effectors that target the chromatin machinery are 'eukaryotic-like' proteins as they mimic eukaryotic histone writers in carrying the same enzymatic activities. The best-studied examples are the SET domain proteins that methylate histones to change the chromatin landscape. In this review, we will discuss SET domain proteins identified in the Legionella, Chlamydia and Bacillus genomes that encode enzymatic activities targeting host histones. Moreover, we discuss their possible origin as having evolved from prokaryotic ancestors or having been acquired from their eukaryotic hosts during their co-evolution. The characterization of such bacterial effectors as modifiers of the host chromatin landscape is an exciting field of research as it elucidates new bacterial strategies to not only manipulate host functions through histone modifications but it may also identify new modifications of the mammalian host cells not known before.
Collapse
Affiliation(s)
- Monica Rolando
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris, France.,CNRS UMR 3525, Paris, France
| |
Collapse
|
7
|
Chen Y, Yu W, Wang J, Luo K. Polymer segregation under confinement: Influences of macromolecular crowding and the interaction between the polymer and crowders. J Chem Phys 2015; 143:134904. [DOI: 10.1063/1.4932370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Affiliation(s)
- Yuhao Chen
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Wancheng Yu
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Jiajun Wang
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| | - Kaifu Luo
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, People’s Republic of China
| |
Collapse
|
8
|
Chen AH, Afonso B, Silver PA, Savage DF. Spatial and temporal organization of chromosome duplication and segregation in the cyanobacterium Synechococcus elongatus PCC 7942. PLoS One 2012; 7:e47837. [PMID: 23112856 PMCID: PMC3480399 DOI: 10.1371/journal.pone.0047837] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 09/21/2012] [Indexed: 01/02/2023] Open
Abstract
The spatial and temporal control of chromosome duplication and segregation is crucial for proper cell division. While this process is well studied in eukaryotic and some prokaryotic organisms, relatively little is known about it in prokaryotic polyploids such as Synechococcus elongatus PCC 7942, which is known to possess one to eight copies of its single chromosome. Using a fluorescent repressor-operator system, S. elongatus chromosomes and chromosome replication forks were tagged and visualized. We found that chromosomal duplication is asynchronous and that the total number of chromosomes is correlated with cell length. Thus, replication is independent of cell cycle and coupled to cell growth. Replication events occur in a spatially random fashion. However, once assembled, replisomes move in a constrained manner. On the other hand, we found that segregation displays a striking spatial organization in some cells. Chromosomes transiently align along the major axis of the cell and timing of alignment was correlated to cell division. This mechanism likely contributes to the non-random segregation of chromosome copies to daughter cells.
Collapse
Affiliation(s)
- Anna H. Chen
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bruno Afonso
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pamela A. Silver
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
| | - David F. Savage
- Department of Molecular and Cell Biology and Department of Chemistry, University of California, Berkeley, California, United States of America
| |
Collapse
|
9
|
Wang W, Li GW, Chen C, Xie XS, Zhuang X. Chromosome organization by a nucleoid-associated protein in live bacteria. Science 2011; 333:1445-9. [PMID: 21903814 DOI: 10.1126/science.1204697] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacterial chromosomes are confined in submicrometer-sized nucleoids. Chromosome organization is facilitated by nucleoid-associated proteins (NAPs), but the mechanisms of action remain elusive. In this work, we used super-resolution fluorescence microscopy, in combination with a chromosome-conformation capture assay, to study the distributions of major NAPs in live Escherichia coli cells. Four NAPs--HU, Fis, IHF, and StpA--were largely scattered throughout the nucleoid. In contrast, H-NS, a global transcriptional silencer, formed two compact clusters per chromosome, driven by oligomerization of DNA-bound H-NS through interactions mediated by the amino-terminal domain of the protein. H-NS sequestered the regulated operons into these clusters and juxtaposed numerous DNA segments broadly distributed throughout the chromosome. Deleting H-NS led to substantial chromosome reorganization. These observations demonstrate that H-NS plays a key role in global chromosome organization in bacteria.
Collapse
Affiliation(s)
- Wenqin Wang
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | | | | | | | | |
Collapse
|
10
|
Spitzer J. From water and ions to crowded biomacromolecules: in vivo structuring of a prokaryotic cell. Microbiol Mol Biol Rev 2011; 75:491-506, second page of table of contents. [PMID: 21885682 PMCID: PMC3165543 DOI: 10.1128/mmbr.00010-11] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interactions and processes which structure prokaryotic cytoplasm (water, ions, metabolites, and biomacromolecules) and ensure the fidelity of the cell cycle are reviewed from a physicochemical perspective. Recent spectroscopic and biological evidence shows that water has no active structuring role in the cytoplasm, an unnecessary notion still entertained in the literature; water acts only as a normal solvent and biochemical reactant. Subcellular structuring arises from localizations and interactions of biomacromolecules and from the growth and modifications of their surfaces by catalytic reactions. Biomacromolecular crowding is a fundamental physicochemical characteristic of cells in vivo. Though some biochemical and physiological effects of crowding (excluded volume effect) have been documented, crowding assays with polyglycols, dextrans, etc., do not properly mimic the compositional variety of biomacromolecules in vivo. In vitro crowding assays are now being designed with proteins, which better reflect biomacromolecular environments in vivo, allowing for hydrophobic bonding and screened electrostatic interactions. I elaborate further the concept of complex vectorial biochemistry, where crowded biomacromolecules structure the cytosol into electrolyte pathways and nanopools that electrochemically "wire" the cell. Noncovalent attractions between biomacromolecules transiently supercrowd biomacromolecules into vectorial, semiconducting multiplexes with a high (35 to 95%)-volume fraction of biomacromolecules; consequently, reservoirs of less crowded cytosol appear in order to maintain the experimental average crowding of ∼25% volume fraction. This nonuniform crowding model allows for fast diffusion of biomacromolecules in the uncrowded cytosolic reservoirs, while the supercrowded vectorial multiplexes conserve the remarkable repeatability of the cell cycle by preventing confusing cross talk of concurrent biochemical reactions.
Collapse
Affiliation(s)
- Jan Spitzer
- Mallard Creek Polymers, Inc., 14700 Mallard Creek Road, Charlotte, NC 28262, USA.
| |
Collapse
|
11
|
Güell M, Yus E, Lluch-Senar M, Serrano L. Bacterial transcriptomics: what is beyond the RNA horiz-ome? Nat Rev Microbiol 2011; 9:658-69. [PMID: 21836626 DOI: 10.1038/nrmicro2620] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Over the past 3 years, bacterial transcriptomics has undergone a massive revolution. Increased sequencing capacity and novel tools have made it possible to explore the bacterial transcriptome to an unprecedented depth, which has revealed that the transcriptome is more complex and dynamic than expected. Alternative transcripts within operons challenge the classic operon definition, and many small RNAs involved in the regulation of transcription, translation and pathogenesis have been discovered. Furthermore, mRNAs may localize to specific areas in the cell, and the spatial organization and dynamics of the chromosome have been shown to be important for transcription. Epigenetic modifications of DNA also affect transcription, and RNA processing affects translation. Therefore, transcription in bacteria resembles that in eukaryotes in terms of complexity more closely than was previously thought. Here we will discuss the contribution of 'omics' approaches to these discoveries as well as the possible impact that they are expected to have in the future.
Collapse
Affiliation(s)
- Marc Güell
- Centre for Genomic Regulation, Universitat Pompeu Fabra, Av. Dr. Aiguader 88, 08003 Barcelona, Spain
| | | | | | | |
Collapse
|
12
|
Galán B, Dinjaski N, Maestro B, de Eugenio LI, Escapa IF, Sanz JM, García JL, Prieto MA. Nucleoid-associated PhaF phasin drives intracellular location and segregation of polyhydroxyalkanoate granules in Pseudomonas putida KT2442. Mol Microbiol 2010; 79:402-18. [PMID: 21219460 DOI: 10.1111/j.1365-2958.2010.07450.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The PhaF is a nucleoid-associated like protein of Pseudomonas putida KT2442 involved in the polyhydroxyalkanoate (PHA) metabolism. Its primary structure shows two modular domains; the N-terminal PHA granule-binding domain (phasin domain) and the C-terminal half containing AAKP-like tandem repeats characteristic of the histone H1 family. Although the PhaF binding to PHA granules and its role as transcriptional regulator have been previously demonstrated, the cell physiology meaning of these properties remains unknown. This work demonstrates that PhaF plays a crucial role in granule localization within the cell. TEM and flow cytometry studies of cells producing granules at early growth stage demonstrated that PhaF directs the PHA granules to the centre of the cells, forming a characteristic needle array. Our studies demonstrated the existence of two markedly different cell populations in the strain lacking PhaF protein, i.e. cells with and without PHA. Complementation studies definitively demonstrated a key role of PhaF in granule segregation during the cell division ensuring the equal distribution of granules between daughter cells. In vitro studies showed that PhaF binds DNA through its C-terminal domain in a non-specific manner. All these findings suggested a main role of PhaF in PHA apparatus through interactions with the segregating chromosome.
Collapse
Affiliation(s)
- B Galán
- Department of Environmental Biology, Centro de Investigaciones Biológicas, CSIC, C/Ramiro de Maeztu, 9, 28040 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 2010; 21:100-13. [PMID: 20138500 DOI: 10.1016/j.copbio.2010.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 01/14/2010] [Accepted: 01/14/2010] [Indexed: 10/19/2022]
Abstract
Heterogeneity of industrial production cultures is accepted to a certain degree; however, the underlying mechanisms are seldom perceived or included in the development of new bioprocess control strategies. Population heterogeneity and its basics, perceptible in the diverse proficiency of cells, begins with asymmetric birth and is found to recess during the life cycle. Since inefficient subpopulations have significant impact on the productivity of industrial cultures, cellular heterogeneity needs to be detected and quantified by using high speed detection tools like flow cytometry. Possible origins of population heterogeneity, sophisticated fluorescent techniques for detection of individual cell states, and cutting-edge Omics-technologies for extended information beyond the resolution of fluorescent labelling are highlighted.
Collapse
|
14
|
Estévez-Torres A, Crozatier C, Diguet A, Hara T, Saito H, Yoshikawa K, Baigl D. Sequence-independent and reversible photocontrol of transcription/expression systems using a photosensitive nucleic acid binder. Proc Natl Acad Sci U S A 2009; 106:12219-23. [PMID: 19617550 PMCID: PMC2718349 DOI: 10.1073/pnas.0904382106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Indexed: 11/18/2022] Open
Abstract
To understand non-trivial biological functions, it is crucial to develop minimal synthetic models that capture their basic features. Here, we demonstrate a sequence-independent, reversible control of transcription and gene expression using a photosensitive nucleic acid binder (pNAB). By introducing a pNAB whose affinity for nucleic acids is tuned by light, in vitro RNA production, EGFP translation, and GFP expression (a set of reactions including both transcription and translation) were successfully inhibited in the dark and recovered after a short illumination at 365 nm. Our results indicate that the accessibility of the protein machinery to one or several nucleic acid binding sites can be efficiently regulated by changing the conformational/condensation state of the nucleic acid (DNA conformation or mRNA aggregation), thus regulating gene activity in an efficient, reversible, and sequence-independent manner. The possibility offered by our approach to use light to trigger various gene expression systems in a system-independent way opens interesting perspectives to study gene expression dynamics as well as to develop photocontrolled biotechnological procedures.
Collapse
Affiliation(s)
- André Estévez-Torres
- Departments of Physics and
- Spatio-Temporal Order Project, ICORP (International Cooperative Research Project), JST (Japan Science and Technology Agency), Kyoto 606-8502, Japan; and
| | | | - Antoine Diguet
- Department of Chemistry, Ecole Normale Supérieure, 75005 Paris, France
| | - Tomoaki Hara
- Gene Mechanisms, Kyoto University, Kyoto 606-8502, Japan
| | - Hirohide Saito
- Gene Mechanisms, Kyoto University, Kyoto 606-8502, Japan
| | - Kenichi Yoshikawa
- Departments of Physics and
- Spatio-Temporal Order Project, ICORP (International Cooperative Research Project), JST (Japan Science and Technology Agency), Kyoto 606-8502, Japan; and
| | - Damien Baigl
- Spatio-Temporal Order Project, ICORP (International Cooperative Research Project), JST (Japan Science and Technology Agency), Kyoto 606-8502, Japan; and
- Department of Chemistry, Ecole Normale Supérieure, 75005 Paris, France
| |
Collapse
|
15
|
Balleza E, López-Bojorquez LN, Martínez-Antonio A, Resendis-Antonio O, Lozada-Chávez I, Balderas-Martínez YI, Encarnación S, Collado-Vides J. Regulation by transcription factors in bacteria: beyond description. FEMS Microbiol Rev 2009; 33:133-51. [PMID: 19076632 PMCID: PMC2704942 DOI: 10.1111/j.1574-6976.2008.00145.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription is an essential step in gene expression and its understanding has been one of the major interests in molecular and cellular biology. By precisely tuning gene expression, transcriptional regulation determines the molecular machinery for developmental plasticity, homeostasis and adaptation. In this review, we transmit the main ideas or concepts behind regulation by transcription factors and give just enough examples to sustain these main ideas, thus avoiding a classical ennumeration of facts. We review recent concepts and developments: cis elements and trans regulatory factors, chromosome organization and structure, transcriptional regulatory networks (TRNs) and transcriptomics. We also summarize new important discoveries that will probably affect the direction of research in gene regulation: epigenetics and stochasticity in transcriptional regulation, synthetic circuits and plasticity and evolution of TRNs. Many of the new discoveries in gene regulation are not extensively tested with wetlab approaches. Consequently, we review this broad area in Inference of TRNs and Dynamical Models of TRNs. Finally, we have stepped backwards to trace the origins of these modern concepts, synthesizing their history in a timeline schema.
Collapse
Affiliation(s)
- Enrique Balleza
- Programa de Genómica Computacional, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
An ongoing mission for biologists is to probe the molecular nature of cellular processes within live cells. Although much of what we have discovered during the molecular biology revolution of the last 50 years has been achieved by exploiting bacteria as 'bags of DNA and proteins', relatively little has been learnt about how they organize their life processes within cells. The mistaken perception of bacteria cells as unstructured systems arose partly because of the difficulty of performing studies by light microscopy due to their small size (many of them having cell lengths a few times bigger than the wavelength of visible light). With the opportunities provided by a range of new fluorophores and by new microscopic techniques, a revolution in bacterial cell biology is revealing unimagined organization in the bacterial cell. We review the development and exploitation of new visualization methods and reagents and show how they are contributing to the understanding of bacterial structure, chromosome organization, DNA metabolism and their relationship to the cell cycle.
Collapse
|
17
|
Espeli O, Mercier R, Boccard F. DNA dynamics vary according to macrodomain topography in theE. colichromosome. Mol Microbiol 2008; 68:1418-27. [DOI: 10.1111/j.1365-2958.2008.06239.x] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
The membrane-bound transcriptional regulator CadC is activated by proteolytic cleavage in response to acid stress. J Bacteriol 2008; 190:5120-6. [PMID: 18487329 DOI: 10.1128/jb.00012-08] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteolytic processes often participate in signal transduction across bacterial membranes. In Salmonella enterica serovar Typhimurium, the transcriptional regulator CadC activates genes of lysine decarboxylase system in response to external acidification and exogenous lysine. However, the signaling mechanism of CadC activation remains unexplored. We report here that CadC is located on the inner membrane under normal growth conditions but rapidly cleaved under acid stress conditions, leading to the induction of target gene transcription. As full-length CadC is degraded, the N-terminal fragment containing the DNA-binding domain accumulates in the inner membrane. Moreover, we show that C-terminal truncations of CadC abolish its degradation, resulting in complete loss of activator function. Together, these observations suggest that site-specific proteolysis at the periplasmic domain of CadC generates a biologically active form of N-terminal DNA-binding domain to promote target gene activation.
Collapse
|
19
|
Wunderlich Z, Mirny LA. Spatial effects on the speed and reliability of protein-DNA search. Nucleic Acids Res 2008; 36:3570-8. [PMID: 18453629 PMCID: PMC2441786 DOI: 10.1093/nar/gkn173] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Strong experimental and theoretical evidence shows that transcription factors (TFs) and other specific DNA-binding proteins find their sites using a two-mode search: alternating between three-dimensional (3D) diffusion through the cell and one-dimensional (1D) sliding along the DNA. We show that, due to the 1D component of the search process, the search time of a TF can depend on the initial position of the TF. We formalize this effect by discriminating between two types of searches: global and local. Using analytical calculations and simulations, we estimate how close a TF and binding site need to be to make a local search likely. We then use our model to interpret the wide range of experimental measurements of this parameter. We also show that local and global searches differ significantly in average search time and the variability of search time. These results lead to a number of biological implications, including suggestions of how prokaryotes achieve rapid gene regulation and the relationship between the search mechanism and noise in gene expression. Lastly, we propose a number of experiments to verify the existence and quantify the extent of spatial effects on the TF search process in prokaryotes.
Collapse
Affiliation(s)
- Zeba Wunderlich
- Biophysics Program, Harvard University, Cambridge, MA 02138, USA.
| | | |
Collapse
|
20
|
Reyes-Lamothe R, Wang X, Sherratt D. Escherichia coli and its chromosome. Trends Microbiol 2008; 16:238-45. [DOI: 10.1016/j.tim.2008.02.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 02/23/2008] [Accepted: 02/29/2008] [Indexed: 01/22/2023]
|
21
|
Abstract
All organisms possess a diverse set of genetic programs that are used to alter cellular physiology in response to environmental cues. The gram-negative bacterium, Escherichia coli, mounts what is known as the "SOS response" following DNA damage, replication fork arrest, and a myriad of other environmental stresses. For over 50 years, E. coli has served as the paradigm for our understanding of the transcriptional, and physiological changes that occur following DNA damage (400). In this chapter, we summarize the current view of the SOS response and discuss how this genetic circuit is regulated. In addition to examining the E. coli SOS response, we also include a discussion of the SOS regulatory networks in other bacteria to provide a broader perspective on how prokaryotes respond to DNA damage.
Collapse
|
22
|
Abstract
In recent years, the subcellular organization of prokaryotic cells has become a focal point of interest in microbiology. Bacteria have evolved several different mechanisms to target protein complexes, membrane vesicles and DNA to specific positions within the cell. This versatility allows bacteria to establish the complex temporal and spatial regulatory networks that couple morphological and physiological differentiation with cell-cycle progression. In addition to stationary localization factors, dynamic cytoskeletal structures also have a fundamental role in many of these processes. In this Review, we summarize the current knowledge on localization mechanisms in bacteria, with an emphasis on the role of polymeric protein assemblies in the directed movement and positioning of macromolecular complexes.
Collapse
|
23
|
|
24
|
Abstract
Analyses of DNA pattern provide an excellent tool to determine activity states of bacteria. Bacterial cell cycle behaviour is generally different from the eukaryotic one and is pre-determined by the bacteria's diversity within the phylogenetic tree, and their metabolic traits. As a result, every species creates its specific proliferation pattern that differs from every other one. Up to now, just few bacterial species have been investigated and little information is available concerning DNA cycling even in already known species. This prevents understanding of the complexity and diversity of ongoing bacterial interactions in many ecosystems or in biotechnology. Flow cytometry is the only possible technique to shed light on the dynamics of bacterial communities and DNA patterns will help to unlock the hidden principles of their life. This review provides basic knowledge about the molecular background of bacterial cell cycling, discusses modes of cell cycle phases and presents techniques to both obtain DNA patterns and to combine the contained information with physiological cell states.
Collapse
Affiliation(s)
- S Müller
- Department of Environmental Microbiology, UFZ, Helmholtz Centre for Environmental Research, Leipzig-Halle, Leipzig, Germany.
| |
Collapse
|
25
|
Hasselbring BM, Krause DC. Proteins P24 and P41 function in the regulation of terminal-organelle development and gliding motility in Mycoplasma pneumoniae. J Bacteriol 2007; 189:7442-9. [PMID: 17693502 PMCID: PMC2168445 DOI: 10.1128/jb.00867-07] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mycoplasma pneumoniae is a major cause of bronchitis and atypical pneumonia in humans. This cell wall-less bacterium has a complex terminal organelle that functions in cytadherence and gliding motility. The gliding mechanism is unknown but is coordinated with terminal-organelle development during cell division. Disruption of M. pneumoniae open reading frame MPN311 results in loss of protein P41 and downstream gene product P24. P41 localizes to the base of the terminal organelle and is required to anchor the terminal organelle to the cell body, but during cell division, MPN311 insertion mutants also fail to properly regulate nascent terminal-organelle development spatially or gliding activity temporally. We measured gliding velocity and frequency and used fluorescent protein fusions and time-lapse imaging to assess the roles of P41 and P24 individually in terminal-organelle development and gliding function. P41 was necessary for normal gliding velocity and proper spatial positioning of new terminal organelles, while P24 was required for gliding frequency and new terminal-organelle formation at wild-type rates. However, P41 was essential for P24 function, and in the absence of P41, P24 exhibited a dynamic localization pattern. Finally, protein P28 requires P41 for stability, but analysis of a P28(-) mutant established that the MPN311 mutant phenotype was not a function of loss of P28.
Collapse
|
26
|
Abstract
The study of chromosome segregation in bacteria has gained strong insights from the use of cytology techniques. A global view of chromosome choreography during the cell cycle is emerging, highlighting as a next challenge the description of the molecular mechanisms and factors involved. Here, we review one of such factor, the FtsK DNA translocase. FtsK couples segregation of the chromosome terminus, the ter region, with cell division. It is a powerful and fast translocase that reads chromosome polarity to find the end, thereby sorting sister ter regions on either side of the division septum, and activating the last steps of segregation. Recent data have revealed the structure of the FtsK motor, how translocation is oriented by specific DNA motifs, termed KOPS, and suggests novel mechanisms for translocation and sensing chromosome polarity.
Collapse
Affiliation(s)
- Sarah Bigot
- Laboratoire de Microbiologie et de Génétique Moléculaire du CNRS, Université Paul Sabatier--Toulouse III, 118 route de Narbonne, 31062 Toulouse Cedex, France.
| | | | | | | | | |
Collapse
|
27
|
Hasselbring BM, Krause DC. Cytoskeletal protein P41 is required to anchor the terminal organelle of the wall-less prokaryote Mycoplasma pneumoniae. Mol Microbiol 2006; 63:44-53. [PMID: 17163973 DOI: 10.1111/j.1365-2958.2006.05507.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The cell wall-less prokaryote Mycoplasma pneumoniae approaches the minimal requirements for a cell yet produces a complex terminal organelle that mediates cytadherence and gliding motility. Here we explored the molecular nature of the M. pneumoniae gliding machinery, utilizing fluorescent protein fusions and digital microcinematography to characterize gliding-altered mutants having transposon insertions in MPN311, encoding the cytoskeletal protein P41. Disruption of MPN311 resulted in loss of P41 and P24, the downstream gene product. Gliding ceases in wild-type M. pneumoniae during terminal organelle development, which occurs at the cell poles adjacent to an existing structure. In contrast, terminal organelle development in MPN311 mutants did not necessarily coincide with gliding cessation, and new terminal organelles frequently formed at lateral sites. Furthermore, new terminal organelles exhibited gliding capacity quickly, unlike wild-type M. pneumoniae. P41 and P24 localize at the base of the terminal organelle; in their absence this structure detached from the cell body of motile and dividing cells but retained gliding capacity and thus constitutes the gliding apparatus. Recombinant wild-type P41 restored cell integrity, establishing a role for this protein in anchoring the terminal organelle to the cell body.
Collapse
|
28
|
Berkmen MB, Grossman AD. Subcellular positioning of the origin region of the Bacillus subtilis chromosome is independent of sequences within oriC, the site of replication initiation, and the replication initiator DnaA. Mol Microbiol 2006; 63:150-65. [PMID: 17140409 DOI: 10.1111/j.1365-2958.2006.05505.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regions of bacterial chromosomes occupy characteristic locations within the cell. In Bacillus subtilis, the origin of replication, oriC, is located at 0 degrees /360 degrees on the circular chromosome. After duplication, sister 0 degrees regions rapidly move to and then reside near the cell quarters. It has been hypothesized that origin function or oriC sequences contribute to positioning and movement of the 0 degrees region. We found that the position of a given chromosomal region does not depend on initiation of replication from the 0 degrees region. In an oriC mutant strain that replicates from a heterologous origin (oriN) at 257 degrees , the position of both the 0 degrees and 257 degrees regions was similar to that in wild-type cells. Thus, positioning of chromosomal regions appears to be independent of which region is replicated first. Furthermore, we found that neither oriC sequences nor the replication initiator DnaA is required or sufficient for positioning a region near the cell quarters. A sequence within oriC previously proposed to play a critical role in chromosome positioning and partitioning was found to make little, if any, contribution. We propose that uncharacterized sites outside of oriC are involved in moving and/or maintaining the 0 degrees region near the cell quarters.
Collapse
Affiliation(s)
- Melanie B Berkmen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
29
|
Abstract
DNA replication occurs at discrete sites in the cell. To gain insight into the spatial and temporal organization of the Bacillus subtilis replication cycle, we simultaneously visualized replication origins and the replication machinery (replisomes) inside live cells. We found that the origin of replication is positioned near midcell prior to replication. After initiation, the replisome colocalizes with the origin, confirming that replication initiates near midcell. The replisome remains near midcell after duplicated origins separate. Artificially mispositioning the origin region leads to mislocalization of the replisome indicating that the location of the origin at the time of initiation establishes the position of the replisome. Time-lapse microscopy revealed that a single replisome focus reversibly splits into two closely spaced foci every few seconds in many cells, including cells that recently initiated replication. Thus, sister replication forks are likely not intimately associated with each other throughout the replication cycle. Fork dynamics persisted when replication elongation was halted, and is thus independent of the relative movement of DNA through the replisome. Our results provide new insights into how the replisome is positioned in the cell and refine our current understanding of the spatial and temporal events of the B. subtilis replication cycle.
Collapse
Affiliation(s)
- Melanie B Berkmen
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
30
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
31
|
Wang X, Liu X, Possoz C, Sherratt DJ. The two Escherichia coli chromosome arms locate to separate cell halves. Genes Dev 2006; 20:1727-31. [PMID: 16818605 PMCID: PMC1522069 DOI: 10.1101/gad.388406] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
DNA replication divides the circular Escherichia coli chromosome into equal arms (replichores). Visualization of pairwise combinations of multiple genetic loci reveals that the two replichores occupy separate nucleoid halves, with the replication origin between; positions of loci on each replichore recapitulate the genetic map. Sequential replication-segregation regenerates the <left-right> structure by sequentially layering newly replicated replichore DNA to specific inner and outer edges of the developing sister nucleoids. Replication fork-dependent locus positions are imprinted, so that in most generations the <left-right> chromosome orientation in a mother cell is recreated as a <left-right-left-right> arrangement of sister chromosomes in daughter cells.
Collapse
Affiliation(s)
- Xindan Wang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | | | | | | |
Collapse
|
32
|
Jun S, Mulder B. Entropy-driven spatial organization of highly confined polymers: lessons for the bacterial chromosome. Proc Natl Acad Sci U S A 2006; 103:12388-93. [PMID: 16885211 PMCID: PMC1525299 DOI: 10.1073/pnas.0605305103] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite recent progress in visualization experiments, the mechanism underlying chromosome segregation in bacteria still remains elusive. Here we address a basic physical issue associated with bacterial chromosome segregation, namely the spatial organization of highly confined, self-avoiding polymers (of nontrivial topology) in a rod-shaped cell-like geometry. Through computer simulations, we present evidence that, under strong confinement conditions, topologically distinct domains of a polymer complex effectively repel each other to maximize their conformational entropy, suggesting that duplicated circular chromosomes could partition spontaneously. This mechanism not only is able to account for the spatial separation per se but also captures the major features of the spatiotemporal organization of the duplicating chromosomes observed in Escherichia coli and Caulobacter crescentus.
Collapse
Affiliation(s)
- Suckjoon Jun
- Stichting voor Fundamenteel Onderzoek der Materie (FOM) Institute for Atomic and Molecular Physics (AMOLF), Kruislaan 407, 1098 SJ, Amsterdam, The Netherlands.
| | | |
Collapse
|
33
|
Smith RM, Williams SB. Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus. Proc Natl Acad Sci U S A 2006; 103:8564-9. [PMID: 16707582 PMCID: PMC1482530 DOI: 10.1073/pnas.0508696103] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In the cyanobacterium Synechococcus elongatus (PCC 7942) the kai genes A, B, and C and the sasA gene encode the functional protein core of the timing mechanism essential for circadian clock regulation of global gene expression. The Kai proteins comprise the central timing mechanism, and the sensor kinase SasA is a primary transducer of temporal information. We demonstrate that the circadian clock also regulates a chromosome compaction rhythm. This chromosome compaction rhythm is both circadian clock-controlled and kai-dependent. Although sasA is required for global gene expression rhythmicity, it is not required for these chromosome compaction rhythms. We also demonstrate direct control by the Kai proteins on the rate at which the SasA protein autophosphorylates. Thus, to generate and maintain circadian rhythms in gene expression, the Kai proteins keep relative time, communicate temporal information to SasA, and may control access to promoter elements by imparting rhythmic chromosome compaction.
Collapse
Affiliation(s)
- Rachelle M. Smith
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
| | - Stanly B. Williams
- Department of Biology, Life Science Building, University of Utah, Salt Lake City, UT 84112
- *To whom correspondence should be addressed at:
Department of Biology, University of Utah, 257 South 1400 East, Salt Lake City, UT 84112-0840. E-mail:
| |
Collapse
|
34
|
Bon M, Marenduzzo D, Cook PR. Modeling a self-avoiding chromatin loop: relation to the packing problem, action-at-a-distance, and nuclear context. Structure 2006; 14:197-204. [PMID: 16472739 DOI: 10.1016/j.str.2005.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2005] [Revised: 09/19/2005] [Accepted: 10/04/2005] [Indexed: 11/18/2022]
Abstract
There is now convincing evidence that genomes are organized into loops, and that looping brings distant genes together so that they can bind to local concentrations of polymerases in "factories" or "hubs." As there remains no systematic analysis of how looping affects the probability that a gene can access binding sites in such factories/hubs, we used an algorithm that we devised and Monte Carlo methods to model a DNA or chromatin loop as a semiflexible (self-avoiding) tube attached to a sphere; we examine how loop thickness, rigidity, and contour length affect where particular segments of the loop lie relative to binding sites on the sphere. Results are compared with those obtained with the traditional model of an (infinitely thin) freely jointed chain. They provide insights into the packing problem (how long genomes are packed into small nuclei), and action-at-a-distance (how firing of one origin or gene can prevent firing of an adjacent one).
Collapse
Affiliation(s)
- Michaël Bon
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, United Kingdom
| | | | | |
Collapse
|
35
|
McNulty C, Thompson J, Barrett B, Lord L, Andersen C, Roberts IS. The cell surface expression of group 2 capsular polysaccharides in Escherichia coli: the role of KpsD, RhsA and a multi-protein complex at the pole of the cell. Mol Microbiol 2006; 59:907-22. [PMID: 16420360 DOI: 10.1111/j.1365-2958.2005.05010.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The export of large negatively charged capsular polysaccharides across the outer membrane represents a significant challenge to Gram negative bacteria. In the case of Escherichia coli group 2 capsular polysaccharides, the mechanism of export across the outer membrane was unknown, with no identified candidate outer membrane proteins. In this paper we demonstrate that the KpsD protein, previously believed to be a periplasmic protein, is an outer membrane protein involved in the export of group 2 capsular polysaccharides across the outer membrane. We demonstrate that KpsD and KpsE are located at the poles of the cell and that polysaccharide biosynthesis and export occurs at these polar sites. By in vivo chemical cross-linking and MALDI-TOF-MS analysis we demonstrate the presence of a multi-protein biosynthetic/export complex in which cytoplasmic proteins involved in polysaccharide biosynthesis could be cross-linked to proteins involved in export across the inner and outer membranes. In addition, we show that the RhsA protein, of previously unknown function, could be cross-linked to the complex and that a rhsA mutation reduces K5 biosynthesis suggesting a role for RhsA in coupling biosynthesis and export.
Collapse
Affiliation(s)
- Clodagh McNulty
- Faculty of Life Sciences, 1.800 Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
36
|
Hendrickson H, Lawrence JG. Selection for Chromosome Architecture in Bacteria. J Mol Evol 2006; 62:615-29. [PMID: 16612541 DOI: 10.1007/s00239-005-0192-2] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 12/31/2005] [Indexed: 02/04/2023]
Abstract
Bacterial chromosomes are immense polymers whose faithful replication and segregation are crucial to cell survival. The ability of proteins such as FtsK to move unidirectionally toward the replication terminus, and direct DNA translocation into the appropriate daughter cell during cell division, requires that bacterial genomes maintain an architecture for the orderly replication and segregation of chromosomes. We suggest that proteins that locate the replication terminus exploit strand-biased sequences that are overrepresented on one DNA strand, and that selection increases with decreased distance to the replication terminus. We report a generalized method for detecting these architecture imparting sequences (AIMS) and have identified AIMS in nearly all bacterial genomes. Their increased abundance on leading strands and decreased abundance on lagging strands toward replication termini are not the result of changes in mutational bias; rather, they reflect a gradient of long-term positive selection for AIMS. The maintenance of the pattern of AIMS across the genomes of related bacteria independent of their positions within individual genes suggests a well-conserved role in genome biology. The stable gradient of AIMS abundance from replication origin to terminus suggests that the replicore acts as a target of selection, where selection for chromosome architecture results in the maintenance of gene order and in the lack of high-frequency DNA inversion within replicores.
Collapse
Affiliation(s)
- Heather Hendrickson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
37
|
Jensen RB. Coordination between chromosome replication, segregation, and cell division in Caulobacter crescentus. J Bacteriol 2006; 188:2244-53. [PMID: 16513754 PMCID: PMC1428140 DOI: 10.1128/jb.188.6.2244-2253.2006] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Progression through the Caulobacter crescentus cell cycle is coupled to a cellular differentiation program. The swarmer cell is replicationally quiescent, and DNA replication initiates at the swarmer-to-stalked cell transition. There is a very short delay between initiation of DNA replication and movement of one of the newly replicated origins to the opposite pole of the cell, indicating the absence of cohesion between the newly replicated origin-proximal parts of the Caulobacter chromosome. The terminus region of the chromosome becomes located at the invaginating septum in predivisional cells, and the completely replicated terminus regions stay associated with each other after chromosome replication is completed, disassociating very late in the cell cycle shortly before the final cell division event. Invagination of the cytoplasmic membrane occurs earlier than separation of the replicated terminus regions and formation of separate nucleoids, which results in trapping of a chromosome on either side of the cell division septum, indicating that there is not a nucleoid exclusion phenotype.
Collapse
Affiliation(s)
- Rasmus B Jensen
- Department of Life Sciences and Chemistry, Roskilde University, Universitetsvej 1, DK-4000 Roskilde, Denmark.
| |
Collapse
|
38
|
Lim GE, Derman AI, Pogliano J. Bacterial DNA segregation by dynamic SopA polymers. Proc Natl Acad Sci U S A 2005; 102:17658-63. [PMID: 16306264 PMCID: PMC1308903 DOI: 10.1073/pnas.0507222102] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many bacterial plasmids and chromosomes rely on ParA ATPases for proper positioning within the cell and for efficient segregation to daughter cells. Here we demonstrate that the F-plasmid-partitioning protein SopA polymerizes into filaments in an ATP-dependent manner in vitro, and that the filaments elongate at a rate that is similar to that of plasmid separation in vivo. We show that SopA is a dynamic protein within the cell, undergoing cycles of polymerization and depolymerization, and shuttling back and forth between nucleoprotein complexes that are composed of the SopB protein bound to sopC-containing plasmids (SopB/sopC). The dynamic behavior of SopA is critical for Sop-mediated plasmid DNA segregation; mutations that lock SopA into a static polymer in the cell inhibit plasmid segregation. We show that SopA colocalizes with SopB/sopC in the cell and that SopB/sopC nucleates the assembly of SopA and is required for its dynamic behavior. When SopA is polymerized in vitro in the presence of SopB and sopC-containing DNA, SopA filaments emanate from the plasmid DNA in radial asters. We propose a mechanism in which plasmid separation is driven by the polymerization of SopA, and we speculate that the radial assembly of SopA polymers is responsible for positioning plasmids both before and after segregation.
Collapse
Affiliation(s)
- Grace E Lim
- Division of Biological Sciences, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0377, USA
| | | | | |
Collapse
|