1
|
Lee WH, Zygiel EM, Lee CH, Oglesby AG, Nolan EM. Calprotectin-mediated survival of Staphylococcus aureus in coculture with Pseudomonas aeruginosa occurs without nutrient metal sequestration. mBio 2025; 16:e0384624. [PMID: 40152583 PMCID: PMC12077171 DOI: 10.1128/mbio.03846-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Pseudomonas aeruginosa and Staphylococcus aureus are bacterial pathogens of major clinical concern that cause polymicrobial infections in diverse patient populations. Human calprotectin (CP; S100A8/S100A9 heterooligomer, MRP8/MRP14 heterooligomer) is a host-defense protein that contributes to nutritional immunity by sequestering multiple nutrient metal ions including Mn(II), Fe(II), and Zn(II). Here, we examine the consequences of metal availability and CP treatment on cocultures of P. aeruginosa and S. aureus. We report that CP elicits Fe-starvation responses in both P. aeruginosa and S. aureus in coculture, including the upregulation of genes involved in Fe uptake by both organisms. Moreover, analyses of pseudomonal metabolites in coculture supernatants further demonstrate Fe-starvation responses, showing that CP treatment leads to increased siderophore levels and reduced phenazine levels. Consistent with prior studies, growth under conditions of Fe depletion accelerated P. aeruginosa killing of S. aureus in coculture, but treatment with CP promoted S. aureus survival. Treatment with CP site variants lacking functional transition-metal-binding sites and metalated CP also enhanced S. aureus survival in coculture with P. aeruginosa, revealing that this consequence of CP treatment is independent of its canonical metal-sequestering function. Thus, the protective effects of CP treatment during coculture appear to override the observed Fe-starvation effects that make P. aeruginosa more virulent toward S. aureus. This work highlights an unappreciated facet of how CP contributes to host-pathogen and pathogen-pathogen interactions that are relevant to human infectious disease. IMPORTANCE The current working model that describes how the innate immune protein calprotectin (CP) protects the host against bacterial pathogens focuses on its capacity to sequester multiple essential metal nutrients in a process called nutritional immunity. Our study further explores this function by focusing on the effects of metal availability and CP treatment on the dynamics of Pseudomonas aeruginosa and Staphylococcus aureus grown in coculture. These two bacterial pathogens are of significant clinical concern and colocalize with CP at infection sites. This work reveals that CP modulates P. aeruginosa/S. aureus coculture dynamics in a manner that is independent of its ability to sequester nutrient metal ions. This surprising result is important because it demonstrates that CP has metal-independent function and thus contributes to the host-pathogen and pathogen-pathogen interactions in ways that are not accounted for in the current working model focused on metal sequestration.
Collapse
Affiliation(s)
- Wei H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Emily M. Zygiel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Celis H. Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Amanda G. Oglesby
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Elizabeth M. Nolan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
2
|
Zhang S, Huang Y, Nachawati R, Huber P, Walther G, Gregor L, Vilotijević I, Stallforth P. Pangenome Analysis of the Plant Pathogen Pseudomonas syringae Reveals Unique Natural Products for Niche Adaptation. Angew Chem Int Ed Engl 2025:e202503679. [PMID: 40192321 DOI: 10.1002/anie.202503679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/12/2025] [Accepted: 03/21/2025] [Indexed: 05/04/2025]
Abstract
Pseudomonas syringae is a soil-dwelling bacterium that exhibits remarkable niche adaptability, and it is known for its devastating impact as a plant pathogen. This bacterium has an outstanding capability to produce a wide array of biologically active natural products. P. syringae coexists with amoebal predators and fungal strains, which drives the production of secondary metabolites for predator evasion in addition to niche adaptation. In this study, we conducted a broad pangenomic analysis of 18 taxonomically distinct P. syringae strains, leading to the identification of 231 biosynthetic gene clusters (BGCs). Among these, nonribosomal peptide synthetases (NRPSs) were particularly abundant, indicating their potential significance within this ecological context. We discovered and elucidated the structures of two novel classes of bioactive compounds, the syrilipamides and chlorosecimides. Furthermore, a bioinformatic analysis enabled the identification of an undescribed halogenase, SecA, essential for the chlorination of secimide A. We observed that syrilipamides and secimides and in particular mixtures thereof, exhibit amoebicidal activities. Additionally, secimides showed selective antifungal activity. These findings provide valuable insights into the ecological roles of P. syringae natural products and highlight their potential for biotechnological and therapeutic applications.
Collapse
Affiliation(s)
- Shuaibing Zhang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Ying Huang
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Raed Nachawati
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Philipp Huber
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Grit Walther
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
| | - Lucas Gregor
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, D-07743, Jena, Germany
| | - Pierre Stallforth
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a, D-07745, Jena, Germany
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, D-07743, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Fürstengraben 1, D-07743, Jena, Germany
| |
Collapse
|
3
|
Kumar R, Singh A, Srivastava A. Xenosiderophores: bridging the gap in microbial iron acquisition strategies. World J Microbiol Biotechnol 2025; 41:69. [PMID: 39939429 DOI: 10.1007/s11274-025-04287-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025]
Abstract
Microorganisms acquire iron from surrounding environment through specific iron chelators known as siderophores that can be of self-origin or synthesized by neighboring microbes. The latter are termed as xenosiderophores. The acquired iron supports their growth, survival, and pathogenesis. Various microorganisms possess the ability to utilize xenosiderophores, a mechanism popularly termed as 'siderophore piracy' besides synthesizing their own siderophores. This adaptability allows microorganisms to conserve energy by reducing the load of siderogenesis. Owing to the presence of xenosiderophore transport machinery, these microbial systems can be used for targeting antibiotics-siderophore conjugates to control pathogenesis and combat antimicrobial resistance. This review outlines the significance of xenosiderophore utilization for growth, stress management and virulence. Siderogenesis and the molecular mechanism of its uptake by related organisms have been discussed vividly. It focuses on potential applications like disease diagnostics, drug delivery, and combating antibiotic resistance. In brief, this review highlights the importance of xenosiderophores projecting them beyond their role as mere iron chelators.
Collapse
Affiliation(s)
- Ravinsh Kumar
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Ashutosh Singh
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India
| | - Amrita Srivastava
- Department of Life Science, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, Bihar, India.
| |
Collapse
|
4
|
Colautti J, Kelly SD, Whitney JC. Specialized killing across the domains of life by the type VI secretion systems of Pseudomonas aeruginosa. Biochem J 2025; 482:1-15. [PMID: 39774785 DOI: 10.1042/bcj20230240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025]
Abstract
Type VI secretion systems (T6SSs) are widespread bacterial protein secretion machines that inject toxic effector proteins into nearby cells, thus facilitating both bacterial competition and virulence. Pseudomonas aeruginosa encodes three evolutionarily distinct T6SSs that each export a unique repertoire of effectors. Owing to its genetic tractability, P. aeruginosa has served as a model organism for molecular studies of the T6SS. However, P. aeruginosa is also an opportunistic pathogen and ubiquitous environmental organism that thrives in a wide range of habitats. Consequently, studies of its T6SSs have provided insight into the role these systems play in the diverse lifestyles of this species. In this review, we discuss recent advances in understanding the regulation and toxin repertoire of each of the three P. aeruginosa T6SSs. We argue that these T6SSs serve distinct physiological functions; whereas one system is a dedicated defensive weapon for interbacterial antagonism, the other two T6SSs appear to function primarily during infection. We find support for this model in examining the signalling pathways that control the expression of each T6SS and co-ordinate the activity of these systems with other P. aeruginosa behaviours. Furthermore, we discuss the effector repertoires of each T6SS and connect the mechanisms by which these effectors kill target cells to the ecological conditions under which their respective systems are activated. Understanding the T6SSs of P. aeruginosa in the context of this organism's diverse lifestyles will provide insight into the physiological roles these secretion systems play in this remarkably adaptable bacterium.
Collapse
Affiliation(s)
- Jake Colautti
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Steven D Kelly
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, L8S 4K1, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
- David Braley Center for Antibiotic Discovery, McMaster University, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Schalk IJ. Bacterial siderophores: diversity, uptake pathways and applications. Nat Rev Microbiol 2025; 23:24-40. [PMID: 39251840 DOI: 10.1038/s41579-024-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 09/11/2024]
Abstract
Iron is an essential nutrient for the growth, survival and virulence of almost all bacteria. To access iron, many bacteria produce siderophores, molecules with a high affinity for iron. Research has highlighted substantial diversity in the chemical structure of siderophores produced by bacteria, as well as remarkable variety in the molecular mechanisms involved in strategies for acquiring iron through these molecules. The metal-chelating properties of siderophores, characterized by their high affinity for iron and ability to chelate numerous other metals (albeit with lower affinity compared with iron), have also generated interest in diverse fields. Siderophores find applications in the environment, such as in bioremediation and agriculture, in which emerging and innovative strategies are being developed to address pollution and enhance nutrient availability for plants. Moreover, in medicine, siderophores could be used as a tool for novel antimicrobial therapies and medical imaging, as well as in haemochromatosis, thalassemia or cancer treatments. This Review offers insights into the diversity of siderophores, highlighting their potential applications in environmental and medical contexts.
Collapse
|
6
|
Vollenweider V, Rehm K, Chepkirui C, Pérez-Berlanga M, Polymenidou M, Piel J, Bigler L, Kümmerli R. Antimicrobial activity of iron-depriving pyoverdines against human opportunistic pathogens. eLife 2024; 13:RP92493. [PMID: 39693130 DOI: 10.7554/elife.92493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024] Open
Abstract
The global rise of antibiotic resistance calls for new drugs against bacterial pathogens. A common approach is to search for natural compounds deployed by microbes to inhibit competitors. Here, we show that the iron-chelating pyoverdines, siderophores produced by environmental Pseudomonas spp., have strong antibacterial properties by inducing iron starvation and growth arrest in pathogens. A screen of 320 natural Pseudomonas isolates used against 12 human pathogens uncovered several pyoverdines with particularly high antibacterial properties and distinct chemical characteristics. The most potent pyoverdine effectively reduced growth of the pathogens Acinetobacter baumannii, Klebsiella pneumoniae, and Staphylococcus aureus in a concentration- and iron-dependent manner. Pyoverdine increased survival of infected Galleria mellonella host larvae and showed low toxicity for the host, mammalian cell lines, and erythrocytes. Furthermore, experimental evolution of pathogens combined with whole-genome sequencing revealed limited resistance evolution compared to an antibiotic. Thus, pyoverdines from environmental strains have the potential to become a new class of sustainable antibacterials against specific human pathogens.
Collapse
Affiliation(s)
- Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Karoline Rehm
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Clara Chepkirui
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | | | | | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Rogala P, Jabłońska-Wawrzycka A, Czerwonka G, Hodorowicz M, Michałkiewicz S, Kalinowska-Tłuścik J, Karpiel M, Gałczyńska K. Ruthenium Complexes with Pyridazine Carboxylic Acid: Synthesis, Characterization, and Anti-Biofilm Activity. Molecules 2024; 29:5694. [PMID: 39683853 DOI: 10.3390/molecules29235694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/29/2024] [Accepted: 11/30/2024] [Indexed: 12/18/2024] Open
Abstract
As a result of drug resistance, many antimicrobial medicines become ineffective, making the infections more difficult to treat. Therefore, there is a need to develop new compounds with antibacterial activity. This role may be played, for example, by metal complexes with carboxylic acids. This study reports the formation and characterization of ruthenium complexes with pyridazine-3-carboxylic acid (pdz-3-COOH)-([(η6-p-cym)RuIICl(pdz-3-COO)] (1), [RuIIICl2(pdz-3-COO)2Na(H2O)]n(H2O)0.11 (2) and [RuIIICl2(pdz-3-COO)2Na(H2O)2]n (3). The synthesized compounds were analyzed using various spectroscopic and electrochemical techniques, with structure confirmation via SC-XRD analysis. Experimental data showed the ligand binds to metal ions bidentately through the nitrogen donor of the pyridazine ring and one carboxylate oxygen. To visualize intermolecular interactions, Hirshfeld surface analysis and 2D fingerprint plots were conducted. Furthermore, the impact of ruthenium compounds (1 and 2) on the planktonic growth of selected bacterial strains and the formation of Pseudomonas aeruginosa PAO1 biofilm was examined. Both complexes demonstrated comparable anti-biofilm activity and outperformed the free ligand. The effect of the complexes on selected virulence factors of P. aeruginosa PAO1 was also investigated. Compounds 1 and 2 show high suppressive activity in pyoverdine production, indicating that the virulence of the strain has been reduced. This inhibitory effect is similar to the inhibitory effect of ciprofloxacin. Within this context, the complexes exhibit promising antibacterial activities. Importantly, the compounds showed no cytotoxic effects on normal CHO-K1 cells. Additionally, a molecular docking approach and fluorescence spectroscopy were used to determine the interactions of ruthenium complexes with human serum albumin.
Collapse
Affiliation(s)
- Patrycja Rogala
- Institute of Chemistry, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | | | - Grzegorz Czerwonka
- Institute of Biology, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | - Maciej Hodorowicz
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Cracow, Poland
| | - Sławomir Michałkiewicz
- Institute of Chemistry, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| | | | - Marta Karpiel
- Faculty of Chemistry, Jagiellonian University, 2 Gronostajowa Str., 30-387 Cracow, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, 11 Lojasiewicza Str., 30-348 Cracow, Poland
| | - Katarzyna Gałczyńska
- Institute of Biology, Jan Kochanowski University, 7 Uniwersytecka Str., 25-406 Kielce, Poland
| |
Collapse
|
8
|
Patel KD, Fisk MB, Gulick AM. Discovery, functional characterization, and structural studies of the NRPS-independent siderophore synthetases. Crit Rev Biochem Mol Biol 2024; 59:447-471. [PMID: 40085133 PMCID: PMC12033978 DOI: 10.1080/10409238.2025.2476476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/21/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
To adapt to low-iron environments, many bacteria produce siderophores, low molecular weight iron chelators that are secreted into the environment where they bind ferric iron. The production of siderophore uptake systems then allows retrieval of the iron-complexed siderophore into the cell, where the metal ion can be used for structural and catalytic roles in many proteins. While many siderophores are produced by the activity of a family of large modular nonribosomal peptide synthetase (NRPS) enzymes, a second class of siderophores are produced by an alternate pathway. These so-called NRPS-independent siderophores (NIS) are biosynthesized through a shared catalytic step that is performed by an NIS synthetase. These enzymes catalyze the formation of an amide linkage between a carboxylate and an amine or, more rarely, form an ester with a hydroxyl substrate. Here we describe the discovery and biochemical studies of diverse NIS synthetases from different siderophore pathways to provide insight into their substrate specificity and catalytic mechanism. The structures of a small number of family members are additionally described that correlates the functional work with the enzyme structure. While the field has come a long way since it was described as a "long-overlooked" family in 2009, there remains much to discover in this large and important enzyme family.
Collapse
Affiliation(s)
| | | | - Andrew M. Gulick
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
9
|
Burch-Konda J, Kayastha BB, Achour M, Kubo A, Hull M, Braga R, Winton L, Rogers RR, Lutter EI, Patrauchan MA. EF-hand calcium sensor, EfhP, controls transcriptional regulation of iron uptake by calcium in Pseudomonas aeruginosa. mBio 2024; 15:e0244724. [PMID: 39436074 PMCID: PMC11559002 DOI: 10.1128/mbio.02447-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/24/2024] [Indexed: 10/23/2024] Open
Abstract
The human pathogen Pseudomonas aeruginosa (Pa) poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca2+-binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca2+-regulated virulence in P. aeruginosa. Here, we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ), and several virulence factors, such as the production of pyocins. The Ca2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca2+ and Fe, and this regulation required a Ca2+-dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to the host.IMPORTANCEPseudomonas aeruginosa (Pa) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca2+ sensor, EfhP, is required for at least 1/3 of the Ca2+ response, including the majority of the iron uptake mechanisms and the production of pyocins. Transcription of efhP itself is regulated by Ca2+ and Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca2+ and associated regulatory mechanisms will serve in the development of future therapeutics targeting Pa's dangerous infections.
Collapse
Affiliation(s)
- Jacob Burch-Konda
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Biraj B. Kayastha
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Myriam Achour
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Aya Kubo
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mackenzie Hull
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Reygan Braga
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Lorelei Winton
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Rendi R. Rogers
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Erika I. Lutter
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Marianna A. Patrauchan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
10
|
Raviranga NGH, Ayinla M, Perera HA, Qi Y, Yan M, Ramström O. Antimicrobial Potency of Nor-Pyochelin Analogues and Their Cation Complexes against Multidrug-Resistant Pathogens. ACS Infect Dis 2024; 10:3842-3852. [PMID: 39469860 DOI: 10.1021/acsinfecdis.4c00421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa develops increasing resistance toward even the most potent antibiotics. Like other bacteria, the pathogen produces a number of virulence factors including metallophores, which constitute an important group. Pseudomonads produce the iron-chelating metallophore (siderophore) pyochelin, which, in addition to its iron-scavenging ability, is an effector for the transcriptional regulator PchR in its FeIII-bound form (ferripyochelin). In the present study, docking studies predicted a major ferripyochelin binding site in PchR, which prompted the exploration of nor-pyochelin analogues to produce tight binding to PchR, and thereby upregulation of the pyochelin metabolism. In addition, we investigated the effects of using the analogues to bind the antimicrobial cations GaIII and InIII. Selected analogues of nor-pyochelin were synthesized, and their GaIII- and InIII-based complexes were assessed for antimicrobial activity. The results indicate that the GaIII complexes inhibit the pathogens under iron-limited conditions, while the InIII-based systems are more effective in iron-rich media. Several of the GaIII complexes were shown to be highly effective against a multidrug-resistant P. aeruginosa clinical isolate, with minimum inhibitory concentrations (MICs) of ≤1 μg/mL. Similarly, two of the InIII-based systems were particularly effective against the isolate, with an MIC of 8 μg/mL. These results show high promise in comparison with other, traditionally potent antibiotics, as the compounds generally indicated low cytotoxicity toward mammalian cells. Preliminary mechanistic investigations using pseudomonal transposon mutants suggested that the inhibitory effects of the InIII-based systems could be due to acute iron deficiency as a result of InIII-bound bacterioferritin.
Collapse
Affiliation(s)
- N G Hasitha Raviranga
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Mubarak Ayinla
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Harini A Perera
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Yunchuan Qi
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Mingdi Yan
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
| | - Olof Ramström
- Department of Chemistry, University of Massachusetts Lowell, One University Avenue, Lowell, Massachusetts 01854, United States
- Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-39182 Kalmar, Sweden
| |
Collapse
|
11
|
Jeong GJ, Khan F, Tabassum N, Jo DM, Jung WK, Kim YM. Roles of Pseudomonas aeruginosa siderophores in interaction with prokaryotic and eukaryotic organisms. Res Microbiol 2024; 175:104211. [PMID: 38734157 DOI: 10.1016/j.resmic.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that produces two types of siderophores, pyoverdine and pyochelin, that play pivotal roles in iron scavenging from the environment and host cells. P. aeruginosa siderophores can serve as virulence factors and perform various functions. Several bacterial and fungal species are likely to interact with P. aeruginosa due to its ubiquity in soil and water as well as its potential to cause infections in plants, animals, and humans. Siderophores produced by P. aeruginosa play critical roles in iron scavenging for prokaryotic species (bacteria) and eukaryotic hosts (fungi, animals, insects, invertebrates, and plants) as well. This review provides a comprehensive discussion of the role of P. aeruginosa siderophores in interaction with prokaryotes and eukaryotes as well as their underlying mechanisms of action. The evolutionary relationship between P. aeruginosa siderophore recognition receptors, such as FpvA, FpvB, and FptA, and those of other bacterial species has also been investigated.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Institute of Fisheries Science, Pukyong National University. Busan 48513, Republic of Korea; International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea.
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Du-Min Jo
- National Marine Biodiversity Institute of Korea, Seochun, Chungcheongnam-do, 33662, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea; Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea; Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
12
|
Luo VC, Peczuh MW. Location, Location, Location: Establishing Design Principles for New Antibacterials from Ferric Siderophore Transport Systems. Molecules 2024; 29:3889. [PMID: 39202968 PMCID: PMC11357680 DOI: 10.3390/molecules29163889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
This review strives to assemble a set of molecular design principles that enables the delivery of antibiotic warheads to Gram-negative bacterial targets (ESKAPE pathogens) using iron-chelating siderophores, known as the Trojan Horse strategy for antibiotic development. Principles are derived along two main lines. First, archetypical siderophores and their conjugates are used as case studies for native iron transport. They enable the consideration of the correspondence of iron transport and antibacterial target location. The second line of study charts the rationale behind the clinical antibiotic cefiderocol. It illustrates the potential versatility for the design of new Trojan Horse-based antibiotics. Themes such as matching the warhead to a location where the siderophore delivers its cargo (i.e., periplasm vs. cytoplasm), whether or not a cleavable linker is required, and the relevance of cheaters to the effectiveness and selectivity of new conjugates will be explored. The effort to articulate rules has identified gaps in the current understanding of iron transport pathways and suggests directions for new investigations.
Collapse
Affiliation(s)
| | - Mark W. Peczuh
- Department of Chemistry, University of Connecticut, 55 N. Eagleville Road, U3060, Storrs, CT 06269, USA;
| |
Collapse
|
13
|
Sendra E, Fernández-Muñoz A, Zamorano L, Oliver A, Horcajada JP, Juan C, Gómez-Zorrilla S. Impact of multidrug resistance on the virulence and fitness of Pseudomonas aeruginosa: a microbiological and clinical perspective. Infection 2024; 52:1235-1268. [PMID: 38954392 PMCID: PMC11289218 DOI: 10.1007/s15010-024-02313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/30/2024] [Indexed: 07/04/2024]
Abstract
Pseudomonas aeruginosa is one of the most common nosocomial pathogens and part of the top emergent species associated with antimicrobial resistance that has become one of the greatest threat to public health in the twenty-first century. This bacterium is provided with a wide set of virulence factors that contribute to pathogenesis in acute and chronic infections. This review aims to summarize the impact of multidrug resistance on the virulence and fitness of P. aeruginosa. Although it is generally assumed that acquisition of resistant determinants is associated with a fitness cost, several studies support that resistance mutations may not be associated with a decrease in virulence and/or that certain compensatory mutations may allow multidrug resistance strains to recover their initial fitness. We discuss the interplay between resistance profiles and virulence from a microbiological perspective but also the clinical consequences in outcomes and the economic impact.
Collapse
Affiliation(s)
- Elena Sendra
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
| | - Almudena Fernández-Muñoz
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Laura Zamorano
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
| | - Antonio Oliver
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Pablo Horcajada
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Juan
- Research Unit, University Hospital Son Espases-Health Research Institute of the Balearic Islands (IdISBa), Microbiology Department, University Hospital Son Espases, Crtra. Valldemossa 79, 07010, Palma, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| | - Silvia Gómez-Zorrilla
- Infectious Diseases Service, Hospital del Mar, Infectious Pathology and Antimicrobials Research Group (IPAR), Hospital del Mar Research Institute, Universitat Autònoma de Barcelona (UAB), CEXS-Universitat Pompeu Fabra, Passeig Marítim 25-27, 08003, Barcelona, Spain.
- Center for Biomedical Research in Infectious Diseases Network (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
14
|
Mudgil U, Khullar L, Chadha J, Prerna, Harjai K. Beyond antibiotics: Emerging antivirulence strategies to combat Pseudomonas aeruginosa in cystic fibrosis. Microb Pathog 2024; 193:106730. [PMID: 38851361 DOI: 10.1016/j.micpath.2024.106730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that poses a significant threat to individuals suffering from cystic fibrosis (CF). The pathogen is highly prevalent in CF individuals and is responsible for chronic infection, resulting in severe tissue damage and poor patient outcome. Prolonged antibiotic administration has led to the emergence of multidrug resistance in P. aeruginosa. In this direction, antivirulence strategies achieving targeted inhibition of bacterial virulence pathways, including quorum sensing, efflux pumps, lectins, and iron chelators, have been explored against CF isolates of P. aeruginosa. Hence, this review article presents a bird's eye view on the pulmonary infections involving P. aeruginosa in CF patients by laying emphasis on factors contributing to bacterial colonization, persistence, and disease progression along with the current line of therapeutics against P. aeruginosa in CF. We further collate scientific literature and discusses various antivirulence strategies that have been tested against P. aeruginosa isolates from CF patients.
Collapse
Affiliation(s)
- Umang Mudgil
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Lavanya Khullar
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Jatin Chadha
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Prerna
- Department of Microbiology, Panjab University, Chandigarh, India
| | - Kusum Harjai
- Department of Microbiology, Panjab University, Chandigarh, India.
| |
Collapse
|
15
|
Liao K, Wu J, Wang C, Li JZ, Wei HL. Pseudomonas beijingensis sp. nov., a novel species widely colonizing plant rhizosphere. Int J Syst Evol Microbiol 2024; 74:006473. [PMID: 39058535 PMCID: PMC11281800 DOI: 10.1099/ijsem.0.006473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
A polyphasic taxonomic approach was used to characterize the three bacterial strains (FP830T, FP2034, and FP2262) isolated from the rhizosphere soil of rice, corn, and highland barley in Beijing, Heilongjiang, and Tibet, respectively, in PR China. These strains were Gram-negative, rod-shaped, and have one or two polar flagella. They exhibited optimal growth at 28 °C and pH 7.0 in the presence of 1 % (w/v) NaCl and showed fluorescence under ultraviolet light when cultivated on King's B plates. The FP830T genome size is 6.4 Mbp with a G+C content of 61.0 mol%. FP830T has the potential to promote plant growth by producing various metabolites such as fengycin, pyoverdin, indole-3-acetic acid, and the volatile substance 2,3-butanediol. Phylogenetic analysis indicated that three isolates formed an independent branch, which most closely related to type strains Pseudomonas thivervalensis DSM 13194T and Pseudomonas zanjanensis SWRI12T. The values of average nucleotide identity and digital DNA-DNA hybridization between three isolates and closest relatives were not higher than 93.7 and 52.3 %, respectively. The dominant cellular fatty acids were C16 : 0, summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c), and summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c). The major polar lipids were phosphatidylethanolamine, diphosphatidylglycerol, and aminophospholipid. The predominant respiratory quinone was ubiquinone (Q-9). Based on polyphasic taxonomic analysis, it was concluded that strains FP830T, FP2034, and FP2262 represented a novel species within the genus Pseudomonas, and Pseudomonas beijingensis sp. nov. was proposed for the name of novel species. The type strain is FP830T (=ACCC 62448T=JCM 35689T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jingyi Wu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Can Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
16
|
Aroca Molina KJ, Gutiérrez SJ, Benítez-Campo N, Correa A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024; 12:1116. [PMID: 38930498 PMCID: PMC11205572 DOI: 10.3390/microorganisms12061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.
Collapse
Affiliation(s)
- Kelly J. Aroca Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Sonia Jakeline Gutiérrez
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Neyla Benítez-Campo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Adriana Correa
- Department of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
17
|
Mridha S, Wechsler T, Kümmerli R. Space and genealogy determine inter-individual differences in siderophore gene expression in bacterial colonies. Cell Rep 2024; 43:114106. [PMID: 38625795 DOI: 10.1016/j.celrep.2024.114106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/09/2024] [Accepted: 03/28/2024] [Indexed: 04/18/2024] Open
Abstract
Heterogeneity in gene expression is common among clonal cells in bacteria, although the sources and functions of variation often remain unknown. Here, we track cellular heterogeneity in the bacterium Pseudomonas aeruginosa during colony growth by focusing on siderophore gene expression (pyoverdine versus pyochelin) important for iron nutrition. We find that the spatial position of cells within colonies and non-genetic yet heritable differences between cell lineages are significant sources of cellular heterogeneity, while cell pole age and lifespan have no effect. Regarding functions, our results indicate that cells adjust their siderophore investment strategies along a gradient from the colony center to its edge. Moreover, cell lineages with below-average siderophore investment benefit from lineages with above-average siderophore investment, presumably due to siderophore sharing. Our study highlights that single-cell experiments with dual gene expression reporters can identify sources of gene expression variation of interlinked traits and offer explanations for adaptive benefits in bacteria.
Collapse
Affiliation(s)
- Subham Mridha
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Tobias Wechsler
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
18
|
Łuniewski S, Rogowska W, Łozowicka B, Iwaniuk P. Plants, Microorganisms and Their Metabolites in Supporting Asbestos Detoxification-A Biological Perspective in Asbestos Treatment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1644. [PMID: 38612157 PMCID: PMC11012542 DOI: 10.3390/ma17071644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/13/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024]
Abstract
Many countries banned asbestos due to its toxicity, but considering its colossal use, especially in the 1960s and 1970s, disposing of waste containing asbestos is the current problem. Today, many asbestos disposal technologies are known, but they usually involve colossal investment and operating expenses, and the end- and by-products of these methods negatively impact the environment. This paper identifies a unique modern direction in detoxifying asbestos minerals, which involves using microorganisms and plants and their metabolites. The work comprehensively focuses on the interactions between asbestos and plants, bacteria and fungi, including lichens and, for the first time, yeast. Biological treatment is a prospect for in situ land reclamation and under industrial conditions, which can be a viable alternative to landfilling and an environmentally friendly substitute or supplement to thermal, mechanical, and chemical methods, often characterized by high cost intensity. Plant and microbial metabolism products are part of the green chemistry trend, a central strategic pillar of global industrial and environmental development.
Collapse
Affiliation(s)
- Stanisław Łuniewski
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Faculty of Economic Sciences, The Eastern European University of Applied Sciences in Bialystok, Ciepła 40 St., 15-472 Białystok, Poland
| | - Weronika Rogowska
- Department of Environmental Engineering Technology and Systems, Faculty of Civil Engineering and Environmental Sciences, Białystok University of Technology, Wiejska 45E St., 15-351 Białystok, Poland
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Bożena Łozowicka
- Faculty of Economics, L.N. Gumilyov Eurasian National University, Satpayev 2, Astana 010008, Kazakhstan; (S.Ł.); (B.Ł.)
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| | - Piotr Iwaniuk
- Institute of Plant Protection—National Research Institute, Chełmońskiego 22 St., 15-195 Białystok, Poland;
| |
Collapse
|
19
|
Seo S, Yang Q, Jeong S, Della Porta A, Kapoor H, Gibson DJ. A surfactant-based dressing can reduce the appearance of Pseudomonas aeruginosa pigments and uncover the dermal extracellular matrix in an ex vivo porcine skin wound model. Int Wound J 2024; 21:e14510. [PMID: 38148595 PMCID: PMC10958096 DOI: 10.1111/iwj.14510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 12/28/2023] Open
Abstract
From previous studies, we have shown that viable colony forming units of bacteria and bacterial biofilms are reduced after sequential treatment with a surfactant-based dressing. Here, we sought to test the impact on visible bacterial pigments and the ultrastructural impact following the sequential treatment of the same surfactant-based dressing. Mature Pseudomonas aeruginosa biofilms were grown on ex vivo porcine skin explants, and an imaging-based analysis was used to compare the skin with and without a concentrated surfactant. In explants naturally tinted by bacterial chromophores, wiping alone had no effect, while the use of a surfactant-based dressing reduced coloration. Similarly, daily wiping led to increased immunohistochemical staining for P. aeruginosa antigens, but not in the surfactant group. Confocal immunofluorescent imaging revealed limited bacterial penetration and coating of the dermis and loose pieces of sloughing material. Ultrastructural analysis confirmed that the biofilms were masking the extracellular matrix (ECM), but the surfactant could remove them, re-exposing the ECM. The masking of the ECM may provide another non-inflammatory explanation for delayed healing, as the ECM is no longer accessible for wound cell locomotion. The use of a poloxamer-based surfactant appears to be an effective way to remove bacterial chromophores and the biofilm coating the ECM fibres.
Collapse
Affiliation(s)
- Soojung Seo
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
- Department of Biological SciencesUniversity of AlabamaTuscaloosaAlabamaUSA
| | - Qingping Yang
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Sunyoung Jeong
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Alessandra Della Porta
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Harris Kapoor
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
| | - Daniel J. Gibson
- Department of OB/GYNInstitute for Wound Research, University of FloridaGainesvilleFloridaUSA
- Capstone College of NursingUniversity of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
20
|
Kang D, Xu Q, Kirienko NV. In vitro lung epithelial cell model reveals novel roles for Pseudomonas aeruginosa siderophores. Microbiol Spectr 2024; 12:e0369323. [PMID: 38311809 PMCID: PMC10913452 DOI: 10.1128/spectrum.03693-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 02/06/2024] Open
Abstract
The multidrug-resistant pathogen Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model that can be used to characterize the impact and molecular mechanisms of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model to use human bronchial epithelial (16HBE) cells. We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipids or genetic disruption of rhamnolipid biosynthesis abrogated the toxicity of the conditioned medium. Furthermore, we also examine the effects of exposure to purified pyoverdine on 16HBE cells. While pyoverdine accumulated within cells, it was largely sequestered within early endosomes, resulting in minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several pro-inflammatory genes. However, pyoverdine potentiated these iron chelators in activating pro-inflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa is a versatile bacterium that frequently causes lung infections. This pathogen is life-threatening to mechanically-ventilated patients in intensive care units and is a debilitating burden for individuals with cystic fibrosis. However, the role of P. aeruginosa virulence factors and their regulation during infection are not fully understood. Previous murine lung infection studies have demonstrated that the production of siderophores (e.g., pyoverdine and pyochelin) is necessary for full P. aeruginosa virulence. In this report, we provide further mechanistic insight into this phenomenon. We characterize distinct and novel ways these siderophores contribute to virulence using an in vitro human lung epithelial cell culture model.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, Texas, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
| | | |
Collapse
|
21
|
Liao K, Li Q, Li JZ, Wei HL. Pseudomonas hefeiensis sp. nov., isolated from the rhizosphere of multiple cash crops in China. Int J Syst Evol Microbiol 2024; 74:006303. [PMID: 38536209 PMCID: PMC10995727 DOI: 10.1099/ijsem.0.006303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024] Open
Abstract
Three bacterial strains, FP250T, FP821, and FP53, were isolated from the rhizosphere soil of oilseed rape, licorice, and habanero pepper in Anhui Province, Xinjiang Uygur Autonomous Region, and Jiangsu Province, PR China, respectively. All strains were shown to grow at 4-37 °C and pH 6.0-9.0, and in the presence of 0-4.0 % (w/v) NaCl. Phylogenetic analyses based on 16S rRNA gene sequences or housekeeping genes (16S rRNA, gyrB, rpoB, and rpoD) and phylogenomic analysis showed that strains FP250T, FP821, and FP53 belong to the genus Pseudomonas, and are closely related to Pseudomonas kilonensis DSM 13647T, Pseudomonas brassicacearum JCM 11938T, Pseudomonas viciae 11K1T, and Pseudomonas thivervalensis DSM 13194T. The DNA G+C content of strain FP205T was 59.8 mol%. The average nucleotide identity and digital DNA-DNA hybridization values of strain FP205T with the most closely related strain were 93.2 % and 51.4 %, respectively, which is well below the threshold for species differentiation. Strain FP205T contained summed feature 3 (C16 : 1 ω6c and/or C16 : 1 ω7c), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) as major fatty acids, and diphosphatidylglycerol along with phosphatidylethanolamine and aminophospholipid as major polar lipids. The predominant isoprenoid quinone was ubiquinone-9. Based on these phenotypic, phylogenetic, and chemotaxonomic results, strain FP205T represents a novel species of the genus Pseudomonas, for which the name Pseudomonas hefeiensis sp. nov. is proposed. The type strain is FP205T (=ACCC 62447T=JCM 35687T).
Collapse
Affiliation(s)
- Kaiji Liao
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Life Science and Technology of Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qiang Li
- Shandong Tudacu Fertilizer Co. Ltd, Jining 272000, PR China
| | - Jun-Zhou Li
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hai-Lei Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
22
|
Nozick SH, Ozer EA, Medernach R, Kochan TJ, Kumar R, Mills JO, Wunderlink RG, Qi C, Hauser AR. Phenotypes of a Pseudomonas aeruginosa hypermutator lineage that emerged during prolonged mechanical ventilation in a patient without cystic fibrosis. mSystems 2024; 9:e0048423. [PMID: 38132670 PMCID: PMC10804958 DOI: 10.1128/msystems.00484-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023] Open
Abstract
Hypermutator lineages of Pseudomonas aeruginosa arise frequently during the years of airway infection experienced by patients with cystic fibrosis and bronchiectasis but are rare in the absence of chronic infection and structural lung disease. Since the onset of the COVID-19 pandemic, large numbers of patients have remained mechanically ventilated for extended periods of time. These patients are prone to acquire bacterial pathogens that persist for many weeks and have the opportunity to evolve within the pulmonary environment. However, little is known about what types of adaptations occur in these bacteria and whether these adaptations mimic those observed in chronic infections. We describe a COVID-19 patient with a secondary P. aeruginosa lung infection in whom the causative bacterium persisted for >50 days. Over the course of this infection, a hypermutator lineage of P. aeruginosa emerged and co-existed with a non-hypermutator lineage. Compared to the parental lineage, the hypermutator lineage evolved to be less cytotoxic and less virulent. Genomic analyses of the hypermutator lineage identified numerous mutations, including in the mismatch repair gene mutL and other genes frequently mutated in individuals with cystic fibrosis. Together, these findings demonstrate that hypermutator lineages can emerge when P. aeruginosa persists following acute infections such as ventilator-associated pneumonia and that these lineages have the potential to affect patient outcomes.IMPORTANCEPseudomonas aeruginosa may evolve to accumulate large numbers of mutations in the context of chronic infections such as those that occur in individuals with cystic fibrosis. However, these "hypermutator" lineages are rare following acute infections. Here, we describe a non-cystic fibrosis patient with COVID-19 pneumonia who remained mechanically ventilated for months. The patient became infected with a strain of P. aeruginosa that evolved to become a hypermutator. We demonstrate that hypermutation led to changes in cytotoxicity and virulence. These findings are important because they demonstrate that P. aeruginosa hypermutators can emerge following acute infections and that they have the potential to affect patient outcomes in this setting.
Collapse
Affiliation(s)
- Sophia H. Nozick
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Egon A. Ozer
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rachel Medernach
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Travis J. Kochan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rebecca Kumar
- />Department of Medicine, Division of Infectious Diseases, Georgetown University, Washington, DC, USA
| | - Jori O. Mills
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard G. Wunderlink
- Department of Medicine, Division of Pulmonary and Critical Care, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chao Qi
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alan R. Hauser
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Medicine, Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
23
|
Burch-Konda J, Kayastha BB, Kubo A, Achour M, Hull M, Braga R, Winton L, Rogers RR, McCoy J, Lutter EI, Patrauchan MA. EF-Hand Calcium Sensor, EfhP, Controls Transcriptional Regulation of Iron Uptake by Calcium in Pseudomonas aeruginosa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.09.574892. [PMID: 38260268 PMCID: PMC10802428 DOI: 10.1101/2024.01.09.574892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The human pathogen Pseudomonas aeruginosa poses a major risk for a range of severe infections, particularly lung infections in patients suffering from cystic fibrosis (CF). As previously reported, the virulent behavior of this pathogen is enhanced by elevated levels of Ca 2+ that are commonly present in CF nasal and lung fluids. In addition, a Ca 2+ -binding EF-hand protein, EfhP (PA4107), was partially characterized and shown to be critical for the Ca 2+ -regulated virulence in P. aeruginosa . Here we describe the rapid (10 min, 60 min), and adaptive (12 h) transcriptional responses of PAO1 to elevated Ca 2+ detected by genome-wide RNA sequencing and show that efhP deletion significantly hindered both rapid and adaptive Ca 2+ regulation. The most differentially regulated genes included multiple Fe sequestering mechanisms, a large number of extracytoplasmic function sigma factors (ECFσ) and several virulence factors, such as production of pyocins. The Ca 2+ regulation of Fe uptake was also observed in CF clinical isolates and appeared to involve the global regulator Fur. In addition, we showed that the efhP transcription is controlled by Ca 2+ and Fe, and this regulation required Ca 2+ -dependent two-component regulatory system CarSR. Furthermore, the efhP expression is significantly increased in CF clinical isolates and upon pathogen internalization into epithelial cells. Overall, the results established for the first time that Ca 2+ controls Fe sequestering mechanisms in P. aeruginosa and that EfhP plays a key role in the regulatory interconnectedness between Ca 2+ and Fe signaling pathways, the two distinct and important signaling pathways that guide the pathogen's adaptation to host. IMPORTANCE Pseudomonas aeruginosa ( Pa ) poses a major risk for severe infections, particularly in patients suffering from cystic fibrosis (CF). For the first time, kinetic RNA sequencing analysis identified Pa rapid and adaptive transcriptional responses to Ca 2+ levels consistent with those present in CF respiratory fluids. The most highly upregulated processes include iron sequestering, iron starvation sigma factors, and self-lysis factors pyocins. An EF-hand Ca 2+ sensor, EfhP, is required for at least 1/3 of the Ca 2+ response, including all the iron uptake mechanisms and production of pyocins. Transcription of efhP itself is regulated by Ca 2+ , Fe, and increases during interactions with host epithelial cells, suggesting the protein's important role in Pa infections. The findings establish the regulatory interconnectedness between Ca 2+ and iron signaling pathways that shape Pa transcriptional responses. Therefore, understanding Pa's transcriptional response to Ca 2+ and associated regulatory mechanisms will serve the development of future therapeutics targeting Pa dangerous infections.
Collapse
|
24
|
Tang M, Yang R, Zhuang Z, Han S, Sun Y, Li P, Fan K, Cai Z, Yang Q, Yu Z, Yang L, Li S. Divergent molecular strategies drive evolutionary adaptation to competitive fitness in biofilm formation. THE ISME JOURNAL 2024; 18:wrae135. [PMID: 39052320 PMCID: PMC11307329 DOI: 10.1093/ismejo/wrae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/09/2024] [Accepted: 07/24/2024] [Indexed: 07/27/2024]
Abstract
Biofilm is a group of heterogeneously structured and densely packed bacteria with limited access to nutrients and oxygen. These intrinsic features can allow a mono-species biofilm to diversify into polymorphic subpopulations, determining the overall community's adaptive capability to changing ecological niches. However, the specific biological functions underlying biofilm diversification and fitness adaptation are poorly demonstrated. Here, we launched and monitored the experimental evolution of Pseudomonas aeruginosa biofilms, finding that two divergent molecular trajectories were adopted for adaptation to higher competitive fitness in biofilm formation: one involved hijacking bacteriophage superinfection to aggressively inhibit kin competitors, whereas the other induced a subtle change in cyclic dimeric guanosine monophosphate signaling to gain a positional advantage via enhanced early biofilm adhesion. Bioinformatics analyses implicated that similar evolutionary strategies were prevalent among clinical P. aeruginosa strains, indicative of parallelism between natural and experimental evolution. Divergence in the molecular bases illustrated the adaptive values of genomic plasticity for gaining competitive fitness in biofilm formation. Finally, we demonstrated that these fitness-adaptive mutations reduced bacterial virulence. Our findings revealed how the mutations intrinsically generated from the biofilm environment influence the evolution of P. aeruginosa.
Collapse
Affiliation(s)
- Mingxing Tang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Ruixue Yang
- Community Health Service Center of Southern University of Science and Technology, Nanshan Medical Group Headquarters, Shenzhen 518055, China
| | - Zilin Zhuang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuhong Han
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunke Sun
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Peiyu Li
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Kewei Fan
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Zhao Cai
- Department of Research and Development, Shenzhen Mindray Bio-Medical Electronics Co, Ltd, Shenzhen 518057, China
| | - Qiong Yang
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
| | - Zhijian Yu
- Department of Infectious Diseases, Shenzhen Nanshan People’s Hospital, Shenzhen University School of Medicine, Shenzhen 518052, China
| | - Liang Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shuo Li
- Department of Otorhinolaryngology, Shenzhen Nanshan People’s Hospital, Shenzhen 518052, China
- Allergy Prevention and Control Center, Nanshan People’s Hospital, Shenzhen 518052, China
| |
Collapse
|
25
|
Smith P, Schuster M. The fitness benefit of pyoverdine cross-feeding by Pseudomonas protegens Pf-5. Environ Microbiol 2024; 26:e16554. [PMID: 38097191 DOI: 10.1111/1462-2920.16554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/24/2023] [Indexed: 12/20/2023]
Abstract
Under iron-limiting conditions, fluorescent pseudomonads acquire iron from the environment by secreting strain-specific, iron-chelating siderophores termed pyoverdines (PVD). The rhizosphere bacterium Pseudomonas protegens Pf-5 produces its own PVD but also can cross-feed on PVDs produced by other species. Previous work has found that Pf-5 continues to produce its own PVD when allowed to cross-feed, raising questions about the benefit of heterologous PVD utilisation. Here, we investigate this question using a defined, unidirectional P. protegens Pf-5/Pseudomonas aeruginosa PAO1 cross-feeding model. Quantifying the production of PVD in the presence of heterologous PVD produced by PAO1, we show that cross-feeding Pf-5 strains reduce the production of their own PVD, while non-cross-feeding Pf-5 strains increase the production of PVD. Measuring the fitness of cross-feeding and non-cross-feeding Pf-5 strains in triple coculture with PAO1, we find that cross-feeding provides a fitness benefit to Pf-5 when the availability of heterologous PVD is high. We conclude that cross-feeding can reduce the costs of self-PVD production and may thus aid in the colonisation of iron-limited environments that contain compatible siderophores produced by other resident microbes. Taken together, these results expand our understanding of the mechanisms of interspecific competition for iron in microbial communities.
Collapse
Affiliation(s)
- Parker Smith
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| | - Martin Schuster
- Department of Microbiology, Oregon State University, Corvallis, Oregon, USA
| |
Collapse
|
26
|
Papa R, Imperlini E, Trecca M, Paris I, Vrenna G, Artini M, Selan L. Virulence of Pseudomonas aeruginosa in Cystic Fibrosis: Relationships between Normoxia and Anoxia Lifestyle. Antibiotics (Basel) 2023; 13:1. [PMID: 38275311 PMCID: PMC10812786 DOI: 10.3390/antibiotics13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 01/27/2024] Open
Abstract
The airways of cystic fibrosis (CF) patients are colonized by many pathogens and the most common is Pseudomonas aeruginosa, an environmental pathogen that is able to infect immunocompromised patients thanks to its ability to develop resistance to conventional antibiotics. Over 12% of all patients colonized by P. aeruginosa harbour multi-drug resistant species. During airway infection in CF, P. aeruginosa adopts various mechanisms to survive in a hostile ecological niche characterized by low oxygen concentration, nutrient limitation and high osmotic pressure. To this end, P. aeruginosa uses a variety of virulence factors including pigment production, biofilm formation, motility and the secretion of toxins and proteases. This study represents the first report that systematically analyzes the differences in virulence features, in normoxia and anoxia, of clinical P. aeruginosa isolated from CF patients, characterized by multi- or pan-drug antibiotic resistance compared to antibiotic sensitive strains. The virulence features, such as biofilm formation, protease secretion and motility, are highly diversified in anaerobiosis, which reflects the condition of chronic CF infection. These findings may contribute to the understanding of the real-world lifestyle of pathogens isolated during disease progression in each particular patient and to assist in the design of therapeutic protocols for personalized medicine.
Collapse
Affiliation(s)
- Rosanna Papa
- Department of Public Health and Infectious Diseases, Sapienza University, p. le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (M.T.); (I.P.); (L.S.)
| | - Esther Imperlini
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy;
| | - Marika Trecca
- Department of Public Health and Infectious Diseases, Sapienza University, p. le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (M.T.); (I.P.); (L.S.)
| | - Irene Paris
- Department of Public Health and Infectious Diseases, Sapienza University, p. le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (M.T.); (I.P.); (L.S.)
| | - Gianluca Vrenna
- Research Unit of Diagnostical and Management Innovations, Children’s Hospital and Institute Research Bambino Gesù, 00165 Rome, Italy;
| | - Marco Artini
- Department of Public Health and Infectious Diseases, Sapienza University, p. le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (M.T.); (I.P.); (L.S.)
| | - Laura Selan
- Department of Public Health and Infectious Diseases, Sapienza University, p. le Aldo Moro 5, 00185 Rome, Italy; (R.P.); (M.T.); (I.P.); (L.S.)
| |
Collapse
|
27
|
Rosa-Núñez E, Echavarri-Erasun C, Armas AM, Escudero V, Poza-Carrión C, Rubio LM, González-Guerrero M. Iron Homeostasis in Azotobacter vinelandii. BIOLOGY 2023; 12:1423. [PMID: 37998022 PMCID: PMC10669500 DOI: 10.3390/biology12111423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023]
Abstract
Iron is an essential nutrient for all life forms. Specialized mechanisms exist in bacteria to ensure iron uptake and its delivery to key enzymes within the cell, while preventing toxicity. Iron uptake and exchange networks must adapt to the different environmental conditions, particularly those that require the biosynthesis of multiple iron proteins, such as nitrogen fixation. In this review, we outline the mechanisms that the model diazotrophic bacterium Azotobacter vinelandii uses to ensure iron nutrition and how it adapts Fe metabolism to diazotrophic growth.
Collapse
Affiliation(s)
- Elena Rosa-Núñez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Carlos Echavarri-Erasun
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| | - Alejandro M. Armas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - César Poza-Carrión
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Luis M. Rubio
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Campus de Montegancedo UPM, Crta. M-40 km 38, 28223 Madrid, Spain; (E.R.-N.); (C.E.-E.); (A.M.A.); (C.P.-C.); (L.M.R.)
- Escuela Técnica de Ingeniería Agraria, Alimentaria, y de Biosistemas, Universidad Politécnica de Madrid, Avda. Puerta de Hierro, 2, 28040 Madrid, Spain
| |
Collapse
|
28
|
Liu J, Zhao SY, Hu JY, Chen QX, Jiao SM, Xiao HC, Zhang Q, Xu J, Zhao JF, Zhou HB, Zheng JX, Sun PH. Novel Coumarin Derivatives Inhibit the Quorum Sensing System and Iron Homeostasis as Antibacterial Synergists against Pseudomonas aeruginosa. J Med Chem 2023; 66:14735-14754. [PMID: 37874867 DOI: 10.1021/acs.jmedchem.3c01268] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is well-known to cause biofilm-associated drug resistance and infections that often lead to treatment failure. Herein, we reported a dual-acting antibiofilm strategy by inhibiting both the bacterial quorum sensing system and the iron uptake system. A series of coumarin derivatives were synthesized and evaluated, and compound 4t was identified as the most effective biofilm inhibitor (IC50 = 3.6 μM). Further mechanistic studies have confirmed that 4t not only inhibits the QS systems but also competes strongly with pyoverdine as an iron chelator, causing an iron deficiency in P. aeruginosa. Additionally, 4t significantly improved the synergistic antibacterial effects of ciprofloxacin and tobramycin by more than 200-1000-fold compared to the single-dose antibiotic treatments. Therefore, our study has shown that 4t is a potentially novel antibacterial synergist candidate to treat bacterial infections.
Collapse
Affiliation(s)
- Jun Liu
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Si-Yu Zhao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jia-Yi Hu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Qiu-Xian Chen
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Shu-Meng Jiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hai-Chuan Xiao
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Qiang Zhang
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jun Xu
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jian-Fu Zhao
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hai-Bo Zhou
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Jun-Xia Zheng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ping-Hua Sun
- Department of Oncology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, P. R. China
- College of Pharmacy, Shihezi University, Shihezi, Xinjiang 832099, P. R. China
- College of Pharmacy, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
29
|
Huang M, Shen S, Meng Z, Si G, Wu X, Feng T, Liu C, Chen J, Duan C. Mechanisms involved in the sequestration and resistance of cadmium for a plant-associated Pseudomonas strain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115527. [PMID: 37806135 DOI: 10.1016/j.ecoenv.2023.115527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/07/2023] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
Understanding Cd-resistant bacterial cadmium (Cd) resistance systems is crucial for improving microremediation in Cd-contaminated environments. However, these mechanisms are not fully understood in plant-associated bacteria. In the present study, we investigated the mechanisms underlying Cd sequestration and resistance in the strain AN-B15. These results showed that extracellular Cd sequestration by complexation in strain AN-B15 was primarily responsible for the removal of Cd from the solution. Transcriptome analyses have shown that the mechanisms of Cd resistance at the transcriptional level involve collaborative processes involving multiple metabolic pathways. The AN-B15 strain upregulated the expression of genes related to exopolymeric substance synthesis, metal transport, Fe-S cluster biogenesis, iron recruitment, reactive oxygen species oxidative stress defense, and DNA and protein repair to resist Cd-induced stress. Furthermore, inoculation with AN-B15 alleviated Cd-induced toxicity and reduced Cd uptake in the shoots of wheat seedlings, indicating its potential for remediation. Overall, the results improve our understanding of the mechanisms involved in Cd resistance in bacteria and thus have important implications for improving microremediation.
Collapse
Affiliation(s)
- Mingyu Huang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shili Shen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zhuang Meng
- School of Agriculture, Yunnan University, Kunming 650091, China
| | - Guangzheng Si
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Xinni Wu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Tingting Feng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Jinquan Chen
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China.
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; School of Agriculture, Yunnan University, Kunming 650091, China.
| |
Collapse
|
30
|
Guadarrama-Orozco KD, Perez-Gonzalez C, Kota K, Cocotl-Yañez M, Jiménez-Cortés JG, Díaz-Guerrero M, Hernández-Garnica M, Munson J, Cadet F, López-Jácome LE, Estrada-Velasco ÁY, Fernández-Presas AM, García-Contreras R. To cheat or not to cheat: cheatable and non-cheatable virulence factors in Pseudomonas aeruginosa. FEMS Microbiol Ecol 2023; 99:fiad128. [PMID: 37827541 DOI: 10.1093/femsec/fiad128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/14/2023] Open
Abstract
Important bacterial pathogens such as Pseudomonas aeruginosa produce several exoproducts such as siderophores, degradative enzymes, biosurfactants, and exopolysaccharides that are used extracellularly, benefiting all members of the population, hence being public goods. Since the production of public goods is a cooperative trait, it is in principle susceptible to cheating by individuals in the population who do not invest in their production, but use their benefits, hence increasing their fitness at the expense of the cooperators' fitness. Among the most studied virulence factors susceptible to cheating are siderophores and exoproteases, with several studies in vitro and some in animal infection models. In addition to these two well-known examples, cheating with other virulence factors such as exopolysaccharides, biosurfactants, eDNA production, secretion systems, and biofilm formation has also been studied. In this review, we discuss the evidence of the susceptibility of each of those virulence factors to cheating, as well as the mechanisms that counteract this behavior and the possible consequences for bacterial virulence.
Collapse
Affiliation(s)
- Katya Dafne Guadarrama-Orozco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Caleb Perez-Gonzalez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Kokila Kota
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Miguel Cocotl-Yañez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Jesús Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Miguel Díaz-Guerrero
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Mariel Hernández-Garnica
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Julia Munson
- Ramapo College of New Jersey, Biology Department, Mahwah, NJ 07430, USA
| | - Frederic Cadet
- PEACCEL, Artificial Intelligence Department, AI for Biologics, Paris, 75013, France
| | - Luis Esaú López-Jácome
- Laboratorio de Microbiología Clínica, División de Infectología, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, 14389 Mexico City, Mexico
| | - Ángel Yahir Estrada-Velasco
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| | - Rodolfo García-Contreras
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, 04360 Mexico City,Mexico
| |
Collapse
|
31
|
Kang D, Xu Q, Kirienko NV. In vitro Lung Epithelial Cell Model Reveals Novel Roles for Pseudomonas aeruginosa Siderophores. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525796. [PMID: 36747656 PMCID: PMC9901015 DOI: 10.1101/2023.01.26.525796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Multidrug-resistant Pseudomonas aeruginosa is a common nosocomial respiratory pathogen that continues to threaten the lives of patients with mechanical ventilation in intensive care units and those with underlying comorbidities such as cystic fibrosis or chronic obstructive pulmonary disease. For over 20 years, studies have repeatedly demonstrated that the major siderophore pyoverdine is an important virulence factor for P. aeruginosa in invertebrate and mammalian hosts in vivo. Despite its physiological significance, an in vitro, mammalian cell culture model to characterize the impact and molecular mechanism of pyoverdine-mediated virulence has only been developed very recently. In this study, we adapt a previously-established, murine macrophage-based model for human bronchial epithelial cells (16HBE). We demonstrate that conditioned medium from P. aeruginosa induced rapid 16HBE cell death through the pyoverdine-dependent secretion of cytotoxic rhamnolipids. Genetic or chemical disruption of pyoverdine biosynthesis decreased rhamnolipid production and mitigated cell death. Consistent with these observations, chemical depletion of lipid factors or genetic disruption of rhamnolipid biosynthesis was sufficient to abrogate conditioned medium toxicity. Furthermore, we also examine the effects of purified pyoverdine exposure on 16HBE cells. While pyoverdine accumulated within cells, the siderophore was largely sequestered within early endosomes, showing minimal cytotoxicity. More membrane-permeable iron chelators, such as the siderophore pyochelin, decreased epithelial cell viability and upregulated several proinflammatory genes. However, pyoverdine potentiated these iron chelators in activating proinflammatory pathways. Altogether, these findings suggest that the siderophores pyoverdine and pyochelin play distinct roles in virulence during acute P. aeruginosa lung infection.
Collapse
Affiliation(s)
- Donghoon Kang
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Qi Xu
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | |
Collapse
|
32
|
Graßl F, Konrad MMB, Krüll J, Pezerovic A, Zähnle L, Burkovski A, Heinrich MR. Tuning the Polarity of Antibiotic-Cy5 Conjugates Enables Highly Selective Labeling of Binding Sites. Chemistry 2023; 29:e202301208. [PMID: 37247408 DOI: 10.1002/chem.202301208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 05/31/2023]
Abstract
Multidrug-resistant bacteria pose a major threat to global health, even as newly introduced antibiotics continue to lose their therapeutic value. Against this background, deeper insights into bacterial interaction with antibiotic drugs are urgently required, whereas fluorescently labeled drug conjugates can serve as highly valuable tools. Herein, the preparation and biological evaluation of 13 new fluorescent antibiotic-Cy5 dye conjugates is described, in which the tuning of the polarity of the Cy5 dye proved to be a key element to achieve highly favorable properties for various fields of application.
Collapse
Affiliation(s)
- Fabian Graßl
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Maike M B Konrad
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Jasmin Krüll
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Azra Pezerovic
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Leon Zähnle
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| | - Andreas Burkovski
- Department of Biology, Microbiology Division, Friedrich-Alexander Universität Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Markus R Heinrich
- Department of Chemistry and Pharmacy, Pharmaceutical Chemistry, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nikolaus-Fiebiger-Str. 10, 91058, Erlangen, Germany
| |
Collapse
|
33
|
Pike VL, Stevens EJ, Griffin AS, King KC. Within- and between-host dynamics of producer and non-producer pathogens. Parasitology 2023; 150:805-812. [PMID: 37394480 PMCID: PMC10478067 DOI: 10.1017/s0031182023000586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 07/04/2023]
Abstract
For infections to be maintained in a population, pathogens must compete to colonize hosts and transmit between them. We use an experimental approach to investigate within-and-between host dynamics using the pathogen Pseudomonas aeruginosa and the animal host Caenorhabditis elegans. Within-host interactions can involve the production of goods that are beneficial to all pathogens in the local environment but susceptible to exploitation by non-producers. We exposed the nematode host to ‘producer’ and two ‘non-producer’ bacterial strains (specifically for siderophore production and quorum sensing), in single infections and coinfections, to investigate within-host colonization. Subsequently, we introduced infected nematodes to pathogen-naive populations to allow natural transmission between hosts. We find that producer pathogens are consistently better at colonizing hosts and transmitting between them than non-producers during coinfection and single infection. Non-producers were poor at colonizing hosts and between-host transmission, even when coinfecting with producers. Understanding pathogen dynamics across these multiple levels will ultimately help us predict and control the spread of infections, as well as contribute to explanations for the persistence of cooperative genotypes in natural populations.
Collapse
Affiliation(s)
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
34
|
Das T, Das B, Young BC, Aldilla V, Sabir S, Almohaywi B, Willcox M, Manefield M, Kumar N. Ascorbic acid modulates the structure of the Pseudomonas aeruginosa virulence factor pyocyanin and ascorbic acid-furanone-30 combination facilitate biofilm disruption. Front Microbiol 2023; 14:1166607. [PMID: 37520362 PMCID: PMC10381918 DOI: 10.3389/fmicb.2023.1166607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/26/2023] [Indexed: 08/01/2023] Open
Abstract
The production of pyocyanin by Pseudomonas aeruginosa increases its virulence, fitness and biofilm formation. Pyocyanin is also a redox molecule and we hypothesize that ascorbic acid being an antioxidant will interact with pyocyanin. The main objective of this study was to investigate the potential interaction of ascorbic acid with pyocyanin, and also to investigate the impact of ascorbic acid in combination with Furanone-30 on quorum sensing and biofilm formation of P. aeruginosa. When incubated with ascorbic acid, hyperchromic and hypsochromic shifts in pyocyanin absorbance peaks at 385 nm and 695 nm were observed. In the presence of dehydroascorbic acid and citric acid, these shifts were absent, indicating that the intrinsic antioxidant property of ascorbic acid was probably essential in binding to pyocyanin. NMR spectroscopy showed shifts in 1H NMR pyocyanin peaks between 8.2 to 5.8 ppm when incubated in the presence of ascorbic acid. Density Functional Theory (DFT) supported potential interactions between the -CH2OH or -OH moieties of ascorbic acid with the -C=O moiety of pyocyanin. The pyocyanin-ascorbic acid complex impaired pyocyanin binding to DNA. Ascorbic acid combined with furanone-30 elevated quorum-sensing inhibition in P. aeruginosa, which was directly associated with significantly reduced P. aeruginosa virulence, adhesion, aggregation and biofilm formation and enhanced antibiotic-mediated bacterial killing. This study demonstrated that the antioxidant ascorbic acid directly binds to pyocyanin, modulates its structure and results in disruption of biofilm formation and associated tolerance to antibiotics.
Collapse
Affiliation(s)
- Theerthankar Das
- Infection Immunity and Inflammation, Charles Perkins Centre, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
- Sydney Institute for Infectious Diseases, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
| | - Biswanath Das
- Department of Organic Chemistry, Arrhenius Laboratory Stockholm University, Stockholm, Sweden
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Brandon Clark Young
- Infection Immunity and Inflammation, Charles Perkins Centre, School of Medical Science, The University of Sydney, Sydney, NSW, Australia
| | - Vina Aldilla
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Shekh Sabir
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Basmah Almohaywi
- College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Mark Willcox
- School of Optometry and Vision Science, The University of New South Wales, Sydney, NSW, Australia
| | - Mike Manefield
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, Australia
| | - Naresh Kumar
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW, Australia
| |
Collapse
|
35
|
Zannotti M, Ramasamy KP, Loggi V, Vassallo A, Pucciarelli S, Giovannetti R. Hydrocarbon degradation strategy and pyoverdine production using the salt tolerant Antarctic bacterium Marinomonas sp. ef1. RSC Adv 2023; 13:19276-19285. [PMID: 37377865 PMCID: PMC10291279 DOI: 10.1039/d3ra02536e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most concerning environmental problems is represented by petroleum and its derivatives causing contamination of aquatic and underground environments. In this work, the degradation treatment of diesel using Antarctic bacteria is proposed. Marinomonas sp. ef1 is a bacterial strain isolated from a consortium associated with the Antarctic marine ciliate Euplotes focardii. Its potential in the degradation of hydrocarbons commonly present in diesel oil were studied. The bacterial growth was evaluated in culturing conditions that resembled the marine environment with 1% (v/v) of either diesel or biodiesel added; in both cases, Marinomonas sp. ef1 was able to grow. The chemical oxygen demand measured after the incubation of bacteria with diesel decreased, demonstrating the ability of bacteria to use diesel hydrocarbons as a carbon source and degrade them. The metabolic potential of Marinomonas to degrade aromatic compounds was supported by the identification in the genome of sequences encoding various enzymes involved in benzene and naphthalene degradation. Moreover, in the presence of biodiesel, a fluorescent yellow pigment was produced; this was isolated, purified and characterized by UV-vis and fluorescence spectroscopy, leading to its identification as a pyoverdine. These results suggest that Marinomonas sp. ef1 can be used in hydrocarbon bioremediation and in the transformation of these pollutants in molecules of interest.
Collapse
Affiliation(s)
- Marco Zannotti
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| | | | - Valentina Loggi
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
| | - Alberto Vassallo
- School of Biosciences and Veterinary Medicine, Biosciences and Biotechnology Division, University of Camerino 62032 Camerino Italy
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Biosciences and Biotechnology Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| | - Rita Giovannetti
- Chemistry Interdisciplinary Project, School of Science and Technology, Chemistry Division, University of Camerino 62032 Camerino Italy
- IridES s.r.l. Via Via Gentile III da Varano n° 1 62032 Camerino Italy
| |
Collapse
|
36
|
Adedayo AA, Fadiji AE, Babalola OO. Unraveling the functional genes present in rhizosphere microbiomes of Solanum lycopersicum. PeerJ 2023; 11:e15432. [PMID: 37283894 PMCID: PMC10241170 DOI: 10.7717/peerj.15432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/26/2023] [Indexed: 06/08/2023] Open
Abstract
The microbiomes living in the rhizosphere soil of the tomato plant contribute immensely to the state of health of the tomato plant alongside improving sustainable agriculture. With the aid of shotgun metagenomics sequencing, we characterized the putative functional genes (plant-growth-promoting and disease-resistant genes) produced by the microbial communities dwelling in the rhizosphere soil of healthy and powdery mildew-diseased tomato plants. The results identified twenty-one (21) plant growth promotion (PGP) genes in the microbiomes inhabiting the healthy rhizosphere (HR) which are more predomiant as compared to diseased rhizosphere (DR) that has nine (9) genes and four (4) genes in bulk soil (BR). Likewise, we identified some disease-resistant genes which include nucleotide binding genes and antimicrobial genes. Our study revealed fifteen (15) genes in HR which made it greater in comparison to DR that has three (3) genes and three (3) genes in bulk soil. Further studies should be conducted by isolating these microorganisms and introduce them to field experiments for cultivation of tomatoes.
Collapse
|
37
|
Underhill SAM, Pan S, Erdmann M, Cabeen MT. PtsN in Pseudomonas aeruginosa Is Phosphorylated by Redundant Upstream Proteins and Impacts Virulence-Related Genes. J Bacteriol 2023; 205:e0045322. [PMID: 37074168 PMCID: PMC10210985 DOI: 10.1128/jb.00453-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/29/2023] [Indexed: 04/20/2023] Open
Abstract
The bacterial nitrogen-related phosphotransfer (PTSNtr; here, Nitro-PTS) system bears homology to well-known PTS systems that facilitate saccharide import and phosphorylation. The Nitro-PTS comprises an enzyme I (EI), PtsP; an intermediate phosphate carrier, PtsO; and a terminal acceptor, PtsN, which is thought to exert regulatory effects that depend on its phosphostate. For instance, biofilm formation by Pseudomonas aeruginosa can be impacted by the Nitro-PTS, as deletion of either ptsP or ptsO suppresses Pel exopolysaccharide production and additional deletion of ptsN elevates Pel production. However, the phosphorylation state of PtsN in the presence and absence of its upstream phosphotransferases has not been directly assessed, and other targets of PtsN have not been well defined in P. aeruginosa. We show that PtsN phosphorylation via PtsP requires the GAF domain of PtsP and that PtsN is phosphorylated on histidine 68, as in Pseudomonas putida. We also find that FruB, the fructose EI, can substitute for PtsP in PtsN phosphorylation but only in the absence of PtsO, implicating PtsO as a specificity factor. Unphosphorylatable PtsN had a minimal effect on biofilm formation, suggesting that it is necessary but not sufficient for the reduction of Pel in a ptsP deletion. Finally, we use transcriptomics to show that the phosphostate and the presence of PtsN do not appear to alter the transcription of biofilm-related genes but do influence genes involved in type III secretion, potassium transport, and pyoverdine biosynthesis. Thus, the Nitro-PTS influences several P. aeruginosa behaviors, including the production of its signature virulence factors. IMPORTANCE The PtsN protein impacts the physiology of a number of bacterial species, and its control over downstream targets can be altered by its phosphorylation state. Neither its upstream phosphotransferases nor its downstream targets are well understood in Pseudomonas aeruginosa. Here, we examine PtsN phosphorylation and find that the immediate upstream phosphotransferase acts as a gatekeeper, allowing phosphorylation by only one of two potential upstream proteins. We use transcriptomics to discover that PtsN regulates the expression of gene families that are implicated in virulence. One emerging pattern is a repression hierarchy by different forms of PtsN: its phosphorylated state is more repressive than its unphosphorylated state, but the expression of its targets is even higher in its complete absence.
Collapse
Affiliation(s)
- Simon A. M. Underhill
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Somalisa Pan
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Mary Erdmann
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Matthew T. Cabeen
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
38
|
Clavijo-Buriticá DC, Arévalo-Ferro C, González Barrios AF. A Holistic Approach from Systems Biology Reveals the Direct Influence of the Quorum-Sensing Phenomenon on Pseudomonas aeruginosa Metabolism to Pyoverdine Biosynthesis. Metabolites 2023; 13:metabo13050659. [PMID: 37233700 DOI: 10.3390/metabo13050659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
Computational modeling and simulation of biological systems have become valuable tools for understanding and predicting cellular performance and phenotype generation. This work aimed to construct, model, and dynamically simulate the virulence factor pyoverdine (PVD) biosynthesis in Pseudomonas aeruginosa through a systemic approach, considering that the metabolic pathway of PVD synthesis is regulated by the quorum-sensing (QS) phenomenon. The methodology comprised three main stages: (i) Construction, modeling, and validation of the QS gene regulatory network that controls PVD synthesis in P. aeruginosa strain PAO1; (ii) construction, curating, and modeling of the metabolic network of P. aeruginosa using the flux balance analysis (FBA) approach; (iii) integration and modeling of these two networks into an integrative model using the dynamic flux balance analysis (DFBA) approximation, followed, finally, by an in vitro validation of the integrated model for PVD synthesis in P. aeruginosa as a function of QS signaling. The QS gene network, constructed using the standard System Biology Markup Language, comprised 114 chemical species and 103 reactions and was modeled as a deterministic system following the kinetic based on mass action law. This model showed that the higher the bacterial growth, the higher the extracellular concentration of QS signal molecules, thus emulating the natural behavior of P. aeruginosa PAO1. The P. aeruginosa metabolic network model was constructed based on the iMO1056 model, the P. aeruginosa PAO1 strain genomic annotation, and the metabolic pathway of PVD synthesis. The metabolic network model included the PVD synthesis, transport, exchange reactions, and the QS signal molecules. This metabolic network model was curated and then modeled under the FBA approximation, using biomass maximization as the objective function (optimization problem, a term borrowed from the engineering field). Next, chemical reactions shared by both network models were chosen to combine them into an integrative model. To this end, the fluxes of these reactions, obtained from the QS network model, were fixed in the metabolic network model as constraints of the optimization problem using the DFBA approximation. Finally, simulations of the integrative model (CCBM1146, comprising 1123 reactions and 880 metabolites) were run using the DFBA approximation to get (i) the flux profile for each reaction, (ii) the bacterial growth profile, (iii) the biomass profile, and (iv) the concentration profiles of metabolites of interest such as glucose, PVD, and QS signal molecules. The CCBM1146 model showed that the QS phenomenon directly influences the P. aeruginosa metabolism to PVD biosynthesis as a function of the change in QS signal intensity. The CCBM1146 model made it possible to characterize and explain the complex and emergent behavior generated by the interactions between the two networks, which would have been impossible to do by studying each system's individual components or scales separately. This work is the first in silico report of an integrative model comprising the QS gene regulatory network and the metabolic network of P. aeruginosa.
Collapse
Affiliation(s)
- Diana Carolina Clavijo-Buriticá
- Grupo de Comunicación y Comunidades Bacterianas, Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 111321, Colombia
| | - Catalina Arévalo-Ferro
- Grupo de Comunicación y Comunidades Bacterianas, Departamento de Biología, Universidad Nacional de Colombia, Carrera 45 No. 26-85, Bogotá 111321, Colombia
| | - Andrés Fernando González Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Departamento de Ingeniería Química y de Alimentos, Universidad de los Andes, Edificio Mario Laserna, Carrera 1 Este No. 19ª-40, Bogotá 111711, Colombia
| |
Collapse
|
39
|
He R, Zhang J, Shao Y, Gu S, Song C, Qian L, Yin WB, Li Z. Knowledge-guided data mining on the standardized architecture of NRPS: Subtypes, novel motifs, and sequence entanglements. PLoS Comput Biol 2023; 19:e1011100. [PMID: 37186644 DOI: 10.1371/journal.pcbi.1011100] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 05/25/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Non-ribosomal peptide synthetase (NRPS) is a diverse family of biosynthetic enzymes for the assembly of bioactive peptides. Despite advances in microbial sequencing, the lack of a consistent standard for annotating NRPS domains and modules has made data-driven discoveries challenging. To address this, we introduced a standardized architecture for NRPS, by using known conserved motifs to partition typical domains. This motif-and-intermotif standardization allowed for systematic evaluations of sequence properties from a large number of NRPS pathways, resulting in the most comprehensive cross-kingdom C domain subtype classifications to date, as well as the discovery and experimental validation of novel conserved motifs with functional significance. Furthermore, our coevolution analysis revealed important barriers associated with re-engineering NRPSs and uncovered the entanglement between phylogeny and substrate specificity in NRPS sequences. Our findings provide a comprehensive and statistically insightful analysis of NRPS sequences, opening avenues for future data-driven discoveries.
Collapse
Affiliation(s)
- Ruolin He
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuanzhe Shao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shaohua Gu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Long Qian
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Wen-Bing Yin
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, PR China
| | - Zhiyuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
40
|
Musialowski M, Kowalewska Ł, Stasiuk R, Krucoń T, Debiec-Andrzejewska K. Metabolically versatile psychrotolerant Antarctic bacterium Pseudomonas sp. ANT_H12B is an efficient producer of siderophores and accompanying metabolites (SAM) useful for agricultural purposes. Microb Cell Fact 2023; 22:85. [PMID: 37120505 PMCID: PMC10149013 DOI: 10.1186/s12934-023-02105-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 04/21/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Bacterial siderophores are chelating compounds with the potential of application in agriculture, due to their plant growth-promoting (PGP) properties, however, high production and purification costs are limiting factors for their wider application. Cost-efficiency of the production could be increased by omitting purification processes, especially since siderophores accompanying metabolites (SAM) often also possess PGP traits. In this study, the metabolism versatility of Pseudomonas sp. ANT_H12B was used for the optimization of siderophores production and the potential of these metabolites and SAM was characterized in the context of PGP properties. RESULTS The metabolic diversity of ANT_H12B was examined through genomic analysis and phenotype microarrays. The strain was found to be able to use numerous C, N, P, and S sources, which allowed for the design of novel media suitable for efficient production of siderophores in the form of pyoverdine (223.50-512.60 μM). Moreover, depending on the culture medium, the pH of the siderophores and SAM solutions varied from acidic (pH < 5) to alkaline (pH > 8). In a germination test, siderophores and SAM were shown to have a positive effect on plants, with a significant increase in germination percentage observed in beetroot, pea, and tobacco. The PGP potential of SAM was further elucidated through GC/MS analysis, which revealed other compounds with PGP potential, such as indolic acetic acids, organic acids, fatty acids, sugars and alcohols. These compounds not only improved seed germination but could also potentially be beneficial for plant fitness and soil quality. CONCLUSIONS Pseudomonas sp. ANT_H12B was presented as an efficient producer of siderophores and SAM which exhibit PGP potential. It was also shown that omitting downstream processes could not only limit the costs of siderophores production but also improve their agricultural potential.
Collapse
Affiliation(s)
- M Musialowski
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - Ł Kowalewska
- Department of Plant Anatomy and Cytology, Institute of Experimental Plant Biology and Biotechnology, Faculty of Biology, University of Warsaw, 02-096, Warsaw, Poland
| | - R Stasiuk
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - T Krucoń
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland
| | - K Debiec-Andrzejewska
- Department of Geomicrobiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
41
|
Borymski S, Markowicz A, Nowak A, Matus K, Dulski M, Sułowicz S. Copper-oxide nanoparticles exert persistent changes in the structural and functional microbial diversity: A 60-day mesocosm study of zinc-oxide and copper-oxide nanoparticles in the soil-microorganism-nanoparticle system. Microbiol Res 2023; 274:127395. [PMID: 37327605 DOI: 10.1016/j.micres.2023.127395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/18/2023]
Abstract
Recent advances in nanotechnology and development of nanoformulation methods, has enabled the emergence of precision farming - a novel farming method that involves nanopesticides and nanoferilizers. Zinc-oxide nanoparticles serve as a Zn source for plants, but they are also used as nanocarriers for other agents, whereas copper-oxide nanoparticles possess antifungal activity, but in some cases may also serve as a micronutrient providing Cu ions. Excessive application of metal-containing agents leads to their accumulation in soil, where they pose a threat to non-target soil organisms. In this study, soils obtained from the environment were amended with commercial zinc-oxide nanoparticles: Zn-OxNPs(10-30), and newly-synthesized copper-oxide nanoparticles: Cu-OxNPs(1-10). Nanoparticles (NPs) in 100 and 1000 mg kg-1 concentrations were added in separate set-ups, representing a soil-microorganism-nanoparticle system in a 60-day laboratory mesocosm experiment. To track environmental footprint of NPs on soil microorganisms, a Phospholipd Fatty Acid biomarker analysis was employed to study microbial community structure, whereas Community-Level Physiological Profiles of bacterial and fungal fractions were measured with Biolog Eco and FF microplates, respectively. The results revealed a prominent and persistent effects exerted by copper-containing nanoparticles on non-target microbial communities. A severe loss of Gram-positive bacteria was observed in conjunction with disturbances in bacterial and fungal CLPPs. These effects persisted till the end of a 60-day experiment, demonstrating detrimental rearrangements in microbial community structure and functions. The effects imposed by zinc-oxide NPs were less pronounced. As persistent changes were observed for newly synthesized Cu-containing NPs, this work stresses the need for obligatory testing of nanoparticle interactions with non-target microbial communities in long-term experiments, especially during the approval procedures of novel nano-substances. It also underlines the role of in-depth physical and chemical studies of NP-containing agents, which may be tweaked to mitigate the unwanted behavior of such substances in the environment and preselect their beneficial characteristics.
Collapse
Affiliation(s)
- Sławomir Borymski
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Markowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Anna Nowak
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| | - Krzysztof Matus
- Materials Research Laboratory, Silesian University of Technology, Konarskiego 18a, 44-100 Gliwice, Poland.
| | - Mateusz Dulski
- University of Silesia, Faculty of Science and Technology, Institute of Materials Engineering, Silesian Center for Education and Interdisciplinary Research, 75 Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| | - Sławomir Sułowicz
- University of Silesia, Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, Jagiellońska 28, 40-032 Katowice, Poland.
| |
Collapse
|
42
|
Blanco-Romero E, Durán D, Garrido-Sanz D, Redondo-Nieto M, Martín M, Rivilla R. Adaption of Pseudomonas ogarae F113 to the Rhizosphere Environment-The AmrZ-FleQ Hub. Microorganisms 2023; 11:microorganisms11041037. [PMID: 37110460 PMCID: PMC10146422 DOI: 10.3390/microorganisms11041037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Motility and biofilm formation are two crucial traits in the process of rhizosphere colonization by pseudomonads. The regulation of both traits requires a complex signaling network that is coordinated by the AmrZ-FleQ hub. In this review, we describe the role of this hub in the adaption to the rhizosphere. The study of the direct regulon of AmrZ and the phenotypic analyses of an amrZ mutant in Pseudomonas ogarae F113 has shown that this protein plays a crucial role in the regulation of several cellular functions, including motility, biofilm formation, iron homeostasis, and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) turnover, controlling the synthesis of extracellular matrix components. On the other hand, FleQ is the master regulator of flagellar synthesis in P. ogarae F113 and other pseudomonads, but its implication in the regulation of multiple traits related with environmental adaption has been shown. Genomic scale studies (ChIP-Seq and RNA-Seq) have shown that in P. ogarae F113, AmrZ and FleQ are general transcription factors that regulate multiple traits. It has also been shown that there is a common regulon shared by the two transcription factors. Moreover, these studies have shown that AmrZ and FleQ form a regulatory hub that inversely regulate traits such as motility, extracellular matrix component production, and iron homeostasis. The messenger molecule c-di-GMP plays an essential role in this hub since its production is regulated by AmrZ and it is sensed by FleQ and required for its regulatory role. This regulatory hub is functional both in culture and in the rhizosphere, indicating that the AmrZ-FleQ hub is a main player of P. ogarae F113 adaption to the rhizosphere environment.
Collapse
Affiliation(s)
- Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - David Durán
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Marta Martín
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
43
|
Cornelis P, Tahrioui A, Lesouhaitier O, Bouffartigues E, Feuilloley M, Baysse C, Chevalier S. High affinity iron uptake by pyoverdine in Pseudomonas aeruginosa involves multiple regulators besides Fur, PvdS, and FpvI. Biometals 2023; 36:255-261. [PMID: 35171432 DOI: 10.1007/s10534-022-00369-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 11/02/2022]
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium which can cause serious infections among immune-depressed people including cystic fibrosis patients where it can colonize the lungs causing chronic infections. Iron is essential for P. aeruginosa and can be provided via three sources under aerobic conditions: its own siderophores pyochelin (PCH) and pyoverdine (PVD), xenosiderophores, or heme, respectively. Pyoverdine is the high affinity siderophore and its synthesis and uptake involve more than 30 genes organized in different operons. Its synthesis and uptake are triggered by iron scarcity via the Fur regulator and involves two extra cytoplasmic sigma factors (ECF), PvdS for the biosynthesis of PVD and FpvI for the uptake via the TonB-dependent FpvA outer membrane transporter and other periplasmic and inner membrane proteins. It appeared recently that the regulation of PVD biosynthesis and uptake involves other regulators, including other ECF factors, and LysR regulators. This is the case especially for the genes coding for periplasmic and inner membrane proteins involved in the reduction of Fe3+ to Fe2+ and the transport of ferrous iron to the cytoplasm that appears to represent a crucial step in the uptake process.
Collapse
Affiliation(s)
- Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France.
- Laboratorium Microbiologie, Vrije Universiteit Brussel, Brussels, Belgium.
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Marc Feuilloley
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| | - Christine Baysse
- CNRS, Institut de Génétique et de Développement de Rennes (IGDR), UMR6290, Université de Rennes, Rennes, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironnements (LMSM) EA 4312, University of Rouen Normandy, 27000, Evreux, France
| |
Collapse
|
44
|
Mohamed AR, Ochsenkühn MA, Kazlak AM, Moustafa A, Amin SA. The coral microbiome: towards an understanding of the molecular mechanisms of coral-microbiota interactions. FEMS Microbiol Rev 2023; 47:fuad005. [PMID: 36882224 PMCID: PMC10045912 DOI: 10.1093/femsre/fuad005] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Corals live in a complex, multipartite symbiosis with diverse microbes across kingdoms, some of which are implicated in vital functions, such as those related to resilience against climate change. However, knowledge gaps and technical challenges limit our understanding of the nature and functional significance of complex symbiotic relationships within corals. Here, we provide an overview of the complexity of the coral microbiome focusing on taxonomic diversity and functions of well-studied and cryptic microbes. Mining the coral literature indicate that while corals collectively harbour a third of all marine bacterial phyla, known bacterial symbionts and antagonists of corals represent a minute fraction of this diversity and that these taxa cluster into select genera, suggesting selective evolutionary mechanisms enabled these bacteria to gain a niche within the holobiont. Recent advances in coral microbiome research aimed at leveraging microbiome manipulation to increase coral's fitness to help mitigate heat stress-related mortality are discussed. Then, insights into the potential mechanisms through which microbiota can communicate with and modify host responses are examined by describing known recognition patterns, potential microbially derived coral epigenome effector proteins and coral gene regulation. Finally, the power of omics tools used to study corals are highlighted with emphasis on an integrated host-microbiota multiomics framework to understand the underlying mechanisms during symbiosis and climate change-driven dysbiosis.
Collapse
Affiliation(s)
- Amin R Mohamed
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Michael A Ochsenkühn
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Ahmed M Kazlak
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed Moustafa
- Systems Genomics Laboratory, American University in Cairo, New Cairo 11835, Egypt
- Biotechnology Graduate Program, American University in Cairo, New Cairo 11835, Egypt
- Department of Biology, American University in Cairo, New Cairo 11835, Egypt
| | - Shady A Amin
- Biology Program, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| |
Collapse
|
45
|
Jeong GJ, Khan F, Khan S, Tabassum N, Mehta S, Kim YM. Pseudomonas aeruginosa virulence attenuation by inhibiting siderophore functions. Appl Microbiol Biotechnol 2023; 107:1019-1038. [PMID: 36633626 DOI: 10.1007/s00253-022-12347-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Pseudmonas aeruginosa is a Gram-negative bacterium known to be ubiquitous and recognized as one of the leading causes of infections such as respiratory, urinary tract, burns, cystic fibrosis, and in immunocompromised individuals. Failure of antimicrobial therapy has been documented to be attributable due to the development of various resistance mechanisms, with a proclivity to develop additional resistance mechanisms rapidly. P. aeruginosa virulence attenuation is an alternate technique for disrupting pathogenesis without impacting growth. The iron-scavenging siderophores (pyoverdine and pyochelin) generated by P. aeruginosa have various properties like scavenging iron, biofilm formation, quorum sensing, increasing virulence, and toxicity to the host. As a result, developing an antivirulence strategy, specifically inhibiting the P. aeruginosa siderophore, has been a promising therapeutic option to limit their infection. Several natural, synthetic compounds and nanoparticles have been identified as potent inhibitors of siderophore production/biosynthesis, function, and transport system. The current review discussed pyoverdine and pyochelin's synthesis and transport system in P. aeruginosa. Furthermore, it is also focused on the role of several natural and synthetic compounds in reducing P. aeruginosa virulence by inhibiting siderophore synthesis, function, and transport. The underlying mechanism involved in inhibiting the siderophore by natural and synthetic compounds has also been explained. KEY POINTS: • Pseudomonas aeruginosa is an opportunistic pathogen linked to chronic respiratory, urinary tract, and burns infections, as well as cystic fibrosis and immunocompromised patients. • P. aeruginosa produces two virulent siderophores forms: pyoverdine and pyochelin, which help it to survive in iron-deficient environments. • The inhibition of siderophore production, transport, and activity using natural and synthesized drugs has been described as a potential strategy for controlling P. aeruginosa infection.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| | - Sohail Khan
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, Uttar Pradesh, 201309, India
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Sonu Mehta
- Anthem Biosciences Private Limited, Bommasandra, Bangalore, Karnataka, 56009, India
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea. .,Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea. .,Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
46
|
Rehm K, Vollenweider V, Kümmerli R, Bigler L. Rapid identification of pyoverdines of fluorescent Pseudomonas spp. by UHPLC-IM-MS. Biometals 2023; 36:19-34. [PMID: 36261676 PMCID: PMC9925543 DOI: 10.1007/s10534-022-00454-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/26/2022] [Indexed: 11/02/2022]
Abstract
Siderophores are iron-chelating molecules produced by bacteria and other microbes. They are involved with virulence in infections and play key roles in bacterial community assembly and as plant protectants due to their pathogen control properties. Although assays exist to screen whether newly isolated bacteria can produce siderophores, the chemical structures of many of these bio-active molecules remain unidentified due to the lack of rapid analytical procedures. An important group of siderophores are pyoverdines. They consist of a structurally diverse group of chromopeptides, whose amino acid sequence is characteristic for the fluorescent Pseudomonas species that secrets them. Although over 60 pyoverdine structures have been described so far, their characterization is cumbersome and several methods (isoelectrofocusing, iron uptake measurement, mass determination) are typically combined as ambiguous results are often achieved by a single method. Those additional experiments consume valuable time and resources and prevent high-throughput analysis. In this work, we present a new pyoverdine characterisation option by recording their collision cross sections (CCS) using trapped ion mobility spectrometry. This can be done simultaneously in combination with UHPLC and high-resolution MS resulting in a rapid identification of pyoverdines. The high specificity of CCS values is presented for 17 pyoverdines secreted by different Pseudomonas strains. The pyoverdine mass determination by full scan MS was supported by fragments obtained from broadband collision induced dissociation (bbCID). As iron contaminations in laboratories are not uncommon, CCS values of ferripyoverdines were also evaluated. Thereby, unusual and highly characteristic ion mobility patterns were obtained that are suitable as an alternative identification marker.
Collapse
Affiliation(s)
- Karoline Rehm
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Vera Vollenweider
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Rolf Kümmerli
- Department of Quantitative Biomedicine, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland
| | - Laurent Bigler
- Department of Chemistry, University of Zurich, Winterthurerstr. 190, 8057, Zurich, Switzerland.
| |
Collapse
|
47
|
Girard L, Lood C, De Mot R, van Noort V, Baudart J. Genomic diversity and metabolic potential of marine Pseudomonadaceae. Front Microbiol 2023; 14:1071039. [PMID: 37168120 PMCID: PMC10165715 DOI: 10.3389/fmicb.2023.1071039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/21/2023] [Indexed: 05/13/2023] Open
Abstract
Recent changes in the taxonomy of the Pseudomonadaceae family have led to the delineation of three new genera (Atopomonas, Halopseudomonas and Stutzerimonas). However, the genus Pseudomonas remains the most densely populated and displays a broad genetic diversity. Pseudomonas are able to produce a wide variety of secondary metabolites which drives important ecological functions and have a great impact in sustaining their lifestyles. While soilborne Pseudomonas are constantly examined, we currently lack studies aiming to explore the genetic diversity and metabolic potential of marine Pseudomonas spp. In this study, 23 Pseudomonas strains were co-isolated with Vibrio strains from three marine microalgal cultures and rpoD-based phylogeny allowed their assignment to the Pseudomonas oleovorans group (Pseudomonas chengduensis, Pseudomonas toyotomiensis and one new species). We combined whole genome sequencing on three selected strains with an inventory of marine Pseudomonas genomes to assess their phylogenetic assignations and explore their metabolic potential. Our results revealed that most strains are incorrectly assigned at the species level and half of them do not belong to the genus Pseudomonas but instead to the genera Halopseudomonas or Stutzerimonas. We highlight the presence of 26 new species (Halopseudomonas (n = 5), Stutzerimonas (n = 7) and Pseudomonas (n = 14)) and describe one new species, Pseudomonas chaetocerotis sp. nov. (type strain 536T = LMG 31766T = DSM 111343T). We used genome mining to identify numerous BGCs coding for the production of diverse known metabolites (i.e., osmoprotectants, photoprotectants, quorum sensing molecules, siderophores, cyclic lipopeptides) but also unknown metabolites (e.g., ARE, hybrid ARE-DAR, siderophores, orphan NRPS gene clusters) awaiting chemical characterization. Finally, this study underlines that marine environments host a huge diversity of Pseudomonadaceae that can drive the discovery of new secondary metabolites.
Collapse
Affiliation(s)
- Léa Girard
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Léa Girard,
| | - Cédric Lood
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
- Institute of Biology, Leiden University, Leiden, Netherlands
| | - Julia Baudart
- Laboratoire de Biodiversité et Biotechnologie Microbiennes, Sorbonne Université, CNRS, Observatoire Océanologique, Banyuls-sur-Mer, France
- *Correspondence: Julia Baudart,
| |
Collapse
|
48
|
Gupta VK, Bakshi U, Chang D, Lee AR, Davis JM, Chandrasekaran S, Jin YS, Freeman MF, Sung J. TaxiBGC: a Taxonomy-Guided Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes. mSystems 2022; 7:e0092522. [PMID: 36378489 PMCID: PMC9765181 DOI: 10.1128/msystems.00925-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Biosynthetic gene clusters (BGCs) in microbial genomes encode bioactive secondary metabolites (SMs), which can play important roles in microbe-microbe and host-microbe interactions. Given the biological significance of SMs and the current profound interest in the metabolic functions of microbiomes, the unbiased identification of BGCs from high-throughput metagenomic data could offer novel insights into the complex chemical ecology of microbial communities. Currently available tools for predicting BGCs from shotgun metagenomes have several limitations, including the need for computationally demanding read assembly, predicting a narrow breadth of BGC classes, and not providing the SM product. To overcome these limitations, we developed taxonomy-guided identification of biosynthetic gene clusters (TaxiBGC), a command-line tool for predicting experimentally characterized BGCs (and inferring their known SMs) in metagenomes by first pinpointing the microbial species likely to harbor them. We benchmarked TaxiBGC on various simulated metagenomes, showing that our taxonomy-guided approach could predict BGCs with much-improved performance (mean F1 score, 0.56; mean PPV score, 0.80) compared with directly identifying BGCs by mapping sequencing reads onto the BGC genes (mean F1 score, 0.49; mean PPV score, 0.41). Next, by applying TaxiBGC on 2,650 metagenomes from the Human Microbiome Project and various case-control gut microbiome studies, we were able to associate BGCs (and their SMs) with different human body sites and with multiple diseases, including Crohn's disease and liver cirrhosis. In all, TaxiBGC provides an in silico platform to predict experimentally characterized BGCs and their SM production potential in metagenomic data while demonstrating important advantages over existing techniques. IMPORTANCE Currently available bioinformatics tools to identify BGCs from metagenomic sequencing data are limited in their predictive capability or ease of use to even computationally oriented researchers. We present an automated computational pipeline called TaxiBGC, which predicts experimentally characterized BGCs (and infers their known SMs) in shotgun metagenomes by first considering the microbial species source. Through rigorous benchmarking techniques on simulated metagenomes, we show that TaxiBGC provides a significant advantage over existing methods. When demonstrating TaxiBGC on thousands of human microbiome samples, we associate BGCs encoding bacteriocins with different human body sites and diseases, thereby elucidating a possible novel role of this antibiotic class in maintaining the stability of microbial ecosystems throughout the human body. Furthermore, we report for the first time gut microbial BGC associations shared among multiple pathologies. Ultimately, we expect our tool to facilitate future investigations into the chemical ecology of microbial communities across diverse niches and pathologies.
Collapse
Affiliation(s)
- Vinod K. Gupta
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Utpal Bakshi
- Institute of Health Sciences, Presidency University, Kolkata, West Bengal, India
| | - Daniel Chang
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Aileen R. Lee
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - John M. Davis
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Sriram Chandrasekaran
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Bioinformatics and Computational Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Michael F. Freeman
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
- BioTechnology Institute, University of Minnesota—Twin Cities, St. Paul, Minnesota, USA
| | - Jaeyun Sung
- Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
- Division of Surgery Research, Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
- Division of Rheumatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
49
|
Iron acquisition strategies in pseudomonads: mechanisms, ecology, and evolution. Biometals 2022:10.1007/s10534-022-00480-8. [PMID: 36508064 PMCID: PMC10393863 DOI: 10.1007/s10534-022-00480-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
AbstractIron is important for bacterial growth and survival, as it is a common co-factor in essential enzymes. Although iron is very abundant in the earth crust, its bioavailability is low in most habitats because ferric iron is largely insoluble under aerobic conditions and at neutral pH. Consequently, bacteria have evolved a plethora of mechanisms to solubilize and acquire iron from environmental and host stocks. In this review, I focus on Pseudomonas spp. and first present the main iron uptake mechanisms of this taxa, which involve the direct uptake of ferrous iron via importers, the production of iron-chelating siderophores, the exploitation of siderophores produced by other microbial species, and the use of iron-chelating compounds produced by plants and animals. In the second part of this review, I elaborate on how these mechanisms affect interactions between bacteria in microbial communities, and between bacteria and their hosts. This is important because Pseudomonas spp. live in diverse communities and certain iron-uptake strategies might have evolved not only to acquire this essential nutrient, but also to gain relative advantages over competitors in the race for iron. Thus, an integrative understanding of the mechanisms of iron acquisition and the eco-evolutionary dynamics they drive at the community level might prove most useful to understand why Pseudomonas spp., in particular, and many other bacterial species, in general, have evolved such diverse iron uptake repertoires.
Collapse
|
50
|
Souza LS, Irie Y, Eda S. Black Queen Hypothesis, partial privatization, and quorum sensing evolution. PLoS One 2022; 17:e0278449. [PMID: 36449503 PMCID: PMC9710793 DOI: 10.1371/journal.pone.0278449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 11/16/2022] [Indexed: 12/03/2022] Open
Abstract
Microorganisms produce costly cooperative goods whose benefit is partially shared with nonproducers, called 'mixed' goods. The Black Queen Hypothesis predicts that partial privatization has two major evolutionary implications. First, to favor strains producing several types of mixed goods over nonproducing strains. Second, to favor the maintenance of cooperative traits through different strains instead of having all cooperative traits present in a single strain (metabolic specialization). Despite the importance of quorum sensing regulation of mixed goods, it is unclear how partial privatization affects quorum sensing evolution. Here, we studied the influence of partial privatization on the evolution of quorum sensing. We developed a mathematical population genetics model of an unstructured microbial population considering four strains that differ in their ability to produce an autoinducer (quorum sensing signaling molecule) and a mixed good. Our model assumes that the production of the autoinducers and the mixed goods is constitutive and/or depends on quorum sensing. Our results suggest that, unless autoinducers are costless, partial privatization cannot favor quorum sensing. This result occurs because with costly autoinducers: (1) a strain that produces both autoinducer and goods (fully producing strain) cannot persist in the population; (2) the strain only producing the autoinducer and the strain producing mixed goods in response to the autoinducers cannot coexist, i.e., metabolic specialization cannot be favored. Together, partial privatization might have been crucial to favor a primordial form of quorum sensing-where autoinducers were thought to be a metabolic byproduct (costless)-but not the transition to nowadays costly autoinducers.
Collapse
Affiliation(s)
- Lucas Santana Souza
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Yasuhiko Irie
- Department of Physics, Chemistry, and Biology, Linköping University, Linköping, Sweden
| | - Shigetoshi Eda
- Department of Forestry, Wildlife and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, Tennessee, United States of America
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America
| |
Collapse
|