1
|
Meng X, Liu Q, Wang X, Han X, Zhang Q, Hu HY. An Activatable Long-Fluorescence-Lifetime Probe for Exploring the Dual Function of StrH in Biofilm Formation and Necroptosis. Adv Healthc Mater 2025; 14:e2404252. [PMID: 40012443 DOI: 10.1002/adhm.202404252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/01/2025] [Indexed: 02/28/2025]
Abstract
Streptococcus pneumoniae infections, particularly those associated with biofilm formation, pose significant therapeutic challenges due to their increased resistance to antibiotics and immune evasion. Identifying new biomarkers is crucial for accurate diagnosis and the development of innovative treatment strategies. StrH is recognized as a key enzyme in S. pneumoniae carbohydrate metabolism, however, its specific role in biofilm formation and its interactions with the host remain poorly understood. In this study, a highly sensitive and selective turn-on long-lifetime fluorescence probe, "HBT-PXZ-St," is designed to detect StrH activity and to reveal its functions. Using fluorescence lifetime imaging microscopy (FLIM), "HBT-PXZ-St" can quantify StrH activity and image live S. pneumoniae cells, achieving a fluorescence lifetime of ≈2 µs, which effectively minimizes background short-lived fluorescence interference. Additionally, the findings suggest that StrH activity significantly contributes to biofilm development and induces necroptosis in A549 host cells via the receptor-interacting serine/threonine-protein kinase 1 (RIPK1) pathway, thereby promoting bacterial colonization and invasion. This study provides insight into StrH's dual role as both a "sword and shield" during colonization and invasion, suggesting its potential as a therapeutic target for novel treatments against S. pneumoniae infections.
Collapse
Affiliation(s)
- Xiangchuan Meng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qian Liu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiang Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Xiaowan Han
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Qingyang Zhang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Hai-Yu Hu
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| |
Collapse
|
2
|
Ben Ayed N, Gargouri O, Mhimdi S, Smaoui F, Mhiri E, Kanzari L, Zribi M, Maalej Mezghanni S, Ktari S, Meftah K, Mohamed N, Zaghden H, Bahri O, Besbes S, Achour W, Slim L, Boutiba I, Smaoui H, Hammami A. The Evolution of the Antimicrobial Resistance of Streptococcus pneumoniae in Tunisia: A Multicentric Analysis over Two Decades (2000-2019). Antibiotics (Basel) 2025; 14:171. [PMID: 40001415 PMCID: PMC11851641 DOI: 10.3390/antibiotics14020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Streptococcus pneumoniae is a leading respiratory pathogen responsible for significant morbidity and mortality, particularly among vulnerable populations. Understanding its antimicrobial resistance patterns and serotype distribution is crucial for guiding treatment and prevention strategies. This study aims to examine these trends in S. pneumoniae isolates from Tunisia over a two-decade period (2000-2019). Methods: A retrospective time series analysis was conducted on data (n = 4284) gathered from eight university hospital centers across Tunisia. Antimicrobial susceptibility testing was performed according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) guidelines. Pneumococcal serotypes were determined for a subset of samples from 2012 to 2019 (n = 903) using multiplex PCR and latex agglutination. Results: Penicillin G resistance decreased from 9-13.7% during 2000-2002 to 4.3% by 2019, while amoxicillin resistance increased until reaching 10% in 2019. Erythromycin resistance initially increased before stabilizing between 61.9% and 66.3% during 2014-2019, whereas tetracycline resistance declined from 2000 to 2008 and fluctuated around 40% during 2009-2019. Levofloxacin resistance did not exceed 1.2% throughout the study period. The most prevalent serotypes were 14, 19F, 19A, 23F, 3, 6B, 6A, and 9V. Among them, serotype 3 was the most susceptible overall. Serotypes 23F, 14, 9V, and 6B displayed the highest levels of multi-drug resistance. Conclusions: Penicillin G (high-dosage), cefotaxime, and levofloxacin are still effective against most S. pneumoniae strains in Tunisia, while erythromycin and tetracycline are not reliable options for treating pneumococcal infections. Alarming resistance rates among prevalent serotypes, except serotype 3, underscore the need for preventive measures, rational antibiotic use, and ongoing surveillance.
Collapse
Affiliation(s)
- Nourelhouda Ben Ayed
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Omar Gargouri
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Samar Mhimdi
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | - Fahmi Smaoui
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Emna Mhiri
- Laboratory of Microbiology, Abderrahmen Mami Hospital, Ariana 2080, Tunisia; (E.M.); (L.S.)
| | - Lamia Kanzari
- National Reference Laboratory on Antimicrobial Resistance Surveillance, Tunis 1007, Tunisia; (L.K.); (I.B.)
- Microbiology Laboratory, Charles Nicolle Hospital, Tunis 1006, Tunisia
- Research Laboratory “Antimicrobial Resistance” LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Meriam Zribi
- Laboratory of Microbiology, La Rabta Hospital, Tunis 1007, Tunisia;
| | - Senda Maalej Mezghanni
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Sonia Ktari
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| | - Khaoula Meftah
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | | | | | - Olfa Bahri
- Laboratory of Clinical Biology, Aziza Othmana Hospital, Tunis 1008, Tunisia;
| | - Sophie Besbes
- Laboratory of Microbiology, Mohamed Kassab Orthopaedics Institute, Manouba 2010, Tunisia;
| | - Wafa Achour
- Laboratory Department, Bone and Marrow Transplantation Center, Tunis 1029, Tunisia;
| | - Leila Slim
- Laboratory of Microbiology, Abderrahmen Mami Hospital, Ariana 2080, Tunisia; (E.M.); (L.S.)
| | - Ilhem Boutiba
- National Reference Laboratory on Antimicrobial Resistance Surveillance, Tunis 1007, Tunisia; (L.K.); (I.B.)
- Microbiology Laboratory, Charles Nicolle Hospital, Tunis 1006, Tunisia
- Research Laboratory “Antimicrobial Resistance” LR99ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1007, Tunisia
| | - Hanen Smaoui
- Laboratory of Microbiology, Bechir Hamza Children’s Hospital, Tunis 1006, Tunisia; (S.M.); (K.M.); (H.S.)
| | - Adnene Hammami
- Laboratory of Microbiology, Habib Bourguiba University Hospital Center, Sfax 3000, Tunisia; (N.B.A.); (O.G.); (S.M.M.)
- Research Laboratory LR03SP03 “Micro-Organisme et Pathologie Humaine”, Faculty of Medicine, University of Sfax, Sfax 3029, Tunisia; (F.S.); (S.K.)
| |
Collapse
|
3
|
Tian T, Xue Z, Sun X, Ding L, Zhao R, Wang Z, Wu J, Li X, Li Y, Sun L. Qingfei Yin alleviates Streptococcus pneumoniae pneumonia by promoting complete autophagy to suppress necroptosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156280. [PMID: 39637472 DOI: 10.1016/j.phymed.2024.156280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/21/2024] [Accepted: 11/19/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Bacterial pneumonia is most prevalent among all pneumonia types, with Streptococcus pneumoniae being the main pathogen. Qingfei Yin (QFY) is a traditional Chinese medicine formula used in the clinical treatment of bacterial pneumonia. Previous studies have confirmed the multi-target and -effect characteristics of QFY in treating S. pneumoniae pneumonia. PURPOSE The purpose of this study was to explore the mechanism underlying QFY in treating pneumonia produced by S. pneumoniae. METHODS First, an in vivo model of S. pneumoniae-induced pneumonia was established in mice and evaluated the efficacy of QFY by hematoxylin-eosin (HE) staining and measuring cytokine levels in bronchoalveolar lavage fluid. Next, single-cell transcriptomics was used to identify the targeted cell subtypes, signaling pathways, and biological processes affected by QFY. Finally, the findings were validated using a pneumolysin (PLY) -induced mouse lung epithelial cells (TC-1) model in vitro using western blot analysis, immunofluorescence (IF), acridine orange (AO) staining, and propidium iodide (PI) staining. RESULTS QFY was shown to alleviate lung inflammation and reduce the TNF-α and IL-6 levels in bronchoalveolar lavage fluid in vivo. A total of 113,353 cells were classified using single-cell transcriptomics and 12 major cell types were identified. By single-cell transcriptomics, QFY was confirmed to primarily target lung epithelial cells. Differentially expressed genes were shown to be enriched in autophagy and necroptosis signaling pathways, and the key differentially expressed gene, Sequestosome 1 (p62/SQSTM1), was identified. PLY was shown to induce RIPK1-dependent necroptosis and incomplete autophagy in TC-1 cells. QFY was shown to promote complete autophagy by downregulating the expression of p62, thereby reducing phosphorylation of RIPK1 and MLKL, and alleviating necroptosis in S. pneumoniae-induced lung epithelial cell death. CONCLUSION This study demonstrated that QFY can effectively alleviate S. pneumoniae pneumonia. The mechanism of action may be that QFY promotes complete autophagy by downregulating p62 expression, thereby alleviating necroptosis of S. pneumoniae-induced lung epithelial cells and reducing lung injury. It provides a scientific basis for clinical prevention and treatment of S. pneumoniae pneumonia.
Collapse
Affiliation(s)
- Tong Tian
- Traditional Chinese Medicine College, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Zhilong Xue
- Traditional Chinese Medicine College, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xiaozhou Sun
- Pediatric Respiratory Medicine Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Lizhong Ding
- Pediatric Respiratory Medicine Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, PR China
| | - Renshuang Zhao
- Medical College, Yanbian University, Yanji 133002, PR China
| | - Zhongtian Wang
- Traditional Chinese Medicine College, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Jiaqi Wu
- Traditional Chinese Medicine College, Changchun University of Chinese Medicine, Changchun 130117, PR China
| | - Xiao Li
- Medical College, Yanbian University, Yanji 133002, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Yiquan Li
- Medical College, Yanbian University, Yanji 133002, PR China; Academician Workstation of Jilin Province, Changchun University of Chinese Medicine, Changchun 130117, PR China.
| | - Liping Sun
- Pediatric Respiratory Medicine Department, Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130021, PR China.
| |
Collapse
|
4
|
Abdelbary MMH, Hatting M, Dahlhausen A, Bott A, Conrads G. Insights into Within-Host Evolution and Dynamics of Oral and Intestinal Streptococci Unveil Niche Adaptation. Int J Mol Sci 2024; 25:13507. [PMID: 39769268 PMCID: PMC11727833 DOI: 10.3390/ijms252413507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/03/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls. Our analysis identified 16 streptococcal species, with Streptococcus infantis, S. mitis, S. parasanguinis, S. australis, and S. salivarius being the most prevalent. S. infantis dominated the oral niche in both IBD patients (33%) and healthy controls (26%). It was also the primary species in fecal samples from IBD patients and the second most prevalent in those from healthy controls. S. parasanguinis was more prevalent in the gut than in the oral cavity in both groups. Comparative genomics demonstrated a within-host microevolution of streptococci, showing adaptations via recombination and acquisition of mobile genetic elements (MGEs). Intestinal streptococcal genomes exhibited a higher proportion of intact phages and a significantly greater acquisition of the tetA gene, which confers tetracycline resistance compared to oral genomes. Core-genome single-nucleotide polymorphisms (SNPs) analysis showed significant genetic divergence between oral and intestinal streptococcal genomes within the same individual. Our findings also unveil distinct niche-specific mutation signatures within intestinal genomes, indicating the emergence of distinct clonal lineages within each niche and suggesting that within-host streptococcal evolution is individual-dependent, initiated in the oral cavity.
Collapse
Affiliation(s)
- Mohamed M. H. Abdelbary
- Division of Nosocomial Pathogens and Antibiotic Resistances, Department of Infectious Diseases, Robert Koch Institute, Wernigerode Branch, 38855 Wernigerode, Germany
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany; (A.B.); (G.C.)
| | - Maximilian Hatting
- Department of Medicine III, RWTH University Hospital, 52074 Aachen, Germany;
| | - Andrea Dahlhausen
- University Medical Center for Occupational Medicine, RWTH University, 52074 Aachen, Germany;
| | - Alexandra Bott
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany; (A.B.); (G.C.)
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany; (A.B.); (G.C.)
| |
Collapse
|
5
|
Ai L, Zhou C, Fang L, Liu B, Gong F. Changes in the epidemiology and antimicrobial resistance patterns of Streptococcus pneumoniae from pediatric community acquired pneumonia patients attended in a Chinese hospital during the COVID-19 pandemic. Infection 2024; 52:2455-2464. [PMID: 38848016 DOI: 10.1007/s15010-024-02308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 05/27/2024] [Indexed: 12/07/2024]
Abstract
PURPOSE The COVID-19 pandemic has altered the infection dynamics of numerous pathogens. This study aimed to elucidate its impact on Streptococcus pneumoniae (S. pneumoniae) infections in children with community acquired pneumonia (CAP). METHODS A retrospective analysis was conducted in pediatric CAP patients admitted before (2018-2019) and during (2020-2022) the COVID-19 pandemic. The epidemiology and antimicrobial resistance (AMR) patterns of S. pneumoniae were compared to reveal the impact of the pandemic. RESULTS A total of 968 S. pneumoniae-associated pediatric CAP patients were enrolled. Although the positivity rate and gender of patients were stable across both periods, the age notably increased in 2021 and 2022. Additionally, significant changes were observed in the co-infections with several pathogens and the resistance rates to certain antibiotics during the COVID-19 pandemic. The resistance rate to clindamycin and quinupristin-dalfopristin increased, whereas the resistance rate to tetracycline, trimethoprim-sulfamethoxazole, telithromycin, and proportion of multi-drug resistant isolates decreased. The number of S. pneumoniae strains and resistant isolates exhibited similar seasonal patterns in 2018 and 2019, peaking in November or December with another minor peak in March or April. During the COVID-19 pandemic, there was a sharp decrease in February 2020 and no resurgence was observed at the end of 2022. Additionally, the minor peak was absent in 2020 and shifted to other months in 2021 and 2022. CONCLUSIONS The COVID-19 pandemic has markedly altered the infection spectrum of S. pneumoniae in pediatric CAP patients, as evidenced by shifts in the age of patients, respiratory co-infections, AMR patterns, and seasonal trends.
Collapse
Affiliation(s)
- Ling Ai
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, No. 439, Xuanhua Street, Chongqing, 402160, China
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, 646000, China
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Chanjuan Zhou
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Liang Fang
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
| | - Beizhong Liu
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China
- Key Laboratory of Laboratory Medical Diagnostics, Department of Laboratory Medicine, Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Fang Gong
- Department of General Practice, Yongchuan Hospital of Chongqing Medical University, No. 439, Xuanhua Street, Chongqing, 402160, China.
- Central Laboratory, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
- Department of Pediatrics, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, China.
| |
Collapse
|
6
|
Candeias C, Almeida ST, Paulo AC, Simões AS, Ferreira B, Cruz AR, Queirós M, Touret T, Brito-Avô A, de Lencastre H, Sá-Leão R. Streptococcus pneumoniae carriage, serotypes, genotypes, and antimicrobial resistance trends among children in Portugal, after introduction of PCV13 in National Immunization Program: A cross-sectional study. Vaccine 2024; 42:126219. [PMID: 39146858 DOI: 10.1016/j.vaccine.2024.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Streptococcus pneumoniae carriage studies are crucial to monitor changes induced by use of pneumococcal conjugate vaccines and inform vaccination policies. In this cross-sectional study, we examined changes within the pneumococcal population following introduction of PCV13 in 2015 in the National Immunization Program (NIP), in Portugal. In 2018-2020 (NIP-PCV13), we obtained 1450 nasopharyngeal samples from children ≤6 years attending day-care. We assessed serotypes, antimicrobial resistance, and genotypes (MLST and GPSC) and compared findings with earlier periods: 2009-2010 (pre-PCV13), 2011-2012 (early-PCV13), and 2015-2016 (late-PCV13). Pneumococcal carriage prevalence remained stable at 60.2 %. Carriage of PCV13 serotypes was 10.7 %, markedly reduced compared to pre-PCV13 period (47.6 %). The most prevalent PCV13 serotypes were 19F, 3, and 19A all showing a significant decreasing trend compared to the pre-PCV13 period (from 7.1 % to 4.7 %, 10.1 % to 1.8 %, and 14.1 % to 1.8 %, respectively), a notable observation given the described limited effectiveness of PCV13 against serotype 3. Non-vaccinated children and children aged 4-6 years were more likely to carry PCV13 serotypes (2.5-fold, 95 %CI [1.1-5.6], and 2.9-fold, 95 %CI [1.3-6.8], respectively). The most prevalent non-PCV13 serotypes were 15B/C, 11A, 23B, 23A, and NT, collectively accounting for 51.9 % of all isolates. In total, 30.5 % of all pneumococci were potentially covered by PCV20. Resistance to penicillin (low-level) and macrolides increased significantly, from 9.3 % and 13.4 %, respectively, in the late-PCV13 period, to approximately 20 % each, mostly due to lineages expressing non-PCV13 serotypes, nearing pre-PCV13 levels. An expansion of lineages traditionally associated with PCV13 serotypes, like CC156-GPSC6 (serotype 14) and CC193-GPSC11 (serotype 19F), but now predominantly expressing non-PCV13 serotypes (11A, 15B/C, and 24F for GPSC6; and 15A and 21 for GPSC11) was noted. These findings indicate that the pneumococcal population is adapting to the pressures conferred by PCV13 and antimicrobial use and indicate the need to maintain close surveillance.
Collapse
Affiliation(s)
- Catarina Candeias
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Sónia T Almeida
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - A Cristina Paulo
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Alexandra S Simões
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Bárbara Ferreira
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Ana R Cruz
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Miguel Queirós
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | - Tiago Touret
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal
| | | | - Hermínia de Lencastre
- Laboratory of Molecular Genetics, ITQB NOVA, Oeiras, Portugal; Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, USA
| | - Raquel Sá-Leão
- Laboratory of Molecular Microbiology of Human Pathogens, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Oeiras, Portugal.
| |
Collapse
|
7
|
Osman ME, Abo-Elnasr AA, Mohamed ET. Therapeutic potential activity of quercetin complexes against Streptococcus pneumoniae. Sci Rep 2024; 14:12876. [PMID: 38834612 DOI: 10.1038/s41598-024-62782-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024] Open
Abstract
This study investigates quercetin complexes as potential synergistic agents against the important respiratory pathogen Streptococcus pneumoniae. Six quercetin complexes (QCX1-6) were synthesized by reacting quercetin with various metal salts and boronic acids and characterized using FTIR spectroscopy. Their antibacterial activity alone and in synergism with antibiotics was evaluated against S. pneumoniae ATCC 49619 using disc diffusion screening, broth microdilution MIC determination, and checkerboard assays. Complexes QCX-3 and QCX-4 demonstrated synergy when combined with levofloxacin via fractional inhibitory concentration indices ≤ 0.5 as confirmed by time-kill kinetics. Molecular docking elucidated interactions of these combinations with virulence enzymes sortase A and sialidase. A biofilm inhibition assay found the synergistic combinations more potently reduced biofilm formation versus monotherapy. Additionally, gene-gene interaction networks, biological activity predictions and in-silico toxicity profiling provided insights into potential mechanisms of action and safety.
Collapse
Affiliation(s)
- Mohamed E Osman
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Amany A Abo-Elnasr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt
| | - Eslam T Mohamed
- Botany and Microbiology Department, Faculty of Science, Helwan University, Ain Helwan, Cairo, 11795, Egypt.
| |
Collapse
|
8
|
Ben Ayed N, Ktari S, Jdidi J, Gargouri O, Smaoui F, Hachicha H, Ksibi B, Mezghani S, Mnif B, Mahjoubi F, Hammami A. Nasopharyngeal Carriage of Streptococcus pneumoniae in Tunisian Healthy under-Five Children during a Three-Year Survey Period (2020 to 2022). Vaccines (Basel) 2024; 12:393. [PMID: 38675775 PMCID: PMC11054273 DOI: 10.3390/vaccines12040393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
We aimed to assess the prevalence of nasopharyngeal pneumococcal carriage and to determine serotype distribution, antibiotic susceptibility patterns, and evolutionary dynamics of Streptococcus pneumoniae isolates in healthy under-five children. Nasopharyngeal swabs were collected from healthy children over three survey periods between 2020 and 2022. All pneumococcal isolates were serotyped and tested for antimicrobial susceptibility. A total of 309 S. pneumoniae isolates were collected, with an overall prevalence of nasopharyngeal pneumococcal carriage of 24.4% (CI95%: [22-26.8%]). These isolates were classified into 25 different serotypes. The most common serotypes were 14 (14.9%), 19F (12%), 6B (10.4%), and 23F (7.4%), which are covered by the PCV10 vaccine, as well as 19A (8.4%) and 6A (7.8%), which are covered by the PCV13 vaccine. A significant decrease in the proportion of serotype 19F (p = 0.001) and an increase in serotypes 19A (p = 0.034) and 6A (p = 0.029) were observed between the three survey periods. Multidrug resistance (MDR) was noted for 56.6% of the isolates. A significant association with antimicrobial resistance was observed for the most frequent serotypes, mainly serotype 19A. In conclusion, one-quarter of healthy under-five children in Tunisia carried S. pneumoniae in their nasopharynx. A dominance of vaccine serotypes significantly associated with antimicrobial resistance was recorded.
Collapse
Affiliation(s)
- Nourelhouda Ben Ayed
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Sonia Ktari
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Jihen Jdidi
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
- Community Health and Epidemiology Department, Hedi Chaker University Hospital, University of Sfax, Sfax 3029, Tunisia
| | - Omar Gargouri
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Fahmi Smaoui
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
| | - Haifa Hachicha
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Boutheina Ksibi
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Sonda Mezghani
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Basma Mnif
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Faouzia Mahjoubi
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| | - Adnene Hammami
- Laboratory of Microbiology, Research Laboratory for Microorganisms and Human Disease LR03SP03, Habib Bourguiba University Hospital, University of Sfax, Sfax 3029, Tunisia; (S.K.); (O.G.); (F.S.); (H.H.); (B.K.); (S.M.); (B.M.); (F.M.); (A.H.)
- Faculty of Medicine of Sfax, University of Sfax, Sfax 3029, Tunisia;
| |
Collapse
|
9
|
Rafiqullah IM, Varghese R, Hellmann KT, Velmurugan A, Neeravi A, Kumar Daniel JL, Vidal JE, Kompithra RZ, Verghese VP, Veeraraghavan B, Robinson DA. Pneumococcal population genomics changes during the early time period of conjugate vaccine uptake in southern India. Microb Genom 2024; 10:001191. [PMID: 38315173 PMCID: PMC10926699 DOI: 10.1099/mgen.0.001191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024] Open
Abstract
Streptococcus pneumoniae is a major cause of invasive disease of young children in low- and middle-income countries. In southern India, pneumococcal conjugate vaccines (PCVs) that can prevent invasive pneumococcal disease began to be used more frequently after 2015. To characterize pneumococcal evolution during the early time period of PCV uptake in southern India, genomes were sequenced and selected characteristics were determined for 402 invasive isolates collected from children <5 years of age during routine surveillance from 1991 to 2020. Overall, the prevalence and diversity of vaccine type (VT) and non-vaccine type (NVT) isolates did not significantly change post-uptake of PCV. Individually, serotype 1 and global pneumococcal sequence cluster (GPSC or strain lineage) 2 significantly decreased, whereas serotypes 6B, 9V and 19A and GPSCs 1, 6, 10 and 23 significantly increased in proportion post-uptake of PCV. Resistance determinants to penicillin, erythromycin, co-trimoxazole, fluoroquinolones and tetracycline, and multidrug resistance significantly increased in proportion post-uptake of PCV and especially among VT isolates. Co-trimoxazole resistance determinants were common pre- and post-uptake of PCV (85 and 93 %, respectively) and experienced the highest rates of recombination in the genome. Accessory gene frequencies were seen to be changing by small amounts across the frequency spectrum specifically among VT isolates, with the largest changes linked to antimicrobial resistance determinants. In summary, these results indicate that as of 2020 this pneumococcal population was not yet approaching a PCV-induced equilibrium and they highlight changes related to antimicrobial resistance. Augmenting PCV coverage and prudent use of antimicrobials are needed to counter invasive pneumococcal disease in this region.
Collapse
Affiliation(s)
- Iftekhar M. Rafiqullah
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rosemol Varghese
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - K. Taylor Hellmann
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
| | - Aravind Velmurugan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - Ayyanraj Neeravi
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | | | - Jorge E. Vidal
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Rajeev Z. Kompithra
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Valsan P. Verghese
- Department of Child Health, Christian Medical College and Hospital, Vellore, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College and Hospital, Vellore, India
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| |
Collapse
|
10
|
Sandoval MM, Ruvinsky S, Palermo MC, Alconada T, Brizuela ME, Wierzbicki ER, Cantos J, Bardach A, Ciapponi A, Gagetti P. Antimicrobial resistance of Streptococcus pneumoniae from invasive pneumococcal diseases in Latin American countries: a systematic review and meta-analysis. Front Public Health 2024; 12:1337276. [PMID: 38317800 PMCID: PMC10839967 DOI: 10.3389/fpubh.2024.1337276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 02/07/2024] Open
Abstract
Background Invasive pneumococcal disease has declined since pneumococcal conjugate vaccine introduction in Latin America and the Caribbean (LAC). However, serotype distribution and antimicrobial resistance patterns have changed. Methods We conducted a systematic review to evaluate the frequency of antimicrobial resistance of Streptococcus pneumoniae from invasive disease in LAC. Articles published between 1 January 2000, and 27 December 2022, with no language restriction, were searched in major databases and gray literature. Pairs of reviewers independently selected extracted data and assessed the risk of bias in the studies. The quality of antimicrobial resistance (AMR) studies was evaluated according to WHO recommendations (PROSPERO CRD42023392097). Results From 8,600 records identified, 103 studies were included, with 49,660 positive samples of S. pneumoniae for AMR analysis processed. Most studies were from Brazil (29.1%) and Argentina (18.4%), were cross-sectional (57.3%), reported data on AMR from IPD cases (52.4%), and were classified as moderate risk of bias (50.5%). Resistance to penicillin was 21.7% (95%IC 18.7-25.0, I2: 95.9), and for ceftriaxone/cefotaxime it was 4.7% (95%IC 3.2-6.9, I2: 96.1). The highest resistance for both penicillin and ceftriaxone/cefotaxime was in the age group of 0 to 5 years (32.1% [95%IC 28.2-36.4, I2: 87.7], and 9.7% [95%IC 5.9-15.6, I2: 96.9] respectively). The most frequent serotypes associated with resistance were 14 for penicillin and 19A for ceftriaxone/cefotaxime. Conclusion Approximately one-quarter of invasive pneumococcal disease isolates in Latin America and the Caribbean displayed penicillin resistance, with higher rates in young children. Ongoing surveillance is essential to monitor serotype evolution and antimicrobial resistance patterns following pneumococcal conjugate vaccine introduction.
Collapse
Affiliation(s)
| | - Silvina Ruvinsky
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Coordinación de Investigación, Hospital de Pediatría “Dr. Juan P. Garrahan”, Buenos Aires, Argentina
| | | | - Tomás Alconada
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Martín Eduardo Brizuela
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Unidad de Pediatría, Hospital General de Agudos Vélez Sarsfield, Buenos Aires, Argentina
| | | | - Joaquín Cantos
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
| | - Ariel Bardach
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-IECS), CONICET, Buenos Aires, Argentina
| | - Agustín Ciapponi
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-IECS), CONICET, Buenos Aires, Argentina
| | - Paula Gagetti
- Instituto de Efectividad Clínica y Sanitaria (IECS-CONICET), Buenos Aires, Argentina
- Servicio Antimicrobianos, National Reference Laboratory (NRL), Instituto Nacional de Enfermedades Infecciosas (INEI)-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| |
Collapse
|
11
|
Wang L, Liu M, Qi Y, Wang J, Shi Q, Xie X, Zhou C, Ma L. hsdSA regulated extracellular vesicle-associated PLY to protect Streptococcus pneumoniae from macrophage killing via LAPosomes. Microbiol Spectr 2024; 12:e0099523. [PMID: 38018988 PMCID: PMC10783081 DOI: 10.1128/spectrum.00995-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/01/2023] [Indexed: 11/30/2023] Open
Abstract
IMPORTANCE S. pneumoniae is a major human pathogen that undergoes a spontaneous and reversible phase variation that allows it to survive in different host environments. Interestingly, we found hsdSA , a gene that manipulated the phase variation, promoted the survival and replication of S. pneumoniae in macrophages by regulating EV production and EV-associated PLY. More importantly, here we provided the first evidence that higher EV-associated PLY (produced by D39) could form LAPosomes that were single membrane compartments containing S. pneumoniae, which are induced by integrin β1/NOX2/ROS pathway. At the same time, EV-associated PLY increased the permeability of lysosome membrane and induced an insufficient acidification to escape the host killing, and ultimately prolonged the survival of S. pneumoniae in macrophages. In contrast, lower EV-associated PLY (produced by D39ΔhsdSA ) activated ULK1 recruitment to form double-layered autophagosomes to eliminate bacteria.
Collapse
Affiliation(s)
- Liping Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Mengyuan Liu
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yixin Qi
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Jian Wang
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Qixue Shi
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiaolin Xie
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Changlin Zhou
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Lingman Ma
- College of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
13
|
Obolski U, Swarthout TD, Kalizang'oma A, Mwalukomo TS, Chan JM, Weight CM, Brown C, Cave R, Cornick J, Kamng'ona AW, Msefula J, Ercoli G, Brown JS, Lourenço J, Maiden MC, French N, Gupta S, Heyderman RS. The metabolic, virulence and antimicrobial resistance profiles of colonising Streptococcus pneumoniae shift after PCV13 introduction in urban Malawi. Nat Commun 2023; 14:7477. [PMID: 37978177 PMCID: PMC10656543 DOI: 10.1038/s41467-023-43160-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
Streptococcus pneumoniae causes substantial mortality among children under 5-years-old worldwide. Polysaccharide conjugate vaccines (PCVs) are highly effective at reducing vaccine serotype disease, but emergence of non-vaccine serotypes and persistent nasopharyngeal carriage threaten this success. We investigated the hypothesis that following vaccine, adapted pneumococcal genotypes emerge with the potential for vaccine escape. We genome sequenced 2804 penumococcal isolates, collected 4-8 years after introduction of PCV13 in Blantyre, Malawi. We developed a pipeline to cluster the pneumococcal population based on metabolic core genes into "Metabolic genotypes" (MTs). We show that S. pneumoniae population genetics are characterised by emergence of MTs with distinct virulence and antimicrobial resistance (AMR) profiles. Preliminary in vitro and murine experiments revealed that representative isolates from emerging MTs differed in growth, haemolytic, epithelial infection, and murine colonisation characteristics. Our results suggest that in the context of PCV13 introduction, pneumococcal population dynamics had shifted, a phenomenon that could further undermine vaccine control and promote spread of AMR.
Collapse
Affiliation(s)
- Uri Obolski
- Department of Epidemiology and Preventive Medicine, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
- Porter School of the Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel.
| | - Todd D Swarthout
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Akuzike Kalizang'oma
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | | | - Jia Mun Chan
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Caroline M Weight
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
- Faculty of Health and Medicine, Biomedical and Life Sciences, Lancaster University, Lancaster, United Kingdom
- Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, United Kingdom
| | - Comfort Brown
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
| | - Rory Cave
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom
| | - Jen Cornick
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | | | | | - Giuseppe Ercoli
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - Jeremy S Brown
- UCL Respiratory, Division of Medicine, University College London, London, United Kingdom
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Universidade Católica Portuguesa, Faculty of Medicine, Biomedical Research Centre, Lisbon, Portugal
| | - Martin C Maiden
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Neil French
- Clinical Infection, Microbiology and Immunology, Institute of Infection Veterinary & Ecological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robert S Heyderman
- Malawi Liverpool Wellcome Programme, Blantyre, Malawi.
- Mucosal Pathogens Research Group, Research Department of Infection, Division of Infection & Immunity, University College London, London, United Kingdom.
| |
Collapse
|
14
|
Xu Y, Xie C, Liu Y, Qin X, Liu J. An update on our understanding of Gram-positive bacterial membrane vesicles: discovery, functions, and applications. Front Cell Infect Microbiol 2023; 13:1273813. [PMID: 37860067 PMCID: PMC10582989 DOI: 10.3389/fcimb.2023.1273813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023] Open
Abstract
Extracellular vesicles (EVs) are nano-sized particles released from cells into the extracellular environment, and are separated from eukaryotic cells, bacteria, and other organisms with cellular structures. EVs alter cell communication by delivering their contents and performing various functions depending on their cargo and release into certain environments or other cells. The cell walls of Gram-positive bacteria have a thick peptidoglycan layer and were previously thought to be unable to produce EVs. However, recent studies have demonstrated that Gram-positive bacterial EVs are crucial for health and disease. In this review, we have summarized the formation, composition, and characteristics of the contents, resistance to external stress, participation in immune regulation, and other functions of Gram-positive bacterial EVs, as well as their application in clinical diagnosis and treatment, to provide a new perspective to further our understanding of Gram-positive bacterial EVs.
Collapse
Affiliation(s)
| | | | | | - Xiaosong Qin
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Jianhua Liu
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| |
Collapse
|
15
|
Singleton D, Ibarz-Pavon A, Swarthout TD, Bonomali F, Cornick J, Kalizang'oma A, Ntiza N, Brown C, Chipatala R, Nyangulu W, Chirombo J, Kawalazira G, Chibowa H, Mwansambo C, Maleta KM, French N, Heyderman RS. Cross-sectional health centre and community-based evaluation of the impact of pneumococcal and malaria vaccination on antibiotic prescription and usage, febrile illness and antimicrobial resistance in young children in Malawi: the IVAR study protocol. BMJ Open 2023; 13:e069560. [PMID: 37173105 PMCID: PMC10186476 DOI: 10.1136/bmjopen-2022-069560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
INTRODUCTION Vaccination is a potentially critical component of efforts to arrest development and dissemination of antimicrobial resistance (AMR), though little is known about vaccination impact within low-income and middle-income countries. This study will evaluate the impact of vaccination on reducing carriage prevalence of resistant Streptococcus pneumoniae and extended spectrum beta-lactamase-producing Escherichia coli and Klebsiella species. We will leverage two large ongoing cluster-randomised vaccine evaluations in Malawi assessing; first, adding a booster dose to the 13-valent pneumococcal conjugate vaccine (PCV13) schedule, and second, introduction of the RTS,S/AS01 malaria vaccine. METHODS AND ANALYSIS Six cross-sectional surveys will be implemented within primary healthcare centres (n=3000 users of outpatient facilities per survey) and their local communities (n=700 healthy children per survey): three surveys in Blantyre district (PCV13 component) and three surveys in Mangochi district (RTS,S/AS01 component). We will evaluate antibiotic prescription practices and AMR carriage in children ≤3 years. For the PCV13 component, surveys will be conducted 9, 18 and 33 months following a 3+0 to 2+1 schedule change. For the RTS,S/AS01 component, surveys will be conducted 32, 44 and 56 months post-RTS,S/AS01 introduction. Six health centres in each study component will be randomly selected for study inclusion. Between intervention arms, the primary outcome will be the difference in penicillin non-susceptibility prevalence among S. pneumoniae nasopharyngeal carriage isolates in healthy children. The study is powered to detect an absolute change of 13 percentage points (ie, 35% vs 22% penicillin non-susceptibility). ETHICS AND DISSEMINATION This study has been approved by the Kamuzu University of Health Sciences (Ref: P01-21-3249), University College London (Ref: 18331/002) and University of Liverpool (Ref: 9908) Research Ethics Committees. Parental/caregiver verbal or written informed consent will be obtained prior to inclusion or recruitment in the health centre-based and community-based activities, respectively. Results will be disseminated via the Malawi Ministry of Health, WHO, peer-reviewed publications and conference presentations.
Collapse
Affiliation(s)
- David Singleton
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Ana Ibarz-Pavon
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Todd D Swarthout
- Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
- Research Department of Infection, Division of Infection and Immunity, UCL, London, UK
| | - Farouck Bonomali
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Jennifer Cornick
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Akuzike Kalizang'oma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
- Research Department of Infection, Division of Infection and Immunity, UCL, London, UK
| | - Noah Ntiza
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Comfort Brown
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Raphael Chipatala
- Department of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Wongani Nyangulu
- Department of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - James Chirombo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | | | | | | | - Neil French
- Department of Clinical Infection, Microbiology & Immunology, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, UCL, London, UK
| |
Collapse
|
16
|
Zhanel GG, Lynch JP, Adam HJ. Streptococcus pneumoniae serotyping and antimicrobial susceptibility: assessment for vaccine efficacy in Canada after the introduction of PCV13. J Antimicrob Chemother 2023; 78:i2-i7. [PMID: 37130585 DOI: 10.1093/jac/dkad064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
BACKGROUND Streptococcus pneumoniae continues to be an important bacterial pathogen associated with invasive (e.g. bacteraemia, meningitis) and non-invasive (e.g. community-acquired respiratory tract) infections worldwide. Surveillance studies conducted nationally and globally assist in determining trends over geographical areas and allow comparisons between countries. OBJECTIVES To characterize invasive isolates of S. pneumoniae in terms of their serotype, antimicrobial resistance, genotype and virulence and to use the serotype data to determine the level of coverage by different generations of pneumococcal vaccines. METHODS SAVE (Streptococcus pneumoniae Serotyping and Antimicrobial Susceptibility: Assessment for Vaccine Efficacy in Canada) is an ongoing, annual, national collaborative study between the Canadian Antimicrobial Resistance Alliance (CARE) and the National Microbiology Laboratory, focused on characterizing invasive isolates of S. pneumoniae obtained across Canada. Clinical isolates from normally sterile sites were forwarded by participating hospital public health laboratories to the Public Health Agency of Canada-National Microbiology Laboratory and CARE for centralized phenotypic and genotypic investigation. RESULTS The four articles in this Supplement provide a comprehensive examination of the changing patterns of antimicrobial resistance and MDR, serotype distribution, genotypic relatedness and virulence of invasive S. pneumoniae obtained across Canada over a 10 year period (2011-2020). CONCLUSIONS The data highlight the evolution of S. pneumoniae under pressure by vaccination and antimicrobial usage, as well as vaccine coverage, allowing both clinicians and researchers nationally and globally to view the current status of invasive pneumococcal infections in Canada.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745, Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave, Room 37-131 CHS, Los Angeles, CA 90095, USA
| | - Heather J Adam
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Room 543-745, Bannatyne Avenue, Winnipeg, Manitoba R3E 0J9, Canada
- Clinical Microbiology, Shared Health, MS673-820 Sherbrook Street, Winnipeg, Manitoba R3A 1R9, Canada
| |
Collapse
|
17
|
Vascular Endothelial Growth Factor A Contributes to Increased Mammalian Respiratory Epithelial Permeability Induced by Pasteurella multocida Infection. Microbiol Spectr 2023:e0455422. [PMID: 36916939 PMCID: PMC10101004 DOI: 10.1128/spectrum.04554-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Pasteurella multocida infection can cause significant zoonotic respiratory problems in both humans and animals, but little is known about the mechanisms used by P. multocida to invade and cross the mammalian respiratory barrier. In this study, we investigated the influence of P. multocida infection on the dysfunction of the respiratory epithelial barrier. In vivo tests in mouse infection models demonstrated that P. multocida infection significantly increased epithelial permeability and increased the expression of vascular endothelial growth factor A (VEGFA) and endothelial nitric oxide synthase (eNOS) in murine tracheae and lungs. In murine lung epithelial cell (MLE-12) models, P. multocida infection decreased the expression of tight junctions (ZO-1) and adherens junctions (β-catenin and E-cadherin) proteins but induced the activation of hypoxia-inducible factor 1α (HIF-1α) and VEGFA signaling. When the expression of HIF-1α is suppressed, the induction of VEGFA and ZO-1 expression by P. multocida infection is decreased. We also found that intervention of HIF-1α and VEGFA signaling affected infection outcomes caused by respiratory bacteria in mouse models. Most importantly, we demonstrate that P. multocida infection increases the permeability of human respiratory epithelial cells and that this process is associated with the activation of HIF-1α and VEGFA signaling and likely contributes to the pathogenesis of P. multocida infection in humans. IMPORTANCE The mammalian respiratory epithelium forms the first line of defense against infections with P. multocida, an important zoonotic respiratory pathogen. In this study, we found that P. multocida infection increased respiratory epithelial permeability and promoted the induction of the HIF-1α-VEGFA axis in both mouse and murine cell models. Similar findings were also demonstrated in human respiratory epithelial cells. The results from this study provide important knowledge about the pathogenesis of P. multocida causing infections in both animals and humans.
Collapse
|
18
|
Zhu N, Zhang F, Zhou H, Ma W, Mao H, Wang M, Ke Z, Wang J, Qi L. Mechanisms of Immune-Related Long Non-Coding RNAs in Spleens of Mice Vaccinated with 23-Valent Pneumococcal Polysaccharide Vaccine (PPV23). Vaccines (Basel) 2023; 11:vaccines11030529. [PMID: 36992112 DOI: 10.3390/vaccines11030529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/05/2023] [Accepted: 02/21/2023] [Indexed: 02/27/2023] Open
Abstract
The 23-valent pneumococcal vaccine (PPV23) is a classical common vaccine used to prevent pneumococcal disease. In past decades, it was thought that vaccination with this vaccine induces humoral immunity, thereby reducing the disease associated with infection with 23 common serotypes of Streptococcus pneumoniae (Sp). However, for this polysaccharide vaccine, the mechanism of immune response at the transcriptional level has not been fully studied. To identify the lncRNAs (long noncoding RNAs) and mRNAs in spleens related to immunity after PPV23 vaccination in mice, high-throughput RNA sequencing of spleens between a PPV23 treatment group and a control group were performed and evaluated in this study. The RNA-seq results identified a total of 41,321 mRNAs and 34,375 lncRNAs, including 55 significantly differentially expressed (DE) mRNAs and 389 DE lncRNAs (p < 0.05) between the two groups. GO and KEGG annotation analysis indicated that the target genes of DE lncRNAs and DE mRNAs were related to T-cell costimulation, positive regulation of alpha–beta T-cell differentiation, the CD86 biosynthetic process, and the PI3K-Akt signaling pathway, indicating that the polysaccharide component antigens of PPV23 might activate a cellular immune response during the PPV23 immunization process. Moreover, we found that Trim35 (tripartite motif containing 35), a target gene of lncRNA MSTRG.9127, was involved in regulating immunity. Our study provides a catalog of lncRNAs and mRNAs associated with immune cells’ proliferation and differentiation, and they deserve further study to deepen the understanding of the biological processes in the regulation of PPV23 during humoral immunity and cellular immunity.
Collapse
Affiliation(s)
- Nan Zhu
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Fan Zhang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Huan Zhou
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Wei Ma
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
- Aimei Vacin BioPharm (Zhejiang) Co., Ltd., Ningbo 315000, China
| | - Haiguang Mao
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Mengting Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Zhijian Ke
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Jinbo Wang
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| | - Lili Qi
- School of Biological and Chemical Engineering, NingboTech University, Qianhunan Road 1, Ningbo 315100, China
| |
Collapse
|
19
|
Xu W, Xu L, Jia W, Mao X, Liu S, Dong H, Zhang H, Zhang Y. Nanomaterials based on phase change materials for antibacterial application. Biomater Sci 2022; 10:6388-6398. [DOI: 10.1039/d2bm01220k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review presented the applications of PCM-based nanomaterials in bacterial infections. Firstly, the composition and biotoxicity were outlined. Secondly, various antibacterial tactics were highlighted. Lastly, the perspectives were discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Linfeng Xu
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Weilu Jia
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinyu Mao
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Shiwei Liu
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Hui Dong
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Haidong Zhang
- School of Medicine, Southeast University, Nanjing 210009, China
| | - Yewei Zhang
- Hepatopancreatobiliary Center, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| |
Collapse
|