1
|
Zou J, Cui W, Deng N, Li C, Yang W, Ye X, Yao F, Zhang T, Xiao J, Ma C, Wu L, Dong D, Chen J, Guo C, Liu A, Wu H. Fate reversal: Exosome-driven macrophage rejuvenation and bacterial-responsive drug release for infection immunotherapy in diabetes. J Control Release 2025; 382:113730. [PMID: 40250625 DOI: 10.1016/j.jconrel.2025.113730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/27/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Superficial surgical site infection (SSI) is a significant risk factor for the development of periprosthetic joint infection (PJI), particularly in diabetic patients. A high-glucose microenvironment is observed to compromise phagocytosis by inducing cellular senescence, which leads to impaired antibacterial immune function. Exosomes derived from umbilical cord stem cells (H-Exos) can reverse the immunosuppressive microenvironment by rejuvenating senescent cells, thereby terminating excessive, persistent, and ineffective inflammatory responses. Thus, a novel exosome-based immunotherapeutic antibacterial strategy to reverse fate is proposed. Vancomycin & lysostaphin-loaded exosomes are incorporated in a customizable microneedle patch (ExoV-ExoL@MN) for controlled release, enabling tailored treatments for diverse clinical scenarios. While rejuvenating macrophage senescent phenotype, the antibiotics encapsulated within exosomes can be responsively released by the hemolysin secreted by bacteria, triggering rapid bacterial killing. Post-infection clearance, they induce a shift from M1 to M2 macrophage polarization, thereby enhancing anti-inflammatory and reparative responses. Furthermore, the components can be mixed on demand and at any time, allowing for real-time customization and fabrication directly at the clinic (fabrication@clinic). This strategy reverses the immunosuppressive microenvironment by rejuvenating senescent macrophages and effectively combats bacterial invasion into deep tissues through bacteria-responsive antibiotic release, providing a promising approach for preventing and treating SSI-induced PJI.
Collapse
Affiliation(s)
- Jiaxuan Zou
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Wushi Cui
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Niping Deng
- School of Engineering, Westlake University, Hangzhou 310024, PR China
| | - Congsun Li
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Weinan Yang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Xiaojun Ye
- Department of Ultrasound, Hangzhou Women's Hospital, Hangzhou 310008, PR China
| | - Feng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Tao Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Jian Xiao
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China; Department of Orthopedics, The First People's Hospital of Jiashan, Jiaxing 314100, PR China
| | - Chiyuan Ma
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China
| | - Lingfeng Wu
- Department of Orthopedics, Lishui Hospital, Zhejiang University School of Medicine, Lishui 323000, PR China
| | - Dahai Dong
- Department of Orthopedics, Suichang County People's Hospital in Zhejiang Province, Lishui 323300, PR China
| | - Jing Chen
- Institute of Medical Sciences, The Second Hospital and Shandong University Center for Orthopaedics, Cheeloo College of Medicine, Shandong University, Jinan 250033, PR China.
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou 310024, PR China.
| | - An Liu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| | - Haobo Wu
- Department of Orthopedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310002, PR China; Orthopedics Research Institute of Zhejiang University, Hangzhou 310002, PR China; Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University, Hangzhou 310002, PR China; Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou 310002, PR China.
| |
Collapse
|
2
|
Liu Z, Xu Y, Liu W, Wang L, Dong Z, Zeng J. Macleaya cordata protopine total alkaloids as potential treatment for diarrhoea: Mechanistic insights and target identification. Res Vet Sci 2025; 189:105633. [PMID: 40184723 DOI: 10.1016/j.rvsc.2025.105633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/25/2025] [Accepted: 03/28/2025] [Indexed: 04/07/2025]
Abstract
Diarrhoea remains a major public health concern, particularly affecting young children and livestock. Macleaya cordata protopine total alkaloids (MPTA), a standardized extract approved in China for poultry diarrhoea, has demonstrated anti-inflammatory properties in intestinal disorders. The study aims to investigate the antidiarrheal mechanism of MPTA using castor oil- and E. coli-induced diarrhoea models in mice. We first tested MPTA for acute oral toxicity. Subsequently, the effect of MPTA on castor oil- and E. coli-induced diarrhoea in mice based on LD50 results. Network pharmacology analysis and target competition assays (inhibitors and antagonists) were integrated to identify targets for MPTA's antidiarrheal effects. Molecular docking was used to verify the binding ability of MPTA components to these receptors. The LD50 of MPTA was determined to be 426.1 mg/kg. The optimal MPTA activity was found at 8 mg/kg in both castor oil and in infectious models. Network pharmacology analysis revealed potential targets and pathways of MPTA against intestinal motility. The impact of MPTA on cholinergic, serotonin, dopaminergic, and adrenergic receptors was assessed using standard inhibitors and agonists to induce intestinal smooth muscle contractions or relaxations. Molecular docking confirmed the binding ability of MPTA components to these receptors. In conclusion, MPTA exhibits significant antidiarrheal effects in both castor oil and E. coli-induced diarrhoea models. Its mechanism may involve modulation of cholinergic, serotonin, dopaminergic, and adrenergic receptors, as well as inhibition of ion channels and anti-inflammatory actions. These findings highlight the potential of MPTA as a novel therapeutic agent for diarrhoea.
Collapse
Affiliation(s)
- Zhiqin Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China
| | - Yufeng Xu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China
| | - Wei Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China
| | - Lin Wang
- Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China; College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China.
| | - Jianguo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Hunan Province Key Laboratory of Traditional Chinese Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; Chinese Medicinal Materials Breeding Innovation Centre of Yuelushan Laboratory, Changsha 410128, China.
| |
Collapse
|
3
|
Han Y, Liu X, Qu S, Duan X, Xiang Y, Jiang N, Yang S, Fang X, Xu L, Wen H, Yu Y, Huang S, Huang J, Zhu K. Tissue geometry spatiotemporally drives bacterial infections. Cell 2025:S0092-8674(25)00394-0. [PMID: 40262607 DOI: 10.1016/j.cell.2025.03.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/24/2025]
Abstract
Epithelial tissues serve as the first line of host against bacterial infections. The self-organization of epithelial tissues continuously adapts to the architecture and mechanics of microenvironments, thereby dynamically impacting the initial niche of infections. However, the mechanism by which tissue geometry regulates bacterial infection remains poorly understood. Here, we showed geometry-guided infection patterns of bacteria in epithelial tissues using bioengineering strategies. We discovered that cellular traction forces play a crucial role in the regulation of bacterial invasive sites and marginal infection patterns in epithelial monolayers through triggering co-localization of mechanosensitive ion channel protein Piezo1 with bacteria. Further, we developed precise mechanobiology-based strategies to potentiate the antibacterial efficacy in animal models of wound and intestinal infection. Our findings demonstrate that tissue geometry exerts a key impact on mediating spatiotemporal infections of bacteria, which has important implications for the discovery and development of alternative strategies against bacterial infections.
Collapse
Affiliation(s)
- Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China; Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing 102206, China
| | - Shaoqi Qu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Animal-Derived Food Safety Innovation Team, College of Veterinary Medicine, Anhui Agricultural University, Hefei 230036, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yunqing Xiang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Nan Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyu Yang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xu Fang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Liang Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Hui Wen
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Yue Yu
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Shuqiang Huang
- State Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Wei A, Ding T, Li G, Pan F, Tian K, Sun Z, Liu M, Ma Y, Guo Z, Yu Y, Zhan C, Zhang Z, Zhu Y, Wei X. Activated platelet membrane vesicles for broad-spectrum bacterial pulmonary infections management. J Control Release 2025; 380:846-859. [PMID: 39947401 DOI: 10.1016/j.jconrel.2025.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/31/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The development of new antibiotics has lagged behind the rapid evolution of bacterial resistance, prompting the exploration of alternative antimicrobial strategies. Host-directed therapy (HDT) has emerged as a promising approach by harnessing innate immune system's natural defense mechanisms, which reduces reliance on antibiotics, and mitigates the development of resistance. Building on the important role of platelets in host immunity, activated platelet membrane vesicles (PLTv) are developed here as a host-directed therapy for broad-spectrum antibacterial infection management, leveraging several key mechanisms of action. PLTv neutralizes bacterial toxins, thereby reducing cytotoxicity. The presence of platelet receptors on PLTv enables them to act as decoys, binding bacteria through receptor interactions and facilitating their phagocytosis by neutrophils and macrophages. Additionally, PLTv bound to bacteria promote the formation of neutrophil extracellular traps (NETs), enhancing the immune system's ability to trap and kill bacteria. In mouse models of pulmonary infections caused by the Methicillin-resistant Staphylococcus aureus, P. aeruginosa, and A. baumannii, administration of PLTv significantly reduces bacterial counts in the lungs and protects against mortality. Taken together, the present work highlights PLTv as a promising host-directed therapy for combating broad-spectrum pulmonary drug-resistant bacterial infections, leveraging their ability to neutralize toxins, act as decoys, promote phagocytosis, and facilitate NETs formation.
Collapse
Affiliation(s)
- Anqi Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Tianhao Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Guanghui Li
- Department of Pharmacy, Jing'an District Central Hospital of Shanghai, Shanghai 200040, PR China
| | - Feng Pan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Kaisong Tian
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Ziwei Sun
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Mengyuan Liu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yinyu Ma
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zhiwei Guo
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Yifei Yu
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Changyou Zhan
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China
| | - Zui Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| | - Ye Zhu
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai 200040, PR China.
| | - Xiaoli Wei
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, PR China.
| |
Collapse
|
5
|
Yu H, Wang L, Liu X, Zheng J, Xiang H, Zheng Y, Lv D, Yang J, Zhang Y, Qiu J, Wang D. Mechanistic insights into the multitarget synergistic efficacy of farrerol and β-lactam antibiotics in combating methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2025; 69:e0155124. [PMID: 40019240 PMCID: PMC11963547 DOI: 10.1128/aac.01551-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a principal causative agent of infections worldwide, urgently requires innovative interventions to counter its increasing risk. The present study revealed the profound impact of farrerol (FA), a robust bioactive agent, on the virulence and resistance mechanisms of MRSA. Our in-depth investigation revealed that FA significantly mitigated the β-lactam resistance of MRSA USA300, an achievement attributed to its precise interference with the BlaZ and Pbp2a protein. Additionally, FA indirectly diminishes the oligomerization of PBP2a by disrupting pigment synthesis, further contributing to its efficacy. In addition, FA extends its functional footprint beyond resistance modulation, exhibiting substantial antivirulence efficacy through selective inhibition of the accessory gene regulator (Agr) system, thereby significantly curbing MRSA pathogenicity in A549 cell and murine models. This study comprehensively explored the multiple impacts of FA on MRSA, shedding light on its versatile role as a BlaZ suppressor, pigment synthesis regulator, and AgrA activity modulator. These intricate findings firmly position FA as a compelling therapeutic candidate for addressing MRSA infections in the clinic.
Collapse
Affiliation(s)
- Hangqian Yu
- College of Animal Science, Jilin University, Changchun, China
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Li Wang
- Clinical Medical College, Changchun University of Chinese Medicine, Changchun, China
| | - Xin Liu
- College of Animal Science, Jilin University, Changchun, China
| | - Jianze Zheng
- College of Animal Science, Jilin University, Changchun, China
| | - Hua Xiang
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Yanyang Zheng
- College of Animal Medicine, Jilin Agricultural University, Changchun, China
| | - Dongmei Lv
- College of Animal Science, Jilin University, Changchun, China
| | - Jingjing Yang
- College of Animal Science, Jilin University, Changchun, China
| | - Yuxin Zhang
- College of Animal Science, Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dacheng Wang
- College of Animal Science, Jilin University, Changchun, China
| |
Collapse
|
6
|
Lv R, Zhang W, Sun Z, Si X, Dong H, Liu X. Current prevalence and therapeutic strategies for porcine Streptococcus suis in China. Appl Environ Microbiol 2025; 91:e0216024. [PMID: 39998255 PMCID: PMC11921377 DOI: 10.1128/aem.02160-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Porcine Streptococcus suis is a zoonotic bacterial pathogen that poses serious threats to both human and animal health. S. suis is ubiquitously transmitted from the swine industry to the environments and human communities. However, the ambiguous epidemiological patterns and the escalating risk of antimicrobial resistance render S. suis infections a considerable challenge. Here, we review the current prevalence of S. suis infection worldwide, including identified bacterial strains, routes of infection, and transformation of resistance genes. This comprehensive overview of the prevalent patterns in S. suis offers detailed insights into therapeutic approaches for porcine infections and alternative strategies to address emerging resistant strains, highlighting potential multitarget prevention and treatment options to combat S. suis infection.
Collapse
Affiliation(s)
- Ruoyi Lv
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Wenjing Zhang
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Zhigang Sun
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Xiaohui Si
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Hong Dong
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| | - Xiaoye Liu
- Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Beijing, China
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, China
- Beijing Traditional Chinese Veterinary Engineering Center, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
7
|
Lv B, Zhao Y, Li G, Jiang H, Zhang M, Li Z, Cao J. Tumor-Resident Intracellular Bacteria Scavenger Activated In Situ Vaccines for Potent Cancer Photoimmunotherapy. Adv Healthc Mater 2025; 14:e2404271. [PMID: 39806831 DOI: 10.1002/adhm.202404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/07/2025] [Indexed: 01/16/2025]
Abstract
In situ tumor vaccines, which utilize antigens generated during tumor treatment to stimulate a cancer patient's immune system, has become a potential field in cancer immunotherapy. However, due to the immunosuppressive tumor microenvironment (ITME), the generation of tumor antigens is always mild and not sufficient. Tumor-resident intracellular bacteria have been identified as a complete tumor microenvironment component to contribute to creating ITME. Herein, a tumor-resident intracellular bacteria scavenger is designed to induce enhanced antitumor photoimmunotherapy-driven in situ vaccines for treating hypoxic tumors. This scavenger is developed by integrating photosensitizer CyI and antibiotics Doxycycline (Doxy) into thermal-sensitive tumor-derived exosomes fused liposomes (ECDL). In vitro and in vivo results showed that ECDL could homologous target to cancer cells and restrict the respiration of mitochondrial to reduce tumor hypoxia, thus providing continuous oxygen to eliminate both tumor cells and tumor-resident intracellular bacteria, which could induce in situ vaccines for ablating the primary tumor and inhibiting the tumor metastasis and recurrence. Moreover, eliminating tumor-resident intracellular bacteria neutralizes the ITME and triggers the production of bacterial-related neoantigens, which could further strength the immunotherapy. This study provided versatile and effective in situ vaccines that are promising for local, abscopal, and metastatic tumor treatment.
Collapse
Affiliation(s)
- Bai Lv
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Yifan Zhao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Gang Li
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Huimei Jiang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- Institute of Biomedical Materials and Engineering, College of Materials Sciences and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zequn Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266000, China
| | - Jie Cao
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
8
|
Jiang C, Jie J, Wang J, Deng X, Qiu J, Liu H. Sesamol hinders the proliferation of intracellular bacteria by promoting fatty acid metabolism and decreasing excessive inflammation. Int Immunopharmacol 2025; 146:113966. [PMID: 39733644 DOI: 10.1016/j.intimp.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The extraintestinal pathogenic Escherichia coli (ExPEC) is a significant zoonotic bacterial pathogen that can cause severe infections and potentially cross-transmit between different hosts. The treatment of clinical bacterial infections is challenging because of the increasingly severe problem of drug resistance. The development of new strategies for managing bacterial infections is essential. Host-acting antibacterial compound (HAC)-based host-directed therapy (HDT) has emerged as a promising approach to combat bacterial infections by targeting host-pathogen interactions and bacterial intracellular survival strategies. In this study, we conducted a cell-based screening to identify compounds that can inhibit the survival and proliferation of ExPEC within host cells. Our screening revealed that sesamol effectively inhibited ExPEC proliferation but had no effect on the natural growth of bacteria. Analysis of the transcriptome data revealed that sesamol has the ability to increase the metabolism of host fatty acids while also suppressing excessive inflammation. Mechanistic studies have shown that sesamol-induced PPAR-β activation is crucial for increased fatty acid metabolism and clearance of intracellular bacteria. Furthermore, sesamol treatment demonstrated protective effects against ExPEC infection in both Galleria mellonella and mouse models, suggesting its potential use for treating diseases caused by intracellular bacterial pathogens and as a lead compound for further development of anti-infection drugs on the basis of the HDT strategy.
Collapse
Affiliation(s)
- Chenxiao Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
9
|
Weng B, Li Y, Feng W, Yao P, Wang Y, Wang Q, Wang X, Li Y, Li L, Wang Q. Azithromycin inhibits the intracellular persistence of Acinetobacter baumannii by inducing host cell autophagy in human bronchial epithelial cells. Microb Pathog 2025; 198:107152. [PMID: 39586339 DOI: 10.1016/j.micpath.2024.107152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/13/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
The invasion of host cells by bacteria, leading to intracellular infections, is a major cause of infection recurrence. Drug-resistant Acinetobacter baumannii (A. baumannii) is one of the most challenging public health issues worldwide, with very limited clinical treatment options available. A. baumannii has been found to be able to invade host cells and proliferate within them in recent studies. In addition to the direct antimicrobial effect of antibiotics, the activation of host autophagic flux also plays an important role in eliminating intracellular pathogens. Herein, this study aimes to evaluate the clearance effect of antibiotics on intracellular A. baumannii both in vivo and in vitro, and explore the relationship between this effect and autophagy. The results showed that intracellular pathogens resulted in a significant increase in the minimum bactericidal concentration, while azithromycin can significantly eliminate intracellular A. baumannii in vitro and in vivo. Notably, 60 μg/mL azithromycin demonstrated intracellular clearance against multidrug-resistant A. baumannii and markedly induced autophagosomes in BEAS-2B cells with a mild stimulation of autophagosomes degradation. These findings indicated that azithromycin can significantly clear intracellular A. baumannii and its ability to clear intracellular A. baumannii may be related to the stimulation of autophagosome formation and the induction of host autophagy, which has important implications for the clinical treatment of A. baumannii infections, especially when intracellular infections are present.
Collapse
Affiliation(s)
- Bangbi Weng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuliang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Wei Feng
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Pu Yao
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yu Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qianmei Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaowen Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yang Li
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Li Li
- Department of Pain Medicine, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qian Wang
- Department of Pharmacy, Southwest Hospital of Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
10
|
Jiang M, Kang J, Dong A. Aggregation-induced emission luminogens for intracellular bacteria imaging and elimination. Biosens Bioelectron 2025; 267:116873. [PMID: 39467473 DOI: 10.1016/j.bios.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/11/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024]
Abstract
Intracellular bacterial infections are a serious threat to human health due to their ability to escape immunity and develop drug resistance. Recent attention has been devoted to identifying and ablating intracellular bacteria with fluorescence probes. Aggregation-induced emission luminogens (AIEgens) photosensitizers as fluorescence probes possess excellent photostability and rapid response, which have emerged as powerful fluorescent tools for intracellular bacterial detection and antibacterial therapy. This review is intended to highlight the current advances in AIEgens on intracellular bacteria imaging and elimination, which covers topics from intracellular AIE mechanism, intracellular bacteria imaging of AIEgens to the elimination of intracellular bacteria with AIEgens. AIEgens utilized different interactions to detect intracellular bacteria, emitting bright light due to restricted intramolecular movement to visualize intracellular bacteria. Photosensitive AIEgens generate reactive oxygen species (ROS) in the aggregate state to elimate intracellular bacteria. Moreover, the prospects and application of AIEgens in intracellular bacteria imaging and elimination are also discussed, which provides insights for the development of AIE-based diagnostic and therapeutic materials and technologies.
Collapse
Affiliation(s)
- Mingji Jiang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China.
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot, 010021, PR China.
| |
Collapse
|
11
|
Xu H, Feng Y, Du Y, Han Y, Duan X, Jiang Y, Su L, Liu X, Qin S, He K, Huang J. Bacterial-host adhesion dominated by collagen subtypes remodelled by osmotic pressure. NPJ Biofilms Microbiomes 2024; 10:124. [PMID: 39532878 PMCID: PMC11557999 DOI: 10.1038/s41522-024-00600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Environmental osmolarity plays a crucial role in regulating the functions and behaviors of both host cells and pathogens. However, it remains unclear whether and how environmental osmotic stimuli modulate bacterial‒host interfacial adhesion. Using single-cell force spectroscopy, we revealed that the interfacial adhesion force depended nonlinearly on the osmotic prestimulation of host cells but not bacteria. Quantitatively, the adhesion force increased dramatically from 25.98 nN under isotonic conditions to 112.45 or 93.10 nN after the host cells were treated with the hypotonic or hypertonic solution. There was a strong correlation between the adhesion force and the number of host cells harboring adherent/internalized bacteria. We further revealed that enhanced overexpression levels of collagen XV and II were responsible for the increases in interfacial adhesion under hypotonic and hypertonic conditions, respectively. This work provides new opportunities for developing host-directed antibacterial strategies related to interfacial adhesion from a mechanobiological perspective.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yuting Feng
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
| | - Ying Jiang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China
- Nanchang Innovation Institute of Peking University, Nanchang, China
| | - Liya Su
- Clinical Medical Research Center of the Affiliated Hospital, Inner Mongolia Medical University, Inner Mongolia Key Laboratory of Medical Cell Biology, Hohhot, Inner Mongolia, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Premature Infants, Fifth Central Hospital of Tianjin, Tianjin, China
- High Altitude Characteristic Medical Research Institute, Huangnan Tibetan Autonomous Prefecture People's Hospital, Huangnan Prefecture, Qinghai Province, China
| | - Siying Qin
- School of Life Sciences, Peking University, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing, China.
| |
Collapse
|
12
|
Huang Y, Zhu Q, Wang Y, Zhu K. Bacterial-derived sialidases inhibit porcine rotavirus OSU replication by interfering with the early steps of infection. Microb Pathog 2024; 190:106628. [PMID: 38508422 DOI: 10.1016/j.micpath.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/27/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 μU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.
Collapse
Affiliation(s)
- Yucheng Huang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qian Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Yongqiang Wang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
13
|
Wu Y, Gong X, Shen J, Zhu K. Postantibiotic leukocyte enhancement-mediated reduction of intracellular bacteria by macrophages. J Adv Res 2024; 58:117-128. [PMID: 37290606 PMCID: PMC10982861 DOI: 10.1016/j.jare.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
INTRODUCTION Potentiation of the bactericidal activities of leukocytes, including macrophages, upon antibacterial agent administration has been observed for several decades and is summarized as the postantibiotic leukocyte enhancement (PALE) theory. Antibiotics-induced bacterial sensitization to leukocytes is commonly recognized as the mechanism of PALE. However, the degree of sensitization drastically varies with antibiotic classes, and little is known about whether and how the potentiation of leukocytes contributes to PALE. OBJECTIVES In this study, we aim to develop a mechanistic understanding of PALE by investigating the immunoregulation of traditional antibiotics on macrophages. METHODS Interaction models between bacteria and macrophages were constructed to identify the effects of different antibiotics on the bactericidal activities of macrophages. Oxygen consumption rate, expression of oxidases, and antioxidants were then measured to evaluate the effects of fluoroquinolones (FQs) on the oxidative stress of macrophages. Furthermore, the modulation in endoplasmic reticulum stress and inflammation upon antibiotic treatment was detected to analyze the mechanisms. At last, the peritoneal infection model was utilized to verify the PALE in vivo. RESULTS Enrofloxacin significantly reduced the intracellular burden of diverse bacterial pathogens through promoting the accumulation of reactive oxygen species (ROS). The upregulated oxidative response accordingly reprograms the electron transport chain with decreased production of antioxidant enzymes to reduce internalized pathogens. Additionally, enrofloxacin modulated the expression and spatiotemporal localization of myeloperoxidase (MPO) to facilitate ROS accumulation to target invaded bacteria and downregulated inflammatory response to alleviate cellular injury. CONCLUSION Our findings demonstrate the crucial role of leukocytes in PALE, shedding light on the development of new host-directed antibacterial therapies and the design of rational dosage regimens.
Collapse
Affiliation(s)
- Yifan Wu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoxia Gong
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Kui Zhu
- National Key Laboratory of Veterinary Public Health Security, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
14
|
Dai W, Shu R, Yang F, Li B, Johnson HM, Yu S, Yang H, Chan YK, Yang W, Bai D, Deng Y. Engineered Bio-Heterojunction Confers Extra- and Intracellular Bacterial Ferroptosis and Hunger-Triggered Cell Protection for Diabetic Wound Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305277. [PMID: 37526952 DOI: 10.1002/adma.202305277] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/30/2023] [Indexed: 08/02/2023]
Abstract
Nanomaterial-mediated ferroptosis has garnered considerable interest in the antibacterial field, as it invokes the disequilibrium of ion homeostasis and boosts lipid peroxidation in extra- and intracellular bacteria. However, current ferroptosis-associated antibacterial strategies indiscriminately pose damage to healthy cells, ultimately compromising their biocompatibility. To address this daunting issue, this work has designed a precise ferroptosis bio-heterojunction (F-bio-HJ) consisting of Fe2 O3 , Ti3 C2 -MXene, and glucose oxidase (GOx) to induce extra-intracellular bacteria-targeted ferroptosis for infected diabetic cutaneous regeneration. Fe2 O3 /Ti3 C2 -MXene@GOx (FMG) catalytically generates a considerable amount of ROS which assaults the membrane of extracellular bacteria, facilitating the permeation of synchronously generated Fe2+ /Fe3+ into bacteria under near-infrared (NIR) irradiation, causing planktonic bacterial death via ferroptosis, Fe2+ overload, and lipid peroxidation. Additionally, FMG facilitates intracellular bacterial ferroptosis by transporting Fe2+ into intracellular bacteria via inward ferroportin (FPN). With GOx consuming glucose, FMG creates hunger protection which helps macrophages escape cell ferroptosis by activating the adenosine 5'-monophosphate (AMP) activated protein kinase (AMPK) pathway. In vivo results authenticate that FMG boosts diabetic infectious cutaneous regeneration without triggering ferroptosis in normal cells. As envisaged, the proposed tactic provides a promising approach to combat intractable infections by precisely terminating extra-intracellular infection via steerable ferroptosis, thereby markedly elevating the biocompatibility of therapeutic ferroptosis-mediated strategies.
Collapse
Affiliation(s)
- Wenyu Dai
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Rui Shu
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fan Yang
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Bin Li
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Hannah M Johnson
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Sheng Yu
- Department of Chemistry, Washington State University, Pullman, WA, 99164, USA
| | - Hang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu, 610065, China
| | - Yau Kei Chan
- Department of Ophthalmology, The University of Hong Kong, Hong Kong, 999077, China
| | - Weizhong Yang
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
| | - Ding Bai
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yi Deng
- West China School of Stomatology College of Biomedical Engineering, School of Chemical Engineering, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, 999077, China
| |
Collapse
|
15
|
Wang Q, Zhou X, Gou H, Chang H, Lan J, Li J, Li Z, Gao M, Wang Z, Yi Y, Li N. Antibacterial activity of a polysaccharide isolated from Artemisia argyi leaf against Staphylococcus aureus and mechanism investigation. Int J Biol Macromol 2023; 253:126636. [PMID: 37657565 DOI: 10.1016/j.ijbiomac.2023.126636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/24/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
Abuse of antibiotics has led to excessive amounts of antibiotic residues in food and environment, thus enhancing pathogenic bacterium resistance and threatening human health. Therefore, searching and developing safe and green antibiotic alternatives are necessary. In this study, an Artemisia argyi leaf polysaccharide (AALP) fraction was extracted and analyzed. Chemical composition analysis showed that the carbohydrate, uronic acid, protein, and polyphenol content in AALP were 68.3 % ± 4.13 %, 9.4 % ± 0.86 %, 1.79 % ± 0.27 %, and 0.16 % ± 0.035 %, respectively. Chromatographic results suggested that AALP contained rhamnose, arabinose, glucosamine, galactose, glucose, xylose, mannose, galacturonic acid, and glucuronic acid in a molar ratio of 9.26, 1.35, 1.18, 3.04, 48.51, 2.33, 31.26, 3.93, and 9.08; the weight average molecular weight, number average molecular weight, and polydispersity of AALP were 5.41 kDa, 4.63 kDa, and 1.168, respectively. Fourier transform infrared spectroscopy indicated that AALP constituted the polysaccharide-specific groups of CH, CO, and OH. Meanwhile, AALP showed a dose-dependent inhibitory effect on Staphylococcus aureus in the inhibition zone assay, and the minimal inhibitory concentration was 1.25 mg/mL. Furthermore, AALP disrupted the cell wall, depolarized the inner membrane potential, and inhibited the activities of succinate dehydrogenase and malate dehydrogenase in S. aureus.
Collapse
Affiliation(s)
- Qi Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Xueyan Zhou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Haiqin Gou
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - He Chang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Junyi Lan
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Jia Li
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Yanjie Yi
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Provincial Key Laboratory of Ultrasound Imaging and Artificial Intelligence, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
16
|
Yuan Z, Wang J, Qu Q, Zhu Z, Xu M, Zhao M, Sun C, Peng H, Huang X, Dong Y, Dong C, Zheng Y, Yuan S, Li Y. Celastrol Combats Methicillin-Resistant Staphylococcus aureus by Targeting Δ 1 -Pyrroline-5-Carboxylate Dehydrogenase. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302459. [PMID: 37381655 PMCID: PMC10477891 DOI: 10.1002/advs.202302459] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/22/2023] [Indexed: 06/30/2023]
Abstract
The emergence and rapid spread of methicillin-resistant Staphylococcus aureus (MRSA) raise a critical need for alternative therapeutic options. New antibacterial drugs and targets are required to combat MRSA-associated infections. Based on this study, celastrol, a natural product from the roots of Tripterygium wilfordii Hook. f., effectively combats MRSA in vitro and in vivo. Multi-omics analysis suggests that the molecular mechanism of action of celastrol may be related to Δ1 -pyrroline-5-carboxylate dehydrogenase (P5CDH). By comparing the properties of wild-type and rocA-deficient MRSA strains, it is demonstrated that P5CDH, the second enzyme of the proline catabolism pathway, is a tentative new target for antibacterial agents. Using molecular docking, bio-layer interferometry, and enzyme activity assays, it is confirmed that celastrol can affect the function of P5CDH. Furthermore, it is found through site-directed protein mutagenesis that the Lys205 and Glu208 residues are key for celastrol binding to P5CDH. Finally, mechanistic studies show that celastrol induces oxidative stress and inhibits DNA synthesis by binding to P5CDH. The findings of this study indicate that celastrol is a promising lead compound and validate P5CDH as a potential target for the development of novel drugs against MRSA.
Collapse
Affiliation(s)
- Zhongwei Yuan
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Jun Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Qianwei Qu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Zhenxin Zhu
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Marc Xu
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Mengmeng Zhao
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Chongxiang Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Haixin Peng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Xingyu Huang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Yue Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Chunliu Dong
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Yadan Zheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| | - Shuguang Yuan
- Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
| | - Yanhua Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical DevelopmentCollege of Veterinary MedicineNortheast Agricultural UniversityHarbin150030China
| |
Collapse
|
17
|
Qu S, Zhu K. Endocytosis-mediated redistribution of antibiotics targets intracellular bacteria. NANOSCALE 2023; 15:4781-4794. [PMID: 36779877 DOI: 10.1039/d2nr05421c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The increasing emergence and dissemination of antibiotic resistance pose a severe threat to overwhelming healthcare practices worldwide. The lack of new antibacterial drugs urgently calls for alternative therapeutic strategies to combat multidrug-resistant (MDR) bacterial pathogens, especially those that survive and replicate in host cells, causing relapse and recurrence of infections. Intracellular drug delivery is a direct efficient strategy to combat invasive pathogens by increasing the accumulation of antibiotics. However, the increased accumulation of antibiotics in the infected host cells does not mean high efficacy. The difficulty of treatment lies in the efficient intracellular delivery of antibiotics to the pathogen-containing compartments. Here, we first briefly review the survival mechanisms of intracellular bacteria to facilitate the exploration of potential antibacterial targets for precise delivery. Furthermore, we provide an overview of endocytosis-mediated drug delivery systems, including the biomedical and physicochemical properties modulating the endocytosis and intracellular redistribution of antibiotics. Lastly, we summarize the targets and payloads of recently described intracellular delivery systems and their modes of action against diverse pathogenic bacteria-associated infections. This overview of endocytosis-mediated redistribution of antibiotics sheds light on the development of novel delivery platforms and alternative strategies to combat intracellular bacterial pathogens.
Collapse
Affiliation(s)
- Shaoqi Qu
- Animal-Derived Food Safety Innovation Team, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Kui Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
- Engineering Research Center of Animal Innovative drugs and Safety Evaluation, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
18
|
Tian J, Chen S, Liu F, Zhu Q, Shen J, Lin W, Zhu K. Equisetin Targets Intracellular Staphylococcus aureus through a Host Acting Strategy. Mar Drugs 2022; 20:656. [PMID: 36354979 PMCID: PMC9694014 DOI: 10.3390/md20110656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/15/2022] [Accepted: 10/16/2022] [Indexed: 09/22/2023] Open
Abstract
Mammalian cells act as reservoirs of internalized bacteria to circumvent extracellular antibacterial compounds, resulting in relapse and reinfection diseases. The intracellular persistence of Staphylococcus aureus renders most traditional antibiotics useless, due to their inadequate subcellular accumulation. To replenish our antibiotic arsenal, we found that a marine-derived compound, equisetin, efficiently eliminates intracellular S. aureus by potentiating the host autophagy and inducing mitochondrial-mediated ROS generation to clear the invading S. aureus. The remarkable anti-infection activity of equisetin was validated in a peritonitis-infected mouse model. The marine product equisetin utilizes a unique dual mechanism to modulate the host-pathogen interaction in the clearance of intracellular bacteria. Thus, equisetin is an inspiring host-acting candidate for overcoming intracellular pathogens.
Collapse
Affiliation(s)
- Jiayao Tian
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shang Chen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Fei Liu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Qian Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenhan Lin
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing 100193, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
19
|
Gong X, Zhao Q, Wu Y, Zhou H, Ding S, Zhu K. Mucoid Acinetobacter baumannii enhances anti-phagocytosis through reducing C3b deposition. Front Med (Lausanne) 2022; 9:879361. [PMID: 36186828 PMCID: PMC9521736 DOI: 10.3389/fmed.2022.879361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMultidrug resistant (MDR) Acinetobacter baumannii causes serious infections in intensive care units and is hard to be eradicated by antibiotics. Many A. baumannii isolates are identified as the mucoid type recently, but the biological characteristics of mucoid A. baumannii and their interactions with host cells remains unclear.MethodsThe mucoid phenotype, antimicrobial susceptibility, biofilm-forming ability, acid resistance ability, peroxide tolerance, and in vivo toxicity of clinical ICUs derived A. baumannii isolates were first investigated. Secondly, the phagocytic resistance and invasive capacity of A. baumannii isolates to macrophages (MH-S, RAW264.7) and epithelial cells (A549) were analyzed. Furthermore, the abundance of C3b (complement factor C3 degradation product) deposition on the surface of A. baumannii was investigated. Last, the relationship between C3b deposition and the abundance of capsule in A. baumannii isolates were analyzed.ResultsThese A. baumannii strains showed different mucoid phenotypes including hyper mucoid (HM), medium mucoid (MM), and low mucoid (LM). All tested strains were MDR with high tolerance to either acid or hydrogen peroxide exposure. Notably, these mucoid strains showed the increase of mortality in the Galleria mellonella infection models. Besides, the HM strain exhibited less biofilm abundance, higher molecular weight (MW) of capsule, and greater anti-phagocytic activity to macrophages than the LM strain. Together with the increased abundance of capsule, high expression of tuf gene (associated with the hydrolysis of C3b), the HM strain effectively inhibits C3b deposition on bacterial surface, resulting in the low-opsonization phenotype.ConclusionCapsular characteristics facilitate the anti-phagocytic activity in hyper mucoid A. baumannii through the reduction of C3b deposition. Mucoid A. baumannii exhibits high phagocytosis resistance to both macrophages and epithelial cells.
Collapse
Affiliation(s)
- Xiaoxia Gong
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qian Zhao
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Yifan Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hongwei Zhou
- Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Kui Zhu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- *Correspondence: Kui Zhu,
| |
Collapse
|
20
|
Song L, Hu X, Ren X, Liu J, Liu X. Antibacterial Modes of Herbal Flavonoids Combat Resistant Bacteria. Front Pharmacol 2022; 13:873374. [PMID: 35847042 PMCID: PMC9278433 DOI: 10.3389/fphar.2022.873374] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/17/2022] [Indexed: 12/21/2022] Open
Abstract
The increasing dissemination of multidrug resistant (MDR) bacterial infections endangers global public health. How to develop effective antibacterial agents against resistant bacteria is becoming one of the most urgent demands to solve the drug resistance crisis. Traditional Chinese medicine (TCM) with multi-target antibacterial actions are emerging as an effective way to combat the antibacterial resistance. Based on the innovative concept of organic wholeness and syndrome differentiation, TCM use in antibacterial therapies is encouraging. Herein, advances on flavonoid compounds of heat-clearing Chinese medicine exhibit their potential for the therapy of resistant bacteria. In this review, we focus on the antibacterial modes of herbal flavonoids. Additionally, we overview the targets of flavonoid compounds and divide them into direct-acting antibacterial compounds (DACs) and host-acting antibacterial compounds (HACs) based on their modes of action. We also discuss the associated functional groups of flavonoid compounds and highlight recent pharmacological activities against diverse resistant bacteria to provide the candidate drugs for the clinical infection.
Collapse
Affiliation(s)
- Lianyu Song
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Xin Hu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaomin Ren
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
| | - Jing Liu
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
| | - Xiaoye Liu
- Beijing Traditional Chinese Veterinary Engineering Center and Beijing Key Laboratory of Traditional Chinese Veterinary Medicine, Beijing University of Agriculture, Changping, China
- Animal Science and Technology College, Beijing University of Agriculture, Changping, China
- *Correspondence: Xiaoye Liu,
| |
Collapse
|