1
|
Matsuo S, Yamazaki K, Yasui M, Abe Y, Uchida T. Cooling-rate dependence of the cryopreservation of aquaporin-overexpressing cells with a non-permeable cryoprotectant. Cryobiology 2025; 119:105237. [PMID: 40157198 DOI: 10.1016/j.cryobiol.2025.105237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025]
Abstract
Dehydration of intracellular water is an important factor in the cryopreservation of cells, but questions remain as to the appropriate amount and timing of dehydration and the detailed mechanism of the freezing process. Answering these questions will lead to improvements in cryopreservation methods that have remained unchanged for more than half a century and to an increase in the number of cell types that can be cryopreserved. Therefore, we aimed to reveal the time point when cells were dehydrated in their cooling process and how much their viabilities were improved by dehydration. We conducted cryopreservation experiments using cells with enhanced water permeability due to membrane overexpression of the water transport channel protein (AQP4). The AQP4-expressing cells or non-AQP4-expressing cells were cryopreserved under different cooling rates after addition of the membrane-permeable cryoprotectant (CPA) Me2SO, the non-membrane-permeable CPA trehalose, or no CPA. The results showed that no cryopreservation was successful without CPAs, even in the AQP4-expressing cells with increased water permeability. At slow freezing rates below 35 °C/min, viability with Me2SO was maintained with decreasing in the cooling rate, but with trehalose, the viability decreased. At cooling rates above 80 °C/min, the viability of AQP4-expressing cells was significantly higher than that of AQP4-non-expressing cells. These results suggest that dehydration due to the osmotic-pressure difference generated after extracellular freezing is fatal to cells.
Collapse
Affiliation(s)
- Sumire Matsuo
- Graduate School of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan.
| | - Kenji Yamazaki
- Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan
| | - Masato Yasui
- School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Youichiro Abe
- School of Medicine, Keio University, 35, Shinanomachi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Tsutomu Uchida
- Faculty of Engineering, Hokkaido University, N13-W8, Kita-ku, Sapporo, Hokkaido, 060-0628, Japan
| |
Collapse
|
2
|
Park Y, Kim B, Min J, Park W. Comamonas halotolerans sp. nov., isolated from the faecal sample of a zoo animal, Naemorhedus caudatus. Int J Syst Evol Microbiol 2025; 75. [PMID: 39878779 DOI: 10.1099/ijsem.0.006665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Strain NoAHT (=KACC 23135T=JCM 35999T), a novel Gram-negative, motile bacterium with a rod-shaped morphology, was isolated from the zoo animal faecal samples, specifically the long-tailed goral species Naemorhedus caudatus. The novel bacterial strain grew optimally in a nutrient broth medium under the following conditions: 1-2% (w/v) NaCl, pH 7-8 and 30 °C. The strain NoAHT exhibited high tolerance to NaCl, with the ability to tolerate up to 7% (w/v) NaCl. Based on phylogenetic analyses using 16S rRNA gene sequencing, strain NoAHT was found to have the closest relatedness to Comamonas jiangduensis YW1T (98.5%), Comamonas aquatica ATCC 11330T (97.9%), Comamonas resistens KCTC 82561T (97.9%), Comamonas fluminis CJ34T (97.7%) and Comamonas suwonensis EJ-4T (97.6%). The genome size and genomic DNA G+C content of strain NoAHT were 4.05 Mbp and 55.9 mol%, respectively. A whole-genome-level comparison of strain NoAHT with C. jiangduensis YWT, Comamonas kerstersii LMG 3475T, C. aquatica NBRC 14918T, Comamonas terrigena NBRC 12685T and C. fluminis CJ34T revealed the following orthologous average nucleotide identity values: 80.1, 79.0, 78.6, 76.3 and 75.2%, respectively. The major polar lipids of strain NoAHT were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. Considering our findings in chemotaxonomic, genotypic and phenotypic characteristics, strain NoAHT is identified as a novel species within the genus Comamonas, for which the name Comamonas halotolerans sp. nov. is proposed.
Collapse
Affiliation(s)
- Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Bitnara Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jihyeon Min
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | | |
Collapse
|
3
|
Rajput S, Gautam D, Vats A, Roshan M, Goyal P, Rana C, S M P, Ludri A, De S. Aquaporin (AQP) gene family in Buffalo and Goat: Molecular characterization and their expression analysis. Int J Biol Macromol 2024; 280:136145. [PMID: 39353522 DOI: 10.1016/j.ijbiomac.2024.136145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Aquaporins (AQPs) are essential membrane proteins facilitating water and small solute transport across cell membranes. Mammals have approximately 13 paralogs of AQPs that may have evolved through gene duplication events. These genes are present in two separate clusters within the genome. In the present study, comprehensive 13 AQP genes (AQP0-12) were cloned and characterized in buffalo and goat. The protein coding region of AQPs in both species ranged from 729 to 990 bps, corresponding to 263-330 amino acid residues. Two important residues including NPA motifs and ar/R selectivity filter were found conserved in all AQPs, except for AQP7, 11 and 12. AQP0, 2, 4, 5, 7, 9, 12 showed tissue-restricted expression, whereas AQP1, 3, 8, and 11 exhibited ubiquitous expression across several tissues. AQP10 was identified as a pseudogene in all artiodactyls. Transcript variants were identified in buffalo and goat, where some variants of goat AQP5 and 6 lacked important motifs. Evolutionary analysis indicated positive selection at or near the NPA motifs and ar/R selectivity filter of AQP0, 3, 6, 7, and 10 that may alter its structure and function. This study is crucial for future investigations aiming to study the molecular mechanisms of AQPs in response to various physiological conditions.
Collapse
Affiliation(s)
- Shiveeli Rajput
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Devika Gautam
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Ashutosh Vats
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Mayank Roshan
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Priyanka Goyal
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Chanchal Rana
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India
| | - Payal S M
- Animal Biochemistry Division, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Ashutosh Ludri
- Department of Physiology, ICAR-National Dairy Research Institute (NDRI), Karnal 132001, Haryana, India
| | - Sachinandan De
- ICAR-National Dairy Research Institute (NDRI), Animal Biotechnology Division, Animal Genomics Lab, Karnal 132001, Haryana, India.
| |
Collapse
|
4
|
Irisarri I, Lorente-Martínez H, Strassert JFH, Agorreta A, Zardoya R, San Mauro D, de Vries J. Early Diversification of Membrane Intrinsic Proteins (MIPs) in Eukaryotes. Genome Biol Evol 2024; 16:evae164. [PMID: 39058319 PMCID: PMC11316224 DOI: 10.1093/gbe/evae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Membrane intrinsic proteins (MIPs), including aquaporins (AQPs) and aquaglyceroporins (GLPs), form an ancient family of transporters for water and small solutes across biological membranes. The evolutionary history and functions of MIPs have been extensively studied in vertebrates and land plants, but their widespread presence across the eukaryotic tree of life suggests both a more complex evolutionary history and a broader set of functions than previously thought. That said, the early evolution of MIPs remains obscure. The presence of one GLP and four AQP clades across both bacteria and archaea suggests that the first eukaryotes could have possessed up to five MIPs. Here, we report on a previously unknown richness in MIP diversity across all major eukaryotic lineages, including unicellular eukaryotes, which make up the bulk of eukaryotic diversity. Three MIP clades have likely deep evolutionary origins, dating back to the last eukaryotic common ancestor (LECA), and support the presence of a complex MIP repertoire in early eukaryotes. Overall, our findings highlight the growing complexity of the reconstructed LECA genome: the dynamic evolutionary history of MIPs was set in motion when eukaryotes were in their infancy followed by radiative bursts across all main eukaryotic lineages.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, 20146 Hamburg, Germany
| | - Héctor Lorente-Martínez
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jürgen F H Strassert
- Evolutionary and Integrative Ecology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, 12587 Berlin, Germany
| | - Ainhoa Agorreta
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Rafael Zardoya
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006 Madrid, Spain
| | - Diego San Mauro
- Department of Biodiversity Ecology and Evolution, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jan de Vries
- Department of Applied Bioinformatics, University of Goettingen, Institute for Microbiology and Genetics, 37077 Göttingen, Germany
- Campus Institute Data Science (CIDAS), 37077 Göttingen, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, University of Goettingen, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Byrt CS, Zhang RY, Magrath I, Chan KX, De Rosa A, McGaughey S. Exploring aquaporin functions during changes in leaf water potential. FRONTIERS IN PLANT SCIENCE 2023; 14:1213454. [PMID: 37615024 PMCID: PMC10442719 DOI: 10.3389/fpls.2023.1213454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/04/2023] [Indexed: 08/25/2023]
Abstract
Maintenance of optimal leaf tissue humidity is important for plant productivity and food security. Leaf humidity is influenced by soil and atmospheric water availability, by transpiration and by the coordination of water flux across cell membranes throughout the plant. Flux of water and solutes across plant cell membranes is influenced by the function of aquaporin proteins. Plants have numerous aquaporin proteins required for a multitude of physiological roles in various plant tissues and the membrane flux contribution of each aquaporin can be regulated by changes in protein abundance, gating, localisation, post-translational modifications, protein:protein interactions and aquaporin stoichiometry. Resolving which aquaporins are candidates for influencing leaf humidity and determining how their regulation impacts changes in leaf cell solute flux and leaf cavity humidity is challenging. This challenge involves resolving the dynamics of the cell membrane aquaporin abundance, aquaporin sub-cellular localisation and location-specific post-translational regulation of aquaporins in membranes of leaf cells during plant responses to changes in water availability and determining the influence of cell signalling on aquaporin permeability to a range of relevant solutes, as well as determining aquaporin influence on cell signalling. Here we review recent developments, current challenges and suggest open opportunities for assessing the role of aquaporins in leaf substomatal cavity humidity regulation.
Collapse
|
6
|
Zhan G, Guo J, Tian Y, Ji F, Bai X, Zhao J, Guo J, Kang Z. High-throughput RNA sequencing reveals differences between the transcriptomes of the five spore forms of Puccinia striiformis f. sp. tritici, the wheat stripe rust pathogen. STRESS BIOLOGY 2023; 3:29. [PMID: 37676525 PMCID: PMC10441873 DOI: 10.1007/s44154-023-00107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 07/11/2023] [Indexed: 09/08/2023]
Abstract
The devastating wheat stripe (yellow) rust pathogen, Puccinia striiformis f. sp. tritici (Pst), is a macrocyclic and heteroecious fungus. Pst produces urediniospores and teliospores on its primary host, wheat, and pycniospores and aeciospores are produced on its alternate hosts, barberry (Berberis spp.) or mahonia (Mahonia spp.). Basidiospores are developed from teliospores and infect alternate hosts. These five spore forms play distinct roles in Pst infection, disease development, and fungal survival, etc. However, the specific genes and mechanisms underlying these functional differences are largely unknown. In this study, we performed, for the first time in rust fungi, the deep RNA sequencing to examine the transcriptomic shift among all five Pst spore forms. Among a total of 29,591 identified transcripts, 951 were specifically expressed in basidiospores, whereas 920, 761, 266, and 110 were specific for teliospores, pycniospores, aeciospores, and urediniospores, respectively. Additionally, transcriptomes of sexual spores, namely pycniospores and basidiospores, showed significant differences from those of asexual spores (urediniospores, teliospores, and aeciospores), and transcriptomes of urediniospores and aeciospores were more similar to each other than to the three other spore forms. Especially, the basidiospores and pycniospores which infected the berberis shows wide differences in the cell wall degrading-enzymes and mating and pheromone response genes. Besides, we also found that there are 6234 differential expressed genes between the urediniospores and pycniospores, while only have 3 genes have alternative splicing enents, suggesting that differential genes expression may make more contribution than AS. This comprehensive transcriptome profiling can substantially improve our understanding of the developmental biology of the wheat stripe rust fungus.
Collapse
Affiliation(s)
- Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Yuan Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, P.R. China
| | - Fan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jing Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, P.R. China.
| |
Collapse
|
7
|
Bhowmick S, Shenouda ML, Tschowri N. Osmotic stress responses and the biology of the second messenger c-di-AMP in Streptomyces. MICROLIFE 2023; 4:uqad020. [PMID: 37223731 PMCID: PMC10117811 DOI: 10.1093/femsml/uqad020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 04/10/2023] [Indexed: 05/25/2023]
Abstract
Streptomyces are prolific antibiotic producers that thrive in soil, where they encounter diverse environmental cues, including osmotic challenges caused by rainfall and drought. Despite their enormous value in the biotechnology sector, which often relies on ideal growth conditions, how Streptomyces react and adapt to osmotic stress is heavily understudied. This is likely due to their complex developmental biology and an exceptionally broad number of signal transduction systems. With this review, we provide an overview of Streptomyces' responses to osmotic stress signals and draw attention to open questions in this research area. We discuss putative osmolyte transport systems that are likely involved in ion balance control and osmoadaptation and the role of alternative sigma factors and two-component systems (TCS) in osmoregulation. Finally, we highlight the current view on the role of the second messenger c-di-AMP in cell differentiation and the osmotic stress responses with specific emphasis on the two models, S. coelicolor and S. venezuelae.
Collapse
Affiliation(s)
- Sukanya Bhowmick
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mary L Shenouda
- Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Natalia Tschowri
- Corresponding author. Institute of Microbiology, Leibniz Universität Hannover, 30419 Hannover, Germany. E-mail:
| |
Collapse
|
8
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
9
|
Volkart S, Kym U, Braissant O, Delgado-Eckert E, Al-Samir S, Angresius R, Huo Z, Holland-Cunz S, Gros SJ. AQP1 in the Gastrointestinal Tract of Mice: Expression Pattern and Impact of AQP1 Knockout on Colonic Function. Int J Mol Sci 2023; 24:ijms24043616. [PMID: 36835026 PMCID: PMC9959819 DOI: 10.3390/ijms24043616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
Aquaporin 1 (AQP1) is one of thirteen known mammalian aquaporins. Its main function is the transport of water across cell membranes. Lately, a role of AQP has been attributed to other physiological and pathological functions including cell migration and peripheral pain perception. AQP1 has been found in several parts of the enteric nervous system, e.g., in the rat ileum and in the ovine duodenum. Its function in the intestine appears to be multifaceted and is still not completely understood. The aim of the study was to analyze the distribution and localization of AQP1 in the entire intestinal tract of mice. AQP1 expression was correlated with the hypoxic expression profile of the various intestinal segments, intestinal wall thickness and edema, as well as other aspects of colon function including the ability of mice to concentrate stools and their microbiome composition. AQP1 was found in a specific pattern in the serosa, the mucosa, and the enteric nervous system throughout the gastrointestinal tract. The highest amount of AQP1 in the gastrointestinal tract was found in the small intestine. AQP1 expression correlated with the expression profiles of hypoxia-dependent proteins such as HIF-1α and PGK1. Loss of AQP1 through knockout of AQP1 in these mice led to a reduced amount of bacteroidetes and firmicutes but an increased amount of the rest of the phyla, especially deferribacteres, proteobacteria, and verrucomicrobia. Although AQP-KO mice retained gastrointestinal function, distinct changes regarding the anatomy of the intestinal wall including intestinal wall thickness and edema were observed. Loss of AQP1 might interfere with the ability of the mice to concentrate their stool and it is associated with a significantly different composition of the of the bacterial stool microbiome.
Collapse
Affiliation(s)
- Stefanie Volkart
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Urs Kym
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Olivier Braissant
- Microcalorimetry Unit, Department of Biomedical Engineering, University of Basel, 4001 Basel, Switzerland
| | - Edgar Delgado-Eckert
- Computational Physiology and Biostatistics, Department of Biomedical Engineering at University of Basel and University Children’s Hospital Basel, 4056 Basel, Switzerland
| | - Samer Al-Samir
- Vegetative Physiologie 4220, Zentrum Physiologie, Medizinische Hochschule Hannover, 30625 Hannover, Germany
| | - Rebecca Angresius
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Zihe Huo
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Stefan Holland-Cunz
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Department of Clinical Research, University of Basel, 4001 Basel, Switzerland
| | - Stephanie J. Gros
- Department of Pediatric Surgery, University Children’s Hospital Basel, 4056 Basel, Switzerland
- Correspondence:
| |
Collapse
|
10
|
de Sousa LP, Cipriano MAP, da Silva MJ, Patrício FRA, Freitas SDS, Carazzolle MF, Mondego JMC. Functional genomics analysis of a phyllospheric Pseudomonas spp with potential for biological control against coffee rust. BMC Microbiol 2022; 22:222. [PMID: 36131235 PMCID: PMC9494895 DOI: 10.1186/s12866-022-02637-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/13/2022] [Indexed: 11/14/2022] Open
Abstract
Background Pseudomonas spp. promotes plant growth and colonizes a wide range of environments. During the annotation of a Coffea arabica ESTs database, we detected a considerable number of contaminant Pseudomonas sequences, specially associated with leaves. The genome of a Pseudomonas isolated from coffee leaves was sequenced to investigate in silico information that could offer insights about bacterial adaptation to coffee phyllosphere. In parallel, several experiments were performed to confirm certain physiological characteristics that could be associated with phyllospheric behavior. Finally, in vivo and in vitro experiments were carried out to verify whether this isolate could serve as a biocontrol agent against coffee rust and how the isolate could act against the infection. Results The isolate showed several genes that are associated with resistance to environmental stresses, such as genes encoding heat/cold shock proteins, antioxidant enzymes, carbon starvation proteins, proteins that control osmotic balance and biofilm formation. There was an increase of exopolysaccharides synthesis in response to osmotic stress, which may protect cells from dessication on phyllosphere. Metabolic pathways for degradation and incorporation into citrate cycle of phenolic compounds present in coffee were found, and experimentally confirmed. In addition, MN1F was found to be highly tolerant to caffeine. The experiments of biocontrol against coffee leaf rust showed that the isolate can control the progress of the disease, most likely through competition for resources. Conclusion Genomic analysis and experimental data suggest that there are adaptations of this Pseudomonas to live in association with coffee leaves and to act as a biocontrol agent.
Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02637-4.
Collapse
Affiliation(s)
- Leandro Pio de Sousa
- Instituto Agronômico de Campinas, IAC, Campinas, SP, Brazil.,Programa de Pós-Graduação Em Genética E Biologia Molecular, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
11
|
Riu F, Ruda A, Ibba R, Sestito S, Lupinu I, Piras S, Widmalm G, Carta A. Antibiotics and Carbohydrate-Containing Drugs Targeting Bacterial Cell Envelopes: An Overview. Pharmaceuticals (Basel) 2022; 15:942. [PMID: 36015090 PMCID: PMC9414505 DOI: 10.3390/ph15080942] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/20/2022] [Indexed: 02/07/2023] Open
Abstract
Certain bacteria constitute a threat to humans due to their ability to escape host defenses as they easily develop drug resistance. Bacteria are classified into gram-positive and gram-negative according to the composition of the cell membrane structure. Gram-negative bacteria have an additional outer membrane (OM) that is not present in their gram-positive counterpart; the latter instead hold a thicker peptidoglycan (PG) layer. This review covers the main structural and functional properties of cell wall polysaccharides (CWPs) and PG. Drugs targeting CWPs are discussed, both noncarbohydrate-related (β-lactams, fosfomycin, and lipopeptides) and carbohydrate-related (glycopeptides and lipoglycopeptides). Bacterial resistance to these drugs continues to evolve, which calls for novel antibacterial approaches to be developed. The use of carbohydrate-based vaccines as a valid strategy to prevent bacterial infections is also addressed.
Collapse
Affiliation(s)
- Federico Riu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Alessandro Ruda
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Roberta Ibba
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
| | - Ilenia Lupinu
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Sandra Piras
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| | - Göran Widmalm
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden; (A.R.); (G.W.)
| | - Antonio Carta
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy; (F.R.); (I.L.); (S.P.); (A.C.)
| |
Collapse
|
12
|
Navazas A, Mesa V, Thijs S, Fuente-Maqueda F, Vangronsveld J, Peláez AI, Cuypers A, González A. Bacterial inoculant-assisted phytoremediation affects trace element uptake and metabolite content in Salix atrocinerea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153088. [PMID: 35063508 DOI: 10.1016/j.scitotenv.2022.153088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Natural plant-associated microorganisms are of critical importance to plant growth and survival in field conditions under toxic concentrations of trace elements (TE) and these plant-microbial processes can be harnessed to enhance phytoremediation. The total bacterial diversity from grey willow (Salix atrocinerea) on a brownfield heavily-polluted with lead (Pb) and arsenic (As) was studied through pyrosequencing. Culturable bacteria were isolated and in vitro tested for plant growth-promotion (PGP) traits, arsenic (As) tolerance and impact on As speciation. Two of the most promising bacterial strains - the root endophyte Pantoea sp. AV62 and the rhizospheric strain Rhodococcus erythropolis AV96 - were inoculated in field to S. atrocinerea. This bioaugmentation resulted in higher As and Pb concentrations in both, roots and leaves of bacterial-inoculated plants as compared to non-inoculated plants. In consequence, bacterial bioaugmentation also affected parameters related to plant growth, oxidative stress, the levels of phytochelatins and phenylpropanoids, together with the differential expression of genes related to these tolerance mechanisms to TE in leaves. This study extends our understanding about plant-bacterial interactions and provides a solid basis for further bioaugmentation studies aiming to improve TE phytoremediation efficiency and predictability in the field.
Collapse
Affiliation(s)
- Alejandro Navazas
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain; Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Victoria Mesa
- Faculty of Pharmacy, Université de Paris, UMR-S1139, F-75006 Paris, France
| | - Sofie Thijs
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | | | - Jaco Vangronsveld
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium; Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Lublin, Poland
| | - Ana I Peláez
- Area of Microbiology, Department of Functional Biology and Environmental Biogeochemistry and Raw Materials Group, University of Oviedo, Oviedo, Spain; University Institute of Biotechnology of Asturias (IUBA), University of Oviedo, Oviedo, Spain
| | - Ann Cuypers
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, B-3590 Diepenbeek, Belgium
| | - Aida González
- Department of Organisms and Systems Biology, Area of Plant Physiology, University of Oviedo, Catedrático Rodrigo Uría s/n, 33006 Oviedo, Spain.
| |
Collapse
|
13
|
Jia Y, Xu F, Liu X. Duplication and subsequent functional diversification of aquaporin family in Pacific abalone Haliotis discus hannai. Mol Phylogenet Evol 2022; 168:107392. [PMID: 35033672 DOI: 10.1016/j.ympev.2022.107392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 09/22/2021] [Accepted: 11/12/2021] [Indexed: 01/29/2023]
Abstract
Aquaporins (AQPs) are a group of proteins that evolved to mediate specific permeation of water and other small solutes, playing important roles in osmoregulation and nutrition, especially for aquatic animals. Genome-wide characterization of the AQP family in a typical mollusc, Pacific abalone, suggested that tandem duplication and retroduplication led to the dramatic expansion and diversification of AQP genes. Structural analysis indicated that tandem duplicated AQPs showed abnormal characteristics. The conserved amino acids in the key site of the Ar/R region were replaced by the others. These substitutions altered the pore diameter and properties of the inner surface and could accommodate the pass through of other molecules except water. Functional analysis indicated that abnormal Ar/R region of the tandemly adjacent members led to the different permeability, suggesting the neofunctionalization of tandemly duplicated genes. Mutation analysis indicated that at the key site of Ar/R region, just a single amino acid substitute could alter the permeability of HdAQPs, further explaining the mechanism of neofunctionalization between the tandem duplicated HdAQPs. Our observations provided strong evidence that duplication and subsequent neofunctionalization have led to structural and functional diversity of AQPs in Pacific abalone, providing insights into the evolution of AQPs in molluscs.
Collapse
Affiliation(s)
- Yanglei Jia
- Fishery College of Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Xiao Liu
- Fishery College of Zhejiang Ocean University, Zhoushan, Zhejiang, China.
| |
Collapse
|
14
|
Alkhalifa H, Mohammed F, Taurin S, Greish K, Taha S, Fredericks S. Inhibition of aquaporins as a potential adjunct to breast cancer cryotherapy. Oncol Lett 2021; 21:458. [PMID: 33907568 PMCID: PMC8063341 DOI: 10.3892/ol.2021.12719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cryoablation is an emerging type of treatment for cancer. The sensitization of tumors using cryosensitizing agents prior to treatment enhances ablation efficiency and may improve clinical outcomes. Water efflux, which is regulated by aquaporin channels, contributes to cancer cell damage achieved through cryoablation. An increase in aquaporin (AQP) 3 is cryoprotective, whereas its inhibition augments cryodamage. The present study aimed to investigate aquaporin (AQP1, AQP3 and AQP5) gene expression and cellular localization in response to cryoinjury. Cultured breast cancer cells (MDA-MB-231 and MCF-7) were exposed to freezing to induce cryoinjury. RNA and protein extracts were then analyzed using reverse transcription-quantitative PCR and western blotting, respectively. Localization of aquaporins was studied using immunocytochemistry. Additionally, cells were transfected with small interfering RNA to silence aquaporin gene expression and cell viability was assessed using the Sulforhodamine B assay. Cryoinjury did not influence gene expression of AQPs, except for a 4-fold increase of AQP1 expression in MDA-MD-231 cells. There were no clear differences in AQP protein expression for either cell lines upon exposure to frozen and non-frozen temperatures, with the exception of fainter AQP5 bands for non-frozen MCF-7 cells. The exposure of cancer cells to freezing temperatures altered the localization of AQP1 and AQP3 proteins in both MCF-7 and MDA-MD-231 cells. The silencing of AQP1, AQP3 and AQP5 exacerbated MDA-MD-231 cell damage associated with freezing compared with control siRNA. This was also observed with AQP3 and AQP5 silencing in MCF-7 cells. Inhibition of aquaporins may potentially enhance cryoinjury. This cryosensitizing process may be used as an adjunct to breast cancer cryotherapy, especially in the border area targeted by cryoablation where freezing temperatures are not cold enough to induce cellular damage.
Collapse
Affiliation(s)
- Haifa Alkhalifa
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
- Department of Science, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Fatima Mohammed
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| | - Sebastien Taurin
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Khaled Greish
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Safa Taha
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Princess Al-Jawhara Centre for Molecular Medicine, Arabian Gulf University, Segaya, Manama 328, Kingdom of Bahrain
| | - Salim Fredericks
- Department of Basic Medical Sciences, Royal College of Surgeons in Ireland, Medical University of Bahrain, Adliya 15503, Kingdom of Bahrain
| |
Collapse
|
15
|
Bill RM, Hedfalk K. Aquaporins - Expression, purification and characterization. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183650. [PMID: 34019902 DOI: 10.1016/j.bbamem.2021.183650] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022]
Abstract
Aquaporin water channels facilitate the bi-directional flow of water and small, neutral solutes down an osmotic gradient in all kingdoms of life. Over the last two decades, the availability of high-quality protein has underpinned progress in the structural and functional characterization of these water channels. In particular, recombinant protein technology has guaranteed the supply of aquaporin samples that were of sufficient quality and quantity for further study. Here we review the features of successful expression, purification and characterization strategies that have underpinned these successes and that will drive further breakthroughs in the field. Overall, Escherichia coli is a suitable host for prokaryotic isoforms, while Pichia pastoris is the most commonly-used recombinant host for eukaryotic variants. Generally, a two-step purification procedure is suitable after solubilization in glucopyranosides and most structures are determined by X-ray following crystallization.
Collapse
Affiliation(s)
- Roslyn M Bill
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kristina Hedfalk
- Department of Chemistry and Molecular Biology, Gothenburg University, Box 462, 405 30 Göteborg, Sweden.
| |
Collapse
|
16
|
Ai G, Xia Q, Song T, Li T, Zhu H, Peng H, Liu J, Fu X, Zhang M, Jing M, Xia A, Dou D. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling. PLoS Pathog 2021; 17:e1009388. [PMID: 33711077 PMCID: PMC7990189 DOI: 10.1371/journal.ppat.1009388] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/24/2021] [Accepted: 02/15/2021] [Indexed: 12/31/2022] Open
Abstract
Phytophthora genomes encode a myriad of Crinkler (CRN) effectors, some of which contain putative kinase domains. Little is known about the host targets of these kinase-domain-containing CRNs and their infection-promoting mechanisms. Here, we report the host target and functional mechanism of a conserved kinase CRN effector named CRN78 in a notorious oomycete pathogen, Phytophthora sojae. CRN78 promotes Phytophthora capsici infection in Nicotiana benthamiana and enhances P. sojae virulence on the host plant Glycine max by inhibiting plant H2O2 accumulation and immunity-related gene expression. Further investigation reveals that CRN78 interacts with PIP2-family aquaporin proteins including NbPIP2;2 from N. benthamiana and GmPIP2-13 from soybean on the plant plasma membrane, and membrane localization is necessary for virulence of CRN78. Next, CRN78 promotes phosphorylation of NbPIP2;2 or GmPIP2-13 using its kinase domain in vivo, leading to their subsequent protein degradation in a 26S-dependent pathway. Our data also demonstrates that NbPIP2;2 acts as a H2O2 transporter to positively regulate plant immunity and reactive oxygen species (ROS) accumulation. Phylogenetic analysis suggests that the phosphorylation sites of PIP2 proteins and the kinase domains of CRN78 homologs are highly conserved among higher plants and oomycete pathogens, respectively. Therefore, this study elucidates a conserved and novel pathway used by effector proteins to inhibit host cellular defenses by targeting and hijacking phosphorylation of plant aquaporin proteins. CRN effectors are conserved in diverse pathogens of plants, animals, and insects, and highly expanded in Phytophthora species. Nevertheless, little is known about their functions, targets, and action mechanisms. Here, we characterized a kinase-domain-containing CRN effector (CRN78) in a notorious oomycete pathogen, P. sojae. CRN78 is a virulence-essential effector of P. sojae infection, and acts via suppression of plant H2O2 accumulation and defense gene expressions. We demonstrated that CRN78 might interact with plant PIP2-family aquaporin proteins, including N. benthamiana NbPIP2;2 and soybean GmPIP2-13, and regulate their phosphorylation, resulting in subsequent 26S-dependent protein degradation. Furthermore, we revealed that NbPIP2;2 was an apoplast-to-cytoplast H2O2 transporter and positively regulated plant immunity and ROS accumulation. Importantly, this phosphorylation may be highly conserved in many plant aquaporin proteins. Thus, this study identifies a virulence-related effector from P. sojae and a novel plant immunity-related gene, and reveals a detailed mechanism of effector-mediated phosphorylation and degradation of plant aquaporin proteins.
Collapse
Affiliation(s)
- Gan Ai
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qingyue Xia
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Tianqiao Song
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- Institute of plant protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tianli Li
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hai Zhu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Hao Peng
- Department of Crop and Soil Sciences, Washington State University, Pullman, United States of America
| | - Jin Liu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Fu
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ming Zhang
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Maofeng Jing
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Daolong Dou
- Key Laboratory of Plant Immunity, Academy for Advanced Interdisciplinary Studies, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
17
|
Li G, Chen T, Zhang Z, Li B, Tian S. Roles of Aquaporins in Plant-Pathogen Interaction. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1134. [PMID: 32882951 PMCID: PMC7569825 DOI: 10.3390/plants9091134] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/21/2022]
Abstract
Aquaporins (AQPs) are a class of small, membrane channel proteins present in a wide range of organisms. In addition to water, AQPs can facilitate the efficient and selective flux of various small solutes involved in numerous essential processes across membranes. A growing body of evidence now shows that AQPs are important regulators of plant-pathogen interaction, which ultimately lead to either plant immunity or pathogen pathogenicity. In plants, AQPs can mediate H2O2 transport across plasma membranes (PMs) and contribute to the activation of plant defenses by inducing pathogen-associated molecular pattern (PAMP)-triggered immunity and systemic acquired resistance (SAR), followed by downstream defense reactions. This involves the activation of conserved mitogen-activated protein kinase (MAPK) signaling cascades, the production of callose, the activation of NPR1 and PR genes, as well as the opening and closing of stomata. On the other hand, pathogens utilize aquaporins to mediate reactive oxygen species (ROS) signaling and regulate their normal growth, development, secondary or specialized metabolite production and pathogenicity. This review focuses on the roles of AQPs in plant immunity, pathogenicity, and communications during plant-pathogen interaction.
Collapse
Affiliation(s)
- Guangjin Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100093, China; (G.L.); (T.C.); (Z.Z.); (B.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
18
|
Ishibashi K, Tanaka Y, Morishita Y. Perspectives on the evolution of aquaporin superfamily. VITAMINS AND HORMONES 2020; 112:1-27. [DOI: 10.1016/bs.vh.2019.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
19
|
Abstract
Aquaporins are integral membrane proteins that facilitate the diffusion of water and other small, uncharged solutes across the cellular membrane and are widely distributed in organisms from humans to bacteria. However, the characteristics of prokaryotic aquaporins remain largely unknown. We investigated the distribution and sequence characterization of aquaporins in prokaryotic organisms and summarized the transport characteristics, physiological functions, and regulatory mechanisms of prokaryotic aquaporins. Aquaporin homologues were identified in 3315 prokaryotic genomes retrieved from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, but the protein clustering pattern is not completely congruent with the phylogeny of the species that carry them. Moreover, prokaryotic aquaporins display diversified aromatic/arginine constriction region (ar/R) amino acid compositions, implying multiple functions. The typical water and glycerol transport characterization, physiological functions, and regulations have been extensively studied in Escherichia coli AqpZ and GlpF. A Streptococcus aquaporin has recently been verified to facilitate the efflux of endogenous H2O2, which not only contributes to detoxification but also to species competitiveness, improving our understanding of prokaryotic aquaporins. Furthermore, recent studies revealed novel regulatory mechanisms of prokaryotic aquaporins at post-translational level. Thus, we propose that intensive investigation on prokaryotic aquaporins would extend the functional categories and working mechanisms of these ubiquitous, intrinsic membrane proteins.
Collapse
|
20
|
Šoltésová M, Elicharová H, Srb P, Růžička M, Janisova L, Sychrová H, Lang J. Nuclear magnetic resonance investigation of water transport through the plasma membrane of various yeast species. FEMS Microbiol Lett 2019; 366:5645394. [PMID: 31778539 DOI: 10.1093/femsle/fnz220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/25/2019] [Indexed: 12/27/2022] Open
Abstract
A specific technique of nuclear magnetic resonance (NMR) spectroscopy, filter-exchange spectroscopy (FEXSY), was employed to investigate water transport through the plasma membrane in intact yeast cells. This technique allows water transport to be monitored directly, thus avoiding the necessity to subject the cells to any rapid change in the external conditions, e.g. osmotic shock. We established a sample preparation protocol, a data analysis procedure and verified the applicability of FEXSY experiments. We recorded the exchange rates in the temperature range 10-40°C for Saccharomyces cerevisiae. The resulting activation energy of 29 kJ mol-1 supports the hypothesis that water exchange is facilitated by water channels-aquaporins. Furthermore, we measured for the first time water exchange rates in three other phylogenetically unrelated yeast species (Schizosaccharomyces pombe, Candida albicans and Zygosaccharomyces rouxii) and observed remarkably different water exchange rates between these species. Findings of our work contribute to a better understanding of as fundamental a cell process as the control of water transport through the plasma membrane.
Collapse
Affiliation(s)
- Mária Šoltésová
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-18000 Prague 8, Czech Republic
| | - Hana Elicharová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Pavel Srb
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-18000 Prague 8, Czech Republic
| | - Michal Růžička
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Larisa Janisova
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Heyrovského nám. 2, CZ-16206 Prague 6, Czech Republic
| | - Hana Sychrová
- Department of Membrane Transport, Institute of Physiology, Czech Academy of Sciences, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Jan Lang
- Department of Low Temperature Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, CZ-18000 Prague 8, Czech Republic
| |
Collapse
|
21
|
Abstract
The cytoplasm of bacterial cells is a highly crowded cellular compartment that possesses considerable osmotic potential. As a result, and owing to the semipermeable nature of the cytoplasmic membrane and the semielastic properties of the cell wall, osmotically driven water influx will generate turgor, a hydrostatic pressure considered critical for growth and viability. Both increases and decreases in the external osmolarity inevitably trigger water fluxes across the cytoplasmic membrane, thus impinging on the degree of cellular hydration, molecular crowding, magnitude of turgor, and cellular integrity. Here, we assess mechanisms that permit the perception of osmotic stress by bacterial cells and provide an overview of the systems that allow them to genetically and physiologically cope with this ubiquitous environmental cue. We highlight recent developments implicating the secondary messenger c-di-AMP in cellular adjustment to osmotic stress and the role of osmotic forces in the life of bacteria-assembled in biofilms.
Collapse
Affiliation(s)
- Erhard Bremer
- Laboratory for Microbiology, Department of Biology; and Center for Synthetic Microbiology, Philipps-Universität Marburg, 35043 Marburg, Germany;
| | - Reinhard Krämer
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany;
| |
Collapse
|
22
|
Geiss L, do Amaral MCF, Frisbie J, Goldstein DL, Krane CM. Postfreeze viability of erythrocytes from Dryophytes chrysoscelis. JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2019; 331:308-313. [PMID: 30933437 DOI: 10.1002/jez.2262] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
Abstract
Dryophytes chrysoscelis (formerly Hyla chrysoscelis, Cope's gray treefrog) is a freeze-tolerant anuran that accumulates glycerol and urea during cold acclimation and freezing. It is hypothesized that glycerol and urea function as cryoprotectants by minimizing osmotically induced cell damage during freezing and thawing, thereby improving the postfreeze viability of red blood cells (RBCs) when frozen in medium containing those solutes. To test this, erythrocytes were obtained from warm (22°C) and cold-acclimated (4°C) frogs and suspended in 280 mOsM phosphate-buffered saline (PBS). RBCs were frozen in 280 mOsM, isosmotic/isotonic, PBS, or in PBS made hyperosmotic by addition of 150 mM solutes. Postfreeze viability was determined with a hemolysis assay. Postfreeze viability of cells from warm-acclimated frogs improved from 18.9 ± 1.3% in PBS to 47.4 ± 5.2% in PBS with urea ( p < 0.01). The addition of other solutes (glycerol, glucose, NaCl, or sorbitol) had no effect. RBCs from cold-acclimated frogs had 45.8 ± 3.4% viability when frozen in 280 mOsM PBS, and this improved to 71.6 ± 8.9% or 71.9 ± 1.6%, respectively, when frozen with glycerol ( p < 0.01) or urea ( p < 0.001). The viability of RBCs from cold-acclimated frogs was not different between unfrozen cells 86.7-88.4%) and those frozen with glycerol (71.6 ± 8.9%, p > 0.05) or with urea (71.9 ± 1.6%, p > 0.05). These data suggest that (a) cold acclimation induces cellular changes in RBCs that result in improved postfreeze viability, and (b) glycerol and urea are part of a complex cryoprotectant system in D. chrysoscelis.
Collapse
Affiliation(s)
- Loren Geiss
- Department of Biology, University of Dayton, Dayton, Ohio
| | | | - James Frisbie
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | - David L Goldstein
- Department of Biological Sciences, Wright State University, Dayton, Ohio
| | | |
Collapse
|
23
|
Madueño L, Coppotelli B, Festa S, Alvarez H, Morelli I. Insights into the mechanisms of desiccation resistance of the Patagonian PAH-degrading strainSphingobiumsp. 22B. J Appl Microbiol 2018; 124:1532-1543. [DOI: 10.1111/jam.13742] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 02/09/2018] [Accepted: 02/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- L. Madueño
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - B.M. Coppotelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - S. Festa
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
| | - H.M. Alvarez
- INBIOP (Instituto de Biociencias de la Patagonia); Consejo Nacional de Investigaciones Científicas y Técnicas; Facultad de Ciencias Naturales; Universidad Nacional de la Patagonia San Juan Bosco; Comodoro Rivadavia Chubut Argentina
| | - I.S. Morelli
- Centro de Investigación y Desarrollo en Fermentaciones Industriales; CINDEFI, (UNLP-CCT-La Plata, CONICET); La Plata Buenos Aires Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC-PBA); Buenos Aires Argentina
| |
Collapse
|
24
|
Sützl L, Laurent CVFP, Abrera AT, Schütz G, Ludwig R, Haltrich D. Multiplicity of enzymatic functions in the CAZy AA3 family. Appl Microbiol Biotechnol 2018; 102:2477-2492. [PMID: 29411063 PMCID: PMC5847212 DOI: 10.1007/s00253-018-8784-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/12/2018] [Accepted: 01/14/2018] [Indexed: 11/29/2022]
Abstract
The CAZy auxiliary activity family 3 (AA3) comprises enzymes from the glucose-methanol-choline (GMC) family of oxidoreductases, which assist the activity of other AA family enzymes via their reaction products or support the action of glycoside hydrolases in lignocellulose degradation. The AA3 family is further divided into four subfamilies, which include cellobiose dehydrogenase, glucose oxidoreductases, aryl-alcohol oxidase, alcohol (methanol) oxidase, and pyranose oxidoreductases. These different enzymes catalyze a wide variety of redox reactions with respect to substrates and co-substrates. The common feature of AA3 family members is the formation of key metabolites such as H2O2 or hydroquinones, which are required by other AA enzymes. The multiplicity of enzymatic functions in the AA3 family is reflected by the multigenicity of AA3 genes in fungi, which also depends on their lifestyle. We provide an overview of the phylogenetic, molecular, and catalytic properties of AA3 enzymes and discuss their interactions with other carbohydrate-active enzymes.
Collapse
Affiliation(s)
- Leander Sützl
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Christophe V F P Laurent
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Annabelle T Abrera
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- University of the Philippines Los Baños, College Laguna, Los Baños, Philippines
| | - Georg Schütz
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Roland Ludwig
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria
| | - Dietmar Haltrich
- Food Biotechnology Laboratory, Department of Food Science and Technology, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 11, A-1190, Wien, Austria.
- Doctoral Programme BioToP-Biomolecular Technology of Proteins, BOKU-University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190, Wien, Austria.
| |
Collapse
|
25
|
León MJ, Hoffmann T, Sánchez-Porro C, Heider J, Ventosa A, Bremer E. Compatible Solute Synthesis and Import by the Moderate Halophile Spiribacter salinus: Physiology and Genomics. Front Microbiol 2018; 9:108. [PMID: 29497403 PMCID: PMC5818414 DOI: 10.3389/fmicb.2018.00108] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/17/2018] [Indexed: 11/13/2022] Open
Abstract
Members of the genus Spiribacter are found worldwide and are abundant in ecosystems possessing intermediate salinities between seawater and saturated salt concentrations. Spiribacter salinus M19-40 is the type species of this genus and its first cultivated representative. In the habitats of S. salinus M19-40, high salinity is a key determinant for growth and we therefore focused on the cellular adjustment strategy to this persistent environmental challenge. We coupled these experimental studies to the in silico mining of the genome sequence of this moderate halophile with respect to systems allowing this bacterium to control its potassium and sodium pools, and its ability to import and synthesize compatible solutes. S. salinus M19-40 produces enhanced levels of the compatible solute ectoine, both under optimal and growth-challenging salt concentrations, but the genes encoding the corresponding biosynthetic enzymes are not organized in a canonical ectABC operon. Instead, they are scrambled (ectAC; ectB) and are physically separated from each other on the S. salinus M19-40 genome. Genomes of many phylogenetically related bacteria also exhibit a non-canonical organization of the ect genes. S. salinus M19-40 also synthesizes trehalose, but this compatible solute seems to make only a minor contribution to the cytoplasmic solute pool under osmotic stress conditions. However, its cellular levels increase substantially in stationary phase cells grown under optimal salt concentrations. In silico genome mining revealed that S. salinus M19-40 possesses different types of uptake systems for compatible solutes. Among the set of compatible solutes tested in an osmostress protection growth assay, glycine betaine and arsenobetaine were the most effective. Transport studies with radiolabeled glycine betaine showed that S. salinus M19-40 increases the pool size of this osmolyte in a fashion that is sensitively tied to the prevalent salinity of the growth medium. It was amassed in salt-stressed cells in unmodified form and suppressed the synthesis of ectoine. In conclusion, the data presented here allow us to derive a genome-scale picture of the cellular adjustment strategy of a species that represents an environmentally abundant group of ecophysiologically important halophilic microorganisms.
Collapse
Affiliation(s)
- María J León
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Tamara Hoffmann
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany
| | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Johann Heider
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Erhard Bremer
- Laboratory for Microbiology, Department of Biology, Philipps University of Marburg, Marburg, Germany.,LOEWE-Center for Synthetic Microbiology, Philipps University of Marburg, Marburg, Germany
| |
Collapse
|
26
|
Abstract
The cellular adjustment of Bacteria and Archaea to high-salinity habitats is well studied and has generally been classified into one of two strategies. These are to accumulate high levels either of ions (the “salt-in” strategy) or of physiologically compliant organic osmolytes, the compatible solutes (the “salt-out” strategy). Halophilic protists are ecophysiological important inhabitants of salt-stressed ecosystems because they are not only very abundant but also represent the majority of eukaryotic lineages in nature. However, their cellular osmostress responses have been largely neglected. Recent reports have now shed new light on this issue using the geographically widely distributed halophilic heterotrophic protists Halocafeteria seosinensis, Pharyngomonas kirbyi, and Schmidingerothrix salinarum as model systems. Different approaches led to the joint conclusion that these unicellular Eukarya use the salt-out strategy to cope successfully with the persistent high salinity in their habitat. They accumulate various compatible solutes, e.g., glycine betaine, myo-inositol, and ectoines. The finding of intron-containing biosynthetic genes for ectoine and hydroxyectoine, their salt stress–responsive transcription in H. seosinensis, and the production of ectoine and its import by S. salinarum come as a considerable surprise because ectoines have thus far been considered exclusive prokaryotic compatible solutes. Phylogenetic considerations of the ectoine/hydroxyectoine biosynthetic genes of H. seosinensis suggest that they have been acquired via lateral gene transfer by these bacterivorous Eukarya from ectoine/hydroxyectoine-producing food bacteria that populate the same habitat.
Collapse
Affiliation(s)
- Laura Czech
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
| | - Erhard Bremer
- Department of Biology, Laboratory for Molecular Microbiology, Philipps-University Marburg, Marburg, Germany
- LOEWE-Center for Synthetic Microbiology, Philipps-University Marburg, Marburg, Germany
- * E-mail:
| |
Collapse
|
27
|
Sabir F, Loureiro-Dias MC, Soveral G, Prista C. Functional relevance of water and glycerol channels in Saccharomyces cerevisiae. FEMS Microbiol Lett 2017; 364:3739791. [PMID: 28430948 DOI: 10.1093/femsle/fnx080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/18/2017] [Indexed: 12/27/2022] Open
Abstract
Our understanding of the functional relevance of orthodox aquaporins and aquaglyceroporins in Saccharomyces cerevisiae is essentially based on phenotypic variations obtained by expression/overexpression/deletion of these major intrinsic proteins in selected strains. These water/glycerol channels are considered crucial during various life-cycle phases, such as sporulation and mating and in some life processes such as rapid freeze-thaw tolerance, osmoregulation and phenomena associated with cell surface. Despite their putative functional roles not only as channels but also as sensors, their underlying mechanisms and their regulation are still poorly understood. In the present review, we summarize and discuss the physiological relevance of S. cerevisiae aquaporins (Aqy1 and Aqy2) and aquaglyceroporins (Fps1 and Yfl054c). In particular, the fact that most S. cerevisiae laboratory strains harbor genes coding for non-functional aquaporins, while wild and industrial strains possess at least one functional aquaporin, suggests that aquaporin activity is required for cell survival under more harsh conditions.
Collapse
Affiliation(s)
- Farzana Sabir
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal.,Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Maria C Loureiro-Dias
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa,1649-003 Lisboa, Portugal
| | - Catarina Prista
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda 1349-017 Lisboa, Portugal
| |
Collapse
|
28
|
Tao SQ, Cao B, Tian CM, Liang YM. Comparative transcriptome analysis and identification of candidate effectors in two related rust species (Gymnosporangium yamadae and Gymnosporangium asiaticum). BMC Genomics 2017; 18:651. [PMID: 28830353 PMCID: PMC5567642 DOI: 10.1186/s12864-017-4059-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 08/14/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rust fungi constitute the largest group of plant fungal pathogens. However, a paucity of data, including genomic sequences, transcriptome sequences, and associated molecular markers, hinders the development of inhibitory compounds and prevents their analysis from an evolutionary perspective. Gymnosporangium yamadae and G. asiaticum are two closely related rust fungal species, which are ecologically and economically important pathogens that cause apple rust and pear rust, respectively, proved to be devastating to orchards. In this study, we investigated the transcriptomes of these two Gymnosporangium species during the telial stage of their lifecycles. The aim of this study was to understand the evolutionary patterns of these two related fungi and to identify genes that developed by selection. RESULTS The transcriptomes of G. yamadae and G. asiaticum were generated from a mixture of RNA from three biological replicates of each species. We obtained 49,318 and 54,742 transcripts, with N50 values of 1957 and 1664, for G. yamadae and G. asiaticum, respectively. We also identified a repertoire of candidate effectors and other gene families associated with pathogenicity. A total of 4947 pairs of putative orthologues between the two species were identified. Estimation of the non-synonymous/synonymous substitution rate ratios for these orthologues identified 116 pairs with Ka/Ks values greater than1 that are under positive selection and 170 pairs with Ka/Ks values of 1 that are under neutral selection, whereas the remaining 4661 genes are subjected to purifying selection. We estimate that the divergence time between the two species is approximately 5.2 Mya. CONCLUSION This study constitutes a de novo assembly and comparative analysis between the transcriptomes of the two rust species G. yamadae and G. asiaticum. The results identified several orthologous genes, and many expressed genes were identified by annotation. Our analysis of Ka/Ks ratios identified orthologous genes subjected to positive or purifying selection. An evolutionary analysis of these two species provided a relatively precise divergence time. Overall, the information obtained in this study increases the genetic resources available for research on the genetic diversity of the Gymnosporangium genus.
Collapse
Affiliation(s)
- Si-Qi Tao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Bin Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Cheng-Ming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Beijing Forestry University, Beijing, 100083, China
| | - Ying-Mei Liang
- Museum of Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
29
|
Hoffmann T, Bremer E. Guardians in a stressful world: the Opu family of compatible solute transporters from Bacillus subtilis. Biol Chem 2017; 398:193-214. [PMID: 27935846 DOI: 10.1515/hsz-2016-0265] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/29/2016] [Indexed: 01/09/2023]
Abstract
The development of a semi-permeable cytoplasmic membrane was a key event in the evolution of microbial proto-cells. As a result, changes in the external osmolarity will inevitably trigger water fluxes along the osmotic gradient. The ensuing osmotic stress has consequences for the magnitude of turgor and will negatively impact cell growth and integrity. No microorganism can actively pump water across the cytoplasmic membrane; hence, microorganisms have to actively adjust the osmotic potential of their cytoplasm to scale and direct water fluxes in order to prevent dehydration or rupture. They will accumulate ions and physiologically compliant organic osmolytes, the compatible solutes, when they face hyperosmotic conditions to retain cell water, and they rapidly expel these compounds through the transient opening of mechanosensitive channels to curb water efflux when exposed to hypo-osmotic circumstances. Here, we provide an overview on the salient features of the osmostress response systems of the ubiquitously distributed bacterium Bacillus subtilis with a special emphasis on the transport systems and channels mediating regulation of cellular hydration and turgor under fluctuating osmotic conditions. The uptake of osmostress protectants via the Opu family of transporters, systems of central importance for the management of osmotic stress by B. subtilis, will be particularly highlighted.
Collapse
|
30
|
Aponte-Santamaría C, Fischer G, Båth P, Neutze R, de Groot BL. Temperature dependence of protein-water interactions in a gated yeast aquaporin. Sci Rep 2017; 7:4016. [PMID: 28638135 PMCID: PMC5479825 DOI: 10.1038/s41598-017-04180-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 05/10/2017] [Indexed: 11/18/2022] Open
Abstract
Regulation of aquaporins is a key process of living organisms to counteract sudden osmotic changes. Aqy1, which is a water transporting aquaporin of the yeast Pichia pastoris, is suggested to be gated by chemo-mechanical stimuli as a protective regulatory-response against rapid freezing. Here, we tested the influence of temperature by determining the X-ray structure of Aqy1 at room temperature (RT) at 1.3 Å resolution, and by exploring the structural dynamics of Aqy1 during freezing through molecular dynamics simulations. At ambient temperature and in a lipid bilayer, Aqy1 adopts a closed conformation that is globally better described by the RT than by the low-temperature (LT) crystal structure. Locally, for the blocking-residue Tyr31 and the water molecules inside the pore, both LT and RT data sets are consistent with the positions observed in the simulations at room-temperature. Moreover, as the temperature was lowered, Tyr31 adopted a conformation that more effectively blocked the channel, and its motion was accompanied by a temperature-driven rearrangement of the water molecules inside the channel. We therefore speculate that temperature drives Aqy1 from a loosely- to a tightly-blocked state. This analysis provides high-resolution structural evidence of the influence of temperature on membrane-transport channels.
Collapse
Affiliation(s)
- Camilo Aponte-Santamaría
- Molecular Biomechanics Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany.
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.
- Max Planck Tandem Group in Computational Biophysics, University of Los Andes, Bogotá, Colombia.
| | - Gerhard Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petra Båth
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Richard Neutze
- Department of Chemistry & Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Bert L de Groot
- Computational Biomolecular Dynamics Group, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany.
| |
Collapse
|
31
|
Meyers GL, Jung KW, Bang S, Kim J, Kim S, Hong J, Cheong E, Kim KH, Bahn YS. The water channel protein aquaporin 1 regulates cellular metabolism and competitive fitness in a global fungal pathogen Cryptococcus neoformans. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:268-278. [PMID: 28251810 DOI: 10.1111/1758-2229.12527] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 06/06/2023]
Abstract
In this study, an aquaporin protein, Aqp1, in Cryptococcus neoformans, which can lead either saprobic or parasitic lifestyles and causes life-threatening fungal meningitis was identified and characterized. AQP1 expression was rapidly induced (via the HOG pathway) by osmotic or oxidative stress. In spite of such transcriptional regulation, Aqp1 was found to be largely unnecessary for adaptation to diverse environmental stressors, regardless of the presence of the polysaccharide capsule. The latter is shown here to be a key environmental-stress protectant for C. neoformans. Furthermore, Aqp1 was not required for the development and virulence of C. neoformans. Deletion of AQP1 increased hydrophobicity of the cell surface. The comparative metabolic profiling analysis of the aqp1Δ mutant and AQP1-overexpressing strains revealed that deletion of AQP1 significantly increased cellular accumulation of primary and secondary metabolites, whereas overexpression of AQP1 depleted such metabolites, suggesting that this water channel protein performs a critical function in metabolic homeostasis. In line with this result, it was found that the aqp1Δ mutant (which is enriched with diverse metabolites) survived better than the wild type and a complemented strain, indicating that Aqp1 is likely to be involved in competitive fitness of this fungal pathogen.
Collapse
Affiliation(s)
- Gena Lee Meyers
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kwang-Woo Jung
- Research Division for Biotechnology, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea
| | - Soohyun Bang
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jungyeon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Joohyeon Hong
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunji Cheong
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
32
|
Ishibashi K, Morishita Y, Tanaka Y. The Evolutionary Aspects of Aquaporin Family. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 969:35-50. [PMID: 28258564 DOI: 10.1007/978-94-024-1057-0_2] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aquaporins (AQPs ) are a family of transmembrane proteins present in almost all species including virus. They are grossly divided into three subfamilies based on the sequence around a highly conserved pore-forming NPA motif: (1) classical water -selective AQP (CAQP), (2) glycerol -permeable aquaglyceroporin (AQGP) and (3) AQP super-gene channel, superaquaporin (SAQP). AQP is composed of two tandem repeats of conserved three transmembrane domains and a NPA motif. AQP ancestors probably started in prokaryotes by the duplication of half AQP genes to be diversified into CAQPs or AQGPs by evolving a subfamily-specific carboxyl-terminal NPA motif. Both AQP subfamilies may have been carried over to unicellular eukaryotic ancestors, protists and further to multicellular organisms. Although fungus lineage has kept both AQP subfamilies, the plant lineage has lost AQGP after algal ancestors with extensive diversifications of CAQPs into PIP, TIP, SIP, XIP, HIP and LIP with a possible horizontal transfer of NIP from bacteria. Interestingly, the animal lineage has obtained new SAQP subfamily with highly deviated NPA motifs, especially at the amino-terminal halves in both prostomial and deuterostomial animals. The prostomial lineage has lost AQGP after hymenoptera, while the deuterostomial lineage has kept all three subfamilies up to the vertebrate with diversified CAQPs (AQP0, 1, 2, 4, 5, 6, 8) and AQGPs (AQP3, 7, 9, 10) with limited SAQPs (AQP11, 12) in mammals. Whole-genome duplications, local gene duplications and horizontal gene transfers may have produced the AQP diversity with adaptive selections and functional alternations in response to environment changes. With the above evolutionary perspective in mind, the function of each AQP could be speculated by comparison among species to get new insights into physiological roles of AQPs . This evolutionary guidance in AQP research will lead to deeper understandings of water and solute homeostasis.
Collapse
Affiliation(s)
- Kenichi Ishibashi
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan.
| | - Yoshiyuki Morishita
- Division of Nephrology, Saitama Medical Center, Jichi Medical University, 1-847 Ohmiya, Saitama-City, Saitama, 330-8503, Japan
| | - Yasuko Tanaka
- Division of Pathophysiology, Meiji Pharmaceutical University, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
33
|
Zhang H, Sun H, Yang R, Li S, Zhou M, Gao T, An L, Chen X, Dyson P. Complete genome sequence of a psychotrophic Pseudarthrobacter sulfonivorans strain Ar51 (CGMCC 4.7316), a novel crude oil and multi benzene compounds degradation strain. J Biotechnol 2016; 231:81-82. [PMID: 27245144 DOI: 10.1016/j.jbiotec.2016.04.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/06/2016] [Indexed: 11/20/2022]
Abstract
Pseudarthrobacter sulfonivorans strain Ar51, a psychotrophic bacterium isolated from the Tibet permafrost of China, can degrade crude oil and multi benzene compounds efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Pseudarthrobacter sulfonivorans strain Ar51, consisting of a cycle chromosome with a size of 5.04Mbp and a cycle plasmid with a size of 12.39kbp. The availability of this genome sequence allows us to investigate the genetic basis of crude oil degradation and adaptation to growth in a nutrient-poor permafrost environment.
Collapse
Affiliation(s)
- Hua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Haili Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Lanzhou University, Centre of Urban Ecology and Environmental Biotechnology, Lanzhou City University, Lanzhou 730000, China
| | - Ruiqi Yang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China; Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730000, China
| | - Shuyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry & Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Meng Zhou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tianpeng Gao
- Lanzhou University, Centre of Urban Ecology and Environmental Biotechnology, Lanzhou City University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Ximing Chen
- Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China; Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China.
| | - Paul Dyson
- Institute of Life Science, College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
34
|
Taheri R, Razmjou A, Szekely G, Hou J, Ghezelbash GR. Biodesalination-On harnessing the potential of nature's desalination processes. BIOINSPIRATION & BIOMIMETICS 2016; 11:041001. [PMID: 27387607 DOI: 10.1088/1748-3190/11/4/041001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water scarcity is now one of the major global crises, which has affected many aspects of human health, industrial development and ecosystem stability. To overcome this issue, water desalination has been employed. It is a process to remove salt and other minerals from saline water, and it covers a variety of approaches from traditional distillation to the well-established reverse osmosis. Although current water desalination methods can effectively provide fresh water, they are becoming increasingly controversial due to their adverse environmental impacts including high energy intensity and highly concentrated brine waste. For millions of years, microorganisms, the masters of adaptation, have survived on Earth without the excessive use of energy and resources or compromising their ambient environment. This has encouraged scientists to study the possibility of using biological processes for seawater desalination and the field has been exponentially growing ever since. Here, the term biodesalination is offered to cover all of the techniques which have their roots in biology for producing fresh water from saline solution. In addition to reviewing and categorizing biodesalination processes for the first time, this review also reveals unexplored research areas in biodesalination having potential to be used in water treatment.
Collapse
Affiliation(s)
- Reza Taheri
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | | | | | | | | |
Collapse
|
35
|
Sabir F, Loureiro-Dias MC, Prista C. Comparative analysis of sequences, polymorphisms and topology of yeasts aquaporins and aquaglyceroporins. FEMS Yeast Res 2016; 16:fow025. [DOI: 10.1093/femsyr/fow025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
|
36
|
Sun H, Gao T, Chen X, Hitchings MD, Li S, Chen T, Zhang H, An L, Dyson P. Complete genome sequence of a psychotrophic Arthrobacter strain A3 (CGMCC 1.8987), a novel long-chain hydrocarbons producer. J Biotechnol 2016; 222:23-24. [PMID: 26854946 DOI: 10.1016/j.jbiotec.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/16/2022]
Abstract
Arthrobacter strain A3, a psychotrophic bacterium isolated from the Tian Shan Mountain of China, can degrade the cellulose and synthesis the long-chain hydrocarbons efficiently in low temperature. Here we report the complete genome sequence of this bacterium. The complete genome sequence of Arthrobacter strain A3, consisting of a cycle chromosome with a size of 4.26 Mbp and a cycle plasmid with a size of 194kbp. In this genome, a hydrocarbon biosynthesis gene cluster (oleA, oleB/oleC and oleD) was identified. To resistant the extreme environment, this strain contains a unique mycothiol-biosynthetic pathway (mshA-D), which has not been found in other Arthrobacter species before. The availability of this genome sequence allows us to investigate the genetic basis of adaptation to growth in a nutrient-poor permafrost environment and to evaluate of the biofuel-synthetic potential of this species.
Collapse
Affiliation(s)
- Haili Sun
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China; Lanzhou University; Centre of Urban Ecology and Environmental Biotechnology; Lanzhou City University, Lanzhou 730000, China
| | - Tianpeng Gao
- Lanzhou University; Centre of Urban Ecology and Environmental Biotechnology; Lanzhou City University, Lanzhou 730000, China
| | - Ximing Chen
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering of Gansu Province, Lanzhou 730000, China; Key Laboratory of Desert and Desertification, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Matthew D Hitchings
- Institute of Life Science; College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| | - Shuyan Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry & Chemical Engineering, Lanzhou Univerisity, Lanzhou 730000, China
| | - Tao Chen
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Hua Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Paul Dyson
- Institute of Life Science; College of Medicine, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
37
|
Turgeman T, Shatil-Cohen A, Moshelion M, Teper-Bamnolker P, Skory CD, Lichter A, Eshel D. The Role of Aquaporins in pH-Dependent Germination of Rhizopus delemar Spores. PLoS One 2016; 11:e0150543. [PMID: 26959825 PMCID: PMC4784744 DOI: 10.1371/journal.pone.0150543] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 02/15/2016] [Indexed: 01/18/2023] Open
Abstract
Rhizopus delemar and associated species attack a wide range of fruit and vegetables after harvest. Host nutrients and acidic pH are required for optimal germination of R. delemar, and we studied how this process is triggered. Glucose induced spore swelling in an acidic environment, expressed by an up to 3-fold increase in spore diameter, whereas spore diameter was smaller in a neutral environment. When suspended in an acidic environment, the spores started to float, indicating a change in their density. Treatment of the spores with HgCl2, an aquaporin blocker, prevented floating and inhibited spore swelling and germ-tube emergence, indicating the importance of water uptake at the early stages of germination. Two putative candidate aquaporin-encoding genes-RdAQP1 and RdAQP2-were identified in the R. delemar genome. Both presented the conserved NPA motif and six-transmembrane domain topology. Expressing RdAQP1 and RdAQP2 in Arabidopsis protoplasts increased the cells' osmotic water permeability coefficient (Pf) compared to controls, indicating their role as water channels. A decrease in R. delemar aquaporin activity with increasing external pH suggested pH regulation of these proteins. Substitution of two histidine (His) residues, positioned on two loops facing the outer side of the cell, with alanine eliminated the pH sensing resulting in similar Pf values under acidic and basic conditions. Since hydration is critical for spore switching from the resting to activate state, we suggest that pH regulation of the aquaporins can regulate the initial phase of R. delemar spore germination, followed by germ-tube elongation and host-tissue infection.
Collapse
Affiliation(s)
- Tidhar Turgeman
- Department of Postharvest Sciences of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
- Department of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Arava Shatil-Cohen
- Department of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Menachem Moshelion
- Department of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Paula Teper-Bamnolker
- Department of Postharvest Sciences of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Christopher D. Skory
- Renewable Product Technology Research Unit, NTL Center for Agricultural Utilization Research, Peoria, Illinois, United States of America
| | - Amnon Lichter
- Department of Postharvest Sciences of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| | - Dani Eshel
- Department of Postharvest Sciences of Fresh Produce, Agricultural Research Organization (ARO), The Volcani Center, Bet-Dagan, Israel
| |
Collapse
|
38
|
Foglia F, Hazael R, Simeoni GG, Appavou MS, Moulin M, Haertlein M, Trevor Forsyth V, Seydel T, Daniel I, Meersman F, McMillan PF. Water Dynamics in Shewanella oneidensis at Ambient and High Pressure using Quasi-Elastic Neutron Scattering. Sci Rep 2016; 6:18862. [PMID: 26738409 PMCID: PMC4703977 DOI: 10.1038/srep18862] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/27/2015] [Indexed: 01/22/2023] Open
Abstract
Quasielastic neutron scattering (QENS) is an ideal technique for studying water transport and relaxation dynamics at pico- to nanosecond timescales and at length scales relevant to cellular dimensions. Studies of high pressure dynamic effects in live organisms are needed to understand Earth's deep biosphere and biotechnology applications. Here we applied QENS to study water transport in Shewanella oneidensis at ambient (0.1 MPa) and high (200 MPa) pressure using H/D isotopic contrast experiments for normal and perdeuterated bacteria and buffer solutions to distinguish intracellular and transmembrane processes. The results indicate that intracellular water dynamics are comparable with bulk diffusion rates in aqueous fluids at ambient conditions but a significant reduction occurs in high pressure mobility. We interpret this as due to enhanced interactions with macromolecules in the nanoconfined environment. Overall diffusion rates across the cell envelope also occur at similar rates but unexpected narrowing of the QENS signal appears between momentum transfer values Q = 0.7-1.1 Å(-1) corresponding to real space dimensions of 6-9 Å. The relaxation time increase can be explained by correlated dynamics of molecules passing through Aquaporin water transport complexes located within the inner or outer membrane structures.
Collapse
Affiliation(s)
- Fabrizia Foglia
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK
| | - Rachael Hazael
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Giovanna G. Simeoni
- Heinz Maier-Leibnitz Zentrum (MLZ) and Physics Department, Technisches Universität München, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Marie-Sousai Appavou
- Jülich Center for Neutron Sciences at MLZ, Forschungszentrum Jülich GmbH, Lichtenbergstrasse 1, D-85748 Garching, Germany
| | - Martine Moulin
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Michael Haertlein
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - V. Trevor Forsyth
- Life Sciences Group, Carl-Ivar Brändén Building, Institut Laue-Langevin, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
- Faculty of Natural Sciences/ISTM, Keele University, Staffordshire ST5 5BG, UK
| | - Tilo Seydel
- Science Division, Institut Laue-Langevin, CS 20156, 71 avenue des Martyrs, 38042 Grenoble cedex 9, France
| | - Isabelle Daniel
- Laboratoire de Géologie de Lyon, UMR 5276, Université Lyon 1-ENS de Lyon-CNRS, 2 rue Raphaël Dubois, 69622 Villeurbanne, France
| | - Filip Meersman
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
- Biomolecular & Analytical Mass Spectrometry, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Paul F. McMillan
- Chemistry Department, Christopher Ingold Laboratories, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| |
Collapse
|
39
|
Deshmukh RK, Sonah H, Bélanger RR. Plant Aquaporins: Genome-Wide Identification, Transcriptomics, Proteomics, and Advanced Analytical Tools. FRONTIERS IN PLANT SCIENCE 2016; 7:1896. [PMID: 28066459 PMCID: PMC5167727 DOI: 10.3389/fpls.2016.01896] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/30/2016] [Indexed: 05/02/2023]
Abstract
Aquaporins (AQPs) are channel-forming integral membrane proteins that facilitate the movement of water and many other small molecules. Compared to animals, plants contain a much higher number of AQPs in their genome. Homology-based identification of AQPs in sequenced species is feasible because of the high level of conservation of protein sequences across plant species. Genome-wide characterization of AQPs has highlighted several important aspects such as distribution, genetic organization, evolution and conserved features governing solute specificity. From a functional point of view, the understanding of AQP transport system has expanded rapidly with the help of transcriptomics and proteomics data. The efficient analysis of enormous amounts of data generated through omic scale studies has been facilitated through computational advancements. Prediction of protein tertiary structures, pore architecture, cavities, phosphorylation sites, heterodimerization, and co-expression networks has become more sophisticated and accurate with increasing computational tools and pipelines. However, the effectiveness of computational approaches is based on the understanding of physiological and biochemical properties, transport kinetics, solute specificity, molecular interactions, sequence variations, phylogeny and evolution of aquaporins. For this purpose, tools like Xenopus oocyte assays, yeast expression systems, artificial proteoliposomes, and lipid membranes have been efficiently exploited to study the many facets that influence solute transport by AQPs. In the present review, we discuss genome-wide identification of AQPs in plants in relation with recent advancements in analytical tools, and their availability and technological challenges as they apply to AQPs. An exhaustive review of omics resources available for AQP research is also provided in order to optimize their efficient utilization. Finally, a detailed catalog of computational tools and analytical pipelines is offered as a resource for AQP research.
Collapse
|
40
|
Sabir F, Prista C, Madeira A, Moura T, Loureiro-Dias MC, Soveral G. Water Transport in Yeasts. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 892:107-124. [PMID: 26721272 DOI: 10.1007/978-3-319-25304-6_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Water moves across membranes through the lipid bilayer and through aquaporins, in this case in a regulated manner. Aquaporins belong to the MIP superfamily and two subfamilies are represented in yeasts: orthodox aquaporins considered to be specific water channels and aquaglyceroporins (heterodox aquaporins). In Saccharomyces cerevisiae genome, four aquaporin isoforms were identified, two of which are genetically close to orthodox aquaporins (ScAqy1 and ScAqy2) and the other two are more closely related to the aquaglyceroporins (ScFps1 and ScAqy3). Advances in the establishment of water channels structure are reviewed in this chapter in relation with the mechanisms of selectivity, conductance and gating. Aquaporins are important for key aspects of yeast physiology. They have been shown to be involved in sporulation, rapid freeze-thaw tolerance, osmo-sensitivity, and modulation of cell surface properties and colony morphology, although the underlying exact mechanisms are still unknown.
Collapse
Affiliation(s)
- Farzana Sabir
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal. .,Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal.
| | - Catarina Prista
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Teresa Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Maria C Loureiro-Dias
- LEAF, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisbon, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| |
Collapse
|
41
|
Are Aquaporins the Missing Transmembrane Osmosensors? J Membr Biol 2015; 248:753-65. [PMID: 25791748 DOI: 10.1007/s00232-015-9790-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 03/12/2015] [Indexed: 01/08/2023]
Abstract
Regulation of cell volume is central to homeostasis. It is assumed to begin with the detection of a change in water potential across the bounding membrane, but it is not clear how this is accomplished. While examples of general osmoreceptors (which sense osmotic pressure in one phase) and stretch-activated ion channels (which require swelling of a cell or organelle) are known, effective volume regulation requires true transmembrane osmosensors (TMOs) which directly detect a water potential difference spanning a membrane. At present, no TMO molecule has been unambiguously identified, and clear evidence for mammalian TMOs is notably lacking. In this paper, we set out a theory of TMOs which requires a water channel spanning the membrane that excludes the major osmotic solutes, responds directly without the need for any other process such as swelling, and signals to other molecules associated with the magnitude of changing osmotic differences. The most likely molecules that are fit for this purpose and which are also ubiquitous in eukaryotic cells are aquaporins (AQPs). We review experimental evidence from several systems which indicates that AQPs are essential elements in regulation and may be functioning as TMOs; i.e. the first step in an osmosensing sequence that signals osmotic imbalance in a cell or organelle. We extend this concept to several systems of current interest in which the cellular involvement of AQPs as simple water channels is puzzling or counter-intuitive. We suggest that, apart from regulatory volume changes in cells, AQPs may also be acting as TMOs in red cells, secretory granules and microorganisms.
Collapse
|
42
|
Khodr A, Fairweather V, Bouffartigues E, Rimsky S. IHF is a trans-acting factor implicated in the regulation of the proU P2 promoter. FEMS Microbiol Lett 2015; 362:1-6. [DOI: 10.1093/femsle/fnu049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
43
|
Santiago-Rodríguez MDR, Díaz-Aparicio E, Arellano-Reynoso B, García-Lobo JM, Gimeno M, Palomares-Reséndiz EG, Hernández-Castro R. Survival of Brucella abortus aqpX Mutant in Fresh and Ripened Cheeses. Foodborne Pathog Dis 2015; 12:170-5. [DOI: 10.1089/fpd.2014.1823] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | - Efrén Díaz-Aparicio
- CENID Microbiología, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa, México
| | - Beatriz Arellano-Reynoso
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Juan M. García-Lobo
- Departamento de Biología Molecular, Instituto de Biomedicina y Biotecnología de Cantabria IBBTEC, Universidad de Cantabria-CSIC-SODERCAN, Santander, Cantabria, Spain
| | - Miquel Gimeno
- Departamento de Alimentos y Biotecnología, Facultad de Química, Universidad Nacional Autónoma de México, Coyoacán, México
| | - Erika G. Palomares-Reséndiz
- CENID Microbiología, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Cuajimalpa, México
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González,” Tlalpan, México
| |
Collapse
|
44
|
Madeira A, Moura TF, Soveral G. Aquaglyceroporins: implications in adipose biology and obesity. Cell Mol Life Sci 2015; 72:759-71. [PMID: 25359234 PMCID: PMC11113391 DOI: 10.1007/s00018-014-1773-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/07/2014] [Accepted: 10/27/2014] [Indexed: 01/19/2023]
Abstract
Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins' unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.
Collapse
Affiliation(s)
- Ana Madeira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa F. Moura
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- FCT-UNL, 2829-516 Caparica, Portugal
| | - Graça Soveral
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, Lisbon, 1649-003 Portugal
- Department of Bioquimica e Biologia Humana, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
|
46
|
Nehls U, Dietz S. Fungal aquaporins: cellular functions and ecophysiological perspectives. Appl Microbiol Biotechnol 2014; 98:8835-51. [PMID: 25213914 DOI: 10.1007/s00253-014-6049-0] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/21/2022]
Abstract
Three aspects have to be taken into consideration when discussing cellular water and solute permeability of fungal cells: cell wall properties, membrane permeability, and transport through proteinaceous pores (the main focus of this review). Yet, characterized major intrinsic proteins (MIPs) can be grouped into three functional categories: (mainly) water transporting aquaporins, aquaglyceroporins that confer preferentially solute permeability (e.g., glycerol and ammonia), and bifunctional aquaglyceroporins that can facilitate efficient water and solute transfer. Two ancestor proteins, a water (orthodox aquaporin) and a solute facilitator (aquaglyceroporin), are supposed to give rise to today's MIPs. Based on primary sequences of fungal MIPs, orthodox aquaporins/X-intrinsic proteins (XIPs) and FPS1-like/Yfl054-like/other aquaglyceroporins are supposed to be respective sister groups. However, at least within the fungal kingdom, no easy functional conclusion can be drawn from the phylogenetic position of a given protein within the MIP pedigree. In consequence, ecophysiological prediction of MIP relevance is not feasible without detailed functional analysis of the respective protein and expression studies. To illuminate the diverse MIP implications in fungal lifestyle, our current knowledge about protein function in two organisms, baker's yeast and the Basidiomycotic Laccaria bicolor, an ectomycorrhizal model fungus, was exemplarily summarized in this review. MIP function has been investigated in such a depth in Saccharomyces cerevisiae that a system-wide view is possible. Yeast lifestyle, however, is special in many circumstances. Therefore, L. bicolor as filamentous Basidiomycete was added and allows insight into a very different way of life. Special emphasis was laid in this review onto ecophysiological interpretation of MIP function.
Collapse
Affiliation(s)
- Uwe Nehls
- Botany, University of Bremen, Leobenerstr. 2, 28359, Bremen, Germany,
| | | |
Collapse
|
47
|
Zhalnina KV, Dias R, Leonard MT, Dorr de Quadros P, Camargo FAO, Drew JC, Farmerie WG, Daroub SH, Triplett EW. Genome sequence of Candidatus Nitrososphaera evergladensis from group I.1b enriched from Everglades soil reveals novel genomic features of the ammonia-oxidizing archaea. PLoS One 2014; 9:e101648. [PMID: 24999826 PMCID: PMC4084955 DOI: 10.1371/journal.pone.0101648] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 06/09/2014] [Indexed: 12/11/2022] Open
Abstract
The activity of ammonia-oxidizing archaea (AOA) leads to the loss of nitrogen from soil, pollution of water sources and elevated emissions of greenhouse gas. To date, eight AOA genomes are available in the public databases, seven are from the group I.1a of the Thaumarchaeota and only one is from the group I.1b, isolated from hot springs. Many soils are dominated by AOA from the group I.1b, but the genomes of soil representatives of this group have not been sequenced and functionally characterized. The lack of knowledge of metabolic pathways of soil AOA presents a critical gap in understanding their role in biogeochemical cycles. Here, we describe the first complete genome of soil archaeon Candidatus Nitrososphaera evergladensis, which has been reconstructed from metagenomic sequencing of a highly enriched culture obtained from an agricultural soil. The AOA enrichment was sequenced with the high throughput next generation sequencing platforms from Pacific Biosciences and Ion Torrent. The de novo assembly of sequences resulted in one 2.95 Mb contig. Annotation of the reconstructed genome revealed many similarities of the basic metabolism with the rest of sequenced AOA. Ca. N. evergladensis belongs to the group I.1b and shares only 40% of whole-genome homology with the closest sequenced relative Ca. N. gargensis. Detailed analysis of the genome revealed coding sequences that were completely absent from the group I.1a. These unique sequences code for proteins involved in control of DNA integrity, transporters, two-component systems and versatile CRISPR defense system. Notably, genomes from the group I.1b have more gene duplications compared to the genomes from the group I.1a. We suggest that the presence of these unique genes and gene duplications may be associated with the environmental versatility of this group.
Collapse
Affiliation(s)
- Kateryna V. Zhalnina
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Raquel Dias
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Michael T. Leonard
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | | | - Flavio A. O. Camargo
- Soil Science Department, Federal Unviersity of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Jennifer C. Drew
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - William G. Farmerie
- Genome Sequencing Services Laboratory, Interdisciplinary Center for Biotechnology Research, University of Florida, Gainesville, Florida, United States of America
| | - Samira H. Daroub
- Everglades Research and Education Center, University of Florida, Belle Glade, Florida, United States of America
| | - Eric W. Triplett
- Microbiology and Cell Science Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
48
|
Landstorfer R, Simon S, Schober S, Keim D, Scherer S, Neuhaus K. Comparison of strand-specific transcriptomes of enterohemorrhagic Escherichia coli O157:H7 EDL933 (EHEC) under eleven different environmental conditions including radish sprouts and cattle feces. BMC Genomics 2014; 15:353. [PMID: 24885796 PMCID: PMC4048457 DOI: 10.1186/1471-2164-15-353] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 03/31/2014] [Indexed: 12/26/2022] Open
Abstract
Background Multiple infection sources for enterohemorrhagic Escherichia coli O157:H7 (EHEC) are known, including animal products, fruit and vegetables. The ecology of this pathogen outside its human host is largely unknown and one third of its annotated genes are still hypothetical. To identify genetic determinants expressed under a variety of environmental factors, we applied strand-specific RNA-sequencing, comparing the SOLiD and Illumina systems. Results Transcriptomes of EHEC were sequenced under 11 different biotic and abiotic conditions: LB medium at pH4, pH7, pH9, or at 15°C; LB with nitrite or trimethoprim-sulfamethoxazole; LB-agar surface, M9 minimal medium, spinach leaf juice, surface of living radish sprouts, and cattle feces. Of 5379 annotated genes in strain EDL933 (genome and plasmid), a surprising minority of only 144 had null sequencing reads under all conditions. We therefore developed a statistical method to distinguish weakly transcribed genes from background transcription. We find that 96% of all genes and 91.5% of the hypothetical genes exhibit a significant transcriptional signal under at least one condition. Comparing SOLiD and Illumina systems, we find a high correlation between both approaches for fold-changes of the induced or repressed genes. The pathogenicity island LEE showed highest transcriptional activity in LB medium, minimal medium, and after treatment with antibiotics. Unique sets of genes, including many hypothetical genes, are highly up-regulated on radish sprouts, cattle feces, or in the presence of antibiotics. Furthermore, we observed induction of the shiga-toxin carrying phages by antibiotics and confirmed active biofilm related genes on radish sprouts, in cattle feces, and on agar plates. Conclusions Since only a minority of genes (2.7%) were not active under any condition tested (null reads), we suggest that the assumption of significant genome over-annotations is wrong. Environmental transcriptomics uncovered hitherto unknown gene functions and unique regulatory patterns in EHEC. For instance, the environmental function of azoR had been elusive, but this gene is highly active on radish sprouts. Thus, NGS-transcriptomics is an appropriate technique to propose new roles of hypothetical genes and to guide future research. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-353) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Klaus Neuhaus
- Lehrstuhl für Mikrobielle Ökologie, Wissenschaftszentrum Weihenstephan, Technische Universität München, Weihenstephaner Berg 3, D-85350 Freising, Germany.
| |
Collapse
|
49
|
Insights into structural mechanisms of gating induced regulation of aquaporins. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:69-79. [DOI: 10.1016/j.pbiomolbio.2014.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 01/21/2014] [Accepted: 01/26/2014] [Indexed: 11/19/2022]
|
50
|
Unprecedented cell-selection using ultra-quick freezing combined with aquaporin expression. PLoS One 2014; 9:e87644. [PMID: 24558371 PMCID: PMC3928110 DOI: 10.1371/journal.pone.0087644] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/25/2013] [Indexed: 11/19/2022] Open
Abstract
Freezing is usually used for preservation and storage of biological samples; however, this process may have some adverse effects such as cell membrane damage. Aquaporin (AQP), a water channel protein, has been suggested to play some roles for cryopreservation although its molecular mechanism remains unclear. Here we show that membrane damage caused by ultra-quick freezing is rescued by the expression of AQP4. We next examine if the expression of AQP combined with ultra-quick freezing can be used to select cells efficiently under freezing conditions where most cells are died. CHO cells stably expressing AQP4 were exclusively selected from mixed cell cultures. Having identified the increased expression of AQP4 during ES cell differentiation into neuro-ectoderm using bioinformatics, we confirmed the improved survival of differentiated ES cells with AQP4 expression. Finally we show that CHO cells transiently transfected with Endothelin receptor A and Aqp4 were also selected and concentrated by multiple cycles of freezing/thawing, which was confirmed with calcium imaging in response to endothelin. Furthermore, we found that the expression of AQP enables a reduction in the amount of cryoprotectants for freezing, thereby decreasing osmotic stress and cellular toxicity. Taken together, we propose that this simple but efficient and safe method may be applicable to the selection of mammalian cells for applications in regenerative medicine as well as cell-based functional assays or drug screening protocols.
Collapse
|