1
|
Sharma R, Lakhanpal D. Acinetobacter baumannii: A comprehensive review of global epidemiology, clinical implications, host interactions, mechanisms of antimicrobial resistance and mitigation strategies. Microb Pathog 2025; 204:107605. [PMID: 40250495 DOI: 10.1016/j.micpath.2025.107605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/19/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Since the discovery of Acinetobacter baumannii, it has emerged as a significant global health threat due to its increasing prevalence in healthcare settings and remarkable ability to develop resistance to various antibiotics. This detailed review addresses global epidemiology, emphasizing the worldwide distribution of carbapenem-resistant A. baumannii (CRAb), which is particularly prevalent in high-density healthcare settings and regions with intensive antibiotic usage, such as India. Clinically, A. baumannii infection poses serious health challenges, with mortality rates ranging from 30 % to 75 % for multidrug-resistant (MDR) strains. The review highlights the clinical impact and disease spectrum of A. baumannii, associated with pneumonia, wound infections, bloodstream infections, and, urinary tract infections with a strong association to invasive medical procedures and devices. Additionally, it discusses human-pathogen interactions by exploring various mechanisms, persistence in hospital environments, and survival under harsh conditions. The review further elaborates on different resistance mechanisms, focusing broadly on antibiotic degradation, altered drug targets, reduced drug permeability, and efflux systems, which facilitate the survival and persistence of A. baumannii. Finally, it evaluates strategies to combat AMR, emphasizing infection control measures, antimicrobial stewardship, and the urgent need for innovative therapeutic approaches such as phage therapy and new antibiotic development. The review calls for concerted, collaborative efforts among researchers, healthcare professionals, and public health authorities to mitigate the global threat posed by MDR A. baumannii strains.
Collapse
Affiliation(s)
- Rhythm Sharma
- Centre for Computational Biology & Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India
| | - Dinesh Lakhanpal
- Centre for Computational Biology & Bioinformatics, School of Life Sciences, Central University of Himachal Pradesh, Kangra, Himachal Pradesh, India.
| |
Collapse
|
2
|
Wang H, Xu Q, Zhao W, Chan BKW, Chen K, Xie M, Yang X, Ni H, Chan EWC, Yang G, Chen S. Simultaneous functional disruption of the iron acquisition system and type VI secretion system results in complete suppression of virulence in Acinetobacter baumannii. Microbiol Res 2025; 295:128105. [PMID: 40023109 DOI: 10.1016/j.micres.2025.128105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 03/04/2025]
Abstract
Acinetobacter baumannii (Ab) is one of the most significant bacterial pathogens inducing hospital-acquired infections worldwide, with a high mortality rate. The continuous emergence of multidrug-resistant (MDR) phenotypes presents a significant challenge in combating Ab infections with antimicrobial drugs. In this study, we found that the type VI secretion system and the iron transportation system synergistically enhance siderophore production and further contribute to the virulence of Ab. The double knockout mutant strain, ΔhcpΔbasE, exhibited further reductions in growth rate, siderophore production under iron-deficient conditions, biofilm formation, serum resistance, cell adhesion and invasion, and cytotoxicity compared to the single knockout strains, knockout of T6SS, Δhcp or iron transportation system, ΔbasE. In vitro experiments demonstrated that these two systems work synergistically to enhance virulence, with their combined effect exceeding the additive contributions of each individual system. Consistently, the ΔhcpΔbasE strain failed to cause mortality in the mouse model, even at very high inoculum levels. Further studies revealed that, compared to ATCC17978, ΔhcpΔbasE strain infection resulted in lower levels of extracellular hepcidin and intracellular iron in host cells, which correlate well with the significantly reduced ability to produce siderophores in the double knockout strain. Due to impaired iron acquisition, ΔhcpΔbasE strain became more susceptible to macrophage phagocytosis and exhibited lower survival rates in the host, leading to an inability to trigger a cytokine storm and subsequent host death. The findings of this study provide insights into the Ab pathogenesis and contribute to the development of intervention measures to control clinical Ab infections and mortality.
Collapse
Affiliation(s)
- Han Wang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Qi Xu
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Wenxing Zhao
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bill Kwan Wai Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Kaichao Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Miaomiao Xie
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Xuemei Yang
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hongyuhang Ni
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong; State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Edward Wai Chi Chan
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Guan Yang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.
| | - Sheng Chen
- State Key Lab of Chemical Biology and Drug Discovery and The Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Shenzhen Key Lab for Food Biological Safety Control, The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
3
|
Esmaeili Z, Kamal Shahsavar S, Ghazvini K. A systematic review of the avian antibody (IgY) therapeutic effects on human bacterial infections over the decade. Antib Ther 2025; 8:111-123. [PMID: 40177645 PMCID: PMC11959693 DOI: 10.1093/abt/tbaf007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/11/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
The overuse of antibiotics worldwide, especially during the Coronavirus pandemic, has raised concerns about the rise of antibiotic resistance and its side effects. Immunoglobulin Y, a natural protein that specifically targets foreign antigens, holds promise as a potential therapeutic option, particularly for individuals with sensitive immune systems. Despite numerous studies on IgY, the optimal administration method, effective dose, target antigen, and potential side effects of this antibody remain areas of active research and challenge. This review selected and evaluated articles published in the last ten years from databases such as PubMed and Science Direct with appropriate keywords discussing the therapeutic effects of immunoglobulin Y in human infections in vivo. Out of all the reviewed articles, 35 articles met the inclusion criteria. The results showed that the specific antibody against dental, respiratory, and skin infections has an acceptable effectiveness. In contrast, some infections, such as neurological infections, including tetanus and botulism, still need further investigation due to the short survival time of mice. On the other hand, reporting side effects such as antibody-dependent enhancement in some infections limits its use.
Collapse
Affiliation(s)
- Zahra Esmaeili
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| | - Sara Kamal Shahsavar
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| | - Kiarash Ghazvini
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad 9177949025, Iran
| |
Collapse
|
4
|
de Oliveira Silva YR, Contreras-Martel C, Rodrigues de Melo R, Zanphorlin LM, Trindade DM, Dessen A. Architecture of an embracing lipase-foldase complex of the type II secretion system of Acinetobacter baumannii. Structure 2025; 33:601-612.e4. [PMID: 39904335 DOI: 10.1016/j.str.2024.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/23/2024] [Accepted: 12/28/2024] [Indexed: 02/06/2025]
Abstract
Acinetobacter baumannii is a major human pathogen responsible for a growing number of multi-antibiotic-resistant infections, and of critical priority for the World Health Organization (WHO). A. baumannii employs a type II secretion system (T2SS) to secrete toxins extracellularly to enable cytotoxicity and colonization. Lipase LipA, secreted by the A. baumannii T2SS, is required for virulence and fitness, and in the periplasm is maintained in an active state by its essential foldase, LipB. Here we report that LipA is able to recognize lipids of different chain lengths at extremes of pH and temperature, thanks to its stabilization by LipB through an extended, highly helical "embrace." A vast bioinformatic analysis indicates that LipB-like foldases are widespread over numerous proteobacteria, and thus the extended foldase architecture shown here could be widespread. These results provide new insight into A. baumannii's adaptability as a pathogen in different environments and could facilitate the development of novel antibacterials.
Collapse
Affiliation(s)
- Yuri Rafael de Oliveira Silva
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas São Paulo 13084-971, Brazil; Departamento de Genética, Evolução, Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo 13083-970, Brazil
| | - Carlos Contreras-Martel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France
| | | | | | - Daniel Maragno Trindade
- Brazilian Biosciences National Laboratory (LNBio), CNPEM, Campinas São Paulo 13084-971, Brazil.
| | - Andréa Dessen
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38044 Grenoble, France.
| |
Collapse
|
5
|
Muleshkova T, Bazukyan I, Papadimitriou K, Gotcheva V, Angelov A, Dimov SG. Exploring the Multifaceted Genus Acinetobacter: the Facts, the Concerns and the Oppoptunities the Dualistic Geuns Acinetobacter. J Microbiol Biotechnol 2025; 35:e2411043. [PMID: 40081886 PMCID: PMC11925754 DOI: 10.4014/jmb.2411.11043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/08/2024] [Accepted: 12/20/2024] [Indexed: 03/16/2025]
Abstract
In recent years, the research community has been interested in members of the Acinetobacter genus mainly because of their role as causative agents of nosocomial infections. However, this rich-in-species genus has been proven to play a significant role in several biotechnological processes, such as bioremediation and fermented foods production. To partially fill the lack of information on Acinetobacter's dualistic nature, in this review, based on literature data, we attempt to summarize the available information on the different roles the members of the genus play by considering their genetic constitution and metabolic properties. We analyzed reports of genetic divergence between the pathogenic and non-pathogenic species and isolates, which can be explained by their high adaptability to the different ecological niches. In turn, this adaptability could result from intrinsic genetic variability due to mechanisms of horizontal genetic transfer, as well as high mutability determined by the expression of error-prone DNA polymerases. Yet, we concluded that further studies are needed, especially whole-genome sequencing of non-pathogenic isolates, which for the moment are relatively scarce.
Collapse
Affiliation(s)
- Tsvetana Muleshkova
- Sofia University “St. Kliment Ohridski”, Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| | - Inga Bazukyan
- Yerevan State University, Faculty of Biology, Department of Biochemistry, Microbiology and Biotechnology, 1, Alex Manoogian str., 0025 Yerevan, Armenia
| | - Konstantinos Papadimitriou
- Agricultural University of Athens, Department of Food Science and Human Nutrition, Laboratory of Food Quality Control and Hygiene, Iera Odos 75, Athina 118 55, Greece
| | - Velitchka Gotcheva
- University of Food Technologies in Plovdiv, Faculty of Technology, Department of Biotechnology, 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Angel Angelov
- Center of Competence "Agrofood Systems and Bioeconomy”, 26, Maritza blvd., 4002 Plovdiv, Bulgaria
| | - Svetoslav G. Dimov
- Sofia University “St. Kliment Ohridski”, Faculty of Biology, Department of Genetics, 8, Dragan Tzankov blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
6
|
Mukhopadhyay H, Bairagi A, Mukherjee A, Prasad AK, Roy AD, Nayak A. Multidrug resistant Acinetobacter baumannii: A study on its pathogenesis and therapeutics. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 8:100331. [PMID: 39802320 PMCID: PMC11718326 DOI: 10.1016/j.crmicr.2024.100331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025] Open
Abstract
The overuse of antibiotics has led to the global dissemination of Acinetobacter baumannii, an increasingly challenging nosocomial pathogen. This review explores the medical significance along with the diverse resistance ability of A. baumannii. Intensive care units (ICUs) serve as a breeding ground for A. baumannii, as these settings harbour vulnerable patients and facilitate the spread of opportunistic microorganisms. A. baumannii belongs to the ESKAPE group of bacterial pathogens that are major contributors to antibiotic-resistant infections. The pathogenic nature of A. baumannii is particularly evident in seriously ill patients, causing pneumonia, wound infections, and other healthcare-associated infections. Historically considered benign, A. baumannii is a global threat due to its propensity for rapid acquisition of multidrug resistance phenotypes. The genus Acinetobacter was formally recognized in 1968 following a comprehensive survey by Baumann et al., highlighting the relationship between previously identified species and consolidating them under the name Acinetobacter. A. baumannii is characterized by its Gram-negative nature, dependence on oxygen, positive catalase activity, lack of oxidase activity, inability to ferment sugars, and non-motility. The DNA G+C content of Acinetobacter species falls within a specific range. For diagnostic purposes, A. baumannii can be cultured on specific agar media, producing distinct colonies. The genus Acinetobacter comprises numerous species those are associated with bloodstream infections with high mortality rates. Therefore, A. baumannii poses a significant challenge to global healthcare due to its multidrug resistance and ability to cause various infections. A comprehensive understanding of the mechanisms underlying its resistance acquisition and pathogenicity is essential for combating this healthcare-associated pathogen effectively.
Collapse
Affiliation(s)
- Hridesh Mukhopadhyay
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Rahara, Khardaha, West Bengal 700118, India
| | - Arnab Bairagi
- Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala 695014, India
| | - Anushka Mukherjee
- Maulana Abul Kalam Azad University of Technology, West Bengal, India
| | | | - Arjama Dhar Roy
- Serampore Vivekananda Academy, Serampore, Hooghly 712203, West Bengal, India
| | - Aditi Nayak
- Department of Life Science, Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F, Nilgunj Rd, Sahid Colony, Panihati, Kolkata, West Bengal 700114, India
| |
Collapse
|
7
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Selim MI, El-Banna T, Sonbol F, Elekhnawy E. Arthrospira maxima and biosynthesized zinc oxide nanoparticles as antibacterials against carbapenem-resistant Klebsiella pneumoniae and Acinetobacter baumannii: a review article. Microb Cell Fact 2024; 23:311. [PMID: 39558333 PMCID: PMC11575411 DOI: 10.1186/s12934-024-02584-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
Carbapenem resistance among bacteria, especially Klebsiella pneumoniae and Acinetobacter baumannii, constitutes a dreadful threat to public health all over the world that requires developing new medications urgently. Carbapenem resistance emerges as a serious problem as this class is used as a last-line option to clear the multidrug-resistant bacteria. Arthrospira maxima (Spirulina) is a well-known cyanobacterium used as a food supplement as it is rich in protein, essential minerals and vitamins and previous studies showed it may have some antimicrobial activity against different organisms. Biosynthesized (green) zinc oxide nanoparticles have been investigated by several researchers as antibacterials because of their safety in health. In this article, previous studies were analyzed to get to a conclusion about their activity as antibacterials.
Collapse
Affiliation(s)
- Mohamed I Selim
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Tarek El-Banna
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Fatma Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
9
|
Pumirat P, Santajit S, Tunyong W, Kong-Ngoen T, Tandhavanant S, Lohitthai S, Rungruengkitkun A, Chantratita N, Ampawong S, Reamtong O, Indrawattana N. Impact of AbaI mutation on virulence, biofilm development, and antibiotic susceptibility in Acinetobacter baumannii. Sci Rep 2024; 14:21521. [PMID: 39277662 PMCID: PMC11401864 DOI: 10.1038/s41598-024-72740-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
The quorum sensing (QS) system mediated by the abaI gene in Acinetobacter baumannii is crucial for various physiological and pathogenic processes. In this study, we constructed a stable markerless abaI knockout mutant (ΔabaI) strain using a pEXKm5-based allele replacement method to investigate the impact of abaI on A. baumannii. Proteomic analysis revealed significant alterations in protein expression between the wild type (WT) and ΔabaI mutant strains, particularly in proteins associated with membrane structure, antibiotic resistance, and virulence. Notably, the downregulation of key outer membrane proteins such as SurA, OmpA, OmpW, and BamA suggests potential vulnerabilities in outer membrane integrity, which correlate with structural abnormalities in the ΔabaI mutant strain, including irregular cell shapes and compromised membrane integrity, observed by scanning and transmission electron microscopy. Furthermore, diminished expression of regulatory proteins such as OmpR and GacA-GacS highlights the broader regulatory networks affected by abaI deletion. Functional assays revealed impaired biofilm formation and surface-associated motility in the mutant strain, indicative of altered colonization capabilities. Interestingly, the mutant showed a complex antibiotic susceptibility profile. While it demonstrated increased susceptibility to membrane-targeting antibiotics, its response to beta-lactams was more nuanced. Despite increased expression of metallo-beta-lactamase (MBL) superfamily proteins and DcaP-like protein, the mutant unexpectedly showed lower MICs for carbapenems (imipenem and meropenem) compared to the wild-type strain. This suggests that abaI deletion affects antibiotic susceptibility through multiple, potentially competing mechanisms. Further investigation is needed to fully elucidate the interplay between quorum sensing, antibiotic resistance genes, and overall antibiotic susceptibility in A. baumannii. Our findings underscore the multifaceted role of the abaI gene in modulating various cellular processes and highlight its significance in A. baumannii physiology, pathogenesis, and antibiotic resistance. Targeting the abaI QS system may offer novel therapeutic strategies for this clinically significant pathogen.
Collapse
Affiliation(s)
- Pornpan Pumirat
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sirijan Santajit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand
| | - Witawat Tunyong
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Thida Kong-Ngoen
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
- Department of Bacteriology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Sanisa Lohitthai
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | | | - Narisara Chantratita
- Department of Microbiology and Immunology, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Tropical Molecular Biology and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nitaya Indrawattana
- Biomedical Research Incubator Unit, Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Department of Research, Siriraj Center of Research Excellence in Allergy and Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
10
|
Cianciotto NP. The type II secretion system as an underappreciated and understudied mediator of interbacterial antagonism. Infect Immun 2024; 92:e0020724. [PMID: 38980047 PMCID: PMC11320942 DOI: 10.1128/iai.00207-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Interbacterial antagonism involves all major phyla, occurs across the full range of ecological niches, and has great significance for the environment, clinical arena, and agricultural and industrial sectors. Though the earliest insight into interbacterial antagonism traces back to the discovery of antibiotics, a paradigm shift happened when it was learned that protein secretion systems (e.g., types VI and IV secretion systems) deliver toxic "effectors" against competitors. However, a link between interbacterial antagonism and the Gram-negative type II secretion system (T2SS), which exists in many pathogens and environmental species, is not evident in prior reviews on bacterial competition or T2SS function. A current examination of the literature revealed four examples of a T2SS or one of its known substrates having a bactericidal activity against a Gram-positive target or another Gram-negative. When further studied, the T2SS effectors proved to be peptidases that target the peptidoglycan of the competitor. There are also reports of various bacteriolytic enzymes occurring in the culture supernatants of some other Gram-negative species, and a link between these bactericidal activities and T2SS is suggested. Thus, a T2SS can be a mediator of interbacterial antagonism, and it is possible that many T2SSs have antibacterial outputs. Yet, at present, the T2SS remains relatively understudied for its role in interbacterial competition. Arguably, there is a need to analyze the T2SSs of a broader range of species for their role in interbacterial antagonism. Such investigation offers, among other things, a possible pathway toward developing new antimicrobials for treating disease.
Collapse
Affiliation(s)
- Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
11
|
Wu Q, Lin H, Shen W, Cao W, Qin X, Gao J, Chen Z, Zheng H, Zhong S, Huang H. The Preventive Effect of Low-Molecular Weight Oyster Peptides on Lipopolysaccharide-Induced Acute Colitis in Mice by Modulating Intestinal Microbiota Communities. Foods 2024; 13:2391. [PMID: 39123582 PMCID: PMC11311859 DOI: 10.3390/foods13152391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/18/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Colitis causes inflammation, diarrhoea, fever, and other serious illnesses, posing a serious threat to human health and safety. Current medications for the treatment of colitis have serious side effects. Therefore, the new strategy of creating a defence barrier for immune function by adding anti-inflammatory foods to the daily diet is worth advocating for. Low-molecular weight oyster peptides (LOPs) are a natural food with anti-inflammatory activity extracted from oysters, so intervention with LOPs is likely to be an effective preventive solution. The aim of this study was to investigate the preventive effect of LOPs on lipopolysaccharide (LPS)-induced acute colitis inflammation in mice and its underlying mechanism. The results showed that LOPs not only inhibited the colonic histopathy in mice induced by LPS-induced inflammation but also reduced the inflammatory response in the blood. In addition, LOPs significantly increased the number of beneficial bacteria (Alistipes, Mucispirillum, and Oscillospira), decreased the number of harmful bacteria (Coprobacillus, Acinetobater) in the intestinal microbiota, and further affected the absorption and utilisation of short-chain fatty acids (SCFAs) in the intestinal tract. In conclusion, dietary supplementation with LOPs is a promising health-promoting dietary supplement and nutraceutical for the prevention of acute colitis by reducing the inflammatory response and modulating the intestinal microbial communities.
Collapse
Affiliation(s)
- Qihang Wu
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Haisheng Lin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Weiqiang Shen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| | - Wenhong Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaoming Qin
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jialong Gao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhongqin Chen
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huina Zheng
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Saiyi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
- National Research and Development Branch Center for Shellfish Processing (Zhanjiang), Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China
- Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Ocean University, Zhanjiang 524088, China
| | - Haoyang Huang
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China; (Q.W.); (W.S.); (W.C.); (X.Q.); (J.G.); (Z.C.); (H.Z.); (S.Z.); (H.H.)
| |
Collapse
|
12
|
Peregrino ES, Castañeda-Casimiro J, Vázquez-Flores L, Estrada-Parra S, Wong-Baeza C, Serafín-López J, Wong-Baeza I. The Role of Bacterial Extracellular Vesicles in the Immune Response to Pathogens, and Therapeutic Opportunities. Int J Mol Sci 2024; 25:6210. [PMID: 38892397 PMCID: PMC11172497 DOI: 10.3390/ijms25116210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Pathogenic bacteria have several mechanisms to evade the host's immune response and achieve an efficient infection. Bacterial extracellular vesicles (EVs) are a relevant cellular communication mechanism, since they can interact with other bacterial cells and with host cells. In this review, we focus on the EVs produced by some World Health Organization (WHO) priority Gram-negative and Gram-positive pathogenic bacteria; by spore-producing bacteria; by Mycobacterium tuberculosis (a bacteria with a complex cell wall); and by Treponema pallidum (a bacteria without lipopolysaccharide). We describe the classification and the general properties of bacterial EVs, their role during bacterial infections and their effects on the host immune response. Bacterial EVs contain pathogen-associated molecular patterns that activate innate immune receptors, which leads to cytokine production and inflammation, but they also contain antigens that induce the activation of B and T cell responses. Understanding the many effects of bacterial EVs on the host's immune response can yield new insights on the pathogenesis of clinically important infections, but it can also lead to the development of EV-based diagnostic and therapeutic strategies. In addition, since EVs are efficient activators of both the innate and the adaptive immune responses, they constitute a promising platform for vaccine development.
Collapse
Affiliation(s)
- Eliud S. Peregrino
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
| | - Jessica Castañeda-Casimiro
- Posgrado en Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (E.S.P.); (J.C.-C.)
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Luis Vázquez-Flores
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Sergio Estrada-Parra
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Carlos Wong-Baeza
- Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (L.V.-F.); (C.W.-B.)
| | - Jeanet Serafín-López
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| | - Isabel Wong-Baeza
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Mexico City 11340, Mexico; (S.E.-P.); (J.S.-L.)
| |
Collapse
|
13
|
Li P, Zhang S, Wang J, Al-Shamiri MM, Luo K, Liu S, Mi P, Wu X, Liu H, Tian H, Han B, Lei J, Han S, Han L. The role of type VI secretion system genes in antibiotic resistance and virulence in Acinetobacter baumannii clinical isolates. Front Cell Infect Microbiol 2024; 14:1297818. [PMID: 38384301 PMCID: PMC10879597 DOI: 10.3389/fcimb.2024.1297818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The type VI secretion system (T6SS) is a crucial virulence factor in the nosocomial pathogen Acinetobacter baumannii. However, its association with drug resistance is less well known. Notably, the roles that different T6SS components play in the process of antimicrobial resistance, as well as in virulence, have not been systematically revealed. Methods The importance of three representative T6SS core genes involved in the drug resistance and virulence of A. baumannii, namely, tssB, tssD (hcp), and tssM was elucidated. Results A higher ratio of the three core genes was detected in drug-resistant strains than in susceptible strains among our 114 A. baumannii clinical isolates. Upon deletion of tssB in AB795639, increased antimicrobial resistance to cefuroxime and ceftriaxone was observed, alongside reduced resistance to gentamicin. The ΔtssD mutant showed decreased resistance to ciprofloxacin, norfloxacin, ofloxacin, tetracycline, and doxycycline, but increased resistance to tobramycin and streptomycin. The tssM-lacking mutant showed an increased sensitivity to ofloxacin, polymyxin B, and furazolidone. In addition, a significant reduction in biofilm formation was observed only with the ΔtssM mutant. Moreover, the ΔtssM strain, followed by the ΔtssD mutant, showed decreased survival in human serum, with attenuated competition with Escherichia coli and impaired lethality in Galleria mellonella. Discussion The above results suggest that T6SS plays an important role, participating in the antibiotic resistance of A. baumannii, especially in terms of intrinsic resistance. Meanwhile, tssM and tssD contribute to bacterial virulence to a greater degree, with tssM being associated with greater importance.
Collapse
Affiliation(s)
- Pu Li
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Sirui Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jingdan Wang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Mona Mohamed Al-Shamiri
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kai Luo
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Shuyan Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Peng Mi
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Shaanxi Provincial People’s Hospital, Xi’an, China
| | - Xiaokang Wu
- Department of Laboratory Medicine, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Haiping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
- Department of Laboratory Medicine, Xi’an Daxing Hospital, Xi’an, China
| | - Huohuan Tian
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Bei Han
- School of Public Health, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Jin’e Lei
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Lei Han
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Weng Z, Yang N, Shi S, Xu Z, Chen Z, Liang C, Zhang X, Du X. Outer Membrane Vesicles from Acinetobacter baumannii: Biogenesis, Functions, and Vaccine Application. Vaccines (Basel) 2023; 12:49. [PMID: 38250862 PMCID: PMC10818702 DOI: 10.3390/vaccines12010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
This review focuses on Acinetobacter baumannii, a Gram-negative bacterium that causes various infections and whose multidrug resistance has become a significant challenge in clinical practices. There are multiple bacterial mechanisms in A. baumannii that participate in bacterial colonization and immune responses. It is believed that outer membrane vesicles (OMVs) budding from the bacteria play a significant role in mediating bacterial survival and the subsequent attack against the host. Most OMVs originate from the bacterial membranes and molecules are enveloped in them. Elements similar to the pathogen endow OMVs with robust virulence, which provides a new direction for exploring the pathogenicity of A. baumannii and its therapeutic pathways. Although extensive research has been carried out on the feasibility of OMV-based vaccines against pathogens, no study has yet summarized the bioactive elements, biological activity, and vaccine applicability of A. baumannii OMVs. This review summarizes the components, biogenesis, and function of OMVs that contribute to their potential as vaccine candidates and the preparation methods and future directions for their development.
Collapse
Affiliation(s)
- Zheqi Weng
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Ning Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China;
| | - Shujun Shi
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zining Xu
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Zixu Chen
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Chen Liang
- The Second Clinical Medical School, Nanjing Medical University, Nanjing 210011, China; (Z.W.); (S.S.); (Z.X.); (Z.C.); (C.L.)
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| | - Xingran Du
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
15
|
Liu W, Li M, Cao S, Ishaq HM, Zhao H, Yang F, Liu L. The Biological and Regulatory Role of Type VI Secretion System of Klebsiella pneumoniae. Infect Drug Resist 2023; 16:6911-6922. [PMID: 37928603 PMCID: PMC10624183 DOI: 10.2147/idr.s426657] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023] Open
Abstract
Bacteria communicate with their surroundings through diverse secretory systems, and the recently discovered Type VI Secretion System (T6SS) has gained significant attention. Klebsiella pneumoniae (K. pneumoniae), an opportunistic pathogen known for causing severe infections in both hospital and animal settings, possesses this intriguing T6SS. This system equips K. pneumoniae with a formidable armory of protein-based weaponry, enabling the delivery of toxins into neighboring cells, thus granting a substantial competitive advantage. Remarkably, the T6SS has also been associated with K. pneumoniae's ability to form biofilms and acquire resistance against antibiotics. However, the precise effects of the T6SS on K. pneumoniae's functions remain inadequately studied, despite research efforts to understand the intricacies of these mechanisms. This comprehensive review aims to provide an overview of the current knowledge regarding the biological functions and regulatory mechanisms of the T6SS in K. pneumoniae.
Collapse
Affiliation(s)
- Wenke Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Min Li
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Shiwen Cao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Hafiz Muhammad Ishaq
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, Pakistan
| | - Huajie Zhao
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Fan Yang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| | - Liang Liu
- Department of Pathogenic Biology, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, People’s Republic of China
| |
Collapse
|
16
|
Cavallo I, Oliva A, Pages R, Sivori F, Truglio M, Fabrizio G, Pasqua M, Pimpinelli F, Di Domenico EG. Acinetobacter baumannii in the critically ill: complex infections get complicated. Front Microbiol 2023; 14:1196774. [PMID: 37425994 PMCID: PMC10325864 DOI: 10.3389/fmicb.2023.1196774] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Acinetobacter baumannii is increasingly associated with various epidemics, representing a serious concern due to the broad level of antimicrobial resistance and clinical manifestations. During the last decades, A. baumannii has emerged as a major pathogen in vulnerable and critically ill patients. Bacteremia, pneumonia, urinary tract, and skin and soft tissue infections are the most common presentations of A. baumannii, with attributable mortality rates approaching 35%. Carbapenems have been considered the first choice to treat A. baumannii infections. However, due to the widespread prevalence of carbapenem-resistant A. baumannii (CRAB), colistin represents the main therapeutic option, while the role of the new siderophore cephalosporin cefiderocol still needs to be ascertained. Furthermore, high clinical failure rates have been reported for colistin monotherapy when used to treat CRAB infections. Thus, the most effective antibiotic combination remains disputed. In addition to its ability to develop antibiotic resistance, A. baumannii is also known to form biofilm on medical devices, including central venous catheters or endotracheal tubes. Thus, the worrisome spread of biofilm-producing strains in multidrug-resistant populations of A. baumannii poses a significant treatment challenge. This review provides an updated account of antimicrobial resistance patterns and biofilm-mediated tolerance in A. baumannii infections with a special focus on fragile and critically ill patients.
Collapse
Affiliation(s)
- Ilaria Cavallo
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Alessandra Oliva
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Rebecca Pages
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Francesca Sivori
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Mauro Truglio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Giorgia Fabrizio
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Martina Pasqua
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| | - Fulvia Pimpinelli
- Microbiology and Virology, San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Enea Gino Di Domenico
- Department of Biology and Biotechnology "C. Darwin" Sapienza University of Rome, Rome, Italy
| |
Collapse
|
17
|
Distel JS, Di Venanzio G, Mackel JJ, Rosen DA, Feldman MF. Replicative Acinetobacter baumannii strains interfere with phagosomal maturation by modulating the vacuolar pH. PLoS Pathog 2023; 19:e1011173. [PMID: 37294840 DOI: 10.1371/journal.ppat.1011173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/23/2023] [Indexed: 06/11/2023] Open
Abstract
Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii, but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called Acinetobacter Containing Vacuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the alveolar macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.
Collapse
Affiliation(s)
- Jesus S Distel
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joseph J Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
18
|
Jiao Y, Yan J, Vicchiarelli M, Sutaria DS, Lu P, Reyna Z, Spellberg B, Bonomo RA, Drusano GL, Louie A, Luna BM, Bulitta JB. Individual Components of Polymyxin B Modeled via Population Pharmacokinetics to Design Humanized Dosage Regimens for a Bloodstream and Lung Infection Model in Immune-Competent Mice. Antimicrob Agents Chemother 2023; 67:e0019723. [PMID: 37022153 PMCID: PMC10190254 DOI: 10.1128/aac.00197-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/07/2023] Open
Abstract
Polymyxin B is a "last-line-of-defense" antibiotic approved in the 1960s. However, the population pharmacokinetics (PK) of its four main components has not been reported in infected mice. We aimed to determine the PK of polymyxin B1, B1-Ile, B2, and B3 in a murine bloodstream and lung infection model of Acinetobacter baumannii and develop humanized dosage regimens. A linear 1-compartment model, plus an epithelial lining fluid (ELF) compartment for the lung model, best described the PK. Clearance and volume of distribution were similar among the four components. The bioavailability fractions were 72.6% for polymyxin B1, 12.0% for B1-Ile, 11.5% for B2, and 3.81% for B3 for the lung model and were similar for the bloodstream model. While the volume of distribution was comparable between both models (17.3 mL for the lung and ~27 mL for the bloodstream model), clearance was considerably smaller for the lung (2.85 mL/h) compared to that of the bloodstream model (5.59 mL/h). The total drug exposure (AUC) in ELF was high due to the saturable binding of polymyxin B presumably to bacterial lipopolysaccharides. However, the modeled unbound AUC in ELF was ~16.7% compared to the total drug AUC in plasma. The long elimination half-life (~4 h) of polymyxin B enabled humanized dosage regimens with every 12 h dosing in mice. Daily doses that optimally matched the range of drug concentrations observed in patients were 21 mg/kg for the bloodstream and 13 mg/kg for the lung model. These dosage regimens and population PK models support translational studies for polymyxin B at clinically relevant drug exposures.
Collapse
Affiliation(s)
- Yuanyuan Jiao
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Jun Yan
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Michael Vicchiarelli
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Dhruvitkumar S. Sutaria
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| | - Peggy Lu
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Zeferino Reyna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Brad Spellberg
- Los Angeles County-USC (LAC+USC) Medical Center, Los Angeles, California, USA
| | - Robert A. Bonomo
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biochemistry, Case Western Reserve University, Cleveland, Ohio, USA
- Deparment of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Proteomics and Bioinformatics, Case Western Reserve University, Cleveland, Ohio, USA
- Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio, USA
| | - George L. Drusano
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Arnold Louie
- Institute for Therapeutic Innovation, College of Medicine, University of Florida, Orlando, Florida, USA
| | - Brian M. Luna
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Jürgen B. Bulitta
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Orlando, Florida, USA
| |
Collapse
|
19
|
Gao FZ, He LY, Chen X, Chen JL, Yi X, He LX, Huang XY, Chen ZY, Bai H, Zhang M, Liu YS, Ying GG. Swine farm groundwater is a hidden hotspot for antibiotic-resistant pathogenic Acinetobacter. ISME COMMUNICATIONS 2023; 3:34. [PMID: 37081217 PMCID: PMC10119254 DOI: 10.1038/s43705-023-00240-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
Acinetobacter is present in the livestock environment, but little is known about their antibiotic resistance and pathogenic species in the farm groundwater. Here we investigated antibiotic resistance of Acinetobacter in the swine farm groundwater (JZPG) and residential groundwater (JZG) of a swine farming village, in comparison to a nearby (3.5 km) non-farming village (WTG) using metagenomic and culture-based approaches. Results showed that the abundance of antibiotic resistome in some JZG and all JZPG (~3.4 copies/16S rRNA gene) was higher than that in WTG (~0.7 copies/16S rRNA gene), indicating the influence of farming activities on both groundwater types. Acinetobacter accounted for ~95.7% of the bacteria in JZG and JZPG, but only ~8.0% in WTG. They were potential hosts of ~95.6% of the resistome in farm affected groundwater, which includes 99 ARG subtypes against 23 antibiotic classes. These ARGs were associated with diverse intrinsic and acquired resistance mechanisms, and the predominant ARGs were tetracyclines and fluoroquinolones resistance genes. Metagenomic binning analysis elucidated that non-baumannii Acinetobacter including A. oleivorans, A. beijerinckii, A. seifertii, A. bereziniae and A. modestus might pose environmental risks because of multidrug resistance, pathogenicity and massive existence in the groundwater. Antibiotic susceptibility tests showed that the isolated strains were resistant to multiple antibiotics including sulfamethoxazole (resistance ratio: 96.2%), levofloxacin (42.5%), gatifloxacin (39.0%), ciprofloxacin (32.6%), tetracycline (32.0%), doxycycline (29.0%) and ampicillin (12.0%) as well as last-resort polymyxin B (31.7%), colistin (24.1%) and tigecycline (4.1%). The findings highlight potential prevalence of groundwater-borne antibiotic-resistant pathogenic Acinetobacter in the livestock environment.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| | - Xin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Jing-Liang Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
| | - Xinzhu Yi
- Institute of Ecological Science, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, PR China
| | - Lu-Xi He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Xin-Yi Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- MRC-University of Glasgow Centre for Virus Research, 464 Bearsden Road, Glasgow, G61 1QH, UK
| | - Zi-Yin Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Min Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, PR China.
- School of Environment, South China Normal University, University Town, Guangzhou, 510006, PR China.
| |
Collapse
|
20
|
Biodegradation of Oil by a Newly Isolated Strain Acinetobacter junii WCO-9 and Its Comparative Pan-Genome Analysis. Microorganisms 2023; 11:microorganisms11020407. [PMID: 36838372 PMCID: PMC9967506 DOI: 10.3390/microorganisms11020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Waste oil pollution and the treatment of oily waste present a challenge, and the exploitation of microbial resources is a safe and efficient method to resolve these problems. Lipase-producing microorganisms can directly degrade waste oil and promote the degradation of oily waste and, therefore, have very significant research and application value. The isolation of efficient oil-degrading strains is of great practical significance in research into microbial remediation in oil-contaminated environments and for the enrichment of the microbial lipase resource library. In this study, Acinetobacter junii WCO-9, an efficient oil-degrading bacterium, was isolated from an oil-contaminated soil using olive oil as the sole carbon source, and its enzyme activity of ρ-nitrophenyl decanoate (ρ-NPD) decomposition was 3000 U/L. The WCO-9 strain could degrade a variety of edible oils, and its degradation capability was significantly better than that of the control strain, A junii ATCC 17908. Comparative pan-genome and lipid degradation pathway analyses indicated that A. junii isolated from the same environment shared a similar set of core genes and that the species accumulated more specific genes that facilitated resistance to environmental stresses under different environmental conditions. WCO-9 has accumulated a complete set of oil metabolism genes under a long-term oil-contamination environment, and the compact arrangement of abundant lipase and lipase chaperones has further strengthened the ability of the strain to survive in such environments. This is the main reason why WCO-9 is able to degrade oil significantly more effectively than ATCC 17908. In addition, WCO-9 possesses a specific lipase that is not found in homologous strains. In summary, A. junii WCO-9, with a complete triglyceride degradation pathway and the specific lipase gene, has great potential in environmental remediation and lipase for industry.
Collapse
|
21
|
Distel JS, Di Venanzio G, Mackel JJ, Rosen DA, Feldman MF. Replicative Acinetobacter baumannii strains interfere with phagosomal maturation by modulating the vacuolar pH. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.02.526753. [PMID: 36778331 PMCID: PMC9915592 DOI: 10.1101/2023.02.02.526753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bacterial pneumonia is a common infection of the lower respiratory tract that can afflict patients of all ages. Multidrug-resistant strains of Acinetobacter baumannii are increasingly responsible for causing nosocomial pneumonias, thus posing an urgent threat. Alveolar macrophages play a critical role in overcoming respiratory infections caused by this pathogen. Recently, we and others have shown that new clinical isolates of A. baumannii , but not the common lab strain ATCC 19606 (19606), can persist and replicate in macrophages within spacious vacuoles that we called A cinetobacter C ontaining V acuoles (ACV). In this work, we demonstrate that the modern A. baumannii clinical isolate 398, but not the lab strain 19606, can infect alveolar macrophages and produce ACVs in vivo in a murine pneumonia model. Both strains initially interact with the alveolar macrophage endocytic pathway, as indicated by EEA1 and LAMP1 markers; however, the fate of these strains diverges at a later stage. While 19606 is eliminated in an autophagy pathway, 398 replicates in ACVs and are not degraded. We show that 398 reverts the natural acidification of the phagosome by secreting large amounts of ammonia, a by-product of amino acid catabolism. We propose that this ability to survive within macrophages may be critical for the persistence of clinical A. baumannii isolates in the lung during a respiratory infection.
Collapse
Affiliation(s)
- Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Joseph J. Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO, United States
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, MO, United States
| | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
22
|
Bai B, Eales BM, Huang W, Ledesma KR, Merlau PR, Li G, Yu Z, Tam VH. Clinical and genomic analysis of virulence-related genes in bloodstream infections caused by Acinetobacter baumannii. Virulence 2022; 13:1920-1927. [PMID: 36308002 PMCID: PMC9621070 DOI: 10.1080/21505594.2022.2132053] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Acinetobacter baumannii has emerged as a common cause of bloodstream infections, which is associated with high mortality and long periods of hospitalization. To advance the medical care of our patients, the study was designed to identify microbial characteristics associated with poor clinical outcomes. A collection of 32 A. baumannii bloodstream isolates with diverse genetic backgrounds (as determined by multilocus sequence typing) was studied. These isolates were recovered by unique patients (18 males, 14 females; age range: 17 days to 87 years) between 2011 and 2018. A sequential screening approach (cross-referencing analyses using different endpoints) was used to identify isolates with the best correlation between bacterial virulence and clinical prognosis. Isolates associated with more rapid in vitro growth rate, shorter median survival time in pre-clinical infection models, and hospital mortality were selected as candidates for high virulence, while those with opposite characteristics were selected as controls with low virulence. Whole genome sequencing was undertaken in the most promising clinical isolates. We found five virulence genes (beta-hemolysin/cytolysin, Cpi-1a + Cpi-1 (SPI-1 like), enhanced entry proteins, FbpABC, Paa) and 1 secretory system (T6SS) only present in a highly virulent isolate (AB23), compared to a low virulence control isolate (AB6). These genetic elements could be associated with the poor prognosis of A. baumannii bacteraemia and further investigations are warranted.
Collapse
Affiliation(s)
- Bing Bai
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, Shenzhen, Guangdong, China,Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Brianna M. Eales
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Wei Huang
- Bacteriology & Antibacterial Resistance Surveillance Laboratory, Shenzhen Institute of Respiratory Diseases, Shenzhen People’s Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, China
| | - Kimberly R. Ledesma
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Paul R. Merlau
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Guiqiu Li
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, Shenzhen, Guangdong, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, Shenzhen, Guangdong, China,Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA
| | - Vincent H. Tam
- Department of Pharmacy Practice and Translational Research, University of Houston, Houston, Texas, USA,CONTACT Vincent H. Tam
| |
Collapse
|
23
|
Choudhary M, Shrivastava R, Vashistt J. Eugenol and geraniol impede Csu-pilus assembly and evades multidrug-resistant Acinetobacter baumannii biofilms: In-vitro and in-silico evidence. Biochem Biophys Res Commun 2022; 636:10-17. [DOI: 10.1016/j.bbrc.2022.10.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
|
24
|
Tamehri M, Rasooli I, Pishgahi M, Jahangiri A, Ramezanalizadeh F, Banisaeed Langroodi SR. Combination of BauA and OmpA elicit immunoprotection against Acinetobacter baumannii in a murine sepsis model. Microb Pathog 2022; 173:105874. [DOI: 10.1016/j.micpath.2022.105874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 09/18/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022]
|
25
|
Zhou J, Ventura CJ, Yu Y, Gao W, Fang RH, Zhang L. Biomimetic Neutrophil Nanotoxoids Elicit Potent Immunity against Acinetobacter baumannii in Multiple Models of Infection. NANO LETTERS 2022; 22:7057-7065. [PMID: 35998891 PMCID: PMC9971251 DOI: 10.1021/acs.nanolett.2c01948] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Acinetobacter baumannii is a leading cause of antibiotic-resistant nosocomial infections with high mortality rates, yet there is currently no clinically approved vaccine formulation. During the onset of A. baumannii infection, neutrophils are the primary responders and play a major role in resisting the pathogen. Here, we design a biomimetic nanotoxoid for antivirulence vaccination by using neutrophil membrane-coated nanoparticles to safely capture secreted A. baumannii factors. Vaccination with the nanotoxoid formulation rapidly mobilizes innate immune cells and promotes pathogen-specific adaptive immunity. In murine models of pneumonia, septicemia, and superficial wound infection, immunization with the nanovaccine offers significant protection, improving survival and reducing signs of acute inflammation. Lower bacterial burdens are observed in vaccinated animals regardless of the infection route. Altogether, neutrophil nanotoxoids represent an effective platform for eliciting multivalent immunity to protect against multidrug-resistant A. baumannii in a wide range of disease conditions.
Collapse
Affiliation(s)
- Jiarong Zhou
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Christian J. Ventura
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Yiyan Yu
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Weiwei Gao
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Ronnie H. Fang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| | - Liangfang Zhang
- Department of NanoEngineering, Chemical Engineering Program, and Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, U.S.A
| |
Collapse
|
26
|
Xiong L, Yi F, Yu Q, Huang X, Ao K, Wang Y, Xie Y. Transcriptomic analysis reveals the regulatory role of quorum sensing in the Acinetobacter baumannii ATCC 19606 via RNA-seq. BMC Microbiol 2022; 22:198. [PMID: 35971084 PMCID: PMC9380347 DOI: 10.1186/s12866-022-02612-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/05/2022] [Indexed: 11/29/2022] Open
Abstract
Background Acinetobacter baumannii has emerged as the major opportunistic pathogen in healthcare-associated infections with high-level antibiotic resistance and high mortality. Quorum sensing (QS) system is a cell-to-cell bacterial communication mediated by the synthesis, secretion, and binding of auto-inducer signals. It is a global regulatory system to coordinate the behavior of individual bacteria in a population. The present study focused on the QS system, aiming to investigate the regulatory role of QS in bacterial virulence and antibiotic resistance. Method The auto-inducer synthase gene abaI was deleted using the A. baumannii ATCC 19606 strain to interrupt the QS process. The RNA-seq was performed to identify the differentially expressed genes (DEGs) and pathways in the mutant (△abaI) strain compared with the wild-type (WT) strain. Results A total of 380 DEGs [the adjusted P value < 0.05 and the absolute value of log2(fold change) > log21.5] were identified, including 256 upregulated genes and 124 downregulated genes in the △abaI strain. The enrichment analysis indicated that the DEGs involved in arginine biosynthesis, purine metabolism, biofilm formation, and type VI secretion system (T6SS) were downregulated, while the DEGs involved in pathways related to fatty acid metabolism and amino acid metabolism were upregulated. Consistent with the expression change of the DEGs, a decrease in biofilm formation was observed in the △abaI strain compared with the WT strain. On the contrary, no obvious changes were found in antimicrobial resistance following the deletion of abaI. Conclusions The present study demonstrated the transcriptomic profile of A. baumannii after the deletion of abaI, revealing an important regulatory role of the QS system in bacterial virulence. The deletion of abaI suppressed the biofilm formation in A. baumannii ATCC 19606, leading to decreased pathogenicity. Further studies on the role of abaR, encoding the receptor of auto-inducer in the QS circuit, are required for a better understanding of the regulation of bacterial virulence and pathogenicity in the QS network. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02612-z.
Collapse
Affiliation(s)
- Li Xiong
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Fanli Yi
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Qiuju Yu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xiyue Huang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yuanfang Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Le Goff M, Vastel M, Lebrun R, Mansuelle P, Diarra A, Grandjean T, Triponney P, Imbert G, Gosset P, Dessein R, Garnier F, Durand E. Characterization of the Achromobacter xylosoxidans Type VI Secretion System and Its Implication in Cystic Fibrosis. Front Cell Infect Microbiol 2022; 12:859181. [PMID: 35782124 PMCID: PMC9245596 DOI: 10.3389/fcimb.2022.859181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacteria of the genus Achromobacter are environmental germs, with an unknown reservoir. It can become opportunistic pathogens in immunocompromised patients, causing bacteremia, meningitis, pneumonia, or peritonitis. In recent years, Achromobacter xylosoxidans has emerged with increasing incidence in patients with cystic fibrosis (CF). Recent studies showed that A. xylosoxidans is involved in the degradation of the respiratory function of patients with CF. The respiratory ecosystem of patients with CF is colonized by bacterial species that constantly fight for space and access to nutrients. The type VI secretion system (T6SS) empowers this constant bacterial antagonism, and it is used as a virulence factor in several pathogenic bacteria. This study aimed to investigate the prevalence of the T6SS genes in A. xylosoxidans isolated in patients with CF. We also evaluated clinical and molecular characteristics of T6SS-positive A. xylosoxidans strains. We showed that A. xylosoxidans possesses a T6SS gene cluster and that some environmental and clinical isolates assemble a functional T6SS nanomachine. A. xylosoxidans T6SS is used to target competing bacteria, including other CF-specific pathogens. Finally, we demonstrated the importance of the T6SS in the internalization of A. xylosoxidans in lung epithelial cells and that the T6SS protein Hcp is detected in the sputum of patients with CF. Altogether, these results suggest for the first time a role of T6SS in CF-lung colonization by A. xylosoxidans and opens promising perspective to target this virulence determinant as innovative theranostic options for CF management.
Collapse
Affiliation(s)
- Mélanie Le Goff
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
| | - Manon Vastel
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
| | - Régine Lebrun
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Pascal Mansuelle
- Plateforme Protéomique de l’Institut de Microbiologie de la Méditerranée, Marseille Protéomique, Aix Marseille Université, Centre National de la Recherche Scientifique (CNRS) FR 3479, Marseille, France
| | - Ava Diarra
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Teddy Grandjean
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Pauline Triponney
- Centre National de Référence de la Résistance aux Antibiotiques , Centre Hospitalier Universitaire de Besançon, Besançon, France
| | | | - Philippe Gosset
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Rodrigue Dessein
- Université de Lille, Centre National de la Recherche Scientifique (CNRS), INSERM, Centre Hospitalier Universitaire (CHU) Lille, Institut Pasteur de Lille, U1019-Unité Mixte de Recherche (UMR) 9017-CIIL-Centre d’Infection et d’Immunité de Lille, University of Lille, Lille, France
| | - Fabien Garnier
- Université de Limoges, INSERM, Centre Hospitalier Universitaire (CHU) Limoges, Unité Mixte de Recherche (UMR) 1092, Limoges, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| | - Eric Durand
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 7255, Marseille, France
- Laboratoire d’Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie, Bioénergies et Biotechnologie (IM2B), Aix-Marseille Université - Unité Mixte de Recherche (UMR) 7255, INSERM, Marseille, France
- *Correspondence: Eric Durand, ; ; Fabien Garnier,
| |
Collapse
|
28
|
Genetic Diversity of Antimicrobial Resistance and Key Virulence Features in Two Extensively Drug-Resistant Acinetobacter baumannii Isolates. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19052870. [PMID: 35270562 PMCID: PMC8910769 DOI: 10.3390/ijerph19052870] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/25/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023]
Abstract
In recent decades, Acinetobacter baumannii emerged as a major infective menace in healthcare settings due to scarce therapeutic options to treat infections. Therefore, undertaking genome comparison analyses of multi-resistant A. baumannii strains could aid the identification of key bacterial determinants to develop innovative anti-virulence approaches. Following genome sequencing, we performed a molecular characterization of key genes and genomic comparison of two A. baumannii strains, #36 and #150, with selected reference genomes. Despite a different antibiotic resistance gene content, the analyzed strains showed a very similar antibiogram profile. Interestingly, the lack of some important virulence determinants (i.e., bap, ata and omp33–36) did not abrogate their adhesive abilities to abiotic and biotic surfaces, as reported before; indeed, strains retained these capacities, although to a different extent, suggesting the presence of distinct vicarious genes. Conversely, secretion systems, lipopolysaccharide (LPS), capsule and iron acquisition systems were highly similar to A. baumannii reference strains. Overall, our analyses increased our knowledge on A. baumannii genomic content and organization as well as the genomic events occurring in nosocomial isolates to better fit into changing healthcare environments.
Collapse
|
29
|
Pan P, Wang X, Chen Y, Chen Q, Yang Y, Wei C, Cheng T, Wan H, Yu D. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:761604. [PMID: 35281445 PMCID: PMC8905654 DOI: 10.3389/fcimb.2022.761604] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Acinetobacter baumannii is a type of bacterial nosocomial infection with severe drug resistance. Hemolysin co-regulated protein (Hcp) is a marker of activated type VI secretion system (T6SS), a key secretory system that promotes Gram-negative bacteria colonization, adhesion, and invasion of host cells. Hcp is also regulated by iron ions (Fe). In this study, an ATCC17978 hcp deletion strain (ATCC17978Δhcp), an hcp complement strain (ATCC17978Δhcp+), and an A. baumannii–green fluorescent protein (GFP) strain were constructed and used to investigate the role of hcp in bacterial adhesion to cells (human pulmonary alveolar epithelial cells (HPAEpiC)) and biofilm formation. Our results indicate that the inhibitory concentrations of the three A. baumannii strains (ATCC17978 wild type, ATCC17978Δhcp, and ATCC17978Δhcp+) were drug-sensitive strains. A. baumannii hcp gene and iron ions might be involved in promoting the formation of a biofilm and host–bacteria interaction. Iron ions affected the ability of A. baumannii to adhere to cells, as there was no significant difference in the bacterial numbers when assessing the adhesion of the three strains to HPAEpiC in the presence of iron ion concentrations of 0 μM (F = 3.1800, p = 0.1144), 25 μM (F = 2.067, p = 0.2075), 100 μM (F = 30.52, p = 0.0007), and 400 μM (F = 17.57, p = 0.0031). The three strains showed significant differences in their ability to adhere to HPAEpiC. The numbers of bacteria adhesion to HPAEpiC were ATCC17978Δhcp>ATCC17978Δhcp+>ATCC17978 in descending order. Hcp gene was positively regulated by iron ions in the bacteria–cells’ co-culture. It is speculated that the effect of iron ions on the interaction between A. baumannii and HPAEpiC might be related to the transport function of hcp and bacterial immune escape mechanisms.
Collapse
Affiliation(s)
- Ping Pan
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiong Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunxing Yang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wei
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongtong Cheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| | - Daojun Yu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| |
Collapse
|
30
|
López C, Delmonti J, Bonomo RA, Vila AJ. Deciphering the evolution of metallo-β-lactamases: a journey from the test tube to the bacterial periplasm. J Biol Chem 2022; 298:101665. [PMID: 35120928 DOI: 10.1016/j.jbc.2022.101665] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/13/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022] Open
Abstract
Understanding the evolution of metallo-β-lactamases (MBLs) is fundamental to deciphering the mechanistic basis of resistance to carbapenems in pathogenic and opportunistic bacteria. Presently, these MBL producing pathogens are linked to high rates of morbidity and mortality worldwide. However, the study of the biochemical and biophysical features of MBLs in vitro provides an incomplete picture of their evolutionary potential, since this limited and artificial environment disregards the physiological context where evolution and selection take place. Herein, we describe recent efforts aimed to address the evolutionary traits acquired by different clinical variants of MBLs in conditions mimicking their native environment (the bacterial periplasm) and considering whether they are soluble or membrane-bound proteins. This includes addressing the metal content of MBLs within the cell under zinc starvation conditions, and the context provided by different bacterial hosts that result in particular resistance phenotypes. Our analysis highlights recent progress bridging the gap between in vitro and in-cell studies.
Collapse
Affiliation(s)
- Carolina López
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Juliana Delmonti
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina
| | - Robert A Bonomo
- Research Service, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Medical Service and GRECC, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, Ohio, USA; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA
| | - Alejandro J Vila
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), S2000EXF Rosario, Argentina; CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, Ohio, USA; Area Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina.
| |
Collapse
|
31
|
Li H, Zhang J, Wang Z, Yin Y, Gao H, Wang R, Jin L, Wang Q, Zhao C, Wang Z, Wang H. Evolution of Acinetobacter baumannii in Clinical Bacteremia Patients. Infect Drug Resist 2021; 14:3553-3562. [PMID: 34511946 PMCID: PMC8418358 DOI: 10.2147/idr.s320645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/20/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Colonization of the respiratory tract by Acinetobacter baumannii has been established as an independent risk factor for bacteremia. However, within-host evolution of A. baumannii in bacteremia has not been extensively investigated. Methods We performed whole-genome sequencing to discover the evolutionary characteristics that accompany the transition from respiratory tract carriage to bloodstream infection in three patients with A. baumannii bacteremia. Results Within-host genetic diversity was identified. A total of 21 single nucleotide variants (SNVs) were detected. Genic and intergenic evolution occurred particularly in secretion system, DNA recombination, and cell motility genes. Intergenic SNVs occurred more frequently compared to synonymous and non-synonymous SNVs, which indicated potential transcription or translation regulation. Non-synonymous mutations mostly occurred during the transition from respiratory tract carriage to bloodstream infection. Isolates of clonal complex 208 (CC208) had lower substitution rate with approximately 10−6 nucleotide substitutions per site year−1, compared with non-CC208 isolates (approximately 10−5). We found evidence for the occurrence of recombination in one patient. A total of 259 genes were found to be gained or lost during the within-host evolution, and 231 genes were only detected in one patient. Gene function annotation results suggested that most genes (71/259) were related to replication, recombination, and repair. Universal bloodstream specific genes were not found in all three patients, and only one putative membrane protein related gene was lost in two patients. Conclusion Our results indicated that within-host evolution of A. baumannii bacteremia was driven by mutations, gene content changes, and limited effect of recombination. Gene content diversity between different patients was identified, which suggested interplay of both host and pathogen factors in within-host genetic diversity. Secretion system-related genes showed higher frequency of genomic variations during the within-host evolution. Our findings enhanced our understanding of within-host evolution of A. baumannii bacteremia and provided a framework for discovering novel genomic changes and pathogenicity genes important for bacteremia, which will be validated in future studies.
Collapse
Affiliation(s)
- Henan Li
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Jiangang Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zhiren Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hua Gao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Chunjiang Zhao
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Zhanwei Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, People's Republic of China
| |
Collapse
|
32
|
Crippen CS, Glushka J, Vinogradov E, Szymanski CM. Trehalose-deficient Acinetobacter baumannii exhibits reduced virulence by losing capsular polysaccharide and altering membrane integrity. Glycobiology 2021; 31:1520-1530. [PMID: 34473830 DOI: 10.1093/glycob/cwab096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/20/2022] Open
Abstract
A. baumannii has become the leading cause of bacterial nosocomial infections in part due to its ability to resist desiccation, disinfection and antibiotics. Several factors contribute to the tenacity and virulence of this pathogen, including production of a broad range of surface glycoconjugates, secretory systems and efflux pumps. We became interested in examining the importance of trehalose in A. baumannii after comparing intact bacterial cells by high resolution magic angle spinning NMR and noting high levels of this disaccharide obscuring all other resonances in the spectrum. Since this was observed under normal growth conditions, we speculated that trehalose must serve additional functions beyond osmolyte homeostasis. Using the virulent isolate A. baumannii AB5075 and mutants in the trehalose synthesis pathway, ∆otsA and ∆otsB, we found that the trehalose-deficient ∆otsA showed increased sensitivity to desiccation, colistin, serum complement and peripheral blood mononuclear cells while trehalose-6-phosphate producing ∆otsB behaved similar to the wildtype. The ∆otsA mutant also demonstrated increased membrane permeability and loss of capsular polysaccharide. These findings demonstrate that trehalose deficiency leads to loss of virulence in A. baumannii AB5075.
Collapse
Affiliation(s)
- Clay S Crippen
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Evgeny Vinogradov
- Human Health Therapeutics, National Research Council, Ottawa, ON, Canada
| | - Christine M Szymanski
- Department of Microbiology, University of Georgia, Athens, GA, USA.,Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
33
|
Xiao Y, Lin S, Hao T. Investigating the response of electrogenic metabolism to salinity in saline wastewater treatment for optimal energy output via microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:147092. [PMID: 34088164 DOI: 10.1016/j.scitotenv.2021.147092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
In the current study, MFCs treating saline wastewater with the different conductivities of 5.0 ± 0.2, 7.7 ± 0.6, 10.5 ± 0.9, 13.0 ± 1.0, 15.3 ± 1.0, and 16.0 ± 0.1 mS/cm were investigated. Increasing salinity drives a considerable shift of microbial communities, and it also affects metabolic pathways in MFCs. Overwhelming acetate oxidizing electron transfer with moderate conductivities between 7.7 and 13.0 mS/cm led to high energy outputs. Power generation at the low conductivities of less than 7.7 mS/cm was restricted by the competition between fermentative bacteria (e.g., Lactobacillus) and exoelectrogens (e.g., Pseudomonas and Shewanella) for substrate utilization. Increasing salinity beyond 13 mS/cm suppressed the fermentation of glucose to butyrate. It also induced sulfidogenesis; sulfide oxidizing bacteria Desulfovibrio (5.2%), Desulfuromonas (3.7%) and exoelectrogen Pseudomonas (1.1%) formed a sulfur-driven current production, thereby resulting in low energy outputs. The present study revealed the effects of ionic conductivity on electrical energy production and provided insights into the dynamics of the MFCs substrate utilization.
Collapse
Affiliation(s)
- Yihang Xiao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau
| | - Sen Lin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau.
| |
Collapse
|
34
|
Cameranesi MM, Kurth D, Repizo GD. Acinetobacter defence mechanisms against biological aggressors and their use as alternative therapeutic applications. Crit Rev Microbiol 2021; 48:21-41. [PMID: 34289313 DOI: 10.1080/1040841x.2021.1939266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Several Acinetobacter strains are important nosocomial pathogens, with Acinetobacter baumannii being the species of greatest worldwide concern due to its multi-drug resistance and the recent appearance of hyper-virulent strains in the clinical setting. Colonisation of this environment is associated with a multitude of bacterial factors, and the molecular features that promote environmental persistence in abiotic surfaces, including intrinsic desiccation resistance, biofilm formation and motility, have been previously addressed. On the contrary, mechanisms enabling Acinetobacter spp. survival when faced against other biological competitors are starting to be characterised. Among them, secretion systems (SS) of different types, such as the T5bSS (Contact-dependent inhibition systems) and the T6SS, confer adaptive advantages against bacterial aggressors. Regarding mechanisms of defence against bacteriophages, such as toxin-antitoxin, restriction-modification, Crispr-Cas and CBASS, among others, have been identified but remain poorly characterised. In view of this, we aimed to summarise the present knowledge on defence mechanisms that enable niche establishment in members of the Acinetobacter genus. Different proposals are also described for the use of some components of these systems as molecular tools to treat Acinetobacter infections.
Collapse
Affiliation(s)
- María Marcela Cameranesi
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Daniel Kurth
- Planta Piloto de Procesos Industriales Microbiológicos (PROIMI, CONICET), San Miguel de Tucumán, Argentina
| | - Guillermo Daniel Repizo
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET), Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
35
|
Park J, Kim M, Shin B, Kang M, Yang J, Lee TK, Park W. A novel decoy strategy for polymyxin resistance in Acinetobacter baumannii. eLife 2021; 10:66988. [PMID: 34180396 PMCID: PMC8324293 DOI: 10.7554/elife.66988] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/27/2021] [Indexed: 12/17/2022] Open
Abstract
Modification of the outer membrane charge by a polymyxin B (PMB)-induced PmrAB two-component system appears to be a dominant phenomenon in PMB-resistant Acinetobacter baumannii. PMB-resistant variants and many clinical isolates also appeared to produce outer membrane vesicles (OMVs). Genomic, transcriptomic, and proteomic analyses revealed that upregulation of the pmr operon and decreased membrane-linkage proteins (OmpA, OmpW, and BamE) are linked to overproduction of OMVs, which also promoted enhanced biofilm formation. The addition of OMVs from PMB-resistant variants into the cultures of PMB-susceptible A. baumannii and the clinical isolates protected these susceptible bacteria from PMB. Taxonomic profiling of in vitro human gut microbiomes under anaerobic conditions demonstrated that OMVs completely protected the microbial community against PMB treatment. A Galleria mellonella-infection model with PMB treatment showed that OMVs increased the mortality rate of larvae by protecting A. baumannii from PMB. Taken together, OMVs released from A. baumannii functioned as decoys against PMB. Wrapped in a thick, protective outer membrane, Acinetobacter baumannii bacteria can sometimes cause serious infections when they find their way into human lungs and urinary tracts. Antibiotics are increasingly ineffective against this threat, which forces physicians to resort to polymyxin B, an old, positively-charged drug that ‘sticks’ to the negatively-charged proteins and fatty components at the surface of A. baumannii. Scientists have noticed that when bacteria are exposed to lethal drugs, they often react by releasing vesicles, small ‘sacs’ made of pieces of the outer membranes which can contain DNA or enzymes. How this strategy protects the cells against antibiotics such as polymyxin B remains poorly understood. To investigate this question, Park et al. examined different strains of A. baumannii, showing that bacteria resistant to polymyxin B had lower levels of outer membrane proteins but would release more vesicles. Adding vesicles from resistant strains to non-resistant A. baumannii cultures helped cells to survive the drugs. In fact, this protective effect extended to other species, shielding whole communities of bacteria against polymyxin B. In vivo, the vesicles protected bacteria in moth larvae infected with A. baumannii, leading to a higher death rate in the animals. Experiments showed that the negatively-charged vesicles worked as decoys, trapping the positively-charged polymyxin B away from its target. Taken together, the findings by Park et al. highlight a new strategy that allows certain strains of bacteria to protect themselves from antibiotics, while also benefitting the rest of the microbial community.
Collapse
Affiliation(s)
- Jaeeun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Misung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Bora Shin
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Mingyeong Kang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Jihye Yang
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Tae Kwon Lee
- Department of Environmental Engineering, Yonsei University, Wonju, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
36
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
37
|
Recombinant Production and Characterization of an Extracellular Subtilisin-Like Serine Protease from Acinetobacter baumannii of Fermented Food Origin. Protein J 2021; 40:419-435. [PMID: 33870461 PMCID: PMC8053418 DOI: 10.1007/s10930-021-09986-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/05/2021] [Indexed: 12/20/2022]
Abstract
Acinetobacter baumannii is a ubiquitous bacteria that is increasingly becoming a formidable nosocomial pathogen. Due to its clinical relevance, studies on the bacteria's secretory molecules especially extracellular proteases are of interest primarily in relation to the enzyme's role in virulence. Besides, favorable properties that extracellular proteases possess may be exploited for commercial use thus there is a need to investigate extracellular proteases from Acinetobacter baumannii to gain insights into their catalytic properties. In this study, an extracellular subtilisin-like serine protease from Acinetobacter baumannii designated as SPSFQ that was isolated from fermented food was recombinantly expressed and characterized. The mature catalytically active form of SPSFQ shared a high percentage sequence identity of 99% to extracellular proteases from clinical isolates of Acinetobacter baumannii and Klebsiella pneumoniae as well as a moderately high percentage identity to other bacterial proteases with known keratinolytic and collagenolytic activity. The homology model of mature SPSFQ revealed its structure is composed of 10 β-strands, 8 α-helices, and connecting loops resembling a typical architecture of subtilisin-like α/β motif. SPSFQ is catalytically active at an optimum temperature of 40 °C and pH 9. Its activity is stimulated in the presence of Ca2+ and severely inhibited in the presence of PMSF. SPSFQ also displayed the ability to degrade several tissue-associated protein substrates such as keratin, collagen, and fibrin. Accordingly, our study shed light on the catalytic properties of a previously uncharacterized extracellular serine protease from Acinetobacter baumannii that warrants further investigations into its potential role as a virulence factor in pathogenicity and commercial applications.
Collapse
|
38
|
Pulami D, Schauss T, Eisenberg T, Wilharm G, Blom J, Goesmann A, Kämpfer P, Glaeser SP. Acinetobacter baumannii in manure and anaerobic digestates of German biogas plants. FEMS Microbiol Ecol 2021; 96:5896450. [PMID: 32832994 DOI: 10.1093/femsec/fiaa176] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 08/20/2020] [Indexed: 12/19/2022] Open
Abstract
Studies considering environmental multidrug-resistant Acinetobacter spp. are scarce. The application of manure on agricultural fields is one source of multidrug-resistant bacteria from livestock into the environment. Here, Acinetobacter spp. were quantified by quantitative polymerase chain reaction in manure applied to biogas plants and in the output of the anaerobic digestion, and Acinetobacter spp. isolated from those samples were comprehensively characterized. The concentration of Acinetobacter 16S ribosomal ribonucleic acid (rRNA) gene copies per g fresh weight was in range of 106-108 in manure and decreased (partially significantly) to a still high concentration (105-106) in digestates. 16S rRNA, gyrB-rpoB and blaOXA51-like gene sequencing identified 17 different Acinetobacter spp., including six A. baumannii strains. Multilocus sequence typing showed no close relation of the six strains with globally relevant clonal complexes; however, they represented five novel sequence types. Comparative genomics and physiological tests gave an explanation how Acinetobacter could survive the anaerobic biogas process and indicated copper resistance and the presence of intrinsic beta-lactamases, efflux-pump and virulence genes. However, the A. baumannii strains lacked acquired resistance against carbapenems, colistin and quinolones. This study provided a detailed characterization of Acinetobacter spp. including A. baumannii released via manure through mesophilic or thermophilic biogas plants into the environment.
Collapse
Affiliation(s)
- Dipen Pulami
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Thorsten Schauss
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Tobias Eisenberg
- Department of Veterinary Medicine, Hessian State Laboratory (LHL), D-35392 Giessen, Germany; Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig-University Giessen, D-35392, Giessen, Germany
| | - Gottfried Wilharm
- Project Group P2, Robert Koch Institute, Wernigerode Branch, D-38855 Wernigerode, Germany
| | - Jochen Blom
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Alexander Goesmann
- Institute for Bioinformatics and Systems Biology, D-35392 Giessen, Germany
| | - Peter Kämpfer
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| | - Stefanie P Glaeser
- Institute of Applied Microbiology, Justus Liebig University Giessen, D-35392 Giessen, Germany
| |
Collapse
|
39
|
Jie J, Chu X, Li D, Luo Z. A set of shuttle plasmids for gene expression in Acinetobacter baumannii. PLoS One 2021; 16:e0246918. [PMID: 33566854 PMCID: PMC7875395 DOI: 10.1371/journal.pone.0246918] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 01/29/2021] [Indexed: 11/19/2022] Open
Abstract
Infections caused by the emerging opportunistic bacterial pathogen Acinetobacter baumannii are occurring at increasingly alarming rates, and such increase in incidence is further compounded by the development of wide spread multidrug-resistant strains. Yet, our understanding of its pathogenesis and biology remains limited which can be attributed in part to the scarce of tools for molecular genetic analysis of this bacterium. Plasmids based on pWH1277 originally isolated from Acinetobacter calcoaceticus are the only vehicles currently available for ectopic gene expression in Acinetobacter species, which restricts experiments that require simultaneous analysis of multiple genes. Here, we found that plasmids of the IncQ group are able to replicate in A. baumannii and can stably co-reside with derivatives of pWH1277. Furthermore, we have constructed a series of four plasmids that allow inducible expression of Flag-tagged proteins in A. baumannii by arabinose or isopropyl β-d-1-thiogalactopyranoside. Together with constructs previously developed, these plasmids will accommodate the need in genetic analysis of this increasingly important pathogen.
Collapse
Affiliation(s)
- Jing Jie
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Dan Li
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| | - Zhaoqing Luo
- Department of Respiratory Medicine and Center of Infection and Immunity, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- * E-mail: (DL); (ZL)
| |
Collapse
|
40
|
Time-Resolved Transcriptional Profiling of Epithelial Cells Infected by Intracellular Acinetobacter baumannii. Microorganisms 2021; 9:microorganisms9020354. [PMID: 33670223 PMCID: PMC7916935 DOI: 10.3390/microorganisms9020354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
The rise in the number of antibiotic-resistant bacteria has become a serious threat to health, making it important to identify, characterize and optimize new molecules to help us to overcome the infections they cause. It is well known that Acinetobacter baumannii has a significant capacity to evade the actions of antibacterial drugs, leading to its emergence as one of the bacteria responsible for hospital and community-acquired infections. Nonetheless, how this pathogen infects and survives inside the host cell is unclear. In this study, we analyze the time-resolved transcriptional profile changes observed in human epithelial HeLa cells after infection by A. baumannii, demonstrating how it survives in host cells and starts to replicate 4 h post infection. These findings were achieved by sequencing RNA to obtain a set of Differentially Expressed Genes (DEGs) to understand how bacteria alter the host cells’ environment for their own benefit. We also determine common features observed in this set of genes and identify the protein–protein networks that reveal highly-interacted proteins. The combination of these findings paves the way for the discovery of new antimicrobial candidates for the treatment of multidrug-resistant bacteria.
Collapse
|
41
|
Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition (CDI) Toxins. mBio 2021; 12:mBio.03367-20. [PMID: 33531386 PMCID: PMC7858069 DOI: 10.1128/mbio.03367-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many bacterial species interact via direct cell-to-cell contact using CDI systems, which provide a mechanism to inject toxins that inhibit bacterial growth into one another. Here, we find that two CDI toxins, one that depolarizes membranes and another that degrades RNA, exploit the universally conserved SecY translocon machinery used to export proteins for target cell entry. The C-terminal (CT) toxin domains of contact-dependent growth inhibition (CDI) CdiA proteins target Gram-negative bacteria and must breach both the outer and inner membranes of target cells to exert growth inhibitory activity. Here, we examine two CdiA-CT toxins that exploit the bacterial general protein secretion machinery after delivery into the periplasm. A Ser281Phe amino acid substitution in transmembrane segment 7 of SecY, the universally conserved channel-forming subunit of the Sec translocon, decreases the cytotoxicity of the membrane depolarizing orphan10 toxin from enterohemorrhagic Escherichia coli EC869. Target cells expressing secYS281F and lacking either PpiD or YfgM, two SecY auxiliary factors, are fully protected from CDI-mediated inhibition either by CdiA-CTo10EC869 or by CdiA-CTGN05224, the latter being an EndoU RNase CdiA toxin from Klebsiella aerogenes GN05224 that has a related cytoplasm entry domain. RNase activity of CdiA-CTGN05224 was reduced in secYS281F target cells and absent in secYS281F ΔppiD or secYS281F ΔyfgM target cells during competition co-cultures. Importantly, an allele-specific mutation in secY (secYG313W) renders ΔppiD or ΔyfgM target cells specifically resistant to CdiA-CTGN05224 but not to CdiA-CTo10EC869, further suggesting a direct interaction between SecY and the CDI toxins. Our results provide genetic evidence of a unique confluence between the primary cellular export route for unfolded polypeptides and the import pathways of two CDI toxins.
Collapse
|
42
|
Specific egg yolk immunoglobulin as a promising non-antibiotic biotherapeutic product against Acinetobacter baumannii pneumonia infection. Sci Rep 2021; 11:1914. [PMID: 33479293 PMCID: PMC7820402 DOI: 10.1038/s41598-021-81356-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 01/05/2021] [Indexed: 11/08/2022] Open
Abstract
Acinetobacter baumannii is a serious health threat with a high mortality rate. We have already reported prophylactic effects of IgYs raised against OmpA and Omp34 as well as against inactivated whole-cell (IWC) of A. baumannii in a murine pneumonia model. However, the infection was exacerbated in the mice group that received IgYs raised against the combination of OmpA and Omp34. The current study was conducted to propose reasons for the observed antibody-dependent enhancement (ADE) in addition to the therapeutic effect of specific IgYs in the murine pneumonia model. This phenomenon was hypothetically attributed to topologically inaccessible similar epitopes of OmpA and Omp34 sharing similarity with peptides of mice proteins. In silico analyses revealed that some inaccessible peptides of OmpA shared similarity with peptides of Omp34 and Mus musculus. Specific anti-OmpA and anti-Omp34 IgYs cross-reacted with Omp34 and OmpA respectively. Specific IgYs showed different protectivity against A. baumannii AbI101 in the murine pneumonia model. IgYs triggered against OmpA or IWC of A. baumannii were the most protective antibodies. IgY triggered against Omp34 is ranked next after those against OmpA. The lowest protection was observed in mice received IgYs raised against the combination of rOmpA and rOmp34. In conclusion, specific IgYs against OmpA, Omp34, and IWC of A. baumannii could serve as novel biotherapeutics against A. baumannii pneumonia.
Collapse
|
43
|
Colistin Dependence in Extensively Drug-Resistant Acinetobacter baumannii Strain Is Associated with IS Ajo2 and IS Aba13 Insertions and Multiple Cellular Responses. Int J Mol Sci 2021; 22:ijms22020576. [PMID: 33430070 PMCID: PMC7827689 DOI: 10.3390/ijms22020576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/05/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The nosocomial opportunistic Gram-negative bacterial pathogen Acinetobacter baumannii is resistant to multiple antimicrobial agents and an emerging global health problem. The polymyxin antibiotic colistin, targeting the negatively charged lipid A component of the lipopolysaccharide on the bacterial cell surface, is often considered as the last-resort treatment, but resistance to colistin is unfortunately increasing worldwide. Notably, colistin-susceptible A. baumannii can also develop a colistin dependence after exposure to this drug in vitro. Colistin dependence might represent a stepping stone to resistance also in vivo. However, the mechanisms are far from clear. To address this issue, we combined proteogenomics, high-resolution microscopy, and lipid profiling to characterize and compare A. baumannii colistin-susceptible clinical isolate (Ab-S) of to its colistin-dependent subpopulation (Ab-D) obtained after subsequent passages in moderate colistin concentrations. Incidentally, in the colistin-dependent subpopulation the lpxA gene was disrupted by insertion of ISAjo2, the lipid A biosynthesis terminated, and Ab-D cells displayed a lipooligosaccharide (LOS)-deficient phenotype. Moreover, both mlaD and pldA genes were perturbed by insertions of ISAjo2 and ISAba13, and LOS-deficient bacteria displayed a capsule with decreased thickness as well as other surface imperfections. The major changes in relative protein abundance levels were detected in type 6 secretion system (T6SS) components, the resistance-nodulation-division (RND)-type efflux pumps, and in proteins involved in maintenance of outer membrane asymmetry. These findings suggest that colistin dependence in A. baumannii involves an ensemble of mechanisms seen in resistance development and accompanied by complex cellular events related to insertional sequences (ISs)-triggered LOS-deficiency. To our knowledge, this is the first study demonstrating the involvement of ISAjo2 and ISAba13 IS elements in the modulation of the lipid A biosynthesis and associated development of dependence on colistin.
Collapse
|
44
|
Proteomic and Systematic Functional Profiling Unveils Citral Targeting Antibiotic Resistance, Antioxidant Defense, and Biofilm-Associated Two-Component Systems of Acinetobacter baumannii To Encumber Biofilm and Virulence Traits. mSystems 2020; 5:5/6/e00986-20. [PMID: 33203690 PMCID: PMC7677002 DOI: 10.1128/msystems.00986-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is a nosocomial-infection-causing bacterium and also possesses multidrug resistance to a wide range of conventional antibiotics. The biofilm-forming ability of A. baumannii plays a major role in its resistance and persistence. There is an alarming need for novel treatment strategies to control A. baumannii biofilm-associated issues. The present study demonstrated the strong antibiofilm and antivirulence efficacy of citral against A. baumannii. In addition, proteomic analysis revealed the multitarget potential of citral against A. baumannii. Furthermore, citral treatment enhances the susceptibility of A. baumannii to the host innate immune system and reactive oxygen species (ROS). Cytotoxicity analysis revealed the nonfatal effect of citral on human PBMCs. Therefore, citral could be the safest therapeutic compound and can be taken for further clinical evaluation for the treatment of biofilm-associated infections by A. baumannii. Acinetobacter baumannii has been reported as a multidrug-resistant bacterium due to biofilms and antimicrobial resistance mechanisms. Hence, novel therapeutic strategies are necessary to overcome A. baumannii infections. This study revealed that citral at 200 μg/ml attenuated A. baumannii biofilms by up to 90% without affecting viability. Furthermore, microscopic analyses and in vitro assays confirmed the antibiofilm efficacy of citral. The global effect of citral on A. baumannii was evaluated by proteomic, transcriptional, and in silico approaches. Two-dimensional (2D) gel electrophoresis and matrix-assisted laser desorption ionization–time of flight/time of flight (MALDI-TOF/TOF) analyses were used to assess the effect of citral on the A. baumannii cellular proteome. Quantitative real-time PCR (qPCR) analysis was done to validate the proteomic data and identify the differentially expressed A. baumannii genes. Protein-protein interactions, gene enrichment, and comparative gene network analyses were performed to explore the interactions and functional attributes of differentially expressed proteins of A. baumannii. Global omics-based analyses revealed that citral targeted various mechanisms such as biofilm formation, antibiotic resistance, antioxidant defense, iron acquisition, and type II and type IV secretion systems. The results of antioxidant analyses and antibiotic sensitivity, blood survival, lipase, and hemolysis assays validated the proteomic results. Cytotoxicity analysis showed a nontoxic effect of citral on peripheral blood mononuclear cells (PBMCs). Overall, the current study unveiled that citral has multitarget efficacy to inhibit the biofilm formation and virulence of A. baumannii. IMPORTANCEAcinetobacter baumannii is a nosocomial-infection-causing bacterium and also possesses multidrug resistance to a wide range of conventional antibiotics. The biofilm-forming ability of A. baumannii plays a major role in its resistance and persistence. There is an alarming need for novel treatment strategies to control A. baumannii biofilm-associated issues. The present study demonstrated the strong antibiofilm and antivirulence efficacy of citral against A. baumannii. In addition, proteomic analysis revealed the multitarget potential of citral against A. baumannii. Furthermore, citral treatment enhances the susceptibility of A. baumannii to the host innate immune system and reactive oxygen species (ROS). Cytotoxicity analysis revealed the nonfatal effect of citral on human PBMCs. Therefore, citral could be the safest therapeutic compound and can be taken for further clinical evaluation for the treatment of biofilm-associated infections by A. baumannii.
Collapse
|
45
|
The Glycoprotease CpaA Secreted by Medically Relevant Acinetobacter Species Targets Multiple O-Linked Host Glycoproteins. mBio 2020; 11:mBio.02033-20. [PMID: 33024038 PMCID: PMC7542363 DOI: 10.1128/mbio.02033-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
CpaA is a glycoprotease expressed by members of the Acinetobacter baumannii-calcoaceticus complex, and it is the first bona fide secreted virulence factor identified in these species. Here, we show that CpaA cleaves multiple targets precisely at O-glycosylation sites preceded by a Pro residue. This feature, together with the observation that sialic acid does not impact CpaA activity, makes this enzyme an attractive tool for the analysis of O-linked human protein for biotechnical and diagnostic purposes. Previous work identified proteins involved in blood coagulation as targets of CpaA. Our work broadens the set of targets of CpaA, pointing toward additional roles in bacterium-host interactions. We propose that CpaA belongs to an expanding class of functionally defined glycoproteases that targets multiple O-linked host glycoproteins. Glycans decorate proteins and affect their biological function, including protection against proteolytic degradation. However, pathogenic, and commensal bacteria have evolved specific glycoproteases that overcome the steric impediment posed by carbohydrates, cleaving glycoproteins precisely at their glycosylation site(s). Medically relevant Acinetobacter strains employ their type II secretion system (T2SS) to secrete the glycoprotease CpaA, which contributes to virulence. Previously, CpaA was shown to cleave two O-linked glycoproteins, factors V and XII, leading to reduced blood coagulation. In this work, we show that CpaA cleaves a broader range of O-linked human glycoproteins, including several glycoproteins involved in complement activation, such as CD55 and CD46. However, only CD55 was removed from the cell surface, while CD46 remained unaltered during the Acinetobacter nosocomialis infection assay. We show that CpaA has a unique consensus target sequence that consists of a glycosylated serine or threonine residue after a proline residue (P-S/T), and its activity is not affected by sialic acids. Molecular modeling and mutagenesis analysis of CpaA suggest that the indole ring of Trp493 and the ring of the Pro residue in the substrate form a key interaction that contributes to CpaA sequence selectivity. Similar bacterial glycoproteases have recently gained attention as tools for proteomic analysis of human glycoproteins, and CpaA appears to be a robust and attractive new component of the glycoproteomics toolbox. Combined, our work provides insight into the function and possible application of CpaA, a member of a widespread class of broad-spectrum bacterial glycoproteases involved in host-pathogen interactions.
Collapse
|
46
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
47
|
Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms Protecting Acinetobacter baumannii against Multiple Stresses Triggered by the Host Immune Response, Antibiotics and Outside-Host Environment. Int J Mol Sci 2020; 21:E5498. [PMID: 32752093 PMCID: PMC7432025 DOI: 10.3390/ijms21155498] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is considered one of the most persistent pathogens responsible for nosocomial infections. Due to the emergence of multidrug resistant strains, as well as high morbidity and mortality caused by this pathogen, A. baumannii was placed on the World Health Organization (WHO) drug-resistant bacteria and antimicrobial resistance research priority list. This review summarizes current studies on mechanisms that protect A. baumannii against multiple stresses caused by the host immune response, outside host environment, and antibiotic treatment. We particularly focus on the ability of A. baumannii to survive long-term desiccation on abiotic surfaces and the population heterogeneity in A. baumannii biofilms. Insight into these protective mechanisms may provide clues for the development of new strategies to fight multidrug resistant strains of A. baumannii.
Collapse
Affiliation(s)
- Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| |
Collapse
|
48
|
Castro-Jaimes S, Bello-López E, Velázquez-Acosta C, Volkow-Fernández P, Lozano-Zarain P, Castillo-Ramírez S, Cevallos MA. Chromosome Architecture and Gene Content of the Emergent Pathogen Acinetobacter haemolyticus. Front Microbiol 2020; 11:926. [PMID: 32670207 PMCID: PMC7326120 DOI: 10.3389/fmicb.2020.00926] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022] Open
Abstract
Acinetobacter haemolyticus is a Gammaproteobacterium that has been involved in serious diseases frequently linked to the nosocomial environment. Most of the strains causing such infections are sensitive to a wide variety of antibiotics, but recent reports indicate that this pathogen is acquiring very efficiently carbapenem-resistance determinants like the blaNDM-1 gene, all over the world. With this work we contribute with a collection set of 31 newly sequenced nosocomial A. haemolyticus isolates. Genome analysis of these sequences and others collected from RefSeq indicates that their chromosomes are organized in 12 syntenic blocks that contain most of the core genome genes. These blocks are separated by hypervariable regions that are rich in unique gene families, but also have signals of horizontal gene transfer. Genes involved in virulence or encoding different secretion systems are located inside syntenic regions and have recombination signals. The relative order of the synthetic blocks along the A. haemolyticus chromosome can change, indicating that they have been subject to several kinds of inversions. Genomes of this microorganism show large differences in gene content even if they are in the same clade. Here we also show that A. haemolyticus has an open pan-genome.
Collapse
Affiliation(s)
- Semiramis Castro-Jaimes
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Elena Bello-López
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | | | | | - Patricia Lozano-Zarain
- Centro de Investigaciones en Ciencias Microbiológicas, Posgrado en Microbiología, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Santiago Castillo-Ramírez
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Miguel Angel Cevallos
- Centro de Ciencias Genómicas, Programa de Genómica Evolutiva, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
49
|
Krasauskas R, Skerniškytė J, Martinkus J, Armalytė J, Sužiedėlienė E. Capsule Protects Acinetobacter baumannii From Inter-Bacterial Competition Mediated by CdiA Toxin. Front Microbiol 2020; 11:1493. [PMID: 32849318 PMCID: PMC7396552 DOI: 10.3389/fmicb.2020.01493] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/08/2020] [Indexed: 12/22/2022] Open
Abstract
Currently, Acinetobacter baumannii is considered as one of the most important infectious agents causing hospital acquired infections worldwide. It has been observed that many clinically important pathogens express contact-dependent growth inhibition (CDI) phenomenon, which modulates cell–cell and cell–environment interactions, potentially allowing bacteria to adapt to ever-changing conditions. Mainly, these systems are used for the inhibition of the growth of genetically different individuals within the same species. In this work, by performing cell competition assays with three genotypically different (as determined by pulse-field gel electrophoresis) clinical A. baumannii isolates II-c, II-a, and II-a1, we show that A. baumannii capsule is the main feature protecting from CDI-mediated inhibition. We also observed that for one clinical isolate, the two-component BfmRS system, contributed to the resistance against CDI-mediated inhibition. Moreover, we were able to demonstrate, that the effector protein CdiA is released into the growth media and exhibits its inhibitory activity without the requirement of a cell–cell contact. Lastly, by evaluating the remaining number of the cells pre-mixed with the CdiA and performing live/dead assay, we demonstrate that purified CdiA protein causes a rapid cell growth arrest. Our results indicate, that capsule efficiently protects A. baumannii from a CDI-mediated inhibition by a clinical A. baumannii V15 strain, which is able to secrete CdiA effector into the growth media and cause target cell growth arrest without a cell–cell contact.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julius Martinkus
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
50
|
Chen W. Host-pathogen interactions in Acinetobacter baumannii infection: recent advances and future challenges. Future Microbiol 2020; 15:841-845. [PMID: 32657617 DOI: 10.2217/fmb-2020-0032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Wangxue Chen
- National Research Council Canada, Human Health & Therapeutics (HHT) Research Center, 100 Sussex Drive, Ottawa, ON, K1A 0R6, Canada.,Department of Biology, Brock University, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|