1
|
Tu T, Peng Z, Zhang L, Yang J, Guo K, Tang X, Ye J, Zhang F, Huang A, Yu J, Huang C, Zhang H, Wang D, Peng J, Jiang Y. Neuroinflammation and hypoxia promote astrocyte phenotypic transformation and propel neurovascular dysfunction in brain arteriovenous malformation. J Neuroinflammation 2025; 22:124. [PMID: 40301964 PMCID: PMC12042495 DOI: 10.1186/s12974-025-03442-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/11/2025] [Indexed: 05/01/2025] Open
Abstract
Brain arteriovenous malformation (BAVM) is a complex cerebrovascular disease characterized by an abnormal high-flow vascular network, which increases the risk of hemorrhage, particularly in young individuals. Endothelial dysfunction has traditionally been considered the primary cause, while the contributions of the microenvironment and glial cells have not been fully explored. Astrocytes, as a key component of the central nervous system, play a crucial role in regulating neurovascular function, maintaining the integrity of the blood-brain barrier, and ensuring neural homeostasis. However, under the pathological conditions of BAVM, the phenotypic changes in astrocytes and their role in disease progression remain poorly understood. In our study, we emphasized the critical role of neuroinflammation and hypoxia in the progression of BAVM within its pathological microenvironment. Specifically, reactive astrocytes undergo phenotypic changes under these pathological conditions, significantly promoting vascular instability. Moreover, nitric oxide (NO) produced by BAVM endothelial cells activates signaling pathways that stabilize HIF-1α in astrocytes, initiating a "hypoxic" gene program under normoxic conditions. Furthermore, we discovered that COX-2, a direct target gene of HIF-1α, is upregulated in the BAVM microenvironment. These changes promoted endothelial dysfunction and vascular fragility, creating a vicious cycle that exacerbates hemorrhage risk. The application of COX-2 inhibitors significantly reduced neuroinflammation, stabilized blood vessels, and decreased hemorrhage risk. Our findings highlighted the crucial interaction between the BAVM microenvironment and astrocytes in driving disease progression, suggesting that COX-2 could be a potential therapeutic target for stabilizing BAVM vessels and reducing hemorrhagic events.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
- Department of Neurosurgery and Shandong Key Laboratory of Brain Health and Function Remodeling, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China
| | - Zhenghong Peng
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Lihan Zhang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jieru Yang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Kecheng Guo
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Xiaogang Tang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiasen Ye
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Fan Zhang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - An Huang
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Changren Huang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, China
| | - Donghai Wang
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China.
- Department of Neurosurgery and Shandong Key Laboratory of Brain Health and Function Remodeling, Qilu Hospital of Shandong University, Jinan, 250000, Shandong, China.
- Department of Neurosurgery, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou, China), Cheeloo Hospital of Shandong University, Jinan, Shandong, China.
| | - Jianhua Peng
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China.
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
| | - Yong Jiang
- Department of Neurosurgery, The Affiliated Hospital Southwest Medical University, No. 25 of Taiping Street, Luzhou, 646000, Sichuan, China.
- Laboratory of Neurological Diseases and Brain Function, the Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China.
- Institute of Brain Science, Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Knight SR, Abbasova L, Zeighami Y, Hansen JY, Martins D, Zelaya F, Dipasquale O, Liu T, Shin D, Bossong M, Azis M, Antoniades M, Howes OD, Bonoldi I, Egerton A, Allen P, O'Daly O, McGuire P, Modinos G. Transcriptional and Neurochemical Signatures of Cerebral Blood Flow Alterations in Individuals With Schizophrenia or at Clinical High Risk for Psychosis. Biol Psychiatry 2025:S0006-3223(25)00076-9. [PMID: 39923816 DOI: 10.1016/j.biopsych.2025.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND The brain integrates multiple scales of description, from the level of cells and molecules to large-scale networks and behavior. Understanding relationships across these scales may be fundamental to advancing understanding of brain function in health and disease. Recent neuroimaging research has shown that functional brain alterations that are associated with schizophrenia spectrum disorders (SSDs) are already present in young adults at clinical high risk for psychosis (CHR-P), but the cellular and molecular determinants of these alterations remain unclear. METHODS Here, we used regional cerebral blood flow (rCBF) data from 425 individuals (122 with an SSD compared with 116 healthy control participants [HCs] and 129 individuals at CHR-P compared with 58 HCs) and applied a novel pipeline to integrate brainwide rCBF case-control maps with publicly available transcriptomic data (17,205 gene maps) and neurotransmitter atlases (19 maps) from 1074 healthy volunteers. RESULTS We identified significant correlations between astrocyte, oligodendrocyte, oligodendrocyte precursor cell, and vascular leptomeningeal cell gene modules for both SSD and CHR-P rCBF phenotypes. Additionally, endothelial cell genes were correlated in SSD, and microglia in CHR-P. Receptor distribution significantly predicted case-control rCBF differences, with dominance analysis highlighting dopamine (D1, D2, dopamine transporter), acetylcholine (VAChT, M1), gamma-aminobutyric acid A (GABAA), and glutamate (NMDA) receptors as key predictors for SSD (R2adjusted = 0.58, false discovery rate [FDR]-corrected p < .05) and CHR-P (R2adjusted = 0.6, pFDR < .05) rCBF phenotypes. These associations were primarily localized in subcortical regions and implicate cell types involved in stress response and inflammation, alongside specific neuroreceptor systems, in shared and distinct rCBF phenotypes in psychosis. CONCLUSIONS Our findings underscore the value of integrating multiscale data as a promising hypothesis-generating approach toward decoding biological pathways involved in neuroimaging-based psychosis phenotypes, potentially guiding novel interventions.
Collapse
Affiliation(s)
- Samuel R Knight
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.
| | - Leyla Abbasova
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Yashar Zeighami
- Douglas Research Centre, Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Justine Y Hansen
- Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Olea Medical, La Ciotat, France
| | - Thomas Liu
- Centre for Functional MRI, University of California San Diego, San Diego, California
| | - David Shin
- Global MR Applications and Workflow, GE Healthcare, Menlo Park, California
| | - Matthijs Bossong
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Brain Center Rudoph Magnus, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Matilda Azis
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Mathilde Antoniades
- Center for AI and Data Science for Integrated Diagnostics and Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ilaria Bonoldi
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paul Allen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Philip McGuire
- Department of Psychiatry, Oxford University, Oxford, United Kingdom
| | - Gemma Modinos
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Medical Research Council Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
3
|
Suarez A, Fernandez L, Riera J. Characterizing astrocyte-mediated neurovascular coupling by combining optogenetics and biophysical modeling. J Cereb Blood Flow Metab 2025:271678X241311010. [PMID: 39791314 PMCID: PMC11719438 DOI: 10.1177/0271678x241311010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 12/09/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025]
Abstract
Vasoactive signaling from astrocytes is an important contributor to the neurovascular coupling (NVC), which aims at providing energy to neurons during brain activation by increasing blood perfusion in the surrounding vasculature. Pharmacological manipulations have been previously combined with experimental techniques (e.g., transgenic mice, uncaging, and multiphoton microscopy) and stimulation paradigms to isolate in vivo individual pathways of the astrocyte-mediated NVC. Unfortunately, these pathways are highly nonlinear and non-additive. To separate these pathways in a unified framework, we combine a comprehensive biophysical model of vasoactive signaling from astrocytes with a unique optogenetic stimulation method that selectively induces astrocytic Ca2+ signaling in a large population of astrocytes. We also use a sensitivity analysis and an optimization technique to estimate key model parameters. Optogenetically-induced Ca2+ signals in astrocytes cause a cerebral blood flow (CBF) response with two major components. Component-1 was rapid and smaller (ΔCBF∼13%, 18 seconds), while component-2 was slowest and highest (ΔCBF ∼18%, 45 seconds). The proposed biophysical model was adequate in reproducing component-2, which was validated with a pharmacological manipulation. Model's predictions were not in contradiction with previous studies. Finally, we discussed scenarios accounting for the existence of component-1, which once validated might be included in our model.
Collapse
Affiliation(s)
- Alejandro Suarez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Lazaro Fernandez
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| | - Jorge Riera
- Neuronal Mass Dynamics Lab, Department of Biomedical Engineering, Florida International, University, Miami, FL, USA
| |
Collapse
|
4
|
Barlattani T, Celenza G, Cavatassi A, Minutillo F, Socci V, Pinci C, Santini R, Pacitti F. Neuropsychiatric Manifestations of COVID-19 Disease and Post COVID Syndrome: The Role of N-acetylcysteine and Acetyl-L-carnitine. Curr Neuropharmacol 2025; 23:686-704. [PMID: 39506442 PMCID: PMC12163478 DOI: 10.2174/011570159x343115241030094848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/08/2024] [Accepted: 09/21/2024] [Indexed: 11/08/2024] Open
Abstract
COVID-19 is associated with neuropsychiatric symptoms, such as anosmia, anxiety, depression, stress-related reactions, and psychoses. The illness can cause persistent cognitive impairment and "brain fog", suggesting chronic brain involvement. Clinical entities of ongoing symptomatic COVID-19 and Post COVID Syndrome (PCS) mainly present neuropsychiatric symptoms such as dysgeusia, headache, fatigue, anxiety, depression, sleep disturbances, and post-traumatic stress disorder. The pathophysiology of COVID-19-related brain damage is unclear, but it is linked to various mechanisms such as inflammation, oxidative stress, immune dysregulation, impaired glutamate homeostasis, glial and glymphatic damage, and hippocampal degeneration. Noteworthy is that the metabotropic receptor mGluR2 was discovered as a mechanism of internalisation of SARS-CoV-2 in Central Nervous System (CNS) cells. N-acetylcysteine (NAC) and acetyl-L-carnitine (ALC) are two supplements that have already been found effective in treating psychiatric conditions. Furthermore, NAC showed evidence in relieving cognitive symptomatology in PCS, and ALC was found effective in treating depressive symptomatology of PCS. The overlapping effects on the glutamatergic system of ALC and NAC could help treat COVID-19 psychiatric symptoms and PCS, acting through different mechanisms on the xc-mGluR2 network, with potentially synergistic effects on chronic pain and neuro-astrocyte protection. This paper aims to summarise the current evidence on the potential therapeutic role of NAC and ALC, providing an overview of the underlying molecular mechanisms and pathophysiology. It proposes a pathophysiological model explaining the effectiveness of NAC and ALC in treating COVID-19-related neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Alessandro Cavatassi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Franco Minutillo
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Valentina Socci
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Carolina Pinci
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Santini
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
5
|
Wolff C, John D, Winkler U, Hochmuth L, Hirrlinger J, Köhler S. Insulin and leptin acutely modulate the energy metabolism of primary hypothalamic and cortical astrocytes. J Neurochem 2025; 169:e16211. [PMID: 39175305 PMCID: PMC11657920 DOI: 10.1111/jnc.16211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/06/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024]
Abstract
Astrocytes constitute a heterogeneous cell population within the brain, contributing crucially to brain homeostasis and playing an important role in overall brain function. Their function and metabolism are not only regulated by local signals, for example, from nearby neurons, but also by long-range signals such as hormones. Thus, two prominent hormones primarily known for regulating the energy balance of the whole organism, insulin, and leptin, have been reported to also impact astrocytes within the brain. In this study, we investigated the acute regulation of astrocytic metabolism by these hormones in cultured astrocytes prepared from the mouse cortex and hypothalamus, a pivotal region in the context of nutritional regulation. Utilizing genetically encoded, fluorescent nanosensors, the cytosolic concentrations of glucose, lactate, and ATP, along with glycolytic rate and the NADH/NAD+ redox state were measured. Under basal conditions, differences between the two populations of astrocytes were observed for glucose and lactate concentrations as well as the glycolytic rate. Additionally, astrocytic metabolism responded to insulin and leptin in both brain regions, with some unique characteristics for each cell population. Finally, both hormones influenced how cells responded to elevated extracellular levels of potassium ions, a common indicator of neuronal activity. In summary, our study provides evidence that insulin and leptin acutely regulate astrocytic metabolism within minutes. Additionally, while astrocytes from the hypothalamus and cortex share similarities in their metabolism, they also exhibit distinct properties, further underscoring the growing recognition of astrocyte heterogeneity.
Collapse
Affiliation(s)
- Christopher Wolff
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Dorit John
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Medical Department II—Division of Oncology, Gastroenterology, Hepatology and PneumologyUniversity of Leipzig Medical CenterLeipzigGermany
| | - Ulrike Winkler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Luise Hochmuth
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
| | - Johannes Hirrlinger
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Department of NeurogeneticsMax‐Planck‐Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susanne Köhler
- Faculty of MedicineCarl‐Ludwig‐Institute for Physiology, University of LeipzigLeipzigGermany
- Sächsisches Krankenhaus AltscherbitzClinic for NeurologySchkeuditzGermany
| |
Collapse
|
6
|
Sabetta Z, Krishna G, Curry-Koski T, Lopez M, Adelson PD, Thomas TC. Sex-dependent temporal changes in astrocyte-vessel interactions following diffuse traumatic brain injury in rats. Front Physiol 2024; 15:1469073. [PMID: 39387100 PMCID: PMC11461938 DOI: 10.3389/fphys.2024.1469073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Traumatic brain injury (TBI) is associated with diffuse axonal injury (DAI), a primary pathology linked to progressive neurodegeneration and neuroinflammation, including chronic astrogliosis, which influences long-term post-TBI recovery and morbidity. Sex-based differences in blood-brain barrier (BBB) permeability increases the risk of accelerated brain aging and early-onset neurodegeneration. However, few studies have evaluated chronic time course of astrocytic responses around cerebrovascular in the context of aging after TBI and sex dependence. We observed increased glial fibrillary acidic protein (GFAP)-labeled accessory processes branching near and connecting with GFAP-ensheathed cortical vessels, suggesting a critical nuance in astrocyte-vessel interactions after TBI. To quantify this observation, male and female Sprague Dawley rats (∼3 months old, n = 5-6/group) underwent either sham surgery or midline fluid percussion injury. Using immunohistochemical analysis, we quantified GFAP-labeled astrocyte primary and accessory processes that contacted GFAP-ensheathed vessels in the somatosensory barrel cortex at 7, 56, and 168 days post-injury (DPI). TBI significantly increased GFAP-positive primary processes at 7 DPI (P < 0.01) in both sexes. At 56 DPI, these vessel-process interactions remained significantly increased exclusively in males (P < 0.05). At 168 DPI, both sexes showed a significant reduction in vessel-process interactions compared to 7 DPI (P < 0.05); however, a modest but significant injury effect reemerged in females (P < 0.05). A similar sex-dependent pattern in the number of accessory processes provides novel evidence of long-term temporal changes in astrocyte-vessel interactions. TBI-induced changes in astrocyte-vessel interactions may indicate chronic BBB vulnerability and processes responsible for early onset vascular and neurodegenerative pathology.
Collapse
Affiliation(s)
- Zackary Sabetta
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- A.T. Still University Kirksville College of Osteopathic Medicine, Kirksville, MO, United States
| | - Gokul Krishna
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Translational Neurotrauma and Neurochemistry, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Tala Curry-Koski
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Translational Neurotrauma and Neurochemistry, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
| | - Mackenzie Lopez
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
| | - P. David Adelson
- West Virginia University School of Medicine, Rockefeller Neuroscience Institute, Morgantown, WV, United States
| | - Theresa Currier Thomas
- Department of Child Health, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, United States
- Translational Neurotrauma and Neurochemistry, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
- Phoenix VA Healthcare System, Phoenix, AZ, United States
| |
Collapse
|
7
|
Natsubori A, Kwon S, Honda Y, Kojima T, Karashima A, Masamoto K, Honda M. Serotonergic regulation of cortical neurovascular coupling and hemodynamics upon awakening from sleep in mice. J Cereb Blood Flow Metab 2024; 44:1591-1607. [PMID: 38477254 PMCID: PMC11418750 DOI: 10.1177/0271678x241238843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 02/08/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Neurovascular coupling (NVC) is the functional hyperemia of the brain responding to local neuronal activity. It is mediated by astrocytes and affected by subcortical ascending pathways in the cortex that convey information, such as sensory stimuli and the animal condition. Here, we investigate the influence of the raphe serotonergic system, a subcortical ascending arousal system in animals, on the modulation of cortical NVC and cerebral blood flow (CBF). Raphe serotonergic neurons were optogenically activated for 30 s, which immediately awakened the mice from non-rapid eye movement sleep. This caused a biphasic cortical hemodynamic change: a transient increase for a few seconds immediately after photostimulation onset, followed by a large progressive decrease during the stimulation period. Serotonergic neuron activation increased intracellular Ca2+ levels in cortical pyramidal neurons and astrocytes, demonstrating its effect on the NVC components. Pharmacological inhibition of cortical neuronal firing activity and astrocyte metabolic activity had small hypovolemic effects on serotonin-induced biphasic CBF changes, while blocking 5-HT1B receptors expressed primarily in cerebral vasculature attenuated the decreasing CBF phase. This suggests that serotonergic neuron activation leading to animal awakening could allow the NVC to exert a hyperemic function during a biphasic CBF response, with a predominant decrease in the cortex.
Collapse
Affiliation(s)
- Akiyo Natsubori
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Soojin Kwon
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Yoshiko Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takashi Kojima
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Akihiro Karashima
- Department of Electronics, Graduate School of Engineering, Tohoku Institute of Technology, Sendai, Japan
| | - Kazuto Masamoto
- Dept. Mechanical and Intelligent Systems Engineering, Univ. of Electro-Communications, Tokyo, Japan
| | - Makoto Honda
- Sleep Disorders Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
8
|
Yang X, Mann KK, Wu H, Ding J. scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration. Genome Biol 2024; 25:198. [PMID: 39075536 PMCID: PMC11285326 DOI: 10.1186/s13059-024-03338-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.
Collapse
Affiliation(s)
- Xiuhui Yang
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Koren K Mann
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada
| | - Hao Wu
- School of Software, Shandong University, 1500 Shunhua, Jinan, 250101, Shandong, China.
| | - Jun Ding
- Meakins-Christie Laboratories, Department of Medicine, McGill University Health Centre, Montreal, H4A 3J1, QC, Canada.
- Quantitative Life Sciences, Faculty of Medicine & Health Sciences, McGill University, Montreal, QC, H3G 1Y6, Canada.
- Mila-Quebec AI Institute, Montreal, QC, H2S 3H1, Canada.
| |
Collapse
|
9
|
L'Écuyer S, Charbonney E, Carrier FM, Rose CF. Implication of Hypotension in the Pathogenesis of Cognitive Impairment and Brain Injury in Chronic Liver Disease. Neurochem Res 2024; 49:1437-1449. [PMID: 36635437 DOI: 10.1007/s11064-022-03854-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023]
Abstract
The incidence of chronic liver disease is on the rise. One of the primary causes of hospital admissions for patients with cirrhosis is hepatic encephalopathy (HE), a debilitating neurological complication. HE is defined as a reversible syndrome, yet there is growing evidence stating that, under certain conditions, HE is associated with permanent neuronal injury and irreversibility. The pathophysiology of HE primarily implicates a strong role for hyperammonemia, but it is believed other pathogenic factors are involved. The fibrotic scarring of the liver during the progression of chronic liver disease (cirrhosis) consequently leads to increased hepatic resistance and circulatory anomalies characterized by portal hypertension, hyperdynamic circulatory state and systemic hypotension. The possible repercussions of these circulatory anomalies on brain perfusion, including impaired cerebral blood flow (CBF) autoregulation, could be implicated in the development of HE and/or permanent brain injury. Furthermore, hypotensive insults incurring during gastrointestinal bleed, infection, or liver transplantation may also trigger or exacerbate brain dysfunction and cell damage. This review will focus on the role of hypotension in the onset of HE as well as in the occurrence of neuronal cell loss in cirrhosis.
Collapse
Affiliation(s)
- Sydnée L'Écuyer
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada
| | - Emmanuel Charbonney
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
| | - François Martin Carrier
- Department of Medicine, Critical Care Division, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Department of Anesthesiology, Centre Hospitalier de l'Université de Montréal, Montréal, Canada
- Carrefour de l'innovation et santé des populations , Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, Canada
| | - Christopher F Rose
- Hepato-Neuro Laboratory, Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), 900, rue Saint-Denis - Pavillon R, R08.422 Montréal (Québec), Québec, H2X 0A9, Canada.
| |
Collapse
|
10
|
Buxton RB. Thermodynamic limitations on brain oxygen metabolism: physiological implications. J Physiol 2024; 602:683-712. [PMID: 38349000 DOI: 10.1113/jp284358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/03/2024] [Indexed: 02/20/2024] Open
Abstract
Recent thermodynamic modelling indicates that maintaining the brain tissue ratio of O2 to CO2 (abbreviated tissue O2 /CO2 ) is critical for preserving the entropy increase available from oxidative metabolism of glucose, with a fall of that available entropy leading to a reduction of the phosphorylation potential and impairment of brain energy metabolism. This provides a novel perspective for understanding physiological responses under different conditions in terms of preserving tissue O2 /CO2 . To enable estimation of tissue O2 /CO2 in the human brain, a detailed mathematical model of O2 and CO2 transport was developed, and applied to reported physiological responses to different challenges, asking: how well is tissue O2 /CO2 preserved? Reported experimental results for increased neural activity, hypercapnia and hypoxia due to high altitude are consistent with preserving tissue O2 /CO2 . The results highlight two physiological mechanisms that control tissue O2 /CO2 : cerebral blood flow, which modulates tissue O2 ; and ventilation rate, which modulates tissue CO2 . The hypoxia modelling focused on humans at high altitude, including acclimatized lowlanders and Tibetan and Andean adapted populations, with a primary finding that decreasing CO2 by increasing ventilation rate is more effective for preserving tissue O2 /CO2 than increasing blood haemoglobin content to maintain O2 delivery to tissue. This work focused on the function served by particular physiological responses, and the underlying mechanisms require further investigation. The modelling provides a new framework and perspective for understanding how blood flow and other physiological factors support energy metabolism in the brain under a wide range of conditions. KEY POINTS: Thermodynamic modelling indicates that preserving the O2 /CO2 ratio in brain tissue is critical for preserving the entropy change available from oxidative metabolism of glucose and the phosphorylation potential underlying energy metabolism. A detailed model of O2 and CO2 transport was developed to allow estimation of the tissue O2 /CO2 ratio in the human brain in different physiological states. Reported experimental results during hypoxia, hypercapnia and increased oxygen metabolic rate in response to increased neural activity are consistent with maintaining brain tissue O2 /CO2 ratio. The hypoxia modelling of high-altitude acclimatization and adaptation in humans demonstrates the critical role of reducing CO2 with increased ventilation for preserving tissue O2 /CO2 . Preservation of tissue O2 /CO2 provides a novel perspective for understanding the function of observed physiological responses under different conditions in terms of preserving brain energy metabolism, although the mechanisms underlying these functions are not well understood.
Collapse
Affiliation(s)
- Richard B Buxton
- Center for Functional Magnetic Resonance Imaging, Department of Radiology, University of California, San Diego, California, USA
| |
Collapse
|
11
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Bisht P, Rathore C, Rathee A, Kabra A. Astrocyte Activation and Drug Target in Pathophysiology of Multiple Sclerosis. Methods Mol Biol 2024; 2761:431-455. [PMID: 38427254 DOI: 10.1007/978-1-0716-3662-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Multiple sclerosis (MS) is a neurodegenerative disease, which is also referred to as an autoimmune disorder with chronic inflammatory demyelination affecting the core system that is the central nervous system (CNS). Demyelination is a pathological manifestation of MS. It is the destruction of myelin sheath, which is wrapped around the axons, and it results in the loss of synaptic connections and conduction along the axon is also compromised. Various attempts are made to understand MS and demyelination using various experimental models out of them. The most popular model is experimental autoimmune encephalomyelitis (EAE), in which autoimmunity against CNS components is induced in experimental animals by immunization with self-antigens derived from basic myelin protein. Astrocytes serve as a dual-edged sword both in demyelination and remyelination. Various drug targets have also been discussed that can be further explored for the treatment of MS. An extensive literature research was done from various online scholarly and research articles available on PubMed, Google Scholar, and Elsevier. Keywords used for these articles were astrocyte, demyelination, astrogliosis, and reactive astrocytes. This includes articles being the most relevant information to the area compiled to compose a current review.
Collapse
Affiliation(s)
- Preeti Bisht
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Ankit Rathee
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| | - Atul Kabra
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, India
| |
Collapse
|
13
|
Barlattani T, Grandinetti P, Di Cintio A, Montemagno A, Testa R, D’Amelio C, Olivieri L, Tomasetti C, Rossi A, Pacitti F, De Berardis D. Glymphatic System and Psychiatric Disorders: A Rapid Comprehensive Scoping Review. Curr Neuropharmacol 2024; 22:2016-2033. [PMID: 39234773 PMCID: PMC11333792 DOI: 10.2174/1570159x22666240130091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/22/2023] [Accepted: 08/25/2023] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Since discovering the glymphatic system, there has been a looming interest in exploring its relationship with psychiatric disorders. Recently, increasing evidence suggests an involvement of the glymphatic system in the pathophysiology of psychiatric disorders. However, clear data are still lacking. In this context, this rapid comprehensive PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses extension for Scoping Reviews) scoping review aims to identify and analyze current evidence about the relation between the glymphatic system and psychiatric disorders. METHODS We conducted a comprehensive review of the literature and then proceeded to discuss the findings narratively. Tables were then constructed and articles were sorted according to authors, year, title, location of study, sample size, psychiatric disorder, the aim of the study, principal findings, implications. RESULTS Twenty papers were identified as eligible, among which 2 articles on Schizophrenia, 1 on Autism Spectrum Disorders, 2 on Depression, 1 on Depression and Trauma-related Disorders, 1 on Depression and Anxiety, 2 on Anxiety and Sleep Disorders, 8 on Sleep Disorders, 2 on Alcohol use disorder and 1 on Cocaine Use Disorder. CONCLUSION This review suggests a correlation between the glymphatic system and several psychiatric disorders: Schizophrenia, Depression, Anxiety Disorders, Sleep Disorders, Alcohol Use Disorder, Cocaine Use Disorder, Trauma-Related Disorders, and Autism Spectrum Disorders. Impairment of the glymphatic system could play a role in Trauma-Related Disorders, Alcohol Use Disorders, Cocaine Use Disorders, Sleep Disorders, Depression, and Autism Spectrum Disorders. It is important to implement research on this topic and adopt standardized markers and radio diagnostic tools.
Collapse
Affiliation(s)
- Tommaso Barlattani
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Paolo Grandinetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alexsander Di Cintio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Alessio Montemagno
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Roberta Testa
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Chiara D’Amelio
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Luigi Olivieri
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Carmine Tomasetti
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| | - Alessandro Rossi
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Francesca Pacitti
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L’Aquila, Via Vetoio, Coppito, 67100 L’Aquila, Italy
| | - Domenico De Berardis
- National Health Service, Department of Mental Health, Psychiatric Service of Diagnosis and Treatment, Hospital G. Mazzini, ASL 4 Teramo, Italy
| |
Collapse
|
14
|
Kareem S, Jacob A, Mathew J, Quigg RJ, Alexander JJ. Complement: Functions, location and implications. Immunology 2023; 170:180-192. [PMID: 37222083 PMCID: PMC10524990 DOI: 10.1111/imm.13663] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
The complement system, an arm of the innate immune system plays a critical role in both health and disease. The complement system is highly complex with dual possibilities, helping or hurting the host, depending on the location and local microenvironment. The traditionally known functions of complement include surveillance, pathogen recognition, immune complex trafficking, processing and pathogen elimination. The noncanonical functions of the complement system include their roles in development, differentiation, local homeostasis and other cellular functions. Complement proteins are present in both, the plasma and on the membranes. Complement activation occurs both extra- and intracellularly, which leads to considerable pleiotropy in their activity. In order to design more desirable and effective therapies, it is important to understand the different functions of complement, and its location-based and tissue-specific responses. This manuscript will provide a brief overview into the complex nature of the complement cascade, outlining some of their complement-independent functions, their effects at different locale, and their implication in disease settings.
Collapse
Affiliation(s)
- Samer Kareem
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Alexander Jacob
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - John Mathew
- Department of Rheumatology, Christian Medical College, Vellore, India
| | - Richard J Quigg
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| | - Jessy J Alexander
- Department of Medicine, University at Buffalo, Buffalo, New York, United States
| |
Collapse
|
15
|
Zhou R, Li J, Wang R, Chen Z, Zhou F. The neurovascular unit in healthy and injured spinal cord. J Cereb Blood Flow Metab 2023; 43:1437-1455. [PMID: 37190756 PMCID: PMC10414016 DOI: 10.1177/0271678x231172008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/09/2023] [Accepted: 03/24/2023] [Indexed: 05/17/2023]
Abstract
The neurovascular unit (NVU) reflects the close temporal and spatial link between neurons and blood vessels. However, the understanding of the NVU in the spinal cord is far from clear and largely based on generalized knowledge obtained from the brain. Herein, we review the present knowledge of the NVU and highlight candidate approaches to investigate the NVU, particularly focusing on the spinal cord. Several unique features maintain the highly regulated microenvironment in the NVU. Autoregulation and neurovascular coupling ensure regional blood flow meets the metabolic demand according to the blood supply or local neural activation. The blood-central nervous system barrier partitions the circulating blood from neural parenchyma and facilitates the selective exchange of substances. Furthermore, we discuss spinal cord injury (SCI) as a common injury from the perspective of NVU dysfunction. Hopefully, this review will help expand the understanding of the NVU in the spinal cord and inspire new insights into SCI.
Collapse
Affiliation(s)
- Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Junzhao Li
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ruideng Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Zhengyang Chen
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| |
Collapse
|
16
|
Kumar BS, O'Herron PJ, Kara P, Chakravarthy VS. The development of bi-directionally coupled self-organizing neurovascular networks captures orientation-selective neural and hemodynamic cortical responses. Eur J Neurosci 2023; 57:1929-1946. [PMID: 37070156 DOI: 10.1111/ejn.15993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Networks of neurons are the primary substrate of information processing. Conversely, blood vessels in the brain are generally viewed to have physiological functions unrelated to information processing, such as the timely supply of oxygen, and other nutrients to the neural tissue. However, recent studies have shown that cerebral microvessels, like neurons, exhibit tuned responses to sensory stimuli. Tuned neural responses to sensory stimuli may be enhanced with experience-dependent Hebbian plasticity and other forms of learning. Hence, it is possible that the microvascular network might also be subject to some form of competitive learning rules during early postnatal development such that its fine-scale structure becomes optimized for metabolic delivery to a given neural micro-architecture. To explore the possibility of adaptive lateral interactions and tuned responses in cerebral microvessels, we modelled the cortical neurovascular network by interconnecting two laterally connected self-organizing networks. The afferent and lateral connections of the neural and vascular networks were defined by trainable weights. By varying the topology of lateral connectivity in the vascular network layer, we observed that the partial correspondence of feature selectivity between neural and hemodynamic responses could be explained by lateral coupling across local blood vessels such that the central domain receives an excitatory drive of more blood flow and a distal surrounding region where blood flow is reduced. Critically, our simulations suggest a new role for feedback from the vascular to the neural network because the radius of vascular perfusion determines whether the cortical neural map develops into a clustered vs. salt-and-pepper organization.
Collapse
Affiliation(s)
- Bhadra S Kumar
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India
| | | | - Prakash Kara
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - V Srinivasa Chakravarthy
- Department of Biotechnology, Indian Institute of Technology Madras (IITM), Chennai, India
- Center for Complex Systems and Dynamics, Indian Institute of Technology Madras (IITM), Chennai, India
| |
Collapse
|
17
|
Eisenmenger LB, Peret A, Famakin BM, Spahic A, Roberts GS, Bockholt JH, Johnson KM, Paulsen JS. Vascular contributions to Alzheimer's disease. Transl Res 2023; 254:41-53. [PMID: 36529160 PMCID: PMC10481451 DOI: 10.1016/j.trsl.2022.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and is characterized by progressive neurodegeneration and cognitive decline. Understanding the pathophysiology underlying AD is paramount for the management of individuals at risk of and suffering from AD. The vascular hypothesis stipulates a relationship between cardiovascular disease and AD-related changes although the nature of this relationship remains unknown. In this review, we discuss several potential pathological pathways of vascular involvement in AD that have been described including dysregulation of neurovascular coupling, disruption of the blood brain barrier, and reduced clearance of metabolite waste such as beta-amyloid, a toxic peptide considered the hallmark of AD. We will also discuss the two-hit hypothesis which proposes a 2-step positive feedback loop in which microvascular insults precede the accumulation of Aß and are thought to be at the origin of the disease development. At neuroimaging, signs of vascular dysfunction such as chronic cerebral hypoperfusion have been demonstrated, appearing early in AD, even before cognitive decline and alteration of traditional biomarkers. Cerebral small vessel disease such as cerebral amyloid angiopathy, characterized by the aggregation of Aß in the vessel wall, is highly prevalent in vascular dementia and AD patients. Current data is unclear whether cardiovascular disease causes, precipitates, amplifies, precedes, or simply coincides with AD. Targeted imaging tools to quantitatively evaluate the intracranial vasculature and longitudinal studies in individuals at risk for or in the early stages of the AD continuum could be critical in disentangling this complex relationship between vascular disease and AD.
Collapse
Affiliation(s)
- Laura B Eisenmenger
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Anthony Peret
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Bolanle M Famakin
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Alma Spahic
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Grant S Roberts
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jeremy H Bockholt
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia
| | - Kevin M Johnson
- Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jane S Paulsen
- Department of Neurology, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
18
|
Purnell BS, Alves M, Boison D. Astrocyte-neuron circuits in epilepsy. Neurobiol Dis 2023; 179:106058. [PMID: 36868484 DOI: 10.1016/j.nbd.2023.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The epilepsies are a diverse spectrum of disease states characterized by spontaneous seizures and associated comorbidities. Neuron-focused perspectives have yielded an array of widely used anti-seizure medications and are able to explain some, but not all, of the imbalance of excitation and inhibition which manifests itself as spontaneous seizures. Furthermore, the rate of pharmacoresistant epilepsy remains high despite the regular approval of novel anti-seizure medications. Gaining a more complete understanding of the processes that turn a healthy brain into an epileptic brain (epileptogenesis) as well as the processes which generate individual seizures (ictogenesis) may necessitate broadening our focus to other cell types. As will be detailed in this review, astrocytes augment neuronal activity at the level of individual neurons in the form of gliotransmission and the tripartite synapse. Under normal conditions, astrocytes are essential to the maintenance of blood-brain barrier integrity and remediation of inflammation and oxidative stress, but in epilepsy these functions are impaired. Epilepsy results in disruptions in the way astrocytes relate to each other by gap junctions which has important implications for ion and water homeostasis. In their activated state, astrocytes contribute to imbalances in neuronal excitability due to their decreased capacity to take up and metabolize glutamate and an increased capacity to metabolize adenosine. Furthermore, due to their increased adenosine metabolism, activated astrocytes may contribute to DNA hypermethylation and other epigenetic changes that underly epileptogenesis. Lastly, we will explore the potential explanatory power of these changes in astrocyte function in detail in the specific context of the comorbid occurrence of epilepsy and Alzheimer's disease and the disruption in sleep-wake regulation associated with both conditions.
Collapse
Affiliation(s)
- Benton S Purnell
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America
| | - Mariana Alves
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02 YN77, Ireland
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States of America; Brain Health Institute, Rutgers University, Piscataway, NJ, United States of America.
| |
Collapse
|
19
|
Kalinichenko SG, Pushchin II, Matveeva NY. Neurotoxic and cytoprotective mechanisms in the ischemic neocortex. J Chem Neuroanat 2023; 128:102230. [PMID: 36603664 DOI: 10.1016/j.jchemneu.2022.102230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Neuronal damage in ischemic stroke occurs due to permanent imbalance between the metabolic needs of the brain and the ability of the blood-vascular system to maintain glucose delivery and adequate gas exchange. Oxidative stress and excitotoxicity trigger complex processes of neuroinflammation, necrosis, and apoptosis of both neurons and glial cells. This review summarizes data on the structural and chemical changes in the neocortex and main cytoprotective effects induced by focal ischemic stroke. We focus on the expression of neurotrophins (NT) and molecular and cellular changes in neurovascular units in ischemic brain. We also discuss how these factors affect the apoptosis of cortical cells. Ischemic damage involves close interaction of a wide range of signaling molecules, each acting as an efficient marker of cell state in both the ischemic core and penumbra. NTs play the main regulatory role in brain tissue recovery after ischemic injury. Heterogeneous distribution of the BDNF, NT-3, and GDNF immunoreactivity is concordant with the selective response of different types of cortical neurons and glia to ischemic injury and allows mapping the position of viable neurons. Astrocytes are the central link in neurovascular coupling in ischemic brain by providing other cells with a wide range of vasotropic factors. The NT expression coincides with the distribution of reactive astrocytes, marking the boundaries of the penumbra. The development of ischemic stroke is accompanied by a dramatic change in the distribution of GDNF reactivity. In early ischemic period, it is mainly observed in cortical neurons, while in late one, the bulk of GDNF-positive cells are various types of glia, in particular, astrocytes. The proportion of GDNF-positive astrocytes increases gradually throughout the ischemic period. Some factors that exert cytoprotective effects in early ischemic period may display neurotoxic and pro-apoptotic effects later on. The number of apoptotic cells in the ischemic brain tissue correlates with the BDNF levels, corroborating its protective effects. Cytoprotection and neuroplasticity are two lines of brain protection and recovery after ischemic stroke. NTs can be considered an important link in these processes. To develop efficient pharmacological therapy for ischemic brain injury, we have to deepen our understanding of neurochemical adaptation of brain tissue to acute stroke.
Collapse
Affiliation(s)
- Sergei G Kalinichenko
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| | - Igor I Pushchin
- Laboratory of Physiology, A.V. Zhirmusky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia.
| | - Natalya Yu Matveeva
- Department of Histology, Cytology, and Embryology, Pacific State Medical University, Vladivostok 690950, Russia
| |
Collapse
|
20
|
Hazra R, Novelli EM, Hu X. Astrocytic mitochondrial frataxin-A promising target for ischemic brain injury. CNS Neurosci Ther 2023; 29:783-788. [PMID: 36550598 PMCID: PMC9928550 DOI: 10.1111/cns.14068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In the ischemic brain, hypoxia leads to mitochondrial dysfunction, insufficient energy production, and astrocyte activation. Yet, most studies investigating mitochondrial dysfunction in cerebral ischemia have focused exclusively on neurons. This review will highlight the importance of the morphological, molecular, and functional heterogeneity of astrocytes in their role in brain injuries and explore how activated astrocytes exhibit calcium imbalance, reactive oxygen species overproduction, and apoptosis. In addition, special focus will be given to the role of the mitochondrial protein frataxin in activated astrocytes during ischemia and its putative role in the pharmacological management of cerebral ischemia.
Collapse
Affiliation(s)
- Rimi Hazra
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Enrico M Novelli
- Pittsburgh Heart, Lung, and Blood Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Center of Cerebrovascular Disease Research, Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
21
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
22
|
Nippert AR, Chiang PP, Del Franco AP, Newman EA. Astrocyte regulation of cerebral blood flow during hypoglycemia. J Cereb Blood Flow Metab 2022; 42:1534-1546. [PMID: 35296178 PMCID: PMC9274859 DOI: 10.1177/0271678x221089091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/07/2022] [Accepted: 02/28/2022] [Indexed: 12/13/2022]
Abstract
Hypoglycemia triggers increases in cerebral blood flow (CBF), augmenting glucose supply to the brain. We have tested whether astrocytes, which can regulate vessel tone, contribute to this CBF increase. We hypothesized that hypoglycemia-induced adenosine signaling acts to increase astrocyte Ca2+ activity, which then causes the release of prostaglandins (PGs) and epoxyeicosatrienoic acids (EETs), leading to the dilation of brain arterioles and blood flow increases. We used an awake mouse model to investigate the effects of insulin-induced hypoglycemia on arterioles and astrocytes in the somatosensory cortex. During insulin-induced hypoglycemia, penetrating arterioles dilated and astrocyte Ca2+ signaling increased when blood glucose dropped below a threshold of ∼50 mg/dL. Application of the A2A adenosine receptor antagonist ZM-241385 eliminated hypoglycemia-evoked astrocyte Ca2+ increases and reduced arteriole dilations by 44% (p < 0.05). SC-560 and miconazole, which block the production of the astrocyte vasodilators PGs and EETs respectively, reduced arteriole dilations in response to hypoglycemia by 89% (p < 0.001) and 76% (p < 0.001). Hypoglycemia-induced arteriole dilations were decreased by 65% (p < 0.001) in IP3R2 knockout mice, which have reduced astrocyte Ca2+ signaling compared to wild-type. These results support the hypothesis that astrocytes contribute to hypoglycemia-induced increases in CBF by releasing vasodilators in a Ca2+-dependent manner.
Collapse
Affiliation(s)
- Amy R Nippert
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Pei-Pei Chiang
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | | - Eric A Newman
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Abstract
Mice with insulin receptor (IR)-deficient astrocytes (GFAP-IR knockout [KO] mice) show blunted responses to insulin and reduced brain glucose uptake, whereas IR-deficient astrocytes show disturbed mitochondrial responses to glucose. While exploring the functional impact of disturbed mitochondrial function in astrocytes, we observed that GFAP-IR KO mice show uncoupling of brain blood flow with glucose uptake. Since IR-deficient astrocytes show higher levels of reactive oxidant species (ROS), this leads to stimulation of hypoxia-inducible factor-1α and, consequently, of the vascular endothelial growth factor angiogenic pathway. Indeed, GFAP-IR KO mice show disturbed brain vascularity and blood flow that is normalized by treatment with the antioxidant N-acetylcysteine (NAC). NAC ameliorated high ROS levels, normalized angiogenic signaling and mitochondrial function in IR-deficient astrocytes, and normalized neurovascular coupling in GFAP-IR KO mice. Our results indicate that by modulating glucose uptake and angiogenesis, insulin receptors in astrocytes participate in neurovascular coupling.
Collapse
|
24
|
Chen JJ, Uthayakumar B, Hyder F. Mapping oxidative metabolism in the human brain with calibrated fMRI in health and disease. J Cereb Blood Flow Metab 2022; 42:1139-1162. [PMID: 35296177 PMCID: PMC9207484 DOI: 10.1177/0271678x221077338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Conventional functional MRI (fMRI) with blood-oxygenation level dependent (BOLD) contrast is an important tool for mapping human brain activity non-invasively. Recent interest in quantitative fMRI has renewed the importance of oxidative neuroenergetics as reflected by cerebral metabolic rate of oxygen consumption (CMRO2) to support brain function. Dynamic CMRO2 mapping by calibrated fMRI require multi-modal measurements of BOLD signal along with cerebral blood flow (CBF) and/or volume (CBV). In human subjects this "calibration" is typically performed using a gas mixture containing small amounts of carbon dioxide and/or oxygen-enriched medical air, which are thought to produce changes in CBF (and CBV) and BOLD signal with minimal or no CMRO2 changes. However non-human studies have demonstrated that the "calibration" can also be achieved without gases, revealing good agreement between CMRO2 changes and underlying neuronal activity (e.g., multi-unit activity and local field potential). Given the simpler set-up of gas-free calibrated fMRI, there is evidence of recent clinical applications for this less intrusive direction. This up-to-date review emphasizes technological advances for such translational gas-free calibrated fMRI experiments, also covering historical progression of the calibrated fMRI field that is impacting neurological and neurodegenerative investigations of the human brain.
Collapse
Affiliation(s)
- J Jean Chen
- Medical Biophysics, University of Toronto, Toronto, Canada.,Rotman Research Institute, Baycrest, Toronto, Canada
| | - Biranavan Uthayakumar
- Medical Biophysics, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Fahmeed Hyder
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, Connecticut, USA.,Department of Radiology, Yale University, New Haven, Connecticut, USA.,Quantitative Neuroscience with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, Connecticut, USA.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
25
|
Fernández-Albarral JA, de Hoz R, Matamoros JA, Chen L, López-Cuenca I, Salobrar-García E, Sánchez-Puebla L, Ramírez JM, Triviño A, Salazar JJ, Ramírez AI. Retinal Changes in Astrocytes and Müller Glia in a Mouse Model of Laser-Induced Glaucoma: A Time-Course Study. Biomedicines 2022; 10:biomedicines10050939. [PMID: 35625676 PMCID: PMC9138377 DOI: 10.3390/biomedicines10050939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/15/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022] Open
Abstract
Macroglia (astrocytes and Müller glia) may play an important role in the pathogenesis of glaucoma. In a glaucoma mouse model, we studied the effects of unilateral laser-induced ocular hypertension (OHT) on macroglia in OHT and contralateral eyes at different time points after laser treatment (1, 3, 5, 8 and 15 days) using anti-GFAP and anti-MHC-II, analyzing the morphological changes, GFAP-labelled retinal area (GFAP-PA), and GFAP and MHC-II immunoreactivity intensities ((GFAP-IRI and MHC-II-IRI)). In OHT and contralateral eyes, with respect to naïve eyes, at all the time points, we found the following: (i) astrocytes with thicker somas and more secondary processes, mainly in the intermediate (IR) and peripheral retina (PR); (ii) astrocytes with low GFAP-IRI and only primary processes near the optic disc (OD); (iii) an increase in total GFAP-RA, which was higher at 3 and 5 days, except for at 15 days; (iv) an increase in GFAP-IRI in the IR and especially in the PR; (v) a decrease in GFAP-IRI near the OD, especially at 1 and 5 days; (vi) a significant increase in MHC-II-IRI, which was higher in the IR and PR; and (vii) the Müller glia were GFAP+ and MHC-II+. In conclusion, in this model of glaucoma, there is a bilateral macroglial activation maintained over time involved in the inflammatory glaucoma process.
Collapse
Affiliation(s)
- Jose A. Fernández-Albarral
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Rosa de Hoz
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - José A. Matamoros
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Lejing Chen
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Inés López-Cuenca
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - Elena Salobrar-García
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
| | - José M. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Medicina, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alberto Triviño
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Medicina, Oftalmología y ORL, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Juan J. Salazar
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Correspondence: (J.J.S.); (A.I.R.)
| | - Ana I. Ramírez
- Instituto de Investigaciones Oftalmológicas Ramón Castroviejo, Grupo UCM 920105, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (J.A.F.-A.); (R.d.H.); (J.A.M.); (L.C.); (I.L.-C.); (E.S.-G.); (L.S.-P.); (J.M.R.); (A.T.)
- Departamento de Inmunología, Facultad de Óptica y Optometría, Oftalmología y ORL, Universidad Complutense de Madrid, 28037 Madrid, Spain
- Correspondence: (J.J.S.); (A.I.R.)
| |
Collapse
|
26
|
Kunkl M, Amormino C, Tedeschi V, Fiorillo MT, Tuosto L. Astrocytes and Inflammatory T Helper Cells: A Dangerous Liaison in Multiple Sclerosis. Front Immunol 2022; 13:824411. [PMID: 35211120 PMCID: PMC8860818 DOI: 10.3389/fimmu.2022.824411] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022] Open
Abstract
Multiple Sclerosis (MS) is a neurodegenerative autoimmune disorder of the central nervous system (CNS) characterized by the recruitment of self-reactive T lymphocytes, mainly inflammatory T helper (Th) cell subsets. Once recruited within the CNS, inflammatory Th cells produce several inflammatory cytokines and chemokines that activate resident glial cells, thus contributing to the breakdown of blood-brain barrier (BBB), demyelination and axonal loss. Astrocytes are recognized as key players of MS immunopathology, which respond to Th cell-defining cytokines by acquiring a reactive phenotype that amplify neuroinflammation into the CNS and contribute to MS progression. In this review, we summarize current knowledge of the astrocytic changes and behaviour in both MS and experimental autoimmune encephalomyelitis (EAE), and the contribution of pathogenic Th1, Th17 and Th1-like Th17 cell subsets, and CD8+ T cells to the morphological and functional modifications occurring in astrocytes and their pathological outcomes.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
27
|
Jackson JG, Krizman E, Takano H, Lee M, Choi GH, Putt ME, Robinson MB. Activation of Glutamate Transport Increases Arteriole Diameter in v ivo: Implications for Neurovascular Coupling. Front Cell Neurosci 2022; 16:831061. [PMID: 35308116 PMCID: PMC8930833 DOI: 10.3389/fncel.2022.831061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022] Open
Abstract
In order to meet the energetic demands of cell-to-cell signaling, increases in local neuronal signaling are matched by a coordinated increase in local blood flow, termed neurovascular coupling. Multiple different signals from neurons, astrocytes, and pericytes contribute to this control of blood flow. Previously, several groups demonstrated that inhibition/ablation of glutamate transporters attenuates the neurovascular response. However, it was not determined if glutamate transporter activation was sufficient to increase blood flow. Here, we used multiphoton imaging to monitor the diameter of fluorescently labeled cortical arterioles in anesthetized C57/B6J mice. We delivered vehicle, glutamate transporter substrates, or a combination of a glutamate transporter substrate with various pharmacologic agents via a glass micropipette while simultaneously visualizing changes in arteriole diameter. We developed a novel image analysis method to automate the measurement of arteriole diameter in these time-lapse analyses. Using this workflow, we first conducted pilot experiments in which we focally applied L-glutamate, D-aspartate, or L-threo-hydroxyaspartate (L-THA) and measured arteriole responses as proof of concept. We subsequently applied the selective glutamate transport substrate L-THA (applied at concentrations that do not activate glutamate receptors). We found that L-THA evoked a significantly larger dilation than that observed with focal saline application. This response was blocked by co-application of the potent glutamate transport inhibitor, L-(2S,3S)-3-[3-[4-(trifluoromethyl)-benzoylamino]benzyloxy]-aspartate (TFB-TBOA). Conversely, we were unable to demonstrate a reduction of this effect through co-application of a cocktail of glutamate and GABA receptor antagonists. These studies provide the first direct evidence that activation of glutamate transport is sufficient to increase arteriole diameter. We explored potential downstream mechanisms mediating this transporter-mediated dilation by using a Ca2+ chelator or inhibitors of reversed-mode Na+/Ca2+ exchange, nitric oxide synthetase, or cyclo-oxygenase. The estimated effects and confidence intervals suggested some form of inhibition for a number of these inhibitors. Limitations to our study design prevented definitive conclusions with respect to these downstream inhibitors; these limitations are discussed along with possible next steps. Understanding the mechanisms that control blood flow are important because changes in blood flow/energy supply are implicated in several neurodegenerative disorders and are used as a surrogate measure of neuronal activity in widely used techniques such as functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Joshua G. Jackson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Elizabeth Krizman
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, United States
| | - Hajime Takano
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Meredith Lee
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Grace H. Choi
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Mary E. Putt
- Department of Biostatistics, Epidemiology & Informatics, University of Pennsylvania, Philadelphia, PA, United States
| | - Michael B. Robinson
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
28
|
Li Y, Lin M, Lin P, Xia N, Li X, Lin L, Yang Y. Maternal High-Fat Diet Alters the Characteristics of Astrocytes and Worsens the Outcome of Stroke in Rat Offspring, Which Improves After FGF21 Administration. Front Cell Dev Biol 2022; 9:731698. [PMID: 35096806 PMCID: PMC8793739 DOI: 10.3389/fcell.2021.731698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/13/2021] [Indexed: 12/01/2022] Open
Abstract
Background: Maternal high-fat diet (MHFD) has been shown to increase susceptibility to neurological disease in later offspring, but the underlying mechanism is not clear. Fibroblast growth factor 21 (FGF21) has been reported to have a neuroprotective effect in stroke, but its mechanism of action remains unknown. In this study, we investigated the mechanism of the effect of MHFD on stroke in offspring in adulthood and the mechanism by which FGF21 acts on stroke and restores neurological function. Methods: We performed transcriptome sequencing analysis on D21 neonatal rats. Bodyweight and blood indicators were recorded in the adult rats after MHFD. FGF21 was administered 7 h after photochemical modeling twice a day for three consecutive days. Results: We found numerous mRNA changes between the MHFD group and a normal maternal normal diet (MND) group at D21, including genes related to astrocyte and PI3K/Akt pathways. The body weight, blood glucose, and triglycerides of the MHFD offspring were higher, ischemic lesions were larger, the number of activated astrocytes was lower, and the neurological function score was worse than that of the MND group. After FGF21 administration, WB and qPCR analyses showed that astrocytes and the PI3K/Akt pathway were upregulated, while NF-κB and inflammatory cytokines expression were inhibited in stroke and peri-stroke regions. Conclusion: Taken together, we conclude that MHFD alters the characteristics of astrocytes and other transcriptome changes in their offspring, leading to a worse prognosis of stroke, while FGF21 plays a neuroprotective role by inhibiting NF-κB and inflammatory factors and activating the PI3K/Akt pathway and activating more astrocytes in the MND group than the MHFD group.
Collapse
Affiliation(s)
- Yanxuan Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Mengqi Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Nengzhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Li Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
29
|
Kuo YM, Lee YH. Epoxyeicosatrienoic acids and soluble epoxide hydrolase in physiology and diseases of the central nervous system. CHINESE J PHYSIOL 2022; 65:1-11. [PMID: 35229747 DOI: 10.4103/cjp.cjp_80_21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Epoxyeicosatrienoic acids (EETs) are fatty acid signaling molecules synthesized by cytochrome P450 epoxygenases from arachidonic acid. The biological activity of EETs is terminated when being metabolized by soluble epoxide hydrolase (sEH), a process that serves as a key regulator of tissue EETs levels. EETs act through several signaling pathways to mediate various beneficial effects, including anti-inflammation, anti-apoptosis, and anti-oxidation with relieve of endoplasmic reticulum stress, thereby sEH has become a potential therapeutic target in cardiovascular disease and cancer therapy. Enzymes for EET biosynthesis and metabolism are both widely detected in both neuron and glial cells in the central nervous system (CNS). Recent studies discovered that astrocyte-derived EETs not only mediate neurovascular coupling and neuronal excitability by maintaining glutamate homeostasis but also glia-dependent neuroprotection. Genetic ablation as well as pharmacologic inhibition of sEH has greatly helped to elucidate the physiologic actions of EETs, and maintaining or elevating brain EETs level has been demonstrated beneficial effects in CNS disease models. Here, we review the literature regarding the studies on the bioactivity of EETs and their metabolic enzyme sEH with special attention paid to their action mechanisms in the CNS, including their modulation of neuronal activity, attenuation of neuroinflammation, regulation of cerebral blood flow, and improvement of neuronal and glial cells survival. We further reviewed the recent advance on the potential application of sEH inhibition for treating cerebrovascular disease, epilepsy, and pain disorder.
Collapse
Affiliation(s)
- Yi-Min Kuo
- Department of Anesthesiology, Taipei Veterans General Hospital; Department of Anesthesiology, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, College of Medicine, National Yang Ming Chiao Tung University; Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
30
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
31
|
Potjewyd G, Kellett K, Hooper N. 3D hydrogel models of the neurovascular unit to investigate blood-brain barrier dysfunction. Neuronal Signal 2021; 5:NS20210027. [PMID: 34804595 PMCID: PMC8579151 DOI: 10.1042/ns20210027] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 12/16/2022] Open
Abstract
The neurovascular unit (NVU), consisting of neurons, glial cells, vascular cells (endothelial cells, pericytes and vascular smooth muscle cells (VSMCs)) together with the surrounding extracellular matrix (ECM), is an important interface between the peripheral blood and the brain parenchyma. Disruption of the NVU impacts on blood-brain barrier (BBB) regulation and underlies the development and pathology of multiple neurological disorders, including stroke and Alzheimer's disease (AD). The ability to differentiate induced pluripotent stem cells (iPSCs) into the different cell types of the NVU and incorporate them into physical models provides a reverse engineering approach to generate human NVU models to study BBB function. To recapitulate the in vivo situation such NVU models must also incorporate the ECM to provide a 3D environment with appropriate mechanical and biochemical cues for the cells of the NVU. In this review, we provide an overview of the cells of the NVU and the surrounding ECM, before discussing the characteristics (stiffness, functionality and porosity) required of hydrogels to mimic the ECM when incorporated into in vitro NVU models. We summarise the approaches available to measure BBB functionality and present the techniques in use to develop robust and translatable models of the NVU, including transwell models, hydrogel models, 3D-bioprinting, microfluidic models and organoids. The incorporation of iPSCs either without or with disease-specific genetic mutations into these NVU models provides a platform in which to study normal and disease mechanisms, test BBB permeability to drugs, screen for new therapeutic targets and drugs or to design cell-based therapies.
Collapse
Affiliation(s)
- Geoffrey Potjewyd
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Katherine A.B. Kellett
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
| | - Nigel M. Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, U.K
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance and University of Manchester, Manchester, U.K
| |
Collapse
|
32
|
Boghdadi AG, Teo L, Bourne JA. The Neuroprotective Role of Reactive Astrocytes after Central Nervous System Injury. J Neurotrauma 2021; 37:681-691. [PMID: 32031052 DOI: 10.1089/neu.2019.6938] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Reactive astrocytes have traditionally been viewed as a significant contributor to secondary neuronal damage and repair inhibition after central nervous system (CNS) injury attributed, in large part, to their roles in glial scarring. However, more recent transcriptional evidence has uncovered the vast diversity in reactive astrocyte identity and functions that comprises both neuroprotective and -toxic characteristics. Additionally, the capacity of reactive astrocytes to shift between these activation states demonstrates a high level of environment-dependent plasticity that drives the interplay between neuroprotection and -toxicity after CNS injury. These recent findings have spawned a new field of research that seeks to identify and categorize the function of these discrete subpopulations in the context of neurotrauma, as well as identify their regulators. Therefore, this review will discuss the major and most recent advances in this field of research, with a primary emphasis on neuroprotection. This review will also discuss the major pitfalls present in the field, with a particular focus on model species and their impact on the development of novel therapies.
Collapse
Affiliation(s)
| | - Leon Teo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - James Andrew Bourne
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
33
|
Che Mohd Nassir CMN, Damodaran T, Yusof SR, Norazit A, Chilla G, Huen I, K. N. BP, Mohamed Ibrahim N, Mustapha M. Aberrant Neurogliovascular Unit Dynamics in Cerebral Small Vessel Disease: A Rheological Clue to Vascular Parkinsonism. Pharmaceutics 2021; 13:1207. [PMID: 34452169 PMCID: PMC8398765 DOI: 10.3390/pharmaceutics13081207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/26/2022] Open
Abstract
The distinctive anatomical assemble and functionally discrete multicellular cerebrovasculature dynamics confer varying rheological and blood-brain barrier permeabilities to preserve the integrity of cerebral white matter and its neural microenvironment. This homeostasis intricately involves the glymphatic system that manages the flow of interstitial solutes, metabolic waste, and clearance through the venous circulation. As a physiologically integrated neurogliovascular unit (NGVU) serving a particularly vulnerable cerebral white matter (from hypoxia, metabolic insults, infection, and inflammation), a likely insidious process over a lifetime could inflict microenvironment damages that may lead to pathological conditions. Two such conditions, cerebral small vessel disease (CSVD) and vascular parkinsonism (VaP), with poorly understood pathomechanisms, are frequently linked to this brain-wide NGVU. VaP is widely regarded as an atypical parkinsonism, described by cardinal motor manifestations and the presence of cerebrovascular disease, particularly white matter hyperintensities (WMHs) in the basal ganglia and subcortical region. WMHs, in turn, are a recognised imaging spectrum of CSVD manifestations, and in relation to disrupted NGVU, also include enlarged perivascular spaces. Here, in this narrative review, we present and discuss on recent findings that argue for plausible clues between CSVD and VaP by focusing on aberrant multicellular dynamics of a unique integrated NGVU-a crossroad of the immune-vascular-nervous system-which may also extend fresher insights into the elusive interplay between cerebral microvasculature and neurodegeneration, and the potential therapeutic targets.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Thenmoly Damodaran
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (T.D.); (S.R.Y.)
| | - Siti R. Yusof
- Centre for Drug Research, Universiti Sains Malaysia, Minden 11800, Penang, Malaysia; (T.D.); (S.R.Y.)
| | - Anwar Norazit
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Selangor, Malaysia;
| | - Geetha Chilla
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Isaac Huen
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Bhanu Prakash K. N.
- A*STAR Institute of Bioengineering and Bioimaging, Helios, 11 Biopolis Way, Singapore 138667, Singapore; (G.C.); (I.H.); (B.P.K.N.)
| | - Norlinah Mohamed Ibrahim
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Selangor, Malaysia;
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia
| |
Collapse
|
34
|
Moulson AJ, Squair JW, Franklin RJM, Tetzlaff W, Assinck P. Diversity of Reactive Astrogliosis in CNS Pathology: Heterogeneity or Plasticity? Front Cell Neurosci 2021; 15:703810. [PMID: 34381334 PMCID: PMC8349991 DOI: 10.3389/fncel.2021.703810] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/02/2021] [Indexed: 01/02/2023] Open
Abstract
Astrocytes are essential for the development and homeostatic maintenance of the central nervous system (CNS). They are also critical players in the CNS injury response during which they undergo a process referred to as "reactive astrogliosis." Diversity in astrocyte morphology and gene expression, as revealed by transcriptional analysis, is well-recognized and has been reported in several CNS pathologies, including ischemic stroke, CNS demyelination, and traumatic injury. This diversity appears unique to the specific pathology, with significant variance across temporal, topographical, age, and sex-specific variables. Despite this, there is limited functional data corroborating this diversity. Furthermore, as reactive astrocytes display significant environmental-dependent plasticity and fate-mapping data on astrocyte subsets in the adult CNS is limited, it remains unclear whether this diversity represents heterogeneity or plasticity. As astrocytes are important for neuronal survival and CNS function post-injury, establishing to what extent this diversity reflects distinct established heterogeneous astrocyte subpopulations vs. environmentally dependent plasticity within established astrocyte subsets will be critical for guiding therapeutic development. To that end, we review the current state of knowledge on astrocyte diversity in the context of three representative CNS pathologies: ischemic stroke, demyelination, and traumatic injury, with the goal of identifying key limitations in our current knowledge and suggesting future areas of research needed to address them. We suggest that the majority of identified astrocyte diversity in CNS pathologies to date represents plasticity in response to dynamically changing post-injury environments as opposed to heterogeneity, an important consideration for the understanding of disease pathogenesis and the development of therapeutic interventions.
Collapse
Affiliation(s)
- Aaron J. Moulson
- Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
| | - Jordan W. Squair
- Department of Clinical Neuroscience, Faculty of Life Sciences, Center for Neuroprosthetics and Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), NeuroRestore, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Robin J. M. Franklin
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Wolfram Tetzlaff
- International Collaboration on Repair Discoveries (ICORD), Vancouver, BC, Canada
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada
| | - Peggy Assinck
- Wellcome Trust - MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
35
|
Pekna M, Pekny M. The Complement System: A Powerful Modulator and Effector of Astrocyte Function in the Healthy and Diseased Central Nervous System. Cells 2021; 10:cells10071812. [PMID: 34359981 PMCID: PMC8303424 DOI: 10.3390/cells10071812] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
The complement system, an effector arm of the innate immune system that plays a critical role in tissue inflammation, the elimination of pathogens and the clearance of dead cells and cell debris, has emerged as a regulator of many processes in the central nervous system, including neural cell genesis and migration, control of synapse number and function, and modulation of glial cell responses. Complement dysfunction has also been put forward as a major contributor to neurological disease. Astrocytes are neuroectoderm-derived glial cells that maintain water and ionic homeostasis, and control cerebral blood flow and multiple aspects of neuronal functioning. By virtue of their expression of soluble as well as membrane-bound complement proteins and receptors, astrocytes are able to both send and receive complement-related signals. Here we review the current understanding of the multiple functions of the complement system in the central nervous system as they pertain to the modulation of astrocyte activity, and how astrocytes use the complement system to affect their environment in the healthy brain and in the context of neurological disease.
Collapse
Affiliation(s)
- Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
- Correspondence: ; Tel.: +46-31-786-3581
| | - Milos Pekny
- Laboratory of Astrocyte Biology and CNS Regeneration, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, 40530 Gothenburg, Sweden;
- Florey Institute of Neuroscience and Mental Health, Parkville, Melbourne 3010, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle 2308, Australia
| |
Collapse
|
36
|
Yabluchanskiy A, Nyul-Toth A, Csiszar A, Gulej R, Saunders D, Towner R, Turner M, Zhao Y, Abdelkari D, Rypma B, Tarantini S. Age-related alterations in the cerebrovasculature affect neurovascular coupling and BOLD fMRI responses: Insights from animal models of aging. Psychophysiology 2021; 58:e13718. [PMID: 33141436 PMCID: PMC9166153 DOI: 10.1111/psyp.13718] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/10/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022]
Abstract
The present and future research efforts in cognitive neuroscience and psychophysiology rely on the measurement, understanding, and interpretation of blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to effectively investigate brain function. Aging and age-associated pathophysiological processes change the structural and functional integrity of the cerebrovasculature which can significantly alter how the BOLD signal is recorded and interpreted. In order to gain an improved understanding of the benefits, drawbacks, and methodological implications for BOLD fMRI in the context of cognitive neuroscience, it is crucial to understand the cellular and molecular mechanism of age-related vascular pathologies. This review discusses the multifaceted effects of aging and the contributions of age-related pathologies on structural and functional integrity of the cerebral microcirculation as they has been investigated in animal models of aging, including age-related alterations in neurovascular coupling responses, cellular and molecular mechanisms involved in microvascular damage, vascular rarefaction, blood-brain barrier disruption, senescence, humoral deficiencies as they relate to, and potentially introduce confounding factors in the interpretation of BOLD fMRI.
Collapse
Affiliation(s)
- Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adam Nyul-Toth
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Rheal Towner
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma, OK, USA
| | - Monroe Turner
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Yuguang Zhao
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Dema Abdelkari
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Oklahoma Center for Geroscience and Healthy Brain Aging, Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine/Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
37
|
Péladeau C, Sandhu JK. Aberrant NLRP3 Inflammasome Activation Ignites the Fire of Inflammation in Neuromuscular Diseases. Int J Mol Sci 2021; 22:ijms22116068. [PMID: 34199845 PMCID: PMC8200055 DOI: 10.3390/ijms22116068] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/24/2022] Open
Abstract
Inflammasomes are molecular hubs that are assembled and activated by a host in response to various microbial and non-microbial stimuli and play a pivotal role in maintaining tissue homeostasis. The NLRP3 is a highly promiscuous inflammasome that is activated by a wide variety of sterile triggers, including misfolded protein aggregates, and drives chronic inflammation via caspase-1-mediated proteolytic cleavage and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. These cytokines further amplify inflammatory responses by activating various signaling cascades, leading to the recruitment of immune cells and overproduction of proinflammatory cytokines and chemokines, resulting in a vicious cycle of chronic inflammation and tissue damage. Neuromuscular diseases are a heterogeneous group of muscle disorders that involve injury or dysfunction of peripheral nerves, neuromuscular junctions and muscles. A growing body of evidence suggests that dysregulation, impairment or aberrant NLRP3 inflammasome signaling leads to the initiation and exacerbation of pathological processes associated with neuromuscular diseases. In this review, we summarize the available knowledge about the NLRP3 inflammasome in neuromuscular diseases that affect the peripheral nervous system and amyotrophic lateral sclerosis, which affects the central nervous system. In addition, we also examine whether therapeutic targeting of the NLRP3 inflammasome components is a viable approach to alleviating the detrimental phenotype of neuromuscular diseases and improving clinical outcomes.
Collapse
Affiliation(s)
- Christine Péladeau
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: ; Tel.: +1-613-993-5304
| |
Collapse
|
38
|
Duncan JW, Nemeth Z, Hildebrandt E, Granger JP, Ryan MJ, Drummond HA. Interleukin-17 induces hypertension but does not impair cerebrovascular function in pregnant rats. Pregnancy Hypertens 2021; 24:50-57. [PMID: 33677419 PMCID: PMC8159853 DOI: 10.1016/j.preghy.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/20/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022]
Abstract
Preeclampsia affects 5-8% of pregnancies and is characterized by hypertension, placental ischemia, neurological impairment, and an increase in circulating inflammatory cytokines, including Interleukin-17 (IL17). While placental ischemia has also been shown to impair cerebrovascular function, it is not known which placental-associated factor(s) drive this effect. The purpose of this study was to examine the effects of IL17 on cerebrovascular function during pregnancy. To achieve this goal, pregnant rats were infused with either IL17 (150 pg/day, 5 days, osmotic minipump), or vehicle (saline/0.7% BSA osmotic minipump) starting at gestational day (GD) 14. On GD 19, the cerebral blood flow (CBF) response to increases in mean arterial pressure (MAP) was measured in vivo, and myogenic constrictor responses of the middle cerebral artery (MCA) were assessed ex vivo. IL17 increased MAP but impaired CBF responses only at the highest arterial pressure measured (190 mmHg). Myogenic constrictor responses overall were mostly unaffected by IL17 infusion; however, the intraluminal pressure at which peak myogenic tone was generated was lower in the IL17 infused group (120 vs 165 mm Hg), suggesting maximal tone is exerted at lower intraluminal pressures in IL17-treated pregnant rats. Consistent with the lack of substantial change in overall myogenic responsiveness, there was no difference in cerebral vessel expression of putative mechanosensitive protein βENaC, but a tendency towards a decrease in ASIC2 (p = 0.067) in IL17 rats. This study suggests that infusion of IL17 independent of other placental ischemia-associated factors is insufficient to recapitulate the features of impaired cerebrovascular function during placental ischemia. Further studies to examine of the role of other pro-inflammatory cytokines, individually or a combination, are necessary to determine mechanisms of cerebral vascular dysfunction during preeclampsia.
Collapse
Affiliation(s)
- Jeremy W Duncan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Zoltan Nemeth
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Emily Hildebrandt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Joey P Granger
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Michael J Ryan
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA
| | - Heather A Drummond
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS 39206, USA.
| |
Collapse
|
39
|
Paquette T, Piché M, Leblond H. Contribution of astrocytes to neurovascular coupling in the spinal cord of the rat. J Physiol Sci 2021; 71:16. [PMID: 34049480 PMCID: PMC10717833 DOI: 10.1186/s12576-021-00800-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022]
Abstract
Functional magnetic resonance imaging (fMRI) of the spinal cord relies on the integrity of neurovascular coupling (NVC) to infer neuronal activity from hemodynamic changes. Astrocytes are a key component of cerebral NVC, but their role in spinal NVC is unclear. The objective of this study was to examine whether inhibition of astrocyte metabolism by fluorocitrate alters spinal NVC. In 14 rats, local field potential (LFP) and spinal cord blood flow (SCBF) were recorded simultaneously in the lumbosacral enlargement during noxious stimulation of the sciatic nerve before and after a local administration of fluorocitrate (N = 7) or saline (N = 7). Fluorocitrate significantly reduced SCBF responses (p < 0.001) but not LFP amplitude (p = 0.22) compared with saline. Accordingly, NVC was altered by fluorocitrate compared with saline (p < 0.01). These results support the role of astrocytes in spinal NVC and have implications for spinal cord imaging with fMRI for conditions in which astrocyte metabolism may be altered.
Collapse
Affiliation(s)
- Thierry Paquette
- Department of Anatomy, Université du Québec À Trois-Rivières, 3351 Boulevard des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Mathieu Piché
- Department of Anatomy, Université du Québec À Trois-Rivières, 3351 Boulevard des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada
- CogNAC Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada
| | - Hugues Leblond
- Department of Anatomy, Université du Québec À Trois-Rivières, 3351 Boulevard des Forges, C.P. 500, Trois-Rivières, QC, G9A 5H7, Canada.
- CogNAC Research Group, Université du Québec À Trois-Rivières, Trois-Rivières, QC, G9A 5H7, Canada.
| |
Collapse
|
40
|
Wear D, Vegh C, Sandhu JK, Sikorska M, Cohen J, Pandey S. Ubisol-Q 10, a Nanomicellar and Water-Dispersible Formulation of Coenzyme-Q 10 as a Potential Treatment for Alzheimer's and Parkinson's Disease. Antioxidants (Basel) 2021; 10:antiox10050764. [PMID: 34064983 PMCID: PMC8150875 DOI: 10.3390/antiox10050764] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 05/07/2021] [Indexed: 01/15/2023] Open
Abstract
The world continues a desperate search for therapies that could bring hope and relief to millions suffering from progressive neurodegenerative diseases such as Alzheimer’s (AD) and Parkinson’s (PD). With oxidative stress thought to be a core stressor, interests have long been focused on applying redox therapies including coenzyme-Q10. Therapeutic use has failed to show efficacy in human clinical trials due to poor bioavailability of this lipophilic compound. A nanomicellar, water-dispersible formulation of coenzyme-Q10, Ubisol-Q10, has been developed by combining coenzyme-Q10 with an amphiphilic, self-emulsifying molecule of polyoxyethanyl α-tocopheryl sebacate (derivatized vitamin E). This discovery made possible, for the first time, a proper assessment of the true therapeutic value of coenzyme-Q10. Micromolar concentrations of Ubisol-Q10 show unprecedented neuroprotection against neurotoxin exposure in in vitro and in vivo models of neurodegeneration and was extremely effective when delivered either prior to, at the time of, and most significantly, post-neurotoxin exposure. These findings indicate a possible way forward for clinical development due to effective doses well within Federal Drug Administration guidelines. Ubisol-Q10 is a potent mobilizer of astroglia, antioxidant, senescence preventer, autophagy activator, anti-inflammatory, and mitochondrial stabilizer. Here we summarize the work with oil-soluble coenzyme-Q10, its limitations, and focus mainly on efficacy of water-soluble coenzyme-Q10 in neurodegeneration.
Collapse
Affiliation(s)
- Darcy Wear
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada; (D.W.); (C.V.)
| | - Caleb Vegh
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada; (D.W.); (C.V.)
| | - Jagdeep K. Sandhu
- Human Health Therapeutics Centre (HHT), National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
- Correspondence: (J.K.S.); (S.P.); Tel.: +1-519-253-3000 (ext. 3701) (S.P.)
| | - Marianna Sikorska
- Researcher Emeritus, Human Health Therapeutics Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON K1A 0R6, Canada;
| | - Jerome Cohen
- Department of Psychology, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada;
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, ON N9B 3P4, Canada; (D.W.); (C.V.)
- Correspondence: (J.K.S.); (S.P.); Tel.: +1-519-253-3000 (ext. 3701) (S.P.)
| |
Collapse
|
41
|
Schönfeld P, Reiser G. How the brain fights fatty acids' toxicity. Neurochem Int 2021; 148:105050. [PMID: 33945834 DOI: 10.1016/j.neuint.2021.105050] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/17/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
Neurons spurn hydrogen-rich fatty acids for energizing oxidative ATP synthesis, contrary to other cells. This feature has been mainly attributed to a lower yield of ATP per reduced oxygen, as compared to glucose. Moreover, the use of fatty acids as hydrogen donor is accompanied by severe β-oxidation-associated ROS generation. Neurons are especially susceptible to detrimental activities of ROS due to their poor antioxidative equipment. It is also important to note that free fatty acids (FFA) initiate multiple harmful activities inside the cells, particularly on phosphorylating mitochondria. Several processes enhance FFA-linked lipotoxicity in the cerebral tissue. Thus, an uptake of FFA from the circulation into the brain tissue takes place during an imbalance between energy intake and energy expenditure in the body, a situation similar to that during metabolic syndrome and fat-rich diet. Traumatic or hypoxic brain injuries increase hydrolytic degradation of membrane phospholipids and, thereby elevate the level of FFA in neural cells. Accumulation of FFA in brain tissue is markedly associated with some inherited neurological disorders, such as Refsum disease or X-linked adrenoleukodystrophy (X-ALD). What are strategies protecting neurons against FFA-linked lipotoxicity? Firstly, spurning the β-oxidation pathway in mitochondria of neurons. Secondly, based on a tight metabolic communication between neurons and astrocytes, astrocytes donate metabolites to neurons for synthesis of antioxidants. Further, neuronal autophagy of ROS-emitting mitochondria combined with the transfer of degradation-committed FFA for their disposal in astrocytes, is a potent protective strategy against ROS and harmful activities of FFA. Finally, estrogens and neurosteroids are protective as triggers of ERK and PKB signaling pathways, consequently initiating the expression of various neuronal survival genes via the formation of cAMP response element-binding protein (CREB).
Collapse
Affiliation(s)
- Peter Schönfeld
- Institut für Biochemie und Zellbiologie, Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Medizinische Fakultät, Otto-von-Guericke-Universität Magdeburg, Leipziger Straße 44, D-39120, Magdeburg, Germany.
| |
Collapse
|
42
|
Aksenov DP. Normal Development of Local Neurovascular Interactions and the Diagnostic Value of Resting State Functional MRI in Neurovascular Deficiency Based on the Example of Neonatal Anesthesia Exposure. Front Neurol 2021; 12:664706. [PMID: 33995262 PMCID: PMC8116565 DOI: 10.3389/fneur.2021.664706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/08/2021] [Indexed: 01/25/2023] Open
Affiliation(s)
- Daniil P Aksenov
- Department of Radiology, NorthShore University HealthSystem, Evanston, IL, United States.,Department of Anesthesiology, NorthShore University HealthSystem, Evanston, IL, United States
| |
Collapse
|
43
|
De D, Mukherjee I, Guha S, Paidi RK, Chakrabarti S, Biswas SC, Bhattacharyya SN. Rheb-mTOR activation rescues Aβ-induced cognitive impairment and memory function by restoring miR-146 activity in glial cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 24:868-887. [PMID: 34094708 PMCID: PMC8141608 DOI: 10.1016/j.omtn.2021.04.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/09/2021] [Indexed: 12/22/2022]
Abstract
Deposition of amyloid beta plaques in adult rat or human brain is associated with increased production of proinflammatory cytokines by associated glial cells that are responsible for degeneration of the diseased tissue. The expression of these cytokines is usually under check and is controlled at the post-transcriptional level via several microRNAs. Computational analysis of gene expression profiles of cortical regions of Alzheimer’s disease patients’ brain suggests ineffective target cytokine mRNA suppression by existing micro-ribonucleoproteins (miRNPs) in diseased brain. Exploring the mechanism of amyloid beta-induced cytokine expression, we have identified how the inactivation of the repressive miR-146 miRNPs causes increased production of cytokines in amyloid beta-exposed glial cells. In exploration of the cause of miRNP inactivation, we have noted amyloid beta oligomer-induced sequestration of the mTORC1 complex to early endosomes that results in decreased Ago2 phosphorylation, limited Ago2-miRNA uncoupling, and retarded Ago2-cytokine mRNA interaction in rat astrocytes. Interestingly, constitutive activation of mTORC1 by Rheb activator restricts proinflammatory cytokine production by reactivating miR-146 miRNPs in amyloid beta-exposed glial cells to rescue the disease phenotype in the in vivo rat model of Alzheimer’s disease.
Collapse
Affiliation(s)
- Dipayan De
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ishita Mukherjee
- Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhalakshmi Guha
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Ramesh Kumar Paidi
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-informatics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhas C Biswas
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Suvendra N Bhattacharyya
- RNA Biology Research Laboratory, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
44
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
45
|
Papasilekas T, Themistoklis KM, Melanis K, Patrikelis P, Spartalis E, Korfias S, Sakas D. A Brief Review of Brain's Blood Flow-Metabolism Coupling and Pressure Autoregulation. J Neurol Surg A Cent Eur Neurosurg 2021; 82:257-261. [PMID: 33583012 DOI: 10.1055/s-0040-1721682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
BACKGROUND The human brain, depending on aerobic glycolysis to cover its metabolic needs and having no energy reserves whatsoever, relies on a constant and closely regulated blood supply to maintain its structural and functional integrity. Cerebral autoregulation, that is, the brain's intrinsic ability to regulate its own blood flow independently from the systemic blood pressure and cardiac output, is an important physiological mechanism that offers protection from hypoperfusion injury. DISCUSSION Two major independent mechanisms are known to be involved in cerebral autoregulation: (1) flow-metabolism coupling and (2) myogenic responses of cerebral blood vessels to changes in transmural/arterial pressure. A third, less prominent component of cerebral autoregulation comes in the form of neurogenic influences on cerebral vasculature. CONCLUSION Although fragmentation of cerebral autoregulation in separate and distinct from each other mechanisms is somewhat arbitrary, such a scheme is useful for reasons of simplification and to better understand their overall effect. Comprehension of cerebral autoregulation is imperative for clinicians in order for them to mitigate consequences of its impairment in the context of traumatic brain injury, subarachnoid hemorrhage, stroke, or other pathological conditions.
Collapse
Affiliation(s)
| | | | - Konstantinos Melanis
- Department of Neurology, Evangelismos Athens General Hospital, Athens, Attica, Greece
| | - Panayiotis Patrikelis
- Department of Neurosurgery, Evangelismos Athens General Hospital, Athens, Attica, Greece
| | - Eleftherios Spartalis
- Laboratory of Experimental Surgery and Surgical Research, University of Athens, Athinon, Greece
| | - Stefanos Korfias
- Department of Neurosurgery, Evangelismos Athens General Hospital, Athens, Attica, Greece
| | - Damianos Sakas
- Department of Neurosurgery, Evangelismos Athens General Hospital, Athens, Attica, Greece
| |
Collapse
|
46
|
Blevins BL, Vinters HV, Love S, Wilcock DM, Grinberg LT, Schneider JA, Kalaria RN, Katsumata Y, Gold BT, Wang DJJ, Ma SJ, Shade LMP, Fardo DW, Hartz AMS, Jicha GA, Nelson KB, Magaki SD, Schmitt FA, Teylan MA, Ighodaro ET, Phe P, Abner EL, Cykowski MD, Van Eldik LJ, Nelson PT. Brain arteriolosclerosis. Acta Neuropathol 2021; 141:1-24. [PMID: 33098484 PMCID: PMC8503820 DOI: 10.1007/s00401-020-02235-6] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/14/2022]
Abstract
Brain arteriolosclerosis (B-ASC), characterized by pathologic arteriolar wall thickening, is a common finding at autopsy in aged persons and is associated with cognitive impairment. Hypertension and diabetes are widely recognized as risk factors for B-ASC. Recent research indicates other and more complex risk factors and pathogenetic mechanisms. Here, we describe aspects of the unique architecture of brain arterioles, histomorphologic features of B-ASC, relevant neuroimaging findings, epidemiology and association with aging, established genetic risk factors, and the co-occurrence of B-ASC with other neuropathologic conditions such as Alzheimer's disease and limbic-predominant age-related TDP-43 encephalopathy (LATE). There may also be complex physiologic interactions between metabolic syndrome (e.g., hypertension and inflammation) and brain arteriolar pathology. Although there is no universally applied diagnostic methodology, several classification schemes and neuroimaging techniques are used to diagnose and categorize cerebral small vessel disease pathologies that include B-ASC, microinfarcts, microbleeds, lacunar infarcts, and cerebral amyloid angiopathy (CAA). In clinical-pathologic studies that factored in comorbid diseases, B-ASC was independently associated with impairments of global cognition, episodic memory, working memory, and perceptual speed, and has been linked to autonomic dysfunction and motor symptoms including parkinsonism. We conclude by discussing critical knowledge gaps related to B-ASC and suggest that there are probably subcategories of B-ASC that differ in pathogenesis. Observed in over 80% of autopsied individuals beyond 80 years of age, B-ASC is a complex and under-studied contributor to neurologic disability.
Collapse
Affiliation(s)
- Brittney L Blevins
- Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Seth Love
- University of Bristol and Southmead Hospital, Bristol, BS10 5NB, UK
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Lea T Grinberg
- Department of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- LIM-22, Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Julie A Schneider
- Departments of Neurology and Pathology, Rush University Medical Center, Chicago, IL, 60612, USA
| | - Rajesh N Kalaria
- Translational and Clinical Research Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL, UK
| | - Yuriko Katsumata
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Brian T Gold
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Samantha J Ma
- Laboratory of FMRI Technology (LOFT), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Lincoln M P Shade
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - David W Fardo
- Sanders-Brown Center on Aging, Department of Biostatistics, University Kentucky, Lexington, KY, 40536, USA
| | - Anika M S Hartz
- Sanders-Brown Center on Aging, Department of Pharmacology and Nutritional Sciences, University Kentucky, Lexington, KY, 40536, USA
| | - Gregory A Jicha
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | | | - Shino D Magaki
- Department of Pathology and Laboratory Medicine, David Geffen SOM at UCLA and Ronald Reagan UCLA Medical Center, Los Angeles, CA, 90095-1732, USA
| | - Frederick A Schmitt
- Sanders-Brown Center on Aging, Department of Neurology, University Kentucky, Lexington, KY, 40536, USA
| | - Merilee A Teylan
- Department of Epidemiology, University Washington, Seattle, WA, 98105, USA
| | | | - Panhavuth Phe
- Sanders-Brown Center on Aging, University Kentucky, Lexington, KY, 40536, USA
| | - Erin L Abner
- Sanders-Brown Center on Aging, Department of Epidemiology, University Kentucky, Lexington, KY, 40536, USA
| | - Matthew D Cykowski
- Departments of Pathology and Genomic Medicine and Neurology, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Linda J Van Eldik
- Sanders-Brown Center on Aging, Department of Neuroscience, University Kentucky, Lexington, KY, 40536, USA
| | - Peter T Nelson
- Sanders-Brown Center on Aging, Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA.
- Rm 311 Sanders-Brown Center on Aging, University of Kentucky, 800 S. Limestone Avenue, Lexington, KY, 40536, USA.
| |
Collapse
|
47
|
Bozic I, Savic D, Lavrnja I. Astrocyte phenotypes: Emphasis on potential markers in neuroinflammation. Histol Histopathol 2020; 36:267-290. [PMID: 33226087 DOI: 10.14670/hh-18-284] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Astrocytes, the most abundant glial cells in the central nervous system (CNS), have numerous integral roles in all CNS functions. They are essential for synaptic transmission and support neurons by providing metabolic substrates, secreting growth factors and regulating extracellular concentrations of ions and neurotransmitters. Astrocytes respond to CNS insults through reactive astrogliosis, in which they go through many functional and molecular changes. In neuroinflammatory conditions reactive astrocytes exert both beneficial and detrimental functions, depending on the context and heterogeneity of astrocytic populations. In this review we profile astrocytic diversity in the context of neuroinflammation; with a specific focus on multiple sclerosis (MS) and its best-described animal model experimental autoimmune encephalomyelitis (EAE). We characterize two main subtypes, protoplasmic and fibrous astrocytes and describe the role of intermediate filaments in the physiology and pathology of these cells. Additionally, we outline a variety of markers that are emerging as important in investigating astrocytic biology in both physiological conditions and neuroinflammation.
Collapse
Affiliation(s)
- Iva Bozic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Danijela Savic
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Irena Lavrnja
- Institute for Biological Research "Sinisa Stankovic", National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
48
|
Buxton RB. The thermodynamics of thinking: connections between neural activity, energy metabolism and blood flow. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190624. [PMID: 33190604 DOI: 10.1098/rstb.2019.0624] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several current functional neuroimaging methods are sensitive to cerebral metabolism and cerebral blood flow (CBF) rather than the underlying neural activity itself. Empirically, the connections between metabolism, flow and neural activity are complex and somewhat counterintuitive: CBF and glycolysis increase more than seems to be needed to provide oxygen and pyruvate for oxidative metabolism, and the oxygen extraction fraction is relatively low in the brain and decreases when oxygen metabolism increases. This work lays a foundation for the idea that this unexpected pattern of physiological changes is consistent with basic thermodynamic considerations related to metabolism. In the context of this thermodynamic framework, the apparent mismatches in metabolic rates and CBF are related to preserving the entropy change of oxidative metabolism, specifically the O2/CO2 ratio in the mitochondria. However, the mechanism supporting this CBF response is likely not owing to feedback from a hypothetical O2 sensor in tissue, but rather is consistent with feed-forward control by signals from both excitatory and inhibitory neural activity. Quantitative predictions of the thermodynamic framework, based on models of O2 and CO2 transport and possible neural drivers of CBF control, are in good agreement with a wide range of experimental data, including responses to neural activation, hypercapnia, hypoxia and high-altitude acclimatization. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California San Diego, 9500 Gilman Drive, MC 0677, La Jolla, CA 92093-0677, USA
| |
Collapse
|
49
|
Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 2020; 69:715-728. [PMID: 33075175 DOI: 10.1002/glia.23923] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The glymphatic system is a recently defined brain-wide network of perivascular spaces along which cerebrospinal fluid (CSF) and interstitial solutes exchange. Astrocyte endfeet encircling the perivascular space form a physical barrier in between these two compartments, and fluid and solutes that are not taken up by astrocytes move out of the perivascular space through the junctions in between astrocyte endfeet. However, little is known about the anatomical structure and the physiological roles of the astrocyte endfeet in regulating the local perivascular exchange. Here, visualizing astrocyte endfoot-endfoot junctions with immunofluorescent labeling against the protein megalencephalic leukoencephalopathy with subcortical cysts-1 (MLC1), we characterized endfoot dimensions along the mouse cerebrovascular tree. We observed marked heterogeneity in endfoot dimensions along vessels of different sizes, and of different types. Specifically, endfoot size was positively correlated with the vessel diameters, with large vessel segments surrounded by large endfeet and small vessel segments surrounded by small endfeet. This association was most pronounced along arterial, rather than venous segments. Computational modeling simulating vascular trees with uniform or varying endfeet dimensions demonstrates that varying endfoot dimensions maintain near constant perivascular-interstitial flux despite correspondingly declining perivascular pressures along the cerebrovascular tree through the cortical depth. These results describe a novel anatomical feature of perivascular astroglial endfeet and suggest that endfoot heterogeneity may be an evolutionary adaptation to maintain perivascular CSF-interstitial fluid exchange through deep brain structures.
Collapse
Affiliation(s)
- Marie Xun Wang
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lori Ray
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey Heys
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| |
Collapse
|
50
|
Parfenova H, Liu J, Hoover DT, Fedinec AL. Vasodilator effects of sulforaphane in cerebral circulation: A critical role of endogenously produced hydrogen sulfide and arteriolar smooth muscle K ATP and BK channels in the brain. J Cereb Blood Flow Metab 2020; 40:1987-1996. [PMID: 31594422 PMCID: PMC7786849 DOI: 10.1177/0271678x19878284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We investigated the effects of sulforaphane (SFN), an isothiocyanate from cruciferous vegetables, in the regulation of cerebral blood flow using cranial windows in newborn pigs. SFN administered topically (10 µM-1 mM) or systemically (0.4 mg/kg ip) caused immediate and sustained dilation of pial arterioles concomitantly with elevated H2S in periarachnoid cortical cerebrospinal fluid. H2S is a potent vasodilator of cerebral arterioles. SFN is not a H2S donor but it acts via stimulating H2S generation in the brain catalyzed by cystathionine γ-lyase (CSE) and cystathionine β-synthase (CBS). CSE/CBS inhibitors propargylglycine, β-cyano-L-alanine, and aminooxyacetic acid blocked brain H2S generation and cerebral vasodilation caused by SFN. The SFN-elicited vasodilation requires activation of potassium channels in cerebral arterioles. The inhibitors of KATP and BK channels glibenclamide, paxilline, and iberiotoxin blocked the vasodilator effects of topical and systemic SFN, supporting the concept that H2S is the mediator of the vasodilator properties of SFN in cerebral circulation. Overall, we provide first evidence that SFN is a brain permeable compound that increases cerebral blood flow via a non-genomic mechanism that is mediated via activation of CSE/CBS-catalyzed H2S formation in neurovascular cells followed by H2S-induced activation of KATP and BK channels in arteriolar smooth muscle.
Collapse
Affiliation(s)
- Helena Parfenova
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jianxiong Liu
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Daniel T Hoover
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Alex L Fedinec
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|