1
|
Tsaplina O. The Balance between Protealysin and Its Substrate, the Outer Membrane Protein OmpX, Regulates Serratia proteamaculans Invasion. Int J Mol Sci 2024; 25:6159. [PMID: 38892348 PMCID: PMC11172720 DOI: 10.3390/ijms25116159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Serratia are opportunistic bacteria, causing infections in plants, insects, animals and humans under certain conditions. The development of bacterial infection in the human body involves several stages of host-pathogen interaction, including entry into non-phagocytic cells to evade host immune cells. The facultative pathogen Serratia proteamaculans is capable of penetrating eukaryotic cells. These bacteria synthesize an actin-specific metalloprotease named protealysin. After transformation with a plasmid carrying the protealysin gene, noninvasive E. coli penetrate eukaryotic cells. This suggests that protealysin may play a key role in S. proteamaculans invasion. This review addresses the mechanisms underlying protealysin's involvement in bacterial invasion, highlighting the main findings as follows. Protealysin can be delivered into the eukaryotic cell by the type VI secretion system and/or by bacterial outer membrane vesicles. By cleaving actin in the host cell, protealysin can mediate the reversible actin rearrangements required for bacterial invasion. However, inactivation of the protealysin gene leads to an increase, rather than decrease, in the intensity of S. proteamaculans invasion. This indicates the presence of virulence factors among bacterial protealysin substrates. Indeed, protealysin cleaves the virulence factors, including the bacterial surface protein OmpX. OmpX increases the expression of the EGFR and β1 integrin, which are involved in S. proteamaculans invasion. It has been shown that an increase in the invasion of genetically modified S. proteamaculans may be the result of the accumulation of full-length OmpX on the bacterial surface, which is not cleaved by protealysin. Thus, the intensity of the S. proteamaculans invasion is determined by the balance between the active protealysin and its substrate OmpX.
Collapse
Affiliation(s)
- Olga Tsaplina
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky av. 4, 194064 St. Petersburg, Russia
| |
Collapse
|
2
|
Dolat L, Carpenter VK, Chen YS, Suzuki M, Smith EP, Kuddar O, Valdivia RH. Chlamydia repurposes the actin-binding protein EPS8 to disassemble epithelial tight junctions and promote infection. Cell Host Microbe 2022; 30:1685-1700.e10. [PMID: 36395759 PMCID: PMC9793342 DOI: 10.1016/j.chom.2022.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/08/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
Invasive microbial pathogens often disrupt epithelial barriers, yet the mechanisms used to dismantle tight junctions are poorly understood. Here, we show that the obligate pathogen Chlamydia trachomatis uses the effector protein TepP to transiently disassemble tight junctions early during infection. TepP alters the tyrosine phosphorylation status of host proteins involved in cytoskeletal regulation, including the filamentous actin-binding protein EPS8. We determined that TepP and EPS8 are necessary and sufficient to remodel tight junctions and that the ensuing disruption of epithelial barrier function promotes secondary invasion events. The genetic deletion of EPS8 renders epithelial cells and endometrial organoids resistant to TepP-mediated tight junction remodeling. Finally, TepP and EPS8 promote infection in murine models of infections, with TepP mutants displaying defects in ascension to the upper genital tract. These findings reveal a non-canonical function of EPS8 in the disassembly of epithelial junctions and an important role for Chlamydia pathogenesis.
Collapse
Affiliation(s)
- Lee Dolat
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Victoria K Carpenter
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yi-Shan Chen
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Michitaka Suzuki
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Erin P Smith
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ozge Kuddar
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Raphael H Valdivia
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
3
|
Sharndama HC, Mba IE. Helicobacter pylori: an up-to-date overview on the virulence and pathogenesis mechanisms. Braz J Microbiol 2022; 53:33-50. [PMID: 34988937 PMCID: PMC8731681 DOI: 10.1007/s42770-021-00675-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori is an organism associated with ulcer disease and gastric cancer. The latter is one of the most prevalent malignancies and currently the fourth major cause of cancer-related deaths globally. The pathogen infects about 50% of the world population, and currently, no treatment ensures its total elimination. There has been an increase in our understanding of the pathophysiology and pathogenesis mechanisms of H. pylori over the years. H. pylori can induce several genetic alterations, express numerous virulence factors, and trigger diverse adaptive mechanisms during its adherence and colonization. For successful colonization and infection establishment, several effector proteins/toxins are released by the organism. Evidence is also available reporting spiral to coccoid transition as a unique tactic H. pylori uses to survive in the host's gastrointestinal tract (GIT). Thus, the virulence and pathogenicity of H. pylori are under the control of complex interplay between the virulence factors, host, and environmental factors. Expounding the role of the various virulence factors in H. pylori pathogenesis and clinical outcomes is crucial for vaccine development and in providing and developing a more effective therapeutic intervention. Here we critically reflect on H. pylori infection and delineate what is currently known about the virulence and pathogenesis mechanisms of H. pylori.
Collapse
Affiliation(s)
| | - Ifeanyi Elibe Mba
- Department of Microbiology, University of Nigeria, Nsukka, Enugu, Nigeria.
| |
Collapse
|
4
|
Fromm K, Dehio C. The Impact of Bartonella VirB/VirD4 Type IV Secretion System Effectors on Eukaryotic Host Cells. Front Microbiol 2022; 12:762582. [PMID: 34975788 PMCID: PMC8714903 DOI: 10.3389/fmicb.2021.762582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022] Open
Abstract
Bartonella spp. are facultative intracellular pathogens that infect a wide range of mammalian hosts including humans. The VirB/VirD4 type IV secretion system (T4SS) is a key virulence factor utilized to translocate Bartonella effector proteins (Beps) into host cells in order to subvert their functions. Crucial for effector translocation is the C-terminal Bep intracellular delivery (BID) domain that together with a positively charged tail sequence forms a bipartite translocation signal. Multiple BID domains also evolved secondary effector functions within host cells. The majority of Beps possess an N-terminal filamentation induced by cAMP (FIC) domain and a central connecting oligonucleotide binding (OB) fold. FIC domains typically mediate AMPylation or related post-translational modifications of target proteins. Some Beps harbor other functional modules, such as tandem-repeated tyrosine-phosphorylation (EPIYA-related) motifs. Within host cells the EPIYA-related motifs are phosphorylated, which facilitates the interaction with host signaling proteins. In this review, we will summarize our current knowledge on the molecular functions of the different domains present in Beps and highlight examples of Bep-dependent host cell modulation.
Collapse
Affiliation(s)
- Katja Fromm
- Biozentrum, University of Basel, Basel, Switzerland
| | | |
Collapse
|
5
|
Helicobacter pylori-Mediated Immunity and Signaling Transduction in Gastric Cancer. J Clin Med 2020; 9:jcm9113699. [PMID: 33217986 PMCID: PMC7698755 DOI: 10.3390/jcm9113699] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori infection is a leading cause of gastric cancer, which is the second-most common cancer-related death in the world. The chronic inflammatory environment in the gastric mucosal epithelia during H. pylori infection stimulates intracellular signaling pathways, namely inflammatory signals, which may lead to the promotion and progression of cancer cells. We herein report two important signal transduction pathways, the LPS-TLR4 and CagA-MET pathways. Upon H. pylori stimulation, lipopolysaccharide (LPS) binds to toll-like receptor 4 (TLR4) mainly on macrophages and gastric epithelial cells. This induces an inflammatory response in the gastric epithelia to upregulate transcription factors, such as NF-κB, AP-1, and IRFs, all of which contribute to the initiation and progression of gastric cancer cells. Compared with other bacterial LPSs, H. pylori LPS has a unique function of inhibiting the mononuclear cell (MNC)-based production of IL-12 and IFN-γ. While this mechanism reduces the degree of inflammatory reaction of immune cells, it also promotes the survival of gastric cancer cells. The HGF/SF-MET signaling plays a major role in promoting cellular proliferation, motility, migration, survival, and angiogenesis, all of which are essential factors for cancer progression. H. pylori infection may facilitate MET downstream signaling in gastric cancer cells through its CagA protein via phosphorylation-dependent and/or phosphorylation-independent pathways. Other signaling pathways involved in H. pylori infection include EGFR, FAK, and Wnt/β-Catenin. These pathways function in the inflammatory process of gastric epithelial mucosa, as well as the progression of gastric cancer cells. Thus, H. pylori infection-mediated chronic inflammation plays an important role in the development and progression of gastric cancer.
Collapse
|
6
|
Bonne Køhler J, Jers C, Senissar M, Shi L, Derouiche A, Mijakovic I. Importance of protein Ser/Thr/Tyr phosphorylation for bacterial pathogenesis. FEBS Lett 2020; 594:2339-2369. [PMID: 32337704 DOI: 10.1002/1873-3468.13797] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/13/2022]
Abstract
Protein phosphorylation regulates a large variety of biological processes in all living cells. In pathogenic bacteria, the study of serine, threonine, and tyrosine (Ser/Thr/Tyr) phosphorylation has shed light on the course of infectious diseases, from adherence to host cells to pathogen virulence, replication, and persistence. Mass spectrometry (MS)-based phosphoproteomics has provided global maps of Ser/Thr/Tyr phosphosites in bacterial pathogens. Despite recent developments, a quantitative and dynamic view of phosphorylation events that occur during bacterial pathogenesis is currently lacking. Temporal, spatial, and subpopulation resolution of phosphorylation data is required to identify key regulatory nodes underlying bacterial pathogenesis. Herein, we discuss how technological improvements in sample handling, MS instrumentation, data processing, and machine learning should improve bacterial phosphoproteomic datasets and the information extracted from them. Such information is expected to significantly extend the current knowledge of Ser/Thr/Tyr phosphorylation in pathogenic bacteria and should ultimately contribute to the design of novel strategies to combat bacterial infections.
Collapse
Affiliation(s)
- Julie Bonne Køhler
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Carsten Jers
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Mériem Senissar
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Lei Shi
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Abderahmane Derouiche
- Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.,Systems and Synthetic Biology Division, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
7
|
Sorg I, Schmutz C, Lu YY, Fromm K, Siewert LK, Bögli A, Strack K, Harms A, Dehio C. A Bartonella Effector Acts as Signaling Hub for Intrinsic STAT3 Activation to Trigger Anti-inflammatory Responses. Cell Host Microbe 2020; 27:476-485.e7. [PMID: 32101706 DOI: 10.1016/j.chom.2020.01.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/13/2019] [Accepted: 01/21/2020] [Indexed: 12/11/2022]
Abstract
Chronically infecting pathogens avoid clearance by the innate immune system by promoting premature transition from an initial pro-inflammatory response toward an anti-inflammatory tissue-repair response. STAT3, a central regulator of inflammation, controls this transition and thus is targeted by numerous chronic pathogens. Here, we show that BepD, an effector of the chronic bacterial pathogen Bartonella henselae targeted to infected host cells, establishes an exceptional pathway for canonical STAT3 activation, thereby impairing secretion of pro-inflammatory TNF-α and stimulating secretion of anti-inflammatory IL-10. Tyrosine phosphorylation of EPIYA-related motifs in BepD facilitates STAT3 binding and activation via c-Abl-dependent phosphorylation of Y705. The tyrosine-phosphorylated scaffold of BepD thus represents a signaling hub for intrinsic STAT3 activation that is independent from canonical STAT3 activation via transmembrane receptor-associated Janus kinases. We anticipate that our findings on a molecular shortcut to STAT3 activation will inspire new treatment options for chronic infections and inflammatory diseases.
Collapse
Affiliation(s)
- Isabel Sorg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Yun-Yueh Lu
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Katja Fromm
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Lena K Siewert
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | - Kathrin Strack
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | | | | |
Collapse
|
8
|
Pachathundikandi SK, Gutiérrez-Escobar AJ, Tegtmeyer N. Tailor-Made Detection of Individual Phosphorylated and Non-Phosphorylated EPIYA-Motifs of Helicobacter pylori Oncoprotein CagA. Cancers (Basel) 2019; 11:cancers11081163. [PMID: 31412675 PMCID: PMC6721621 DOI: 10.3390/cancers11081163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/25/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023] Open
Abstract
The gastric pathogen and carcinogen Helicobacter pylori(H. pylori) encodes a type IV secretion system for translocation of the effector protein CagA into host cells. Injected CagA becomes tyrosine-phosphorylated at the five amino acid residue Glutamate-Proline- Isoleucine-Tyrosine-Alanine (EPIYA)-sequence motifs. These phosphorylated EPIYA-sites represent recognition motifs for binding of multiple host factors, which then manipulate signaling pathways to trigger gastric disease. Thus, efficient detection of single phosphorylated EPIYA-motifs in CagA is required. Detection of phospho-CagA is primarily performed using commercial pan-phosphotyrosine antibodies. However, those antibodies were originally generated to recognize many phosphotyrosines in various mammalian proteins and are not optimized for use in bacteria. To address this important limitation, we synthesized 11-mer phospho- and non-phospho-peptides from EPIYA-motifs A, B, and C, and produced three phospho-specific and three non-phospho-specific rabbit polyclonal CagA antibodies. These antibodies specifically recognized the corresponding phosphorylated and non-phosphorylated EPIYA-motifs, while the EPIYA-C antibodies also recognized the related East-Asian EPIYA-D motif. Otherwise, no cross-reactivity of the antibodies among EPIYAs was observed. Western blotting demonstrated that each EPIYA-motif can be predominantly phosphorylated during H. pylori infection. This represents the first complete set of phospho-specific antibodies for an effector protein in bacteria, providing useful tools to gather information for the categorization of CagA phosphorylation, cancer signaling, and gastric disease progression.
Collapse
Affiliation(s)
- Suneesh Kumar Pachathundikandi
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Andrés Julián Gutiérrez-Escobar
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstraße 5, D-91058 Erlangen, Germany.
| |
Collapse
|
9
|
Dehio C, Tsolis RM. Type IV Effector Secretion and Subversion of Host Functions by Bartonella and Brucella Species. Curr Top Microbiol Immunol 2019. [PMID: 29536363 DOI: 10.1007/978-3-319-75241-9_11] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2023]
Abstract
Bartonella and Brucella species comprise closely related genera of the order Rhizobiales within the class α-proteobacteria. Both groups of bacteria are mammalian pathogens with a facultative intracellular lifestyle and are capable of causing chronic infections, but members of each genus have evolved broadly different infection and transmission strategies. While Brucella spp. transmit in general via the reproductive tract in their natural hosts, the Bartonella spp. have evolved to transmit via arthropod vectors. However, a shared feature of both groups of pathogens is their reliance on type IV secretion systems (T4SSs) to interact with cells in their mammalian hosts. The genomes of Bartonella spp. encode three types of T4SS, Trw, Vbh/TraG, and VirB/VirD4, whereas those of Brucella spp. uniformly contain a single T4SS of the VirB type. The VirB systems of Bartonella and Brucella are associated with distinct groups of effector proteins that collectively mediate interactions with host cells. This chapter discusses recent findings on the role of T4SS in the biology of Bartonella spp. and Brucella spp. with emphasis on effector repertoires, on recent advances in our understanding of their evolution, how individual effectors function at the molecular level, and on the consequences of these interactions for cellular and immune responses in the host.
Collapse
Affiliation(s)
| | - Renée M Tsolis
- Medical Microbiology and Immunology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
10
|
Tiwari V. Post-translational modification of ESKAPE pathogens as a potential target in drug discovery. Drug Discov Today 2018; 24:814-822. [PMID: 30572117 DOI: 10.1016/j.drudis.2018.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/23/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
ESKAPE pathogens are gaining clinical importance owing to their high pervasiveness and increasing resistance to various antimicrobials. These bacteria have several post-translational modifications (PTMs) that destabilize or divert host cell pathways. Prevalent PTMs of ESKAPE pathogens include addition of chemical groups (acetylation, phosphorylation, methylation and hydroxylation) or complex molecules (AMPylation, ADP-ribosylation, glycosylation and isoprenylation), covalently linked small proteins [ubiquitylation, ubiquitin-like proteins (UBL) conjugation and small ubiquitin-like modifier (SUMO)] or modification of amino acid side-chains (eliminylation and deamidation). Therefore, the understanding of different bacterial PTMs and host proteins manipulated by these PTMs provides better insight into host-pathogen interaction and will also help to develop new antibacterial agents against ESKAPE pathogens.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of Rajasthan, Bandarsindri, Ajmer 305817, India.
| |
Collapse
|
11
|
Prevention of Gastric Cancer: Eradication of Helicobacter Pylori and Beyond. Int J Mol Sci 2017; 18:ijms18081699. [PMID: 28771198 PMCID: PMC5578089 DOI: 10.3390/ijms18081699] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 07/31/2017] [Accepted: 07/31/2017] [Indexed: 12/15/2022] Open
Abstract
Although its prevalence is declining, gastric cancer remains a significant public health issue. The bacterium Helicobacter pylori is known to colonize the human stomach and induce chronic atrophic gastritis, intestinal metaplasia, and gastric cancer. Results using a Mongolian gerbil model revealed that H. pylori infection increased the incidence of carcinogen-induced adenocarcinoma, whereas curative treatment of H. pylori significantly lowered cancer incidence. Furthermore, some epidemiological studies have shown that eradication of H. pylori reduces the development of metachronous cancer in humans. However, other reports have warned that human cases of atrophic metaplastic gastritis are already at risk for gastric cancer development, even after eradication of these bacteria. In this article, we discuss the effectiveness of H. pylori eradication and the morphological changes that occur in gastric dysplasia/cancer lesions. We further assess the control of gastric cancer using various chemopreventive agents.
Collapse
|
12
|
Nishikawa H, Hatakeyama M. Sequence Polymorphism and Intrinsic Structural Disorder as Related to Pathobiological Performance of the Helicobacter pylori CagA Oncoprotein. Toxins (Basel) 2017; 9:toxins9040136. [PMID: 28406453 PMCID: PMC5408210 DOI: 10.3390/toxins9040136] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/08/2017] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
Abstract
CagA, an oncogenic virulence factor produced by Helicobacter pylori, is causally associated with the development of gastrointestinal diseases such as chronic gastritis, peptic ulcers, and gastric cancer. Upon delivery into gastric epithelial cells via bacterial type IV secretion, CagA interacts with a number of host proteins through the intrinsically disordered C-terminal tail, which contains two repeatable protein-binding motifs, the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif and the CagA multimerization (CM) motif. The EPIYA motif, upon phosphorylation by host kinases, binds and deregulates Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2), a bona fide oncoprotein, inducing pro-oncogenic mitogenic signaling and abnormal cell morphology. Through the CM motif, CagA inhibits the kinase activity of polarity regulator partitioning-defective 1b (PAR1b), causing junctional and polarity defects while inducing actin cytoskeletal rearrangements. The magnitude of the pathobiological action of individual CagA has been linked to the tandem repeat polymorphisms of these two binding motifs, yet the molecular mechanisms by which they affect disease outcome remain unclear. Recent studies using quantitative techniques have provided new insights into how the sequence polymorphisms in the structurally disordered C-terminal region determine the degree of pro-oncogenic action of CagA in the gastric epithelium.
Collapse
Affiliation(s)
- Hiroko Nishikawa
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
- CREST, Japan Science and Technology Agency, Saitama 332-0012, Japan.
- Max Planck-The University of Tokyo Center for Integrative Inflammology, Tokyo 113-0033, Japan.
| |
Collapse
|
13
|
Jiménez-Guerrero I, Pérez-Montaño F, Medina C, Ollero FJ, López-Baena FJ. The Sinorhizobium (Ensifer) fredii HH103 Nodulation Outer Protein NopI Is a Determinant for Efficient Nodulation of Soybean and Cowpea Plants. Appl Environ Microbiol 2017; 83:e02770-16. [PMID: 27986730 PMCID: PMC5311403 DOI: 10.1128/aem.02770-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/13/2016] [Indexed: 12/12/2022] Open
Abstract
The type III secretion system (T3SS) is a specialized secretion apparatus that is commonly used by many plant and animal pathogenic bacteria to deliver proteins, termed effectors, to the interior of the host cells. These effectors suppress host defenses and interfere with signal transduction pathways to promote infection. Some rhizobial strains possess a functional T3SS, which is involved in the suppression of host defense responses, host range determination, and symbiotic efficiency. The analysis of the genome of the broad-host-range rhizobial strain Sinorhizobium fredii HH103 identified eight genes that code for putative T3SS effectors. Three of these effectors, NopL, NopP, and NopI, are Rhizobium specific. In this work, we demonstrate that NopI, whose amino acid sequence shows a certain similarity with NopP, is secreted through the S. fredii HH103 T3SS in response to flavonoids. We also determined that NopL can be considered an effector since it is directly secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, the symbiotic phenotype of single, double, and triple nopI, nopL, and nopP mutants in soybean and cowpea was assayed, showing that NopI plays an important role in determining the number of nodules formed in both legumes and that the absence of both NopL and NopP is highly detrimental for symbiosis.IMPORTANCE The paper is focused on three Rhizobium-specific T3SS effectors of Sinorhizobium fredii HH103, NopL, NopP, and NopI. We demonstrate that S. fredii HH103 is able to secrete through the T3SS in response to flavonoids the nodulation outer protein NopI. Additionally, we determined that NopL can be considered an effector since it is secreted to the interior of the host cell as demonstrated by adenylate cyclase assays. Finally, nodulation assays of soybean and cowpea indicated that NopI is important for the determination of the number of nodules formed and that the absence of both NopL and NopP negatively affected nodulation.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | | | - Carlos Medina
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, Consejo Superior de Investigaciones Científicas, Junta de Andalucía, Seville, Spain
| | | | | |
Collapse
|
14
|
Devi S, Ansari SA, Tenguria S, Kumar N, Ahmed N. Multipronged regulatory functions of a novel endonuclease (TieA) from Helicobacter pylori. Nucleic Acids Res 2016; 44:9393-9412. [PMID: 27550181 PMCID: PMC5100599 DOI: 10.1093/nar/gkw730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/11/2016] [Indexed: 12/29/2022] Open
Abstract
Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H. pylori nucleases have been shown to assist in natural transformation, but their role in virulence and colonization remains elusive. Therefore, it is imperative to understand the involvement of these nucleases in the pathogenesis of H. pylori. Here, we report the multifaceted role of a TNFR-1 interacting endonuclease A (TieA) from H. pylori. tieA expression is differentially regulated in response to environmental stress and post adherence to gastric epithelial cells. Studies with isogenic knockouts of tieA revealed it to be a secretory protein which translocates into the host gastric epithelial cells independent of a type IV secretion system, gets phosphorylated by DNA-PK kinase and auto-phosphorylates as serine kinase. Furthermore, TieA binds to and cleaves DNA in a non-specific manner and promotes Fas mediated apoptosis in AGS cells. Additionally, TieA induced pro-inflammatory cytokine secretion via activation of transcription factor AP-1 and signaled through MAP kinase pathway. Collectively, TieA with its multipronged and moonlighting functions could facilitate H. pylori in maintaining a balance of bacterial adaptation, and elimination by the host responses.
Collapse
Affiliation(s)
- Savita Devi
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Suhail A Ansari
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Shivendra Tenguria
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Naveen Kumar
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| | - Niyaz Ahmed
- Pathogen Biology Laboratory, Department of Biotechnology and Bioinformatics, University of Hyderabad, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
15
|
Lind J, Backert S, Hoffmann R, Eichler J, Yamaoka Y, Perez-Perez GI, Torres J, Sticht H, Tegtmeyer N. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of East Asian-type Helicobacter pylori strains. BMC Microbiol 2016; 16:201. [PMID: 27590005 PMCID: PMC5009636 DOI: 10.1186/s12866-016-0820-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Highly virulent strains of the gastric pathogen Helicobacter pylori encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation by members of the oncogenic c-Src and c-Abl host kinases at EPIYA-sequence motifs A, B and D in East Asian-type strains. These phosphorylated EPIYA-motifs serve as recognition sites for various SH2-domains containing human proteins, mediating interactions of CagA with host signaling factors to manipulate signal transduction pathways. Recognition of phospho-CagA is mainly based on the use of commercial pan-phosphotyrosine antibodies that were originally designed to detect phosphotyrosines in mammalian proteins. Specific anti-phospho-EPIYA antibodies for each of the three sites in CagA are not forthcoming. RESULTS This study was designed to systematically analyze the detection preferences of each phosphorylated East Asian CagA EPIYA-motif by pan-phosphotyrosine antibodies and to determine a minimal recognition sequence. We synthesized phospho- and non-phosphopeptides derived from each predominant EPIYA-site, and determined the recognition patterns by seven different pan-phosphotyrosine antibodies using Western blotting, and also investigated representative East Asian H. pylori isolates during infection. The results indicate that a total of only 9-11 amino acids containing the phosphorylated East Asian EPIYA-types are required and sufficient to detect the phosphopeptides with high specificity. However, the sequence recognition by the different antibodies was found to bear high variability. From the seven antibodies used, only four recognized all three phosphorylated EPIYA-motifs A, B and D similarly well. Two of the phosphotyrosine antibodies preferentially bound primarily to the phosphorylated motif A and D, while the seventh antibody failed to react with any of the phosphorylated EPIYA-motifs. Control experiments confirmed that none of the antibodies reacted with non-phospho-CagA peptides and in accordance were able to recognize phosphotyrosine proteins in human cells. CONCLUSIONS The results of this study disclose the various binding preferences of commercial anti-phosphotyrosine antibodies for phospho-EPIYA-motifs, and are valuable in the application for further characterization of CagA phosphorylation events during infection with H. pylori and risk prediction for gastric disease development.
Collapse
Affiliation(s)
- Judith Lind
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany
| | - Rebecca Hoffmann
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nuremberg, Schuhstraße 19, D-91052, Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, Friedrich Alexander University Erlangen-Nuremberg, Schuhstraße 19, D-91052, Erlangen, Germany
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, Japan
| | - Guillermo I Perez-Perez
- Department of Medicine and Microbiology, New York University, Langone Medical Centre, New York, USA
| | - Javier Torres
- Unidad de Investigación en Enfermedades Infecciosas, Hospital de Pediatría del Instituto Mexicano del Seguro Social, Mexico City, México
| | - Heinrich Sticht
- Bioinformatics, Institute for Biochemistry, Friedrich Alexander University Erlangen-Nuremberg, Fahrstrasse 17, D-91054, Erlangen, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen-Nuremberg, Staudtstr. 5, D-91058, Erlangen, Germany.
| |
Collapse
|
16
|
Popa CM, Tabuchi M, Valls M. Modification of Bacterial Effector Proteins Inside Eukaryotic Host Cells. Front Cell Infect Microbiol 2016; 6:73. [PMID: 27489796 PMCID: PMC4951486 DOI: 10.3389/fcimb.2016.00073] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 06/27/2016] [Indexed: 12/16/2022] Open
Abstract
Pathogenic bacteria manipulate their hosts by delivering a number of virulence proteins -called effectors- directly into the plant or animal cells. Recent findings have shown that such effectors can suffer covalent modifications inside the eukaryotic cells. Here, we summarize the recent reports where effector modifications by the eukaryotic machinery have been described. We restrict our focus on proteins secreted by the type III or type IV systems, excluding other bacterial toxins. We describe the known examples of effectors whose enzymatic activity is triggered by interaction with plant and animal cell factors, including GTPases, E2-Ubiquitin conjugates, cyclophilin and thioredoxins. We focus on the structural interactions with these factors and their influence on effector function. We also review the described examples of host-mediated post-translational effector modifications which are required for proper subcellular location and function. These host-specific covalent modifications include phosphorylation, ubiquitination, SUMOylation, and lipidations such as prenylation, fatty acylation and phospholipid binding.
Collapse
Affiliation(s)
- Crina M Popa
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| | - Mitsuaki Tabuchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University Kagawa, Japan
| | - Marc Valls
- Department of Genetics, Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB), Universitat de Barcelona Barcelona, Spain
| |
Collapse
|
17
|
Senda Y, Murata-Kamiya N, Hatakeyama M. C-terminal Src kinase-mediated EPIYA phosphorylation of Pragmin creates a feed-forward C-terminal Src kinase activation loop that promotes cell motility. Cancer Sci 2016; 107:972-80. [PMID: 27116701 PMCID: PMC4946704 DOI: 10.1111/cas.12962] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/16/2016] [Accepted: 04/25/2016] [Indexed: 12/16/2022] Open
Abstract
Pragmin is one of the few mammalian proteins containing the Glu‐Pro‐Ile‐Tyr‐Ala (EPIYA) tyrosine‐phosphorylation motif that was originally discovered in the Helicobacter pylori CagA oncoprotein. Following delivery into gastric epithelial cells by type IV secretion and subsequent tyrosine phosphorylation at the EPIYA motifs, CagA serves as an oncogenic scaffold/adaptor that promiscuously interacts with SH2 domain‐containing mammalian proteins such as the Src homology 2 (SH2) domain‐containing protein tyrosine phosphatase‐2 (SHP2) and the C‐terminal Src kinase (Csk), a negative regulator of Src family kinases. Like CagA, Pragmin also forms a physical complex with Csk. In the present study, we found that Pragmin directly binds to Csk by the tyrosine‐phosphorylated EPIYA motif. The complex formation potentiates kinase activity of Csk, which in turn phosphorylates Pragmin on tyrosine‐238 (Y238), Y343, and Y391. As Y391 of Pragmin comprises the EPIYA motif, Pragmin–Csk interaction creates a feed‐forward regulatory loop of Csk activation. Together with the finding that Pragmin and Csk are colocalized to focal adhesions, these observations indicate that the Pragmin–Csk interaction, triggered by Pragmin EPIYA phosphorylation, robustly stimulates the kinase activity of Csk at focal adhesions, which direct cell‐matrix adhesion that regulates cell morphology and cell motility. As a consequence, expression of Pragmin and/or Csk in epithelial cells induces an elongated cell shape with elevated cell scattering in a manner that is mutually dependent on Pragmin and Csk. Deregulation of the Pragmin–Csk axis may therefore induce aberrant cell migration that contributes to tumor invasion and metastasis.
Collapse
Affiliation(s)
- Yoshie Senda
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoko Murata-Kamiya
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Gonzalez-Rivera C, Bhatty M, Christie PJ. Mechanism and Function of Type IV Secretion During Infection of the Human Host. Microbiol Spectr 2016; 4:10.1128/microbiolspec.VMBF-0024-2015. [PMID: 27337453 PMCID: PMC4920089 DOI: 10.1128/microbiolspec.vmbf-0024-2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Indexed: 02/07/2023] Open
Abstract
Bacterial pathogens employ type IV secretion systems (T4SSs) for various purposes to aid in survival and proliferation in eukaryotic hosts. One large T4SS subfamily, the conjugation systems, confers a selective advantage to the invading pathogen in clinical settings through dissemination of antibiotic resistance genes and virulence traits. Besides their intrinsic importance as principle contributors to the emergence of multiply drug-resistant "superbugs," detailed studies of these highly tractable systems have generated important new insights into the mode of action and architectures of paradigmatic T4SSs as a foundation for future efforts aimed at suppressing T4SS machine function. Over the past decade, extensive work on the second large T4SS subfamily, the effector translocators, has identified a myriad of mechanisms employed by pathogens to subvert, subdue, or bypass cellular processes and signaling pathways of the host cell. An overarching theme in the evolution of many effectors is that of molecular mimicry. These effectors carry domains similar to those of eukaryotic proteins and exert their effects through stealthy interdigitation of cellular pathways, often with the outcome not of inducing irreversible cell damage but rather of reversibly modulating cellular functions. This article summarizes the major developments for the actively studied pathogens with an emphasis on the structural and functional diversity of the T4SSs and the emerging common themes surrounding effector function in the human host.
Collapse
Affiliation(s)
- Christian Gonzalez-Rivera
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Minny Bhatty
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| | - Peter J. Christie
- Department of Microbiology and Molecular Genetics, University of Texas Medical School at Houston, 6431 Fannin St, Houston, Texas 77030, Phone: 713-500-5440 (P. J. Christie); 713-500-5441 (C. Gonzalez-Rivera, M. Bhatty)
| |
Collapse
|
19
|
Nguewa PA, Villa TG, Notario V. Microbiome Control in the Prevention and Early Management of Cancer. NEW WEAPONS TO CONTROL BACTERIAL GROWTH 2016:219-237. [DOI: 10.1007/978-3-319-28368-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
20
|
Li B, Li YM, Guo JW, Wei YC. Relationship between Helicobacter pylori infection and gastric cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:1083-1089. [DOI: 10.11569/wcjd.v23.i7.1083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is one of the most common malignancies worldwide, and Helicobacter pylori (H. pylori) infection is the most important risk factor. More than 50% of the world population is infected by H. pylori, but less than 2% develop gastric cancer. Other risk factors like host and environmental factors also play a role in the occurrence of gastric cancer. The pathogenesis of gastric cancer is a multi-factorial and multi-step process, and its outcome is influenced by a combination of host, bacterial, and environmental factors.
Collapse
|
21
|
Zhu S, Feng Y, Chen J, Lin X, Xue X, Chen S, Zhong X, Li W, Zhang L. Identification of linear B-cell epitopes within Tarp of Chlamydia trachomatis. J Pept Sci 2014; 20:916-22. [PMID: 25377871 DOI: 10.1002/psc.2689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 08/10/2014] [Accepted: 08/18/2014] [Indexed: 11/10/2022]
Abstract
Chlamydia trachomatis is one of the most prevalent sexually transmitted pathogens. There is currently no commercially available vaccine against C. trachomatis. Chlamydial translocated actin-recruiting phosphoprotein (Tarp) can induce cellular and humoral immune responses in murine models and has been regarded as a potential vaccine candidate. In this report, the amino acid sequence of Tarp was analyzed using computer-assisted techniques to scan B-cell epitopes, and six possible linear B-cell epitopes peptides (aa80-95, aa107-123, aa152-170, aa171-186, aa239-253 and aa497-513) with high predicted antigenicity and high conservation were investigated. Sera from mice immunized with these potential immunodominant peptides was analyzed by ELISA, which showed that epitope 152-170 elicited serum immunoglobulin G (IgG) response and epitope 171-186 elicited both serum IgG and mucosal secretory immunoglobulin A response. The response of immune sera of epitope 171-186 to endogenous Tarp antigen obtained from the Hela229 cells infected with C. trachomatis was confirmed by Western blot and indirect fluorescence assay. In addition, binding of the antibodies against epitope 171-186 to endogenous Tarp was further confirmed by competitive ELISA. Our results demonstrated that the putative epitope (aa171-186) was an immunodominant B-cell epitope of Tarp. If proven protective and safe, this epitope, in combination with other well-documented epitopes, might be included into a candidate epitope-based vaccine against C. trachomatis.
Collapse
Affiliation(s)
- Shanli Zhu
- Department of Microbiology and Immunology, Wenzhou Medical University, Wenzhou, 325000, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
BACKGROUND Gastric cancer is the second most common cause of cancer deaths worldwide. The vast majority of gastric cancers are inflammation-related cancers caused by infection with Helicobacter pylori. H. pylori-induced oxidative stress damages DNA, resulting in genetic instability. In addition, H. pylori itself can cause DNA damage and epigenetic changes that trigger genetic instability and neoplastic transformation. SUMMARY H. pylori strain-specific components act in combination with host factors and environmental and dietary factors to greatly enhance the inflammatory response and thus the cancer risk. Variations in several key factors, such as the cag pathogenicity island and the VacA protein, can trigger a greater inflammatory response in host cells. Genetic polymorphisms in the host such as in the IL-1β gene, and chromosomes 9p21.3 and 10q23 also play a contributing role. Finally, diet is a major external factor that modulates the risk of gastric cancer. KEY MESSAGE The majority of gastric cancers are inflammation-related cancers caused by infection with H. pylori. Eradication of H. pylori is important for the prevention and treatment of gastric cancer. PRACTICAL IMPLICATIONS H. pylori eradication results in healing of gastritis and prevention of further H. pylori-induced genetic damage. Eradication of H. pylori prior to development of atrophic gastritis can prevent the development of gastric cancer. Japan has undertaken a nationwide program to identify and eliminate H. pylori, along with surveillance for those who underwent H. pylori eradication too late to eliminate cancer risk. Population-wide eradication of H. pylori will result in gastric cancer becoming a vanishingly rare disease.
Collapse
Affiliation(s)
- Wei Zhang
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Hong Lu
- Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai Institute of Digestive Disease, Shanghai, China
| | - David Y. Graham
- Department of Medicine, Michael E. DeBakey VAMC and Baylor College of Medicine, Houston, Tex., USA
| |
Collapse
|
23
|
Vannini A, Roncarati D, Spinsanti M, Scarlato V, Danielli A. In depth analysis of the Helicobacter pylori cag pathogenicity island transcriptional responses. PLoS One 2014; 9:e98416. [PMID: 24892739 PMCID: PMC4043881 DOI: 10.1371/journal.pone.0098416] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 05/01/2014] [Indexed: 01/15/2023] Open
Abstract
The severity of symptoms elicited by the widespread human pathogen Helicobacter pylori is strongly influenced by the genetic diversity of the infecting strain. Among the most important pathogen factors that carry an increased risk for gastric cancer are specific genotypes of the cag pathogenicity island (cag-PAI), encoding a type IV secretion system (T4SS) responsible for the translocation of the CagA effector oncoprotein. To date, little is known about the regulatory events important for the expression of a functional cag-T4SS. Here we demonstrate that the cag-PAI cistrons are subjected to a complex network of direct and indirect transcriptional regulations. We show that promoters of cag operons encoding structural T4SS components display homogeneous transcript levels, while promoters of cag operons encoding accessory factors vary considerably in their basal transcription levels and responses. Most cag promoters are transcriptionally responsive to growth-phase, pH and other stress-factors, although in many cases in a pleiotropic fashion. Interestingly, transcription from the Pcagζ promoter controlling the expression of transglycolase and T4SS stabilizing factors, is triggered by co-culture with a gastric cell line, providing an explanation for the increased formation of the secretion system observed upon bacterial contact with host cells. Finally, we demonstrate that the highly transcribed cagA oncogene is repressed by iron limitation through a direct apo-Fur regulation mechanism. Together the results shed light on regulatory aspects of the cag-PAI, which may be involved in relevant molecular and etiological aspects of H. pylori pathogenesis.
Collapse
Affiliation(s)
- Andrea Vannini
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Davide Roncarati
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Marco Spinsanti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Vincenzo Scarlato
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| | - Alberto Danielli
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
- * E-mail: (VS); (AD)
| |
Collapse
|
24
|
The Haemophilus ducreyi LspA1 protein inhibits phagocytosis by using a new mechanism involving activation of C-terminal Src kinase. mBio 2014; 5:e01178-14. [PMID: 24902122 PMCID: PMC4030455 DOI: 10.1128/mbio.01178-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Haemophilus ducreyi causes chancroid, a sexually transmitted infection. A primary means by which this pathogen causes disease involves eluding phagocytosis; however, the molecular basis for this escape mechanism has been poorly understood. Here, we report that the LspA virulence factors of H. ducreyi inhibit phagocytosis by stimulating the catalytic activity of C-terminal Src kinase (Csk), which itself inhibits Src family protein tyrosine kinases (SFKs) that promote phagocytosis. Inhibitory activity could be localized to a 37-kDa domain (designated YL2) of the 456-kDa LspA1 protein. The YL2 domain impaired ingestion of IgG-opsonized targets and decreased levels of active SFKs when expressed in mammalian cells. YL2 contains tyrosine residues in two EPIYG motifs that are phosphorylated in mammalian cells. These tyrosine residues were essential for YL2-based inhibition of phagocytosis. Csk was identified as the predominant mammalian protein interacting with YL2, and a dominant-negative Csk rescued phagocytosis in the presence of YL2. Purified Csk phosphorylated the tyrosines in the YL2 EPIYG motifs. Phosphorylated YL2 increased Csk catalytic activity, resulting in positive feedback, such that YL2 can be phosphorylated by the same kinase that it activates. Finally, we found that the Helicobacter pylori CagA protein also inhibited phagocytosis in a Csk-dependent manner, raising the possibility that this may be a general mechanism among diverse bacteria. Harnessing Csk to subvert the Fcγ receptor (FcγR)-mediated phagocytic pathway represents a new bacterial mechanism for circumventing a crucial component of the innate immune response and may potentially affect other SFK-involved cellular pathways. Phagocytosis is a critical component of the immune system that enables pathogens to be contained and cleared. A number of bacterial pathogens have developed specific strategies to either physically evade phagocytosis or block the intracellular signaling required for phagocytic activity. Haemophilus ducreyi, a sexually transmitted pathogen, secretes a 4,153-amino-acid (aa) protein (LspA1) that effectively inhibits FcγR-mediated phagocytic activity. In this study, we show that a 294-aa domain within this bacterial protein binds to C-terminal Src kinase (Csk) and stimulates its catalytic activity, resulting in a significant attenuation of Src kinase activity and consequent inhibition of phagocytosis. The ability to inhibit phagocytosis via Csk is not unique to H. ducreyi, because we found that the Helicobacter pylori CagA protein also inhibits phagocytosis in a Csk-dependent manner. Harnessing Csk to subvert the FcγR-mediated phagocytic pathway represents a new bacterial effector mechanism for circumventing the innate immune response.
Collapse
|
25
|
Lind J, Backert S, Pfleiderer K, Berg DE, Yamaoka Y, Sticht H, Tegtmeyer N. Systematic analysis of phosphotyrosine antibodies recognizing single phosphorylated EPIYA-motifs in CagA of Western-type Helicobacter pylori strains. PLoS One 2014; 9:e96488. [PMID: 24800748 PMCID: PMC4011759 DOI: 10.1371/journal.pone.0096488] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 04/09/2014] [Indexed: 12/14/2022] Open
Abstract
The clinical outcome of Helicobacter pylori infections is determined by multiple host-pathogen interactions that may develop to chronic gastritis, and sometimes peptic ulcers or gastric cancer. Highly virulent strains encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation at EPIYA-sequence motifs, called A, B and C in Western-type strains, by members of the oncogenic Src and Abl host kinases. Phosphorylated EPIYA-motifs mediate interactions of CagA with host signaling factors--in particular various SH2-domain containing human proteins--thereby hijacking multiple downstream signaling cascades. Observations of tyrosine-phosphorylated CagA are mainly based on the use of commercial phosphotyrosine antibodies, which originally were selected to detect phosphotyrosines in mammalian proteins. Systematic studies of phosphorylated EPIYA-motif detection by the different antibodies would be very useful, but are not yet available. To address this issue, we synthesized phospho- and non-phosphopeptides representing each predominant Western CagA EPIYA-motif, and determined the recognition patterns of seven different phosphotyrosine antibodies in Western blots, and also performed infection studies with diverse representative Western H. pylori strains. Our results show that a total of 9-11 amino acids containing the phosphorylated EPIYA-motifs are necessary and sufficient for specific detection by these antibodies, but revealed great variability in sequence recognition. Three of the antibodies recognized phosphorylated EPIYA-motifs A, B and C similarly well; whereas preferential binding to phosphorylated motif A and motifs A and C was found with two and one antibodies, respectively, and the seventh anti-phosphotyrosine antibody did not recognize any phosphorylated EPIYA-motif. Controls showed that none of the antibodies recognized the corresponding non-phospho CagA peptides, and that all of them recognized phosphotyrosines in mammalian proteins. These data are valuable in judicious application of commercial anti-phosphotyrosine antibodies and in characterization of CagA phosphorylation during infection and disease development.
Collapse
Affiliation(s)
- Judith Lind
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Erlangen, Germany
| | - Steffen Backert
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Erlangen, Germany
| | - Klaus Pfleiderer
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Erlangen, Germany
| | - Douglas E. Berg
- Division of Infectious Disease, Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Yoshio Yamaoka
- Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan
| | - Heinrich Sticht
- Friedrich Alexander University Erlangen-Nuremberg, Bioinformatics, Institute for Biochemistry, Erlangen, Germany
| | - Nicole Tegtmeyer
- Friedrich Alexander University Erlangen-Nuremberg, Department of Biology, Division of Microbiology, Erlangen, Germany
- * E-mail:
| |
Collapse
|
26
|
Chen YS, Bastidas RJ, Saka HA, Carpenter VK, Richards KL, Plano GV, Valdivia RH. The Chlamydia trachomatis type III secretion chaperone Slc1 engages multiple early effectors, including TepP, a tyrosine-phosphorylated protein required for the recruitment of CrkI-II to nascent inclusions and innate immune signaling. PLoS Pathog 2014; 10:e1003954. [PMID: 24586162 PMCID: PMC3930595 DOI: 10.1371/journal.ppat.1003954] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 01/10/2014] [Indexed: 02/06/2023] Open
Abstract
Chlamydia trachomatis, the causative agent of trachoma and sexually transmitted infections, employs a type III secretion (T3S) system to deliver effector proteins into host epithelial cells to establish a replicative vacuole. Aside from the phosphoprotein TARP, a Chlamydia effector that promotes actin re-arrangements, very few factors mediating bacterial entry and early inclusion establishment have been characterized. Like many T3S effectors, TARP requires a chaperone (Slc1) for efficient translocation into host cells. In this study, we defined proteins that associate with Slc1 in invasive C. trachomatis elementary bodies (EB) by immunoprecipitation coupled with mass spectrometry. We identified Ct875, a new Slc1 client protein and T3S effector, which we renamed TepP (Translocated early phosphoprotein). We provide evidence that T3S effectors form large molecular weight complexes with Scl1 in vitro and that Slc1 enhances their T3S-dependent secretion in a heterologous Yersinia T3S system. We demonstrate that TepP is translocated early during bacterial entry into epithelial cells and is phosphorylated at tyrosine residues by host kinases. However, TepP phosphorylation occurs later than TARP, which together with the finding that Slc1 preferentially engages TARP in EBs leads us to postulate that these effectors are translocated into the host cell at different stages during C. trachomatis invasion. TepP co-immunoprecipitated with the scaffolding proteins CrkI-II during infection and Crk was recruited to EBs at entry sites where it remained associated with nascent inclusions. Importantly, C. trachomatis mutants lacking TepP failed to recruit CrkI-II to inclusions, providing genetic confirmation of a direct role for this effector in the recruitment of a host factor. Finally, endocervical epithelial cells infected with a tepP mutant showed altered expression of a subset of genes associated with innate immune responses. We propose a model wherein TepP acts downstream of TARP to recruit scaffolding proteins at entry sites to initiate and amplify signaling cascades important for the regulation of innate immune responses to Chlamydia.
Collapse
Affiliation(s)
- Yi-Shan Chen
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert J. Bastidas
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Hector A. Saka
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Victoria K. Carpenter
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Kristian L. Richards
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Gregory V. Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Raphael H. Valdivia
- Department of Molecular Genetics and Microbiology and Center for Microbial Pathogenesis, Duke University Medical Center, Durham, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
Hashi K, Murata-Kamiya N, Varon C, Mégraud F, Dominguez-Bello MG, Hatakeyama M. Natural variant of the Helicobacter pylori CagA oncoprotein that lost the ability to interact with PAR1. Cancer Sci 2014; 105:245-51. [PMID: 24354359 PMCID: PMC4317943 DOI: 10.1111/cas.12342] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 12/31/2022] Open
Abstract
Helicobacter pylori strains carrying the cagA gene are associated with severe disease outcomes, most notably gastric cancer. CagA protein is delivered into gastric epithelial cells by a type IV secretion system. The translocated CagA undergoes tyrosine phosphorylation at the C-terminal EPIYA motifs by host cell kinases. Tyrosine-phosphorylated CagA acquires the ability to interact with and activate SHP2, thereby activating mitogenic signaling and inducing cell morphological transformation (hummingbird phenotype). CagA also interacts with PAR1b via the CM sequence, resulting in induction of junctional and polarity defects. Furthermore, CagA-PAR1b interaction stabilizes the CagA-SHP2 complex. Because transgenic mice systemically expressing CagA develop gastrointestinal and hematological malignancies, CagA is recognized as a bacterium-derived oncoprotein. Interestingly, the C-terminal region of CagA displays a large diversity among H. pylori strains, which influences the ability of CagA to bind to SHP2 and PAR1b. In the present study, we investigated the biological activity of v225d CagA, an Amerindian CagA of H. pylori isolated from a Venezuelan Piaroa Amerindian subject, because the variant CagA does not possess a canonical CM sequence. We found that v225d CagA interacts with SHP2 but not PAR1b. Furthermore, SHP2-binding activity of v225d CagA was much lower than that of CagA of H. pylori isolated from Western countries (Western CagA). v225d CagA also displayed a reduced ability to induce the hummingbird phenotype than that of Western CagA. Given that perturbation of PAR1b and SHP2 by CagA underlies the oncogenic potential of CagA, the v225d strain is considered to be less oncogenic than other well-studied cagA-positive H. pylori strains.
Collapse
Affiliation(s)
- Kana Hashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Jers C, Soufi B, Grangeasse C, Deutscher J, Mijakovic I. Phosphoproteomics in bacteria: towards a systemic understanding of bacterial phosphorylation networks. Expert Rev Proteomics 2014; 5:619-27. [DOI: 10.1586/14789450.5.4.619] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
29
|
Hayashi T, Morohashi H, Hatakeyama M. Bacterial EPIYA effectors--where do they come from? What are they? Where are they going? Cell Microbiol 2012; 15:377-85. [PMID: 23051602 PMCID: PMC3593179 DOI: 10.1111/cmi.12040] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/20/2012] [Accepted: 10/01/2012] [Indexed: 01/08/2023]
Abstract
Recent studies have revealed a distinct class of bacterial effectors defined by the presence of EPIYA or EPIYA-related motif. These bacterial EPIYA effectors are delivered into host cells via type III or IV secretion, where they undergo tyrosine phosphorylation at the EPIYA motif and thereby manipulate host signalling by promiscuously interacting with multiple SH2 domain-containing proteins. Up to now, nine EPIYA effectors have been identified from various bacteria. These effectors do not share sequence homology outside the EPIYA motif, arguing against the idea that they have common ancestors. A search of mammalian proteomes revealed the presence of a mammalian EPIYA-containing protein, Pragmin, which potentiates Src family kinase (SFK) activity by binding and sequestrating the SFK inhibitor Csk upon EPIYA phosphorylation. As several bacterial EPIYA effectors also target Csk, they may have evolved through generation of sequences that mimic the Pragmin EPIYA motif. EPIYA motifs are often diverged through multiple duplications in each bacterial effector. Such a structural plasticity appears to be due to intrinsic disorder of the EPIYA-containing region, which enables the bacterial effectors to undergo efficient phosphorylation and mediate promiscuous interaction with multiple host proteins. Given the functional versatility of the EPIYA motif, many more bacterial EPIYA effectors will soon be emerging.
Collapse
Affiliation(s)
- Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
30
|
Yamahashi Y, Hatakeyama M. PAR1b takes the stage in the morphogenetic and motogenetic activity of Helicobacter pylori CagA oncoprotein. Cell Adh Migr 2012; 7:11-8. [PMID: 23076215 DOI: 10.4161/cam.21936] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori CagA oncoprotein is critically involved in gastric carcinogenesis. Upon delivery into gastric epithelial cells via type IV secretion, CagA induces an extremely elongated cell-shape known as the hummingbird phenotype, which is associated with massive changes in actin cytoskeleton and elevated motility. With the notion that the hummingbird phenotype reflects pathogenic/oncogenic activity of CagA, many studies have focused on the mechanism through which CagA induces the morphological change. Once delivered, CagA interacts with host proteins such as oncogenic phosphatase SHP2 and polarity-regulating kinase PAR1b. Whereas the essential role of the CagA-SHP2 interaction in inducing the hummingbird phenotype has been extensively investigated, involvement of the CagA-PAR1b interaction in the morphological change has remained uncertain. Recently, we found that the CagA-PAR1b interaction, which inhibits PAR1b kinase activity, influences the actin cytoskeletal system and potentiates the magnitude of the hummingbird phenotype. We also found that PAR1b inactivates a RhoA-specific GEF, GEF-H1, via phosphorylation and thereby inhibits cortical actin and stress fiber formation. Collectively, these findings indicate that CagA-mediated inhibition of PAR1b promotes RhoA-dependent actin-cytoskeletal rearrangement and thereby strengthens the hummingbird phenotype induced by CagA-stimulated SHP2 during infection with H. pylori cagA-positive strains.
Collapse
Affiliation(s)
- Yukie Yamahashi
- Division of Microbiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | | |
Collapse
|
31
|
Hu CW, Lin MH, Huang HC, Ku WC, Yi TH, Tsai CF, Chen YJ, Sugiyama N, Ishihama Y, Juan HF, Wu SH. Phosphoproteomic analysis of Rhodopseudomonas palustris reveals the role of pyruvate phosphate dikinase phosphorylation in lipid production. J Proteome Res 2012; 11:5362-75. [PMID: 23030682 DOI: 10.1021/pr300582p] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rhodopseudomonas palustris (R. palustris) is a purple nonsulfur anoxygenic phototrophic bacterium with metabolic versatility and is able to grow under photoheterotrophic and chemoheterotrophic states. It has uses in carbon management, carbon recycling, hydrogen generation, and lipid production; therefore, it has the potential for bioenergy production and biodegradation. This study is the first to identify the phosphoproteome of R. palustris including 100 phosphopeptides from 54 phosphoproteins and 74 phosphopeptides from 42 phosphoproteins in chemoheterotrophic and photoheterotrophic growth conditions, respectively. In the identified phosphoproteome, phosphorylation at the threonine residue, Thr487, of pyruvate phosphate dikinase (PPDK, RPA1051) was found to participate in the regulation of carbon metabolism. Here, we show that PPDK enzyme activity is higher in photoheterotrophic growth, with Thr487 phosphorylation as a possible mediator. Under the same photoheterotrophic conditions, R. palustris with overexpressed wild-type PPDK showed an enhanced accumulation of total lipids than those with mutant PPDK (T487V) form. This study reveals the role of the PPDK in the production of biodiesel material, lipid content, with threonyl-phosphorylation as one of the possible regulatory events during photoheterotrophic growth in R. palustris.
Collapse
Affiliation(s)
- Chia-Wei Hu
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Mueller D, Tegtmeyer N, Brandt S, Yamaoka Y, De Poire E, Sgouras D, Wessler S, Torres J, Smolka A, Backert S. c-Src and c-Abl kinases control hierarchic phosphorylation and function of the CagA effector protein in Western and East Asian Helicobacter pylori strains. J Clin Invest 2012; 122:1553-66. [PMID: 22378042 PMCID: PMC3314471 DOI: 10.1172/jci61143] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 01/11/2012] [Indexed: 12/24/2022] Open
Abstract
Many bacterial pathogens inject into host cells effector proteins that are substrates for host tyrosine kinases such as Src and Abl family kinases. Phosphorylated effectors eventually subvert host cell signaling, aiding disease development. In the case of the gastric pathogen Helicobacter pylori, which is a major risk factor for the development of gastric cancer, the only known effector protein injected into host cells is the oncoprotein CagA. Here, we followed the hierarchic tyrosine phosphorylation of H. pylori CagA as a model system to study early effector phosphorylation processes. Translocated CagA is phosphorylated on Glu-Pro-Ile-Tyr-Ala (EPIYA) motifs EPIYA-A, EPIYA-B, and EPIYA-C in Western strains of H. pylori and EPIYA-A, EPIYA-B, and EPIYA-D in East Asian strains. We found that c-Src only phosphorylated EPIYA-C and EPIYA-D, whereas c-Abl phosphorylated EPIYA-A, EPIYA-B, EPIYA-C, and EPIYA-D. Further analysis revealed that CagA molecules were phosphorylated on 1 or 2 EPIYA motifs, but never simultaneously on 3 motifs. Furthermore, none of the phosphorylated EPIYA motifs alone was sufficient for inducing AGS cell scattering and elongation. The preferred combination of phosphorylated EPIYA motifs in Western strains was EPIYA-A and EPIYA-C, either across 2 CagA molecules or simultaneously on 1. Our study thus identifies a tightly regulated hierarchic phosphorylation model for CagA starting at EPIYA-C/D, followed by phosphorylation of EPIYA-A or EPIYA-B. These results provide insight for clinical H. pylori typing and clarify the role of phosphorylated bacterial effector proteins in pathogenesis.
Collapse
Affiliation(s)
- Doreen Mueller
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Nicole Tegtmeyer
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Sabine Brandt
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Yoshio Yamaoka
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Eimear De Poire
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Dionyssios Sgouras
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Silja Wessler
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Javier Torres
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Adam Smolka
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Steffen Backert
- University of Magdeburg, Department of Medical Microbiology, Magdeburg, Germany.
University College Dublin, School of Biomolecular and Biomedical Sciences, Dublin, Ireland.
Michael E. DeBakey Veterans Affairs Medical Center and Baylor College of Medicine, Department Medicine-Gastroenterology, Houston, Texas, USA.
Oita University Faculty of Medicine, Department Environmental and Preventive Medicine, Yufu, Japan.
Hellenic Pasteur Institute, Laboratory of Medical Microbiology, Athens, Greece.
Division of Microbiology, University Salzburg, Salzburg, Austria.
Unidad de Investigacion en Enfermedades Infecciosas, UMAE Pediatria, IMSS, Mexico.
Department of Medicine/Gastroenterology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
33
|
Abstract
Protein phosphorylation on tyrosine has emerged as a key device in the control of numerous cellular functions in bacteria. In this article, we review the structure and function of bacterial tyrosine kinases and phosphatases. Phosphorylation is catalyzed by autophosphorylating adenosine triphosphate-dependent enzymes (bacterial tyrosine (BY) kinases) that are characterized by the presence of Walker motifs. The reverse reaction is catalyzed by three classes of enzymes: the eukaryotic-like phosphatases (PTPs) and dual-specific phosphatases; the low molecular weight protein-tyrosine phosphatases (LMW-PTPs); and the polymerase–histidinol phosphatases (PHP). Many BY kinases and tyrosine phosphatases can utilize host cell proteins as substrates, thereby contributing to bacterial pathogenicity. Bacterial tyrosine phosphorylation/dephosphorylation is also involved in biofilm formation and community development. The Porphyromonas gingivalis tyrosine phosphatase Ltp1 is involved in a restraint pathway that regulates heterotypic community development with Streptococcus gordonii. Ltp1 is upregulated by contact with S. gordonii and Ltp1 activity controls adhesin expression and levels of the interspecies signal AI-2.
Collapse
|
34
|
Pulliainen AT, Dehio C. Persistence of Bartonella spp. stealth pathogens: from subclinical infections to vasoproliferative tumor formation. FEMS Microbiol Rev 2012; 36:563-99. [PMID: 22229763 DOI: 10.1111/j.1574-6976.2012.00324.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Revised: 12/13/2011] [Accepted: 12/13/2011] [Indexed: 01/11/2023] Open
Abstract
Bartonella spp. are facultative intracellular bacteria that typically cause a long-lasting intraerythrocytic bacteremia in their mammalian reservoir hosts, thereby favoring transmission by blood-sucking arthropods. In most cases, natural reservoir host infections are subclinical and the relapsing intraerythrocytic bacteremia may last weeks, months, or even years. In this review, we will follow the infection cycle of Bartonella spp. in a reservoir host, which typically starts with an intradermal inoculation of bacteria that are superficially scratched into the skin from arthropod feces and terminates with the pathogen exit by the blood-sucking arthropod. The current knowledge of bacterial countermeasures against mammalian immune response will be presented for each critical step of the pathogenesis. The prevailing models of the still-enigmatic primary niche and the anatomical location where bacteria reside, persist, and are periodically seeded into the bloodstream to cause the typical relapsing Bartonella spp. bacteremia will also be critically discussed. The review will end up with a discussion of the ability of Bartonella spp., namely Bartonella henselae, Bartonella quintana, and Bartonella bacilliformis, to induce tumor-like vascular deformations in humans having compromised immune response such as in patients with AIDS.
Collapse
|
35
|
J-Western forms of Helicobacter pylori cagA constitute a distinct phylogenetic group with a widespread geographic distribution. J Bacteriol 2012; 194:1593-604. [PMID: 22247512 DOI: 10.1128/jb.06340-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chronic infection with Helicobacter pylori strains expressing the bacterial oncoprotein CagA confers an increased risk of gastric cancer. While much is known about the ancestry and molecular evolution of Western, East Asian, and Amerindian cagA sequences, relatively little is understood about a fourth group, known as "J-Western," which has been detected mainly in strains from Okinawa, Japan. We show here that J-Western cagA sequences have a more widespread global distribution than previously recognized, occur in strains with multiple different ancestral origins (based on multilocus sequence typing [MLST] analysis), and did not arise recently. As shown by comparisons of Western and J-Western forms of CagA, there are 45 fixed or nearly fixed amino acid differences, and J-Western forms contain a unique 4-amino-acid insertion. The mean nucleotide diversity of synonymous sites (π(s)) is slightly lower in the J-Western group than in the Western and East Asian groups (0.066, 0.086, and 0.083, respectively), which suggests that the three groups have comparable, but not equivalent, effective population sizes. The reduced π(s) of the J-Western group is attributable to ancestral recombination events within the 5' region of cagA. Population genetic analyses suggest that within the cagA region encoding EPIYA motifs, the East Asian group underwent a marked reduction in effective population size compared to the Western and J-Western groups, in association with positive selection. Finally, we show that J-Western cagA sequences are found mainly in strains producing m2 forms of the secreted VacA toxin and propose that these functionally interacting proteins coevolved to optimize the gastric colonization capacity of H. pylori.
Collapse
|
36
|
Abstract
Bartonella spp. are facultative intracellular pathogens that employ a unique stealth infection strategy comprising immune evasion and modulation, intimate interaction with nucleated cells, and intraerythrocytic persistence. Infections with Bartonella are ubiquitous among mammals, and many species can infect humans either as their natural host or incidentally as zoonotic pathogens. Upon inoculation into a naive host, the bartonellae first colonize a primary niche that is widely accepted to involve the manipulation of nucleated host cells, e.g., in the microvasculature. Consistently, in vitro research showed that Bartonella harbors an ample arsenal of virulence factors to modulate the response of such cells, gain entrance, and establish an intracellular niche. Subsequently, the bacteria are seeded into the bloodstream where they invade erythrocytes and give rise to a typically asymptomatic intraerythrocytic bacteremia. While this course of infection is characteristic for natural hosts, zoonotic infections or the infection of immunocompromised patients may alter the path of Bartonella and result in considerable morbidity. In this review we compile current knowledge on the molecular processes underlying both the infection strategy and pathogenesis of Bartonella and discuss their connection to the clinical presentation of human patients, which ranges from minor complaints to life-threatening disease.
Collapse
Affiliation(s)
- Alexander Harms
- Focal Area Infection Biology, Biozentrum, University of Basel, Switzerland
| | | |
Collapse
|
37
|
Wakeel A, den Dulk-Ras A, Hooykaas PJJ, McBride JW. Ehrlichia chaffeensis tandem repeat proteins and Ank200 are type 1 secretion system substrates related to the repeats-in-toxin exoprotein family. Front Cell Infect Microbiol 2011; 1:22. [PMID: 22919588 PMCID: PMC3417381 DOI: 10.3389/fcimb.2011.00022] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/14/2011] [Indexed: 12/27/2022] Open
Abstract
Ehrlichia chaffeensis has type 1 and 4 secretion systems (T1SS and T4SS), but the substrates have not been identified. Potential substrates include secreted tandem repeat protein (TRP) 47, TRP120, and TRP32, and the ankyrin repeat protein, Ank200, that are involved in molecular host–pathogen interactions including DNA binding and a network of protein–protein interactions with host targets associated with signaling, transcriptional regulation, vesicle trafficking, and apoptosis. In this study we report that E. chaffeensis TRP47, TRP32, TRP120, and Ank200 were not secreted in the Agrobacterium tumefaciens Cre recombinase reporter assay routinely used to identify T4SS substrates. In contrast, all TRPs and the Ank200 proteins were secreted by the Escherichia coli complemented with the hemolysin secretion system (T1SS), and secretion was reduced in a T1SS mutant (ΔTolC), demonstrating that these proteins are T1SS substrates. Moreover, T1SS secretion signals were identified in the C-terminal domains of the TRPs and Ank200, and a detailed bioinformatic analysis of E. chaffeensis TRPs and Ank200 revealed features consistent with those described in the repeats-in-toxins (RTX) family of exoproteins, including glycine- and aspartate-rich tandem repeats, homology with ATP-transporters, a non-cleavable C-terminal T1SS signal, acidic pIs, and functions consistent with other T1SS substrates. Using a heterologous E. coli T1SS, this investigation has identified the first Ehrlichia T1SS substrates supporting the conclusion that the T1SS and corresponding substrates are involved in molecular host–pathogen interactions that contribute to Ehrlichia pathobiology. Further investigation of the relationship between Ehrlichia TRPs, Ank200, and the RTX exoprotein family may lead to a greater understanding of the importance of T1SS substrates and specific functions of T1SS in the pathobiology of obligately intracellular bacteria.
Collapse
Affiliation(s)
- Abdul Wakeel
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | |
Collapse
|
38
|
Role of Abl and Src family kinases in actin-cytoskeletal rearrangements induced by the Helicobacter pylori CagA protein. Eur J Cell Biol 2011; 90:880-90. [DOI: 10.1016/j.ejcb.2010.11.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 11/12/2010] [Accepted: 11/15/2010] [Indexed: 12/17/2022] Open
|
39
|
Mammalian Pragmin regulates Src family kinases via the Glu-Pro-Ile-Tyr-Ala (EPIYA) motif that is exploited by bacterial effectors. Proc Natl Acad Sci U S A 2011; 108:14938-43. [PMID: 21873224 DOI: 10.1073/pnas.1107740108] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Several pathogenic bacteria have adopted effector proteins that, upon delivery into mammalian cells, undergo tyrosine phosphorylation at the Glu-Pro-Ile-Tyr-Ala (EPIYA) or EPIYA-like sequence motif by host kinases such as Src family kinases (SFKs). This EPIYA phosphorylation triggers complex formation of bacterial effectors with SH2 domain-containing proteins that results in perturbation of host cell signaling and subsequent pathogenesis. Although the presence of such an anomalous protein interaction suggests the existence of a mammalian EPIYA-containing protein whose function is mimicked or subverted by bacterial EPIYA effectors, no molecule that uses the EPIYA motif for biological function has so far been reported in mammals. Here we show that mammalian Pragmin/SgK223 undergoes tyrosine phosphorylation at the EPIYA motif by SFKs and thereby acquires the ability to interact with the SH2 domain of the C-terminal Src kinase (Csk), a negative regulator of SFKs. The Pragmin-Csk interaction prevents translocalization of Csk from the cytoplasm to the membrane and subsequent inactivation of membrane-associated SFKs. As a result, SFK activity is sustained in cells where Pragmin is phosphorylated at the EPIYA motif. Because EPIYA phosphorylation of Pragmin is mediated by SFKs, cytoplasmic sequestration of Csk by Pragmin establishes a positive feedback regulation of SFK activation. Remarkably, the Helicobacter pylori EPIYA effector CagA binds to the Csk SH2 domain in place of Pragmin and enforces membrane recruitment of Csk and subsequent inhibition of SFKs. This work identifies Pragmin as a mammalian EPIYA effector and suggests that bacterial EPIYA effectors target Pragmin to subvert SFKs for successful infection.
Collapse
|
40
|
Nagase L, Murata-Kamiya N, Hatakeyama M. Potentiation of Helicobacter pylori CagA protein virulence through homodimerization. J Biol Chem 2011; 286:33622-31. [PMID: 21813645 DOI: 10.1074/jbc.m111.258673] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Chronic infection with Helicobacter pylori cagA-positive strains is associated with atrophic gastritis, peptic ulceration, and gastric carcinoma. The cagA gene product, CagA, is delivered into gastric epithelial cells via type IV secretion, where it undergoes tyrosine phosphorylation at the EPIYA motifs. Tyrosine-phosphorylated CagA binds and aberrantly activates the oncogenic tyrosine phosphatase SHP2, which mediates induction of elongated cell morphology (hummingbird phenotype) that reflects CagA virulence. CagA also binds and inhibits the polarity-regulating kinase partitioning-defective 1 (PAR1)/microtubule affinity-regulating kinase (MARK) via the CagA multimerization (CM) sequence independently of tyrosine phosphorylation. Because PAR1 exists as a homodimer, two CagA proteins appear to be passively dimerized through complex formation with a PAR1 dimer in cells. Interestingly, a CagA mutant that lacks the CM sequence displays a reduced SHP2 binding activity and exhibits an attenuated ability to induce the hummingbird phenotype, indicating that the CagA-PAR1 interaction also influences the morphological transformation. Here we investigated the role of CagA dimerization in induction of the hummingbird phenotype with the use of a chemical dimerizer, coumermycin. We found that CagA dimerization markedly stabilizes the CagA-SHP2 complex and thereby potentiates SHP2 deregulation, causing an increase in the number of hummingbird cells. Protrusions of hummingbird cells induced by chemical dimerization of CagA are further elongated by simultaneous inhibition of PAR1. This study revealed a role of the CM sequence in amplifying the magnitude of SHP2 deregulation by CagA, which, in conjunction with the CM sequence-mediated inhibition of PAR1, evokes morphological transformation that reflects in vivo CagA virulence.
Collapse
Affiliation(s)
- Lisa Nagase
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
41
|
Dean P. Functional domains and motifs of bacterial type III effector proteins and their roles in infection. FEMS Microbiol Rev 2011; 35:1100-25. [PMID: 21517912 DOI: 10.1111/j.1574-6976.2011.00271.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A key feature of the virulence of many bacterial pathogens is the ability to deliver effector proteins into eukaryotic cells via a dedicated type three secretion system (T3SS). Many bacterial pathogens, including species of Chlamydia, Xanthomonas, Pseudomonas, Ralstonia, Shigella, Salmonella, Escherichia and Yersinia, depend on the T3SS to cause disease. T3SS effectors constitute a large and diverse group of virulence proteins that mimic eukaryotic proteins in structure and function. A salient feature of bacterial effectors is their modular architecture, comprising domains or motifs that confer an array of subversive functions within the eukaryotic cell. These domains/motifs therefore represent a fascinating repertoire of molecular determinants with important roles during infection. This review provides a snapshot of our current understanding of bacterial effector domains and motifs where a defined role in infection has been demonstrated.
Collapse
Affiliation(s)
- Paul Dean
- Institute of Cell and Molecular Bioscience, Medical School, University of Newcastle, Newcastle Upon Tyne, UK.
| |
Collapse
|
42
|
Abstract
UNLABELLED Chlamydiae are well known for their species specificity and tissue tropism, and yet the individual species and strains show remarkable genomic synteny and share an intracellular developmental cycle unique in the microbial world. Only a relatively few chlamydial genes have been linked to specific disease or tissue tropism. Here we show that chlamydial species associated with human infections, Chlamydia trachomatis and C. pneumoniae, exhibit unique requirements for Src-family kinases throughout their developmental cycle. Utilization of Src-family kinases by C. trachomatis includes tyrosine phosphorylation of the secreted effector Tarp during the entry process, a functional role in microtubule-dependent trafficking to the microtubule organizing center, and a requirement for Src-family kinases for successful initiation of development. Nonhuman chlamydial species C. caviae and C. muridarum show none of these requirements and, instead, appear to be growth restricted by the activities of Src-family kinases. Depletion of Src-family kinases triggers a more rapid development of C. caviae with up to an 800% increase in infectious progeny production. Collectively, the results suggest that human chlamydial species have evolved requirements for tyrosine phosphorylation by Src-family kinases that are not seen in other chlamydial species. The requirement for Src-family kinases thus represents a fundamental distinction between chlamydial species that would not be readily apparent in genomic comparisons and may provide insights into chlamydial disease association and species specificity. IMPORTANCE Chlamydiae are well known for their species specificity and tissue tropism as well as their association with unique diseases. A paradox in the field relates to the remarkable genomic synteny shown among chlamydiae and the very few chlamydial genes linked to specific diseases. We have found that different chlamydial species exhibit unique requirements for Src-family kinases. These differing requirements for Src-family kinases would not be apparent in genomic comparisons and appear to be a previously unrecognized distinction that may provide insights to guide research in chlamydial pathogenesis.
Collapse
|
43
|
Wessler S, Backert S. Abl family of tyrosine kinases and microbial pathogenesis. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 286:271-300. [PMID: 21199784 DOI: 10.1016/b978-0-12-385859-7.00006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Abl nonreceptor tyrosine kinases are activated by multiple stimuli and regulate cytoskeletal reorganization, cell proliferation, survival, and stress responses. Several downstream pathways have direct impact on physiological processes, including development and maintenance of the nervous and immune systems and epithelial morphogenesis. Recent studies also indicated that numerous viral and bacterial pathogens highjack Abl signaling for different purposes. Abl kinases are activated to reorganize the host actin cytoskeleton and promote the direct tyrosine phosphorylation of viral surface proteins and injected bacterial type-III and type-IV effector molecules. However, Abl kinases also play other roles in infectious processes of bacteria, viruses, and prions. These activities have crucial impact on microbial invasion and release from host cells, actin-based motility, pedestal formation, as well as cell-cell dissociation involved in epithelial barrier disruption and other responses. Thus, Abl kinases exhibit important functions in pathological signaling during microbial infections. Here, we discuss the different signaling pathways activated by pathogens and highlight possible therapeutic intervention strategies.
Collapse
Affiliation(s)
- Silja Wessler
- Department of Molecular Biology, Division of Microbiology, Paris-Lodron University of Salzburg, Billrothstrasse, Salzburg, Austria
| | | |
Collapse
|
44
|
Hatakeyama M. Anthropological and clinical implications for the structural diversity of the Helicobacter pylori CagA oncoprotein. Cancer Sci 2011; 102:36-43. [PMID: 20942897 PMCID: PMC11159401 DOI: 10.1111/j.1349-7006.2010.01743.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori CagA is the first bacterial oncoprotein to be identified in relation to human cancer. CagA is delivered into gastric epithelial cells through a bacterial type IV secretion system and localizes to the plasma membrane, where it undergoes tyrosine phosphorylation by host cell kinases. Membrane-localized CagA then mimics mammalian scaffold proteins and perturbs a number of host signaling pathways in both tyrosine phosphorylation-dependent and -independent manners, thereby promoting transformation of gastric epithelial cells. Helicobacter pylori CagA is noted for structural diversity in its C-terminal region, with which CagA interacts with numerous host cell proteins. This CagA polymorphism is primarily due to differential combination and alignment of the four distinct EPIYA segments and the two different CagA-multimerization sequences in making the C-terminal region. The structural diversity substantially influences the pathophysiological action of CagA. This review focuses on the molecular basis for the structural polymorphism that determines the degrees of virulence and oncogenic potential of individual CagA. The pylogeographic distribution of differential CagA isoforms is also discussed in the context of human migration history, which may underlie large geographical variations in the incidence of gastric cancer in different parts of the world.
Collapse
Affiliation(s)
- Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
45
|
Kubori T, Shinzawa N, Kanuka H, Nagai H. Legionella metaeffector exploits host proteasome to temporally regulate cognate effector. PLoS Pathog 2010; 6:e1001216. [PMID: 21151961 PMCID: PMC2996335 DOI: 10.1371/journal.ppat.1001216] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Accepted: 10/28/2010] [Indexed: 12/20/2022] Open
Abstract
Pathogen-associated secretion systems translocate numerous effector proteins into eukaryotic host cells to coordinate cellular processes important for infection. Spatiotemporal regulation is therefore important for modulating distinct activities of effectors at different stages of infection. Here we provide the first evidence of "metaeffector," a designation for an effector protein that regulates the function of another effector within the host cell. Legionella LubX protein functions as an E3 ubiquitin ligase that hijacks the host proteasome to specifically target the bacterial effector protein SidH for degradation. Delayed delivery of LubX to the host cytoplasm leads to the shutdown of SidH within the host cells at later stages of infection. This demonstrates a sophisticated level of coevolution between eukaryotic cells and L. pneumophila involving an effector that functions as a key regulator to temporally coordinate the function of a cognate effector protein.
Collapse
Affiliation(s)
- Tomoko Kubori
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Naoaki Shinzawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hirotaka Kanuka
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Hiroki Nagai
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
- * E-mail:
| |
Collapse
|
46
|
Saito Y, Murata-Kamiya N, Hirayama T, Ohba Y, Hatakeyama M. Conversion of Helicobacter pylori CagA from senescence inducer to oncogenic driver through polarity-dependent regulation of p21. ACTA ACUST UNITED AC 2010; 207:2157-74. [PMID: 20855497 PMCID: PMC2947069 DOI: 10.1084/jem.20100602] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Helicobacter pylori CagA bacterial oncoprotein plays a critical role in gastric carcinogenesis. Upon delivery into epithelial cells, CagA causes loss of polarity and activates aberrant Erk signaling. We show that CagA-induced Erk activation results in senescence and mitogenesis in nonpolarized and polarized epithelial cells, respectively. In nonpolarized epithelial cells, Erk activation results in oncogenic stress, up-regulation of the p21(Waf1/Cip1) cyclin-dependent kinase inhibitor, and induction of senescence. In polarized epithelial cells, CagA-driven Erk signals prevent p21(Waf1/Cip1) expression by activating a guanine nucleotide exchange factor-H1-RhoA-RhoA-associated kinase-c-Myc pathway. The microRNAs miR-17 and miR-20a, induced by c-Myc, are needed to suppress p21(Waf1/Cip1) expression. CagA also drives an epithelial-mesenchymal transition in polarized epithelial cells. These findings suggest that CagA exploits a polarity-signaling pathway to induce oncogenesis.
Collapse
Affiliation(s)
- Yasuhiro Saito
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
47
|
Immunodominant regions of a Chlamydia trachomatis type III secretion effector protein, Tarp. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1371-6. [PMID: 20668138 DOI: 10.1128/cvi.00218-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously shown that individuals infected with Chlamydia trachomatis can develop a robust antibody response to a Chlamydia type III secretion effector protein called Tarp and that immunization with Tarp induces protection against challenge infection in mice. The current study aimed to map the immunodominant regions of the Tarp protein by expressing 11 fragments of Tarp as glutathione S-transferase (GST) fusion proteins and detecting the reactivity of these fusion proteins with antisera from patients infected with C. trachomatis in the urogenital tract or in the ocular tissue and from rabbits immunized with C. trachomatis organisms. A major immunodominant region was strongly recognized by all antibodies. This region covers amino acids 152 to 302, consisting of three repeats (amino acids 152 to 201, 202 to 251, and 252 to 302). Each of the repeats contains multiple tyrosine residues that are phosphorylated by host cell kinases when Tarp is injected into host cells. Several other minor immunodominant regions were also identified, including those comprising amino acids 1 to 156, 310 to 431, and 582 to 682 (recognized by antisera from both humans and rabbits), that comprising amino acids 425 to 581 (recognized only by human antisera), and that comprising amino acids 683 to 847 (preferentially recognized by rabbit antisera). This immunodominance was also confirmed by the observations that six out of the nine monoclonal antibodies (MAbs) bound to the major immunodominant region and that the other three each bound to one of the minor fragments, comprising amino acids 1 to 119, 120 to 151, and 310 to 431. The antigenicity analyses have provided important information for further understanding the structure and function of Tarp.
Collapse
|
48
|
Zhou X, Konkel ME, Call DR. Regulation of type III secretion system 1 gene expression in Vibrio parahaemolyticus is dependent on interactions between ExsA, ExsC, and ExsD. Virulence 2010; 1:260-72. [PMID: 21178451 PMCID: PMC3073295 DOI: 10.4161/viru.1.4.12318] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 04/22/2010] [Accepted: 04/23/2010] [Indexed: 01/12/2023] Open
Abstract
Vibrio parahaemolyticus ExsA is the transcriptional regulator for type III secretion system 1 (T3SS1) while ExsD blocks T3SS1 expression. Herein we show that deletion of exsC from V. parahaemolyticus blocked synthesis of T3SS1-dependent proteins under inducing conditions (contact with HeLa cells), while in trans complementation of the ΔexsC strain with wild-type exsC restored protein synthesis. Under non-inducing conditions (Luria broth plus salt), in trans expression of exsC in a wild-type strain resulted in synthesis and secretion of T3SS1-dependent proteins. Deletion of exsC does not affect the synthesis of ExsA while expression of T3SS1 genes is independent of ExsC in the absence of ExsD. Co-expression of recombinant proteins with different antigenic tags demonstrated that ExsC binds ExsD and that the N-terminal amino acids of ExsC (positions 7 to 12) are required for binding. Co-expression and purification of antigentically tagged ExsA and ExsD demonstrated that ExsD directly binds ExsA and presumably prevents ExsA from binding promoter regions of T3SS1 genes. Collectively these data demonstrate that ExsD binds ExsA to block expression of T3SS1 genes, while ExsC binds ExsD to permit expression of T3SS1 genes. ExsA, ExsC, and ExsD from V. parahaemolyticus appear to be functional orthologues of their Pseudomonas aeruginosa counterparts.
Collapse
Affiliation(s)
- Xiaohui Zhou
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, USA
| | | | | |
Collapse
|
49
|
Abstract
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a 'master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.
Collapse
|
50
|
Sun X, Ge F, Xiao CL, Yin XF, Ge R, Zhang LH, He QY. Phosphoproteomic analysis reveals the multiple roles of phosphorylation in pathogenic bacterium Streptococcus pneumoniae. J Proteome Res 2010; 9:275-82. [PMID: 19894762 DOI: 10.1021/pr900612v] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Recent phosphoproteomic characterizations of Bacillus subtilis, Escherichia coli, Lactococcus lactis, Pseudomonas putida, and Pseudomonas aeruginosa have suggested that protein phosphorylation on serine, threonine, and tyrosine residues is a major regulatory post-translational modification in bacteria. In this study, we carried out a global and site-specific phosphoproteomic analysis on the Gram-positive pathogenic bacterium Streptococcus pneumoniae. One hundred and two unique phosphopeptides and 163 phosphorylation sites with distributions of 47%/44%/9% for Ser/Thr/Tyr phosphorylations from 84 S. pneumoniae proteins were identified through the combined use of TiO(2) enrichment and LC-MS/MS determination. The identified phosphoproteins were found to be involved in various biological processes including carbon/protein/nucleotide metabolisms, cell cycle and division regulation. A striking characteristic of S. pneumoniae phosphoproteome is the large number of multiple species-specific phosphorylated sites, indicating that high level of protein phosphorylation may play important roles in regulating many metabolic pathways and bacterial virulence.
Collapse
Affiliation(s)
- Xuesong Sun
- Institute of Life and Health Engineering and National Engineering Research Center for Genetic Medicine, Jinan University, Guangzhou 510632, China
| | | | | | | | | | | | | |
Collapse
|