1
|
Yao X, Zhang Y, Hong X, Xing Y, Xu Z. Esrp1 and Esrp2 regulate the stability of tmc1/ 2a mRNAs in zebrafish sensory hair cells. J Neurosci 2025; 45:e0837242025. [PMID: 40086870 PMCID: PMC12019119 DOI: 10.1523/jneurosci.0837-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/16/2025] Open
Abstract
RNA-binding proteins (RBPs) are important for post-transcriptional RNA processing, including pre-mRNA alternative splicing, mRNA stability, and translation. Several RBPs have been shown to play pivotal roles in the inner ear, whose dysfunction leads to auditory and/or balance impairments. Epithelial splicing-regulatory protein 1 (ESRP1) regulates alternative splicing and mRNA stability, and mutations in ESRP1 gene have been associated with sensorineural hearing loss in humans. In Esrp1 knockout mouse embryos, alternative splicing of its target genes such as Fgfr2 is impaired, which eventually result in cochlear development deficits. However, Esrp1 knockout mice die soon after birth because of complications from cleft-lip and palate defects, impeding further investigations at later postnatal ages. In the present study, we explored the role of ESRP1 in hearing using zebrafish as a model. We showed that esrp1 and its paralog esrp2 are expressed in the inner ear and certain anterior lateral line (ALL) neuromasts. Furthermore, our data suggested that Esrp1 and Esrp2 are required for the mechano-electrical transduction (MET) function of hair cells. RNA sequencing results indicated a significant decrease in the levels of several mRNAs in esrp1/2 double knockout larvae. Among the dysregulated genes are tmc1 and tmc2a, which encode essential subunits of the MET complex. Further investigations demonstrated that Esrp1/2 could directly bind to tmc1 and tmc2a mRNAs and affect their stability. Taken together, we showed here that Esrp1 and Esrp2 regulate the MET function of zebrafish sensory hair cells by modulating the stability of tmc1 and tmc2a mRNAs.Significance statement ESRP1 is an important RNA-binding protein, whose malfunction has been associated with hearing loss in humans. Esrp1 knockout affects alternative splicing of its target mRNAs such as Fgfr2, eventually leading to cochlear development deficits in mice. However, Esrp1 knockout mice die soon after birth, precluding further investigations at later postnatal ages. In this study, we explored the role of ESRP1 in hearing using zebrafish as a model. Our results demonstrated that esrp1 and its paralog esrp2 are expressed in the zebrafish inner ear, and that esrp1/esrp2 double knockout compromised the mechano-electrical transduction (MET) function of hair cells. Additionally, we successfully identified tmc1 and tmc2a mRNAs as the targets of Esrp1/2, which encode essential subunits of the MET complex.
Collapse
Affiliation(s)
- Xuebo Yao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yan Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Department of Biochemistry and Department of Gastroenterology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiaying Hong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Yanyi Xing
- Women's Hospital, Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
2
|
Zhong S, Su L, Xu M, Loke D, Yu B, Zhang Y, Zhao R. Recent Advances in Artificial Sensory Neurons: Biological Fundamentals, Devices, Applications, and Challenges. NANO-MICRO LETTERS 2024; 17:61. [PMID: 39537845 PMCID: PMC11561216 DOI: 10.1007/s40820-024-01550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/28/2024] [Indexed: 11/16/2024]
Abstract
Spike-based neural networks, which use spikes or action potentials to represent information, have gained a lot of attention because of their high energy efficiency and low power consumption. To fully leverage its advantages, converting the external analog signals to spikes is an essential prerequisite. Conventional approaches including analog-to-digital converters or ring oscillators, and sensors suffer from high power and area costs. Recent efforts are devoted to constructing artificial sensory neurons based on emerging devices inspired by the biological sensory system. They can simultaneously perform sensing and spike conversion, overcoming the deficiencies of traditional sensory systems. This review summarizes and benchmarks the recent progress of artificial sensory neurons. It starts with the presentation of various mechanisms of biological signal transduction, followed by the systematic introduction of the emerging devices employed for artificial sensory neurons. Furthermore, the implementations with different perceptual capabilities are briefly outlined and the key metrics and potential applications are also provided. Finally, we highlight the challenges and perspectives for the future development of artificial sensory neurons.
Collapse
Affiliation(s)
- Shuai Zhong
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China.
| | - Lirou Su
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Mingkun Xu
- Guangdong Institute of Intelligence Science and Technology, Hengqin, Zhuhai, 519031, People's Republic of China
| | - Desmond Loke
- Department of Science, Mathematics and Technology, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Bin Yu
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China
| | - Yishu Zhang
- College of Integrated Circuits, Zhejiang University, Hangzhou, 3112000, People's Republic of China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 310027, People's Republic of China.
| | - Rong Zhao
- Department of Precision Instruments, Tsinghua University, Beijing, 100084, People's Republic of China
- Center for Brain-Inspired Computing Research, Tsinghua University, Beijing, 100084, People's Republic of China
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, People's Republic of China
| |
Collapse
|
3
|
Liang Y, Ormazabal-Toledo R, Yao S, Shi YS, Herrera-Molina R, Montag D, Lin X. Deafness causing neuroplastin missense variants fail to promote plasma membrane Ca 2+-ATPase levels and Ca 2+ transient regulation in brain neurons. J Biol Chem 2024; 300:107474. [PMID: 38879011 PMCID: PMC11264175 DOI: 10.1016/j.jbc.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/08/2024] Open
Abstract
Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.
Collapse
Affiliation(s)
- Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Songhui Yao
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yun Stone Shi
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Rodrigo Herrera-Molina
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China.
| |
Collapse
|
4
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
5
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
6
|
Maudoux A, Vitry S, El-Amraoui A. Vestibular Deficits in Deafness: Clinical Presentation, Animal Modeling, and Treatment Solutions. Front Neurol 2022; 13:816534. [PMID: 35444606 PMCID: PMC9013928 DOI: 10.3389/fneur.2022.816534] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
The inner ear is responsible for both hearing and balance. These functions are dependent on the correct functioning of mechanosensitive hair cells, which convert sound- and motion-induced stimuli into electrical signals conveyed to the brain. During evolution of the inner ear, the major changes occurred in the hearing organ, whereas the structure of the vestibular organs remained constant in all vertebrates over the same period. Vestibular deficits are highly prevalent in humans, due to multiple intersecting causes: genetics, environmental factors, ototoxic drugs, infections and aging. Studies of deafness genes associated with balance deficits and their corresponding animal models have shed light on the development and function of these two sensory systems. Bilateral vestibular deficits often impair individual postural control, gaze stabilization, locomotion and spatial orientation. The resulting dizziness, vertigo, and/or falls (frequent in elderly populations) greatly affect patient quality of life. In the absence of treatment, prosthetic devices, such as vestibular implants, providing information about the direction, amplitude and velocity of body movements, are being developed and have given promising results in animal models and humans. Novel methods and techniques have led to major progress in gene therapies targeting the inner ear (gene supplementation and gene editing), 3D inner ear organoids and reprograming protocols for generating hair cell-like cells. These rapid advances in multiscale approaches covering basic research, clinical diagnostics and therapies are fostering interdisciplinary research to develop personalized treatments for vestibular disorders.
Collapse
Affiliation(s)
- Audrey Maudoux
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
- Center for Balance Evaluation in Children (EFEE), Otolaryngology Department, Assistance Publique des Hôpitaux de Paris, Robert-Debré University Hospital, Paris, France
| | - Sandrine Vitry
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| | - Aziz El-Amraoui
- Unit Progressive Sensory Disorders, Pathophysiology and Therapy, Institut Pasteur, Institut de l'Audition, Université de Paris, INSERM-UMRS1120, Paris, France
| |
Collapse
|
7
|
Wang D, Zhou J. The Kinocilia of Cochlear Hair Cells: Structures, Functions, and Diseases. Front Cell Dev Biol 2021; 9:715037. [PMID: 34422834 PMCID: PMC8374625 DOI: 10.3389/fcell.2021.715037] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Primary cilia are evolutionarily conserved and highly specialized organelles that protrude from cell membranes. Mutations in genes encoding ciliary proteins can cause structural and functional ciliary defects and consequently multiple diseases, collectively termed ciliopathies. The mammalian auditory system is responsible for perceiving external sound stimuli that are ultimately processed in the brain through a series of physical and biochemical reactions. Here we review the structure and function of the specialized primary cilia of hair cells, termed kinocilia, found in the mammalian auditory system. We also discuss areas that might prove amenable for therapeutic management of auditory ciliopathies.
Collapse
Affiliation(s)
- Difei Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Lv J, Fu X, Li Y, Hong G, Li P, Lin J, Xun Y, Fang L, Weng W, Yue R, Li GL, Guan B, Li H, Huang Y, Chai R. Deletion of Kcnj16 in Mice Does Not Alter Auditory Function. Front Cell Dev Biol 2021; 9:630361. [PMID: 33693002 PMCID: PMC7937937 DOI: 10.3389/fcell.2021.630361] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/26/2021] [Indexed: 01/13/2023] Open
Abstract
Endolymphatic potential (EP) is the main driving force behind the sensory transduction of hearing, and K+ is the main charge carrier. Kir5.1 is a K+ transporter that plays a significant role in maintaining EP homeostasis, but the expression pattern and role of Kir5.1 (which is encoded by the Kcnj16 gene) in the mouse auditory system has remained unclear. In this study, we found that Kir5.1 was expressed in the mouse cochlea. We checked the inner ear morphology and measured auditory function in Kcnj16–/– mice and found that loss of Kcnj16 did not appear to affect the development of hair cells. There was no significant difference in auditory function between Kcnj16–/– mice and wild-type littermates, although the expression of Kcnma1, Kcnq4, and Kcne1 were significantly decreased in the Kcnj16–/– mice. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the Kcnj16–/– and wild-type mice. In summary, our results suggest that the Kcnj16 gene is not essential for auditory function in mice.
Collapse
Affiliation(s)
- Jun Lv
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yige Li
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Guodong Hong
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Peipei Li
- School of Life Sciences and Key Laboratory of the Ministry of Education for Experimental Teratology, Shandong University, Jinan, China
| | - Jing Lin
- Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Youfang Xun
- Department of Otolaryngology, Head and Neck Surgery, Xiangya School of Medicine, Central South University, Changsha, China.,Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Lucheng Fang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weibin Weng
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Geng-Lin Li
- Department of Otorhinolaryngology and ENT Institute, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - He Li
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yideng Huang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Otolaryngology-Head and Neck Surgery, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Renjie Chai
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Li B, Li S, Yan Z. Axonemal Dynein DNAH5 is Required for Sound Sensation in Drosophila Larvae. Neurosci Bull 2021; 37:523-534. [PMID: 33570705 DOI: 10.1007/s12264-021-00631-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/09/2020] [Indexed: 11/29/2022] Open
Abstract
Chordotonal neurons are responsible for sound sensation in Drosophila. However, little is known about how they respond to sound with high sensitivity. Using genetic labeling, we found one of the Drosophila axonemal dynein heavy chains, CG9492 (DNAH5), was specifically expressed in larval chordotonal neurons and showed a distribution restricted to proximal cilia. While DNAH5 mutation did not affect the cilium morphology or the trafficking of Inactive, a candidate auditory transduction channel, larvae with DNAH5 mutation had reduced startle responses to sound at low and medium intensities. Calcium imaging confirmed that DNAH5 functioned autonomously in chordotonal neurons for larval sound sensation. Furthermore, disrupting DNAH5 resulted in a decrease of spike firing responses to low-level sound in chordotonal neurons. Intriguingly, DNAH5 mutant larvae displayed an altered frequency tuning curve of the auditory organs. All together, our findings support a critical role of DNAH5 in tuning the frequency selectivity and the sound sensitivity of larval auditory neurons.
Collapse
Affiliation(s)
- Bingxue Li
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Songling Li
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Zhiqiang Yan
- State Key Laboratory of Medical Neurobiology and Ministry of Education Frontiers Center for Brain Science, Department of Physiology and Biophysics, Institute of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
10
|
Borghezan EDA, Pires THDS, Ikeda T, Zuanon J, Kohshima S. A Review on Fish Sensory Systems and Amazon Water Types With Implications to Biodiversity. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2020.589760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Amazon has the highest richness of freshwater organisms in the world, which has led to a multitude of hypotheses on the mechanisms that generated this biodiversity. However, most of these hypotheses focus on the spatial distance of populations, a framework that fails to provide an explicit mechanism of speciation. Ecological conditions in Amazon freshwaters can be strikingly distinct, as it has been recognized since Alfred Russel Wallace’s categorization into black, white, and blue (= clear) waters. Water types reflect differences in turbidity, dissolved organic matter, electrical conductivity, pH, amount of nutrients and lighting environment, characteristics that directly affect the sensory abilities of aquatic organisms. Since natural selection drives evolution of sensory systems to function optimally according to environmental conditions, the sensory systems of Amazon freshwater organisms are expected to vary according to their environment. When differences in sensory systems affect chances of interbreeding between populations, local adaptations may result in speciation. Here, we briefly present the limnologic characteristics of Amazonian water types and how they are expected to influence photo-, chemical-, mechano-, and electro-reception of aquatic organisms, focusing on fish. We put forward that the effect of different water types on the adaptation of sensory systems is an important mechanism that contributed to the evolution of fish diversity. We point toward underexplored research perspectives on how divergent selection may act on sensory systems and thus contribute to the origin and maintenance of the biodiversity of Amazon aquatic environments.
Collapse
|
11
|
Yen HJ, Lin JR, Yeh YH, Horng JL, Lin LY. Exposure to colistin impairs skin keratinocytes and lateral-line hair cells in zebrafish embryos. CHEMOSPHERE 2021; 263:128364. [PMID: 33297279 DOI: 10.1016/j.chemosphere.2020.128364] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 06/12/2023]
Abstract
Environmental contamination by antibiotics has become a global issue. Colistin, a cationic antimicrobial polypeptide, has been widely used in human/veterinary medicine, and growth promotion in aquaculture. However, no study has been conducted to test the toxic effects of colistin on aquatic animals. In this study, we examined the effects of colistin on zebrafish embryos. Zebrafish embryos were incubated in different concentrations (0, 0.01, 0.1, 1, 2, 3, and 10 μM) of colistin for 96 h. Colistin increased the mortality rate in a dose-dependent manner (LC50 was 3.0 μM or 3.5 mg L-1), but it did not change the hatching rate, heart rate, body length, eye size, or yolk size of embryos. However, colistin impaired keratinocytes and lateral-line hair cells in the skin of embryos. Colistin (at concentrations ≥0.1 μM) decreased the number of FM1-43-labeled hair cells and reduced the mechanotransduction-mediated Ca2+ influx at hair bundles, suggesting that sublethal concentrations of colistin can impair lateral line function. To investigate the lethal injury, morphological changes were sequentially observed in post-hatched embryos subjected to lethal concentrations of colistin. We found that skin keratinocytes were severely damaged and detached after exposure, leading to hypotonic swelling of the yolk sac, loss of ion contents, cell lysis, and eventual death. This study revealed that acute colistin exposure can impair skin cells and pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jia-Rou Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
12
|
Abstract
Myosins constitute a superfamily of actin-based molecular motor proteins that mediates a variety of cellular activities including muscle contraction, cell migration, intracellular transport, the formation of membrane projections, cell adhesion, and cell signaling. The 12 myosin classes that are expressed in humans share sequence similarities especially in the N-terminal motor domain; however, their enzymatic activities, regulation, ability to dimerize, binding partners, and cellular functions differ. It is becoming increasingly apparent that defects in myosins are associated with diseases including cardiomyopathies, colitis, glomerulosclerosis, neurological defects, cancer, blindness, and deafness. Here, we review the current state of knowledge regarding myosins and disease.
Collapse
|
13
|
Wang S, Geng Q, Huo L, Ma Y, Gao Y, Zhang W, Zhang H, Lv P, Jia Z. Transient Receptor Potential Cation Channel Subfamily Vanilloid 4 and 3 in the Inner Ear Protect Hearing in Mice. Front Mol Neurosci 2019; 12:296. [PMID: 31866822 PMCID: PMC6904345 DOI: 10.3389/fnmol.2019.00296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Accepted: 11/20/2019] [Indexed: 01/02/2023] Open
Abstract
The transient receptor potential cation channel, vanilloid type (TRPV) 3, is a member of the TRPV subfamily that is expressed predominantly in the skin, hair follicles, and gastrointestinal tract. It is also distributed in the organ of Corti of the inner ear and colocalizes with TRPV1 or TRPV4, but its role in auditory function is unknown. In the present study, we demonstrate that TRPV3 is expressed in inner hair cells (HCs) but mainly in cochlear outer HCs in mice, with expression limited to the cytoplasm and not detected in stereocilia. We compared the number of HCs as well as distortion product otoacoustic emissions (DPOAE) and auditory brainstem response (ABR) thresholds between TRPV3 knockout (V3KO) and wild-type (V3WT) mice and found that although most mutants (72.3%) had normal hearing, a significant proportion (27.7%) showed impaired hearing associated with loss of cochlear HCs. Compensatory upregulation of TRPV4 in HCs prevented HC damage and kanamycin-induced hearing loss and preserved normal auditory function in most of these mice. Thus, TRPV4 and TRPV3 in cochlear HCs protect hearing in mice; moreover, the results suggest some functional redundancy in the functions of TRPV family members. Our findings provide novel insight into the molecular basis of auditory function in mammals that can be applied to the development of strategies to mitigate hearing loss.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Qiaowei Geng
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Lifang Huo
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Yirui Ma
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Yiting Gao
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Wei Zhang
- Department of Pharmacology, Institute of Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China
| | - Hailin Zhang
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Ping Lv
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| | - Zhanfeng Jia
- Department of Pharmacology, Hebei Medical University, Shijiazhuang, China.,Center for Innovative Drug Research and Evaluation, Institute of Medical Science and Health, Hebei Medical University, Shijiazhuang, China.,The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, China.,The Key Laboratory of New Drug Pharmacology and Toxicology, Shijiazhuang, China
| |
Collapse
|
14
|
Lin LY, Hung GY, Yeh YH, Chen SW, Horng JL. Acidified water impairs the lateral line system of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 217:105351. [PMID: 31711007 DOI: 10.1016/j.aquatox.2019.105351] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Acidification of freshwater ecosystems is recognized as a global environmental problem. However, the influence of acidic water on the early stages of freshwater fish is still unclear. This study focused on the sublethal effects of acidic water on the lateral line system of zebrafish embryos. Zebrafish embryos were exposed to water at different pH values (pH 4, 5, 7, 9, and 10) for 96 (0-96 h post-fertilization (hpf)) and 48 h (48∼96 hpf). The survival rate, body length, and heart rate significantly decreased in pH 4-exposed embryos during the 96-h incubation. The number of lateral-line neuromasts and the size of otic vesicles/otoliths also decreased in pH 4-exposed embryos subjected to 96- and 48-h incubations. The number of neuromasts decreased in pH 5-exposed embryos during the 96-h incubation. Alkaline water (pH 9 and 10) did not influence embryonic development but suppressed the hatching process. The mechanotransducer channel-mediated Ca2+ influx was measured to reveal the function of lateral line hair cells. The Ca2+ influx of hair cells decreased in pH 5-exposed embryos subjected to the 48-h incubation, and both the number and Ca2+ influx of hair cells had decreased in pH 5-exposed embryos after 96 h of incubation. In addition, the number and function of hair cells were suppressed in H+-ATPase- or GCM2-knockdown embryos, which partially lost the ability to secrete acid into the ambient water. In conclusion, this study suggests that lateral line hair cells are sensitive to an acidic environment, and freshwater acidification could be a threat to the early stages of fishes.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, 11221, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan.
| |
Collapse
|
15
|
Yen HJ, Horng JL, Yu CH, Fang CY, Yeh YH, Lin LY. Toxic effects of silver and copper nanoparticles on lateral-line hair cells of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105273. [PMID: 31445453 DOI: 10.1016/j.aquatox.2019.105273] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
The potential toxicity of nanoparticles (NPs) to the early stages of fish is still unclear. In this study, we investigated the toxic effects of silver (AgNPs) and copper nanoparticles (CuNPs) on lateral-line hair cells of zebrafish embryos. Zebrafish embryos were incubated in different concentrations of AgNPs and CuNPs at 0˜96 h post-fertilization (hpf). Both AgNPs and CuNPs were found to cause toxic effects in zebrafish embryos in a dose-dependent manner. Values of the 96-h 50% lethal concentration (LC50) of AgNPs and CuNPs were 6.1 ppm (56.5 μM) and 2.61 ppm (41.1 μM), respectively. The number of FM1-43-labeled hair cells and the microstructure of hair bundles were significantly impaired by AgNPs [≥1 ppm (9.3 μM)] and CuNPs [≥0.01 ppm (0.16 μM)]. Ca2+ influxes at hair bundles of hair cells were measured with a scanning ion-selective microelectrode technique to evaluate the function of hair cells. AgNPs [≥0.1 ppm (0.9 μM)] and CuNPs [≥0.01 ppm (0.16 μM)] were both found to significantly reduce Ca2+ influxes. Similar toxic effects were also found in hatched embryos subjected to 4 h of exposure (96˜100 hpf) to AgNPs and CuNPs. This study revealed that lateral-line hair cells of zebrafish are susceptible to AgNPs and CuNPs, and these contaminants in aquatic environments could pose a threat to fish survival.
Collapse
Affiliation(s)
- Hsiu-Ju Yen
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Pediatrics, National Yang-Ming University, School of Medicine, Faculty of Medicine, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ching-Hua Yu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-Ya Fang
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei, Taiwan.
| |
Collapse
|
16
|
Corey DP, Akyuz N, Holt JR. Function and Dysfunction of TMC Channels in Inner Ear Hair Cells. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a033506. [PMID: 30291150 DOI: 10.1101/cshperspect.a033506] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The TMC1 channel was identified as a protein essential for hearing in mouse and human, and recognized as one of a family of eight such proteins in mammals. The TMC family is part of a superfamily of seven branches, which includes the TMEM16s. Vertebrate hair cells express both TMC1 and TMC2. They are located at the tips of stereocilia and are required for hair cell mechanotransduction. TMC1 assembles as a dimer and its similarity to the TMEM16s has enabled a predicted tertiary structure with an ion conduction pore in each subunit of the dimer. Cysteine mutagenesis of the pore supports the role of TMC1 and TMC2 as the core channel proteins of a larger mechanotransduction complex that includes PCDH15 and LHFPL5, and perhaps TMIE, CIB2 and others.
Collapse
Affiliation(s)
- David P Corey
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Muthu V, Rohacek AM, Yao Y, Rakowiecki SM, Brown AS, Zhao YT, Meyers J, Won KJ, Ramdas S, Brown CD, Peterson KA, Epstein DJ. Genomic architecture of Shh-dependent cochlear morphogenesis. Development 2019; 146:dev.181339. [PMID: 31488567 DOI: 10.1242/dev.181339] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/23/2019] [Indexed: 12/19/2022]
Abstract
The mammalian cochlea develops from a ventral outgrowth of the otic vesicle in response to Shh signaling. Mouse embryos lacking Shh or its essential signal transduction components display cochlear agenesis; however, a detailed understanding of the transcriptional network mediating this process is unclear. Here, we describe an integrated genomic approach to identify Shh-dependent genes and associated regulatory sequences that promote cochlear duct morphogenesis. A comparative transcriptome analysis of otic vesicles from mouse mutants exhibiting loss (Smoecko ) and gain (Shh-P1) of Shh signaling reveal a set of Shh-responsive genes partitioned into four expression categories in the ventral half of the otic vesicle. This target gene classification scheme provides novel insight into several unanticipated roles for Shh, including priming the cochlear epithelium for subsequent sensory development. We also mapped regions of open chromatin in the inner ear by ATAC-seq that, in combination with Gli2 ChIP-seq, identified inner ear enhancers in the vicinity of Shh-responsive genes. These datasets are useful entry points for deciphering Shh-dependent regulatory mechanisms involved in cochlear duct morphogenesis and establishment of its constituent cell types.
Collapse
Affiliation(s)
- Victor Muthu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yao Yao
- Department of Animal and Dairy Science, Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Staci M Rakowiecki
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ying-Tao Zhao
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James Meyers
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kyoung-Jae Won
- Biotech Research and Innovation Centre (BRIC), Novo Nordisk Foundation Center for Stem Cell Biology, DanStem, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Shweta Ramdas
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher D Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Pan B, Akyuz N, Liu XP, Asai Y, Nist-Lund C, Kurima K, Derfler BH, György B, Limapichat W, Walujkar S, Wimalasena LN, Sotomayor M, Corey DP, Holt JR. TMC1 Forms the Pore of Mechanosensory Transduction Channels in Vertebrate Inner Ear Hair Cells. Neuron 2019; 99:736-753.e6. [PMID: 30138589 DOI: 10.1016/j.neuron.2018.07.033] [Citation(s) in RCA: 229] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 06/10/2018] [Accepted: 07/19/2018] [Indexed: 11/28/2022]
Abstract
The proteins that form the permeation pathway of mechanosensory transduction channels in inner-ear hair cells have not been definitively identified. Genetic, anatomical, and physiological evidence support a role for transmembrane channel-like protein (TMC) 1 in hair cell sensory transduction, yet the molecular function of TMC proteins remains unclear. Here, we provide biochemical evidence suggesting TMC1 assembles as a dimer, along with structural and sequence analyses suggesting similarity to dimeric TMEM16 channels. To identify the pore region of TMC1, we used cysteine mutagenesis and expressed mutant TMC1 in hair cells of Tmc1/2-null mice. Cysteine-modification reagents rapidly and irreversibly altered permeation properties of mechanosensory transduction. We propose that TMC1 is structurally similar to TMEM16 channels and includes ten transmembrane domains with four domains, S4-S7, that line the channel pore. The data provide compelling evidence that TMC1 is a pore-forming component of sensory transduction channels in auditory and vestibular hair cells.
Collapse
Affiliation(s)
- Bifeng Pan
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Nurunisa Akyuz
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Xiao-Ping Liu
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Yukako Asai
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Carl Nist-Lund
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Kiyoto Kurima
- Molecular Biology and Genetics Section, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Bruce H Derfler
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Bence György
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Walrati Limapichat
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Lahiru N Wimalasena
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - David P Corey
- Department of Neurobiology and Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA.
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Hung GY, Wu CL, Chou YL, Chien CT, Horng JL, Lin LY. Cisplatin exposure impairs ionocytes and hair cells in the skin of zebrafish embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 209:168-177. [PMID: 30784778 DOI: 10.1016/j.aquatox.2019.02.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/11/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
This study aimed to assess the sublethal effects of a platinum-based compound, cisplatin, using a zebrafish model. Zebrafish embryos were incubated in different concentrations of cisplatin at 0-96 h post-fertilization. Using a non-invasive, scanning ion-selective electrode technique (SIET), we measured the functions of hair cells (Ca2+ influx) and ionocytes ([H+] gradients). The survival rate, hatching rate, phenotype, body length, whole-body ion (Na+, Cl-, and Ca2+) and Pt contents were also determined. The effects of cisplatin on zebrafish embryos were demonstrated as first impairing hair cell function (at 1 μM of cisplatin), the hair cell number, and body ion content of Cl- (at 10 μM of cisplatin), then decreasing ionocyte acid secretion and overall body ion contents of Na+ and Ca2+ (at 50 μM of cisplatin). The body length and ionocyte density decreased at 100 μM of cisplatin, and survival decreased at 500 μM of cisplatin. As the cisplatin concentration increased, the accumulation of Pt in fish embryos also increased. These results revealed that hair cells are significantly more susceptible to cisplatin toxicity than ionocytes. By determining the lowest observed effective concentration of cisplatin that caused in vivo functional alterations of zebrafish hair cells and skin ionocytes, this model demonstrated 500-fold greater sensitivity than by detecting changes in survival, for early assessment of the effects of platinum-based chemotherapeutic drugs on fish.
Collapse
Affiliation(s)
- Giun-Yi Hung
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan; Division of Pediatric Hematology and Oncology, Department of Pediatrics, Taipei Veterans General Hospital, Taipei 11217, Taiwan; Department of Pediatrics, Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan
| | - Ciao-Ling Wu
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Yi-Ling Chou
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan
| | - Li-Yih Lin
- Department of Life Science, School of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan.
| |
Collapse
|
20
|
Roy P, Perrin BJ. The stable actin core of mechanosensory stereocilia features continuous turnover of actin cross-linkers. Mol Biol Cell 2018; 29:1856-1865. [PMID: 29874122 PMCID: PMC6085822 DOI: 10.1091/mbc.e18-03-0196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Stereocilia are mechanosensitive protrusions on the surfaces of sensory hair cells in the inner ear that detect sound, gravity, and head movement. Their cores are composed of parallel actin filaments that are cross-linked and stabilized by several actin-binding proteins, including fascin-2, plastin-1, espin, and XIRP2. The actin filaments are the most stable known, with actin turnover primarily occurring at the stereocilia tips. While stereocilia actin dynamics has been well studied, little is known about the behavior of the actin cross-linking proteins, which are the most abundant type of protein in stereocilia after actin and are critical for stereocilia morphogenesis and maintenance. Here, we developed a novel transgenic mouse to monitor EGFP-fascin-2 incorporation. In contrast to actin, EGFP-fascin-2 readily enters the stereocilia core. We also compared the effect of EGFP-fascin-2 expression on developing and mature stereocilia. When it was induced during hair cell development, we observed increases in both stereocilia length and width. Interestingly, stereocilia size was not affected when EGFP-fascin-2 was induced in adult stereocilia. Regardless of the time of induction, EGFP-fascin-2 displaced both espin and plastin-1 from stereocilia. Altering the actin cross-linker composition, even as the actin filaments exhibit little to no turnover, provides a mechanism for ongoing remodeling and repair important for stereocilia homeostasis.
Collapse
Affiliation(s)
- Pallabi Roy
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202
| | - Benjamin J Perrin
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202
| |
Collapse
|
21
|
Lin LY, Yeh YH, Hung GY, Lin CH, Hwang PP, Horng JL. Role of Calcium-Sensing Receptor in Mechanotransducer-Channel-Mediated Ca 2+ Influx in Hair Cells of Zebrafish Larvae. Front Physiol 2018; 9:649. [PMID: 29899708 PMCID: PMC5988855 DOI: 10.3389/fphys.2018.00649] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 05/14/2018] [Indexed: 01/16/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is an extracellular Ca2+ sensor that plays a critical role in maintaining Ca2+ homeostasis in several organs, including the parathyroid gland and kidneys. In this study, through in situ hybridization, the expression of CaSR mRNA was found in the neuromasts of zebrafish larvae. Immunohistochemistry further demonstrated that the CaSR protein was present in neuromast hair cell stereocilia and basolateral membranes. Based on the expression and subcellular localization of the CaSR in hair cells, we hypothesized that the CaSR is expressed in zebrafish lateral-line hair cells to regulate mechanotransducer (MET)-channel-mediated Ca2+ entry. Using the scanning ion-selective electrode technique, MET-channel-mediated Ca2+ influx at the stereocilia of hair cells was measured in intact larvae. Ca2+ influx was suppressed after larvae were pretreated with a CaSR activator (R-568) or high-Ca2+ (HCa) medium. Gene knockdown by using morpholino oligonucleotides decreased CaSR expression in hair cells and eliminated the effects of R-568 and HCa on Ca2+ influx. In addition, we found that treatment with R-568 attenuated neomycin-induced hair cell death. This study is the first to demonstrate that the CaSR is involved in mechanotransduction in zebrafish hair cells.
Collapse
Affiliation(s)
- Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ya-Hsin Yeh
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Giun-Yi Hung
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Hao Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
22
|
Qiu X, Müller U. Mechanically Gated Ion Channels in Mammalian Hair Cells. Front Cell Neurosci 2018; 12:100. [PMID: 29755320 PMCID: PMC5932396 DOI: 10.3389/fncel.2018.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/26/2018] [Indexed: 01/05/2023] Open
Abstract
Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET) channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS)/LHFPL5, transmembrane inner ear (TMIE) and transmembrane channel-like proteins 1 and 2 (TMC1/2). However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.
Collapse
Affiliation(s)
- Xufeng Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ulrich Müller
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
23
|
Moser T. [Molecular Understanding of Hearing - How Does This Matter to the Hearing Impaired?]. Laryngorhinootologie 2018; 97:S214-S230. [PMID: 29905358 PMCID: PMC6541096 DOI: 10.1055/s-0043-121595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This review addresses the advances of our molecular understanding of hearing and how this benefits the hearing impaired. Classical biochemical methods usually fall short in contributing to the analysis of the molecular mechanisms of hearing e. g. in the cochlea, the auditory part of the inner ear, due to the scarcity of the cells of interest. Genetics, molecular cell biology, and physiology, on the other hand, have elucidated the intricate molecular and cellular mechanisms that bring about the outstanding performance of the auditory system. Many of those mechanisms are quite unique and specialized to serve the specific needs of hearing. Hence, their defects often spare other organs and lead to specific non-syndromic deafness. High throughput sequencing can reveal causes of sporadic deafness when combined with careful bioinformatics. Molecular approaches are also helpful for understanding more common forms of hearing impairment such as noise-induced hearing impairment. While molecular therapies are not yet clinically available, careful molecular genetic analysis helps to counsel the hearing impaired subjects.
Collapse
Affiliation(s)
- Tobias Moser
- Institut für Auditorische Neurowissenschaften, Universitätsmedizin Göttingen
| |
Collapse
|
24
|
Rigon F, Gasparini F, Shimeld SM, Candiani S, Manni L. Developmental signature, synaptic connectivity and neurotransmission are conserved between vertebrate hair cells and tunicate coronal cells. J Comp Neurol 2018; 526:957-971. [PMID: 29277977 DOI: 10.1002/cne.24382] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/15/2017] [Accepted: 12/18/2017] [Indexed: 11/08/2022]
Abstract
In tunicates, the coronal organ represents a sentinel checking particle entrance into the pharynx. The organ differentiates from an anterior embryonic area considered a proto-placode. For their embryonic origin, morphological features and function, coronal sensory cells have been hypothesized to be homologues to vertebrate hair cells. However, vertebrate hair cells derive from a posterior placode. This contradicts one of the principle historical criteria for homology, similarity of position, which could be taken as evidence against coronal cells/hair cells homology. In the tunicates Ciona intestinalis and C. robusta, we found that the coronal organ expresses genes (Atoh, Notch, Delta-like, Hairy-b, and Musashi) characterizing vertebrate neural and hair cell development. Moreover, coronal cells exhibit a complex synaptic connectivity pattern, and express neurotransmitters (Glu, ACh, GABA, 5-HT, and catecholamines), or enzymes for their synthetic machinery, involved in hair cell activity. Lastly, coronal cells express the Trpa gene, which encodes an ion channel expressed in hair cells. These data lead us to hypothesize a model in which competence to make secondary mechanoreceptors was initially broadly distributed through placode territories, but has become confined to different placodes during the evolution of the vertebrate and tunicate lineages.
Collapse
Affiliation(s)
- Francesca Rigon
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | - Fabio Gasparini
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| | | | - Simona Candiani
- Dipartimento di Scienze della Terra dell'Ambiente e della Vita, Università di Genova, Genova, Italy
| | - Lucia Manni
- Dipartimento di Biologia, Università di Padova, Padova, Italy
| |
Collapse
|
25
|
Rohacek AM, Bebee TW, Tilton RK, Radens CM, McDermott-Roe C, Peart N, Kaur M, Zaykaner M, Cieply B, Musunuru K, Barash Y, Germiller JA, Krantz ID, Carstens RP, Epstein DJ. ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 2017; 43:318-331.e5. [PMID: 29107558 PMCID: PMC5687886 DOI: 10.1016/j.devcel.2017.09.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 08/15/2017] [Accepted: 08/26/2017] [Indexed: 12/30/2022]
Abstract
Alternative splicing contributes to gene expression dynamics in many tissues, yet its role in auditory development remains unclear. We performed whole-exome sequencing in individuals with sensorineural hearing loss (SNHL) and identified pathogenic mutations in Epithelial Splicing-Regulatory Protein 1 (ESRP1). Patient-derived induced pluripotent stem cells showed alternative splicing defects that were restored upon repair of an ESRP1 mutant allele. To determine how ESRP1 mutations cause hearing loss, we evaluated Esrp1-/- mouse embryos and uncovered alterations in cochlear morphogenesis, auditory hair cell differentiation, and cell fate specification. Transcriptome analysis revealed impaired expression and splicing of genes with essential roles in cochlea development and auditory function. Aberrant splicing of Fgfr2 blocked stria vascularis formation due to erroneous ligand usage, which was corrected by reducing Fgf9 gene dosage. These findings implicate mutations in ESRP1 as a cause of SNHL and demonstrate the complex interplay between alternative splicing, inner ear development, and auditory function.
Collapse
Affiliation(s)
- Alex M Rohacek
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Thomas W Bebee
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Richard K Tilton
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caleb M Radens
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - Chris McDermott-Roe
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Natoya Peart
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Maninder Kaur
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michael Zaykaner
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Benjamin Cieply
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kiran Musunuru
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yoseph Barash
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | - John A Germiller
- Division of Pediatric Otolaryngology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ian D Krantz
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Russ P Carstens
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Douglas J Epstein
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Clinical Research Building, Room 463, 415 Curie Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
26
|
Neuroplastin Isoform Np55 Is Expressed in the Stereocilia of Outer Hair Cells and Required for Normal Outer Hair Cell Function. J Neurosci 2017; 36:9201-16. [PMID: 27581460 DOI: 10.1523/jneurosci.0093-16.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 07/14/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Neuroplastin (Nptn) is a member of the Ig superfamily and is expressed in two isoforms, Np55 and Np65. Np65 regulates synaptic transmission but the function of Np55 is unknown. In an N-ethyl-N-nitrosaurea mutagenesis screen, we have now generated a mouse line with an Nptn mutation that causes deafness. We show that Np55 is expressed in stereocilia of outer hair cells (OHCs) but not inner hair cells and affects interactions of stereocilia with the tectorial membrane. In vivo vibrometry demonstrates that cochlear amplification is absent in Nptn mutant mice, which is consistent with the failure of OHC stereocilia to maintain stable interactions with the tectorial membrane. Hair bundles show morphological defects as the mutant mice age and while mechanotransduction currents can be evoked in early postnatal hair cells, cochlea microphonics recordings indicate that mechanontransduction is affected as the mutant mice age. We thus conclude that differential splicing leads to functional diversification of Nptn, where Np55 is essential for OHC function, while Np65 is implicated in the regulation of synaptic function. SIGNIFICANCE STATEMENT Amplification of input sound signals, which is needed for the auditory sense organ to detect sounds over a wide intensity range, depends on mechanical coupling of outer hair cells to the tectorial membrane. The current study shows that neuroplastin, a member of the Ig superfamily, which has previously been linked to the regulation of synaptic plasticity, is critical to maintain a stable mechanical link of outer hair cells with the tectorial membrane. In vivo recordings demonstrate that neuroplastin is essential for sound amplification and that mutation in neuroplastin leads to auditory impairment in mice.
Collapse
|
27
|
Mittal R, Nguyen D, Patel AP, Debs LH, Mittal J, Yan D, Eshraghi AA, Van De Water TR, Liu XZ. Recent Advancements in the Regeneration of Auditory Hair Cells and Hearing Restoration. Front Mol Neurosci 2017; 10:236. [PMID: 28824370 PMCID: PMC5534485 DOI: 10.3389/fnmol.2017.00236] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/11/2017] [Indexed: 12/18/2022] Open
Abstract
Neurosensory responses of hearing and balance are mediated by receptors in specialized neuroepithelial sensory cells. Any disruption of the biochemical and molecular pathways that facilitate these responses can result in severe deficits, including hearing loss and vestibular dysfunction. Hearing is affected by both environmental and genetic factors, with impairment of auditory function being the most common neurosensory disorder affecting 1 in 500 newborns, as well as having an impact on the majority of elderly population. Damage to auditory sensory cells is not reversible, and if sufficient damage and cell death have taken place, the resultant deficit may lead to permanent deafness. Cochlear implants are considered to be one of the most successful and consistent treatments for deaf patients, but only offer limited recovery at the expense of loss of residual hearing. Recently there has been an increased interest in the auditory research community to explore the regeneration of mammalian auditory hair cells and restoration of their function. In this review article, we examine a variety of recent therapies, including genetic, stem cell and molecular therapies as well as discussing progress being made in genome editing strategies as applied to the restoration of hearing function.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Desiree Nguyen
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Amit P. Patel
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Luca H. Debs
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Jeenu Mittal
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Adrien A. Eshraghi
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Thomas R. Van De Water
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
| | - Xue Z. Liu
- Department of Otolaryngology, University of Miami Miller School of MedicineMiami, FL, United States
- Department of Otolaryngology, Xiangya Hospital, Central South UniversityChangsha, China
| |
Collapse
|
28
|
Myosin 7 and its adaptors link cadherins to actin. Nat Commun 2017; 8:15864. [PMID: 28660889 PMCID: PMC5493754 DOI: 10.1038/ncomms15864] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/03/2017] [Indexed: 12/17/2022] Open
Abstract
Cadherin linkages between adjacent stereocilia and microvilli are essential for mechanotransduction and maintaining their organization. They are anchored to actin through interaction of their cytoplasmic domains with related tripartite complexes consisting of a class VII myosin and adaptor proteins: Myo7a/SANS/Harmonin in stereocilia and Myo7b/ANKS4B/Harmonin in microvilli. Here, we determine high-resolution structures of Myo7a and Myo7b C-terminal MyTH4-FERM domain (MF2) and unveil how they recognize harmonin using a novel binding mode. Systematic definition of interactions between domains of the tripartite complex elucidates how the complex assembles and prevents possible self-association of harmonin-a. Several Myo7a deafness mutants that map to the surface of MF2 disrupt harmonin binding, revealing the molecular basis for how they impact the formation of the tripartite complex and disrupt mechanotransduction. Our results also suggest how switching between different harmonin isoforms can regulate the formation of networks with Myo7a motors and coordinate force sensing in stereocilia. Cadherin is essential for mechanotransduction and myosin-adaptor-harmonin complexes anchor it to actin. Here the authors present the structures of myosin 7 MF2 domains bound to the harmonin PDZ3c domain and give insights into myosin-adaptor-harmonin complex assembly.
Collapse
|
29
|
Cunningham CL, Wu Z, Jafari A, Zhao B, Schrode K, Harkins-Perry S, Lauer A, Müller U. The murine catecholamine methyltransferase mTOMT is essential for mechanotransduction by cochlear hair cells. eLife 2017; 6:e24318. [PMID: 28504928 PMCID: PMC5462538 DOI: 10.7554/elife.24318] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/14/2017] [Indexed: 12/26/2022] Open
Abstract
Hair cells of the cochlea are mechanosensors for the perception of sound. Mutations in the LRTOMT gene, which encodes a protein with homology to the catecholamine methyltransferase COMT that is linked to schizophrenia, cause deafness. Here, we show that Tomt/Comt2, the murine ortholog of LRTOMT, has an unexpected function in the regulation of mechanotransduction by hair cells. The role of mTOMT in hair cells is independent of mTOMT methyltransferase function and mCOMT cannot substitute for mTOMT function. Instead, mTOMT binds to putative components of the mechanotransduction channel in hair cells and is essential for the transport of some of these components into the mechanically sensitive stereocilia of hair cells. Our studies thus suggest functional diversification between mCOMT and mTOMT, where mTOMT is critical for the assembly of the mechanotransduction machinery of hair cells. Defects in this process are likely mechanistically linked to deafness caused by mutations in LRTOMT/Tomt.
Collapse
Affiliation(s)
- Christopher L Cunningham
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Zizhen Wu
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| | - Aria Jafari
- Department of Surgery, University of California, San Diego, San Diego, United States
| | - Bo Zhao
- Department of Otolaryngology Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, United States
| | - Kat Schrode
- Department of Otolaryngology, Johns Hopkins University, Baltimore, United States
| | - Sarah Harkins-Perry
- Department of Molecular and Cellular Biology, The Scripps Research Institute, La Jolla, United States
| | - Amanda Lauer
- Department of Otolaryngology, Johns Hopkins University, Baltimore, United States
| | - Ulrich Müller
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
30
|
Global Analysis of Protein Expression of Inner Ear Hair Cells. J Neurosci 2016; 37:1320-1339. [PMID: 28039372 DOI: 10.1523/jneurosci.2267-16.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 11/21/2022] Open
Abstract
The mammalian inner ear (IE) subserves auditory and vestibular sensations via highly specialized cells and proteins. Sensory receptor hair cells (HCs) are necessary for transducing mechanical inputs and stimulating sensory neurons by using a host of known and as yet unknown protein machinery. To understand the protein composition of these unique postmitotic cells, in which irreversible protein degradation or damage can lead to impaired hearing and balance, we analyzed IE samples by tandem mass spectrometry to generate an unbiased, shotgun-proteomics view of protein identities and abundances. By using Pou4f3/eGFP-transgenic mice in which HCs express GFP driven by Pou4f3, we FACS purified a population of HCs to analyze and compare the HC proteome with other IE subproteomes from sensory epithelia and whole IE. We show that the mammalian HC proteome comprises hundreds of uniquely or highly expressed proteins. Our global proteomic analysis of purified HCs extends the existing HC transcriptome, revealing previously undetected gene products and isoform-specific protein expression. Comparison of our proteomic data with mouse and human databases of genetic auditory/vestibular impairments confirms the critical role of the HC proteome for normal IE function, providing a cell-specific pool of candidates for novel, important HC genes. Several proteins identified exclusively in HCs by proteomics and verified by immunohistochemistry map to human genetic deafness loci, potentially representing new deafness genes. SIGNIFICANCE STATEMENT Hearing and balance rely on specialized sensory hair cells (HCs) in the inner ear (IE) to convey information about sound, acceleration, and orientation to the brain. Genetically and environmentally induced perturbations to HC proteins can result in deafness and severe imbalance. We used transgenic mice with GFP-expressing HCs, coupled with FACS sorting and tandem mass spectrometry, to define the most complete HC and IE proteome to date. We show that hundreds of proteins are uniquely identified or enriched in HCs, extending previous gene expression analyses to reveal novel HC proteins and isoforms. Importantly, deafness-linked proteins were significantly enriched in HCs, suggesting that this in-depth proteomic analysis of IE sensory cells may hold potential for deafness gene discovery.
Collapse
|
31
|
Araujo JV, Rifaie-Graham O, Apebende EA, Bruns N. Self-reporting Polymeric Materials with Mechanochromic Properties. BIO-INSPIRED POLYMERS 2016. [DOI: 10.1039/9781782626664-00354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The mechanical transduction of force onto molecules is an essential feature of many biological processes that results in the senses of touch and hearing, gives important cues for cellular interactions and can lead to optically detectable signals, such as a change in colour, fluorescence or chemoluminescence. Polymeric materials that are able to visually indicate deformation, stress, strain or the occurrence of microdamage draw inspiration from these biological events. The field of self-reporting (or self-assessing) materials is reviewed. First, mechanochromic events in nature are discussed, such as the formation of bruises on skin, the bleeding of a wound, or marine glow caused by dinoflagellates. Then, materials based on force-responsive mechanophores, such as spiropyrans, cyclobutanes, cyclooctanes, Diels–Alder adducts, diarylbibenzofuranone and bis(adamantyl)-1,2-dioxetane are reviewed, followed by mechanochromic blends, chromophores stabilised by hydrogen bonds, and pressure sensors based on ionic interactions between fluorescent dyes and polyelectrolyte brushes. Mechanobiochemistry is introduced as an important tool to create self-reporting hybrid materials that combine polymers with the force-responsive properties of fluorescent proteins, protein FRET pairs, and other biomacromolecules. Finally, dye-filled microcapsules, microvascular networks, and hollow fibres are demonstrated to be important technologies to create damage-indicating coatings, self-reporting fibre-reinforced composites and self-healing materials.
Collapse
Affiliation(s)
- Jose V. Araujo
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Omar Rifaie-Graham
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Edward A. Apebende
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| | - Nico Bruns
- Adolphe Merkle Institute, University of Fribourg Chemin des Verdiers 4 1700 Fribourg Switzerland
| |
Collapse
|
32
|
Takahashi S, Mui VJ, Rosenberg SK, Homma K, Cheatham MA, Zheng J. Cadherin 23-C Regulates Microtubule Networks by Modifying CAMSAP3's Function. Sci Rep 2016; 6:28706. [PMID: 27349180 PMCID: PMC4923861 DOI: 10.1038/srep28706] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 06/08/2016] [Indexed: 02/05/2023] Open
Abstract
Cadherin-related 23 (CDH23) is an adhesive protein important for hearing and vision, while CAMSAP3/Marshalin is a microtubule (MT) minus-end binding protein that regulates MT networks. Although both CDH23 and CAMSAP3/Marshalin are expressed in the organ of Corti, and carry several protein-protein interaction domains, no functional connection between these two proteins has been proposed. In this report, we demonstrate that the C isoform of CDH23 (CDH23-C) directly binds to CAMSAP3/Marshalin and modifies its function by inhibiting CAMSAP3/Marshalin-induced bundle formation, a process that requires a tubulin-binding domain called CKK. We further identified a conserved N-terminal region of CDH23-C that binds to the CKK domain. This CKK binding motif (CBM) is adjacent to the domain that interacts with harmonin, a binding partner of CDH23 implicated in deafness. Because the human Usher Syndrome 1D-associated mutation, CDH23 R3175H, maps to the CBM, we created a matched mutation in mouse CDH23-C at R55H. Both in vivo and in vitro assays decreased the ability of CDH23-C to interact with CAMSAP3/Marshalin, indicating that the interaction between CDH23 and CAMSAP3/Marshalin plays a vital role in hearing and vision. Together, our data suggest that CDH23-C is a CAMSAP3/Marshalin-binding protein that can modify MT networks indirectly through its interaction with CAMSAP3/Marshalin.
Collapse
Affiliation(s)
- Satoe Takahashi
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Vincent J Mui
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Samuel K Rosenberg
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA
| | - Kazuaki Homma
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Mary Ann Cheatham
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL 60208, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| | - Jing Zheng
- Department of Otolaryngology - Head and Neck Surgery, Feinberg School of Medicine, Northwestern University, Chicago IL 60611, USA.,Knowles Hearing Center, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
33
|
Annexin A5 is the Most Abundant Membrane-Associated Protein in Stereocilia but is Dispensable for Hair-Bundle Development and Function. Sci Rep 2016; 6:27221. [PMID: 27251877 PMCID: PMC4890179 DOI: 10.1038/srep27221] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 05/17/2016] [Indexed: 01/26/2023] Open
Abstract
The phospholipid- and Ca(2+)-binding protein annexin A5 (ANXA5) is the most abundant membrane-associated protein of ~P23 mouse vestibular hair bundles, the inner ear's sensory organelle. Using quantitative mass spectrometry, we estimated that ANXA5 accounts for ~15,000 copies per stereocilium, or ~2% of the total protein there. Although seven other annexin genes are expressed in mouse utricles, mass spectrometry showed that none were present at levels near ANXA5 in bundles and none were upregulated in stereocilia of Anxa5(-/-) mice. Annexins have been proposed to mediate Ca(2+)-dependent repair of membrane lesions, which could be part of the repair mechanism in hair cells after noise damage. Nevertheless, mature Anxa5(-/-) mice not only have normal hearing and balance function, but following noise exposure, they are identical to wild-type mice in their temporary or permanent changes in hearing sensitivity. We suggest that despite the unusually high levels of ANXA5 in bundles, it does not play a role in the bundle's key function, mechanotransduction, at least until after two months of age in the cochlea and six months of age in the vestibular system. These results reinforce the lack of correlation between abundance of a protein in a specific compartment or cellular structure and its functional significance.
Collapse
|
34
|
Diverse Roles of Axonemal Dyneins in Drosophila Auditory Neuron Function and Mechanical Amplification in Hearing. Sci Rep 2015; 5:17085. [PMID: 26608786 PMCID: PMC4660584 DOI: 10.1038/srep17085] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/26/2015] [Indexed: 12/24/2022] Open
Abstract
Much like vertebrate hair cells, the chordotonal sensory neurons that mediate hearing in Drosophila are motile and amplify the mechanical input of the ear. Because the neurons bear mechanosensory primary cilia whose microtubule axonemes display dynein arms, we hypothesized that their motility is powered by dyneins. Here, we describe two axonemal dynein proteins that are required for Drosophila auditory neuron function, localize to their primary cilia, and differently contribute to mechanical amplification in hearing. Promoter fusions revealed that the two axonemal dynein genes Dmdnah3 (=CG17150) and Dmdnai2 (=CG6053) are expressed in chordotonal neurons, including the auditory ones in the fly’s ear. Null alleles of both dyneins equally abolished electrical auditory neuron responses, yet whereas mutations in Dmdnah3 facilitated mechanical amplification, amplification was abolished by mutations in Dmdnai2. Epistasis analysis revealed that Dmdnah3 acts downstream of Nan-Iav channels in controlling the amplificatory gain. Dmdnai2, in addition to being required for amplification, was essential for outer dynein arms in auditory neuron cilia. This establishes diverse roles of axonemal dyneins in Drosophila auditory neuron function and links auditory neuron motility to primary cilia and axonemal dyneins. Mutant defects in sperm competition suggest that both dyneins also function in sperm motility.
Collapse
|
35
|
Faber-Hammond J, Samanta MP, Whitchurch EA, Manning D, Sisneros JA, Coffin AB. Saccular Transcriptome Profiles of the Seasonal Breeding Plainfin Midshipman Fish (Porichthys notatus), a Teleost with Divergent Sexual Phenotypes. PLoS One 2015; 10:e0142814. [PMID: 26560106 PMCID: PMC4641692 DOI: 10.1371/journal.pone.0142814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/27/2015] [Indexed: 11/18/2022] Open
Abstract
Acoustic communication is essential for the reproductive success of the plainfin midshipman fish (Porichthys notatus). During the breeding season, type I males use acoustic cues to advertise nest location to potential mates, creating an audible signal that attracts reproductive females. Type II (sneaker) males also likely use this social acoustic signal to find breeding pairs from which to steal fertilizations. Estrogen-induced changes in the auditory system of breeding females are thought to enhance neural encoding of the advertisement call, and recent anatomical data suggest the saccule (the main auditory end organ) as one possible target for this seasonal modulation. Here we describe saccular transcriptomes from all three sexual phenotypes (females, type I and II males) collected during the breeding season as a first step in understanding the mechanisms underlying sexual phenotype-specific and seasonal differences in auditory function. We used RNA-Seq on the Ion Torrent platform to create a combined transcriptome dataset containing over 79,000 assembled transcripts representing almost 9,000 unique annotated genes. These identified genes include several with known inner ear function and multiple steroid hormone receptors. Transcripts most closely matched to published genomes of nile tilapia and large yellow croaker, inconsistent with the phylogenetic relationship between these species but consistent with the importance of acoustic communication in their life-history strategies. We then compared the RNA-Seq results from the saccules of reproductive females with a separate transcriptome from the non-reproductive female phenotype and found over 700 differentially expressed transcripts, including members of the Wnt and Notch signaling pathways that mediate cell proliferation and hair cell addition in the inner ear. These data constitute a valuable resource for furthering our understanding of the molecular basis for peripheral auditory function as well as a range of future midshipman and cross-species comparative studies of the auditory periphery.
Collapse
Affiliation(s)
- Joshua Faber-Hammond
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | | | - Elizabeth A. Whitchurch
- Department of Biological Sciences, Humboldt State University, Arcata, CA, United States of America
| | - Dustin Manning
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
| | - Joseph A. Sisneros
- Department of Psychology, University of Washington, Seattle, WA, United States of America
| | - Allison B. Coffin
- College of Arts and Sciences, Washington State University, Vancouver, WA, United States of America
- Department of Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, United States of America
- * E-mail:
| |
Collapse
|
36
|
Beurg M, Kim KX, Fettiplace R. Conductance and block of hair-cell mechanotransducer channels in transmembrane channel-like protein mutants. ACTA ACUST UNITED AC 2015; 144:55-69. [PMID: 24981230 PMCID: PMC4076520 DOI: 10.1085/jgp.201411173] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Proteins other than TMC1 and TMC2 must contribute to the pore of the mechanotransducer channel of cochlear hair cells; an external vestibule subject to disruption in Tmc mutants may influence the channel’s properties. Transmembrane channel–like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after tip link destruction with BAPTA or after attenuating the MT current with GsMTx-4, a peptide toxin we found to block the channels with high affinity. In both cases, the MT channels in outer hair cells (OHCs) of wild-type mice displayed a tonotopic gradient in conductance, with channels from the cochlear base having a conductance (110 pS) nearly twice that of those at the apex (62 pS). This gradient was absent, with channels at both cochlear locations having similar small conductances, with two different Tmc1 mutations. The conductance of MT channels in inner hair cells was invariant with cochlear location but, as in OHCs, was reduced in either Tmc1 mutant. The gradient of OHC conductance also disappeared in Tmc1/Tmc2 double mutants, in which a mechanically sensitive current could be activated by anomalous negative displacements of the hair bundle. This “reversed stimulus–polarity” current was seen with two different Tmc1/Tmc2 double mutants, and with Tmc1/Tmc2/Tmc3 triple mutants, and had a pharmacological sensitivity comparable to that of native MT currents for most antagonists, except dihydrostreptomycin, for which the affinity was less, and for curare, which exhibited incomplete block. The existence in the Tmc1/Tmc2 double mutants of MT channels with most properties resembling those of wild-type channels indicates that proteins other than TMCs must be part of the channel pore. We suggest that an external vestibule of the MT channel may partly account for the channel’s large unitary conductance, high Ca2+ permeability, and pharmacological profile, and that this vestibule is disrupted in Tmc mutants.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of Wisconsin Medical School, Madison, WI 53706
| | - Kyunghee X Kim
- Department of Neuroscience, University of Wisconsin Medical School, Madison, WI 53706
| | - Robert Fettiplace
- Department of Neuroscience, University of Wisconsin Medical School, Madison, WI 53706
| |
Collapse
|
37
|
The proteome of mouse vestibular hair bundles over development. Sci Data 2015; 2:150047. [PMID: 26401315 PMCID: PMC4570149 DOI: 10.1038/sdata.2015.47] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/13/2015] [Indexed: 01/07/2023] Open
Abstract
Development of the vertebrate hair bundle is a precisely orchestrated event that culminates in production of a tightly ordered arrangement of actin-rich stereocilia and a single axonemal kinocilium. To understand how the protein composition of the bundle changes during development, we isolated bundles from young (postnatal days P4-P6) and mature (P21-P25) mouse utricles using the twist-off method, then characterized their constituent proteins using liquid-chromatography tandem mass spectrometry with data-dependent acquisition. Using MaxQuant and label-free quantitation, we measured relative abundances of proteins in both bundles and in the whole utricle; comparison of protein abundance between the two fractions allows calculation of enrichment in bundles. These data, which are available via ProteomeXchange with identifier PXD002167, will be useful for examining the proteins present in mammalian vestibular bundles and how their concentrations change over development.
Collapse
|
38
|
Zhao B, Müller U. The elusive mechanotransduction machinery of hair cells. Curr Opin Neurobiol 2015; 34:172-9. [PMID: 26342686 DOI: 10.1016/j.conb.2015.08.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Revised: 08/06/2015] [Accepted: 08/18/2015] [Indexed: 11/18/2022]
Abstract
Hair cells in the mammalian cochlea are specialized sensory cells that convert mechanical signals evoked by sound waves into electrochemical signals. Several integral membrane proteins have recently been identified that are closely linked to the mechanotransduction process. Efforts are under way to determine the extent to which they are subunits of the long thought-after mechanotransduction channel. Recent findings also suggest that mechanotransduction may have a role in fine tuning the length of the stereocilia and thus in the regulation of morphological features of hair cells that are inherently linked to the mechanotransduction process.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States
| | - Ulrich Müller
- Department of Molecular and Cellular Neuroscience, Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA 92037, United States.
| |
Collapse
|
39
|
Abstract
Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.
Collapse
Affiliation(s)
- Patrick C Kerstein
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Robert H Nichol
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| | - Timothy M Gomez
- Neuroscience Training Program, Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison Madison, WI, USA
| |
Collapse
|
40
|
Meisenberg A, Kaschuba D, Balfanz S, Jordan N, Baumann A. Molecular and functional profiling of histamine receptor-mediated calcium ion signals in different cell lines. Anal Biochem 2015; 486:96-101. [PMID: 26151682 DOI: 10.1016/j.ab.2015.06.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/16/2015] [Accepted: 06/30/2015] [Indexed: 11/30/2022]
Abstract
Calcium ions (Ca(2+)) play a pivotal role in cellular physiology. Often Ca(2+)-dependent processes are studied in commonly available cell lines. To induce Ca(2+) signals on demand, cells may need to be equipped with additional proteins. A prominent group of membrane proteins evoking Ca(2+) signals are G-protein coupled receptors (GPCRs). These proteins register external signals such as photons, odorants, and neurotransmitters and convey ligand recognition into cellular responses, one of which is Ca(2+) signaling. To avoid receptor cross-talk or cross-activation with introduced proteins, the repertoire of cell-endogenous receptors must be known. Here we examined the presence of histamine receptors in six cell lines frequently used as hosts to study cellular signaling processes. In a concentration-dependent manner, histamine caused a rise in intracellular Ca(2+) in HeLa, HEK 293, and COS-1 cells. The concentration for half-maximal activation (EC50) was in the low micromolar range. In individual cells, transient Ca(2+) signals and Ca(2+) oscillations were uncovered. The results show that (i) HeLa, HEK 293, and COS-1 cells express sufficient amounts of endogenous receptors to study cellular Ca(2+) signaling processes directly and (ii) these cell lines are suitable for calibrating Ca(2+) biosensors in situ based on histamine receptor evoked responses.
Collapse
Affiliation(s)
- Annika Meisenberg
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Dagmar Kaschuba
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Sabine Balfanz
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Nadine Jordan
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Arnd Baumann
- Institute of Complex Systems, Cellular Biophysics (ICS-4), Forschungszentrum Jülich, D-52425 Jülich, Germany.
| |
Collapse
|
41
|
Wichmann C, Moser T. Relating structure and function of inner hair cell ribbon synapses. Cell Tissue Res 2015; 361:95-114. [PMID: 25874597 PMCID: PMC4487357 DOI: 10.1007/s00441-014-2102-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 12/18/2014] [Indexed: 01/28/2023]
Abstract
In the mammalian cochlea, sound is encoded at synapses between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs). Each SGN receives input from a single IHC ribbon-type active zone (AZ) and yet SGNs indefatigably spike up to hundreds of Hz to encode acoustic stimuli with submillisecond precision. Accumulating evidence indicates a highly specialized molecular composition and structure of the presynapse, adapted to suit these high functional demands. However, we are only beginning to understand key features such as stimulus-secretion coupling, exocytosis mechanisms, exo-endocytosis coupling, modes of endocytosis and vesicle reformation, as well as replenishment of the readily releasable pool. Relating structure and function has become an important avenue in addressing these points and has been applied to normal and genetically manipulated hair cell synapses. Here, we review some of the exciting new insights gained from recent studies of the molecular anatomy and physiology of IHC ribbon synapses.
Collapse
Affiliation(s)
- C. Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
| | - T. Moser
- Collaborative Research Center 889, University Medical Center Göttingen, Göttingen, Germany
- Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Göttingen, Göttingen, Germany
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain, University of Göttingen, Göttingen, Germany
- Bernstein Center for Computational Neuroscience, University of Göttingen, Göttingen, Germany
| |
Collapse
|
42
|
Toms M, Bitner-Glindzicz M, Webster A, Moosajee M. Usher syndrome: a review of the clinical phenotype, genes and therapeutic strategies. EXPERT REVIEW OF OPHTHALMOLOGY 2015. [DOI: 10.1586/17469899.2015.1033403] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Nishio SY, Hattori M, Moteki H, Tsukada K, Miyagawa M, Naito T, Yoshimura H, Iwasa YI, Mori K, Shima Y, Sakuma N, Usami SI. Gene expression profiles of the cochlea and vestibular endorgans: localization and function of genes causing deafness. Ann Otol Rhinol Laryngol 2015; 124 Suppl 1:6S-48S. [PMID: 25814645 DOI: 10.1177/0003489415575549] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVES We sought to elucidate the gene expression profiles of the causative genes as well as the localization of the encoded proteins involved in hereditary hearing loss. METHODS Relevant articles (as of September 2014) were searched in PubMed databases, and the gene symbols of the genes reported to be associated with deafness were located on the Hereditary Hearing Loss Homepage using localization, expression, and distribution as keywords. RESULTS Our review of the literature allowed us to systematize the gene expression profiles for genetic deafness in the inner ear, clarifying the unique functions and specific expression patterns of these genes in the cochlea and vestibular endorgans. CONCLUSIONS The coordinated actions of various encoded molecules are essential for the normal development and maintenance of auditory and vestibular function.
Collapse
Affiliation(s)
- Shin-Ya Nishio
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Mitsuru Hattori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hideaki Moteki
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Keita Tsukada
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Maiko Miyagawa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| | - Takehiko Naito
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidekane Yoshimura
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yoh-Ichiro Iwasa
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Kentaro Mori
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Yutaka Shima
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Naoko Sakuma
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Otorhinolaryngology and Head and Neck Surgery, Yokohama City University School of Medicine, Yokohama, Japan
| | - Shin-Ichi Usami
- Department of Otorhinolaryngology, Shinshu University School of Medicine, Matsumoto, Japan Department of Hearing Implant Sciences, Shinshu University School of Medicine, Matsumoto, Japan
| |
Collapse
|
44
|
Lin YH, Hung GY, Wu LC, Chen SW, Lin LY, Horng JL. Anion exchanger 1b in stereocilia is required for the functioning of mechanotransducer channels in lateral-line hair cells of zebrafish. PLoS One 2015; 10:e0117041. [PMID: 25679789 PMCID: PMC4332475 DOI: 10.1371/journal.pone.0117041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/18/2014] [Indexed: 11/19/2022] Open
Abstract
The anion exchanger (AE) plays critical roles in physiological processes including CO2 transport and volume regulation in erythrocytes and acid-base regulation in renal tubules. Although expression of the AE in inner-ear hair cells was reported, its specific localization and function are still unclear. Using in situ hybridization, we found that the AE1b transcript is expressed in lateral-line hair cells of zebrafish larvae. An immunohistochemical analysis with a zebrafish-specific antibody localized AE1b to stereocilia of hair cells, and the expression was eliminated by morpholino knockdown of AE1b. A non-invasive, scanning ion-selective electrode technique was applied to analyze mechanotransducer (MET) channel-mediated Ca2+ influx at stereocilia of hair cells of intact fish. Ca2+ influx was effectively suppressed by AE1b morpholino knockdown and inhibitor (DIDS) treatment. Elevating external Ca2+ (0.2 to 2 mM) neutralized the inhibition of DIDS. Taken together, this study provides solid evidence to show that AE1b in stereocilia is required for the proper functioning of MET channels.
Collapse
Affiliation(s)
- Yuan-Hsiang Lin
- Department of Electronic and Computer Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, ROC
| | - Giun-Yi Hung
- Department of Pediatrics, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Pediatrics, Faculty of Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Liang-Chun Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | - Sheng-Wen Chen
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Li-Yih Lin
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
- * E-mail:
| | - Jiun-Lin Horng
- Department of Anatomy and Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
- * E-mail:
| |
Collapse
|
45
|
García-García G, Aller E, Jaijo T, Aparisi MJ, Larrieu L, Faugère V, Blanco-Kelly F, Ayuso C, Roux AF, Millán JM. Novel deletions involving the USH2A gene in patients with Usher syndrome and retinitis pigmentosa. Mol Vis 2014; 20:1398-410. [PMID: 25352746 PMCID: PMC4173666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 09/23/2014] [Indexed: 10/29/2022] Open
Abstract
PURPOSE The aim of the present work was to identify and characterize large rearrangements involving the USH2A gene in patients with Usher syndrome and nonsyndromic retinitis pigmentosa. METHODS The multiplex ligation-dependent probe amplification (MLPA) technique combined with a customized array-based comparative genomic hybridization (aCGH) analysis was applied to 40 unrelated patients previously screened for point mutations in the USH2A gene in which none or only one pathologic mutation was identified. RESULTS We detected six large deletions involving USH2A in six out of the 40 cases studied. Three of the patients were homozygous for the deletion, and the remaining three were compound heterozygous with a previously identified USH2A point mutation. In five of these cases, the patients displayed Usher type 2, and the remaining case displayed nonsyndromic retinitis pigmentosa. The exact breakpoint junctions of the deletions found in USH2A in four of these cases were characterized. CONCLUSIONS Our study highlights the need to develop improved efficient strategies of mutation screening based upon next generation sequencing (NGS) that reduce cost, time, and complexity and allow simultaneous identification of all types of disease-causing mutations in diagnostic procedures.
Collapse
Affiliation(s)
- Gema García-García
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Valencia, Spain,Inserm, U827, Montpellier, F-34000, France
| | - Elena Aller
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Valencia, Spain,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Teresa Jaijo
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Valencia, Spain,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Maria J. Aparisi
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Valencia, Spain,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Lise Larrieu
- CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, F-34000, France
| | - Valérie Faugère
- CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, F-34000, France
| | | | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Madrid, Spain,Servicio de Genetica, IIS - Fundación Jiménez Diaz, UAM, Madrid, Spain
| | - Anne-Francoise Roux
- Inserm, U827, Montpellier, F-34000, France,CHU Montpellier, Laboratoire de Génétique Moléculaire, Montpellier, F-34000, France
| | - José M. Millán
- Grupo de Investigación en Enfermedades Neurosensoriales, Instituto de Investigación Sanitaria La Fe (IIS-La Fe), Valencia, Spain,CIBER de Enfermedades Raras (CIBERER), Madrid, Spain,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| |
Collapse
|
46
|
Sensational placodes: neurogenesis in the otic and olfactory systems. Dev Biol 2014; 389:50-67. [PMID: 24508480 PMCID: PMC3988839 DOI: 10.1016/j.ydbio.2014.01.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 11/22/2022]
Abstract
For both the intricate morphogenetic layout of the sensory cells in the ear and the elegantly radial arrangement of the sensory neurons in the nose, numerous signaling molecules and genetic determinants are required in concert to generate these specialized neuronal populations that help connect us to our environment. In this review, we outline many of the proteins and pathways that play essential roles in the differentiation of otic and olfactory neurons and their integration into their non-neuronal support structures. In both cases, well-known signaling pathways together with region-specific factors transform thickened ectodermal placodes into complex sense organs containing numerous, diverse neuronal subtypes. Olfactory and otic placodes, in combination with migratory neural crest stem cells, generate highly specialized subtypes of neuronal cells that sense sound, position and movement in space, odors and pheromones throughout our lives.
Collapse
|
47
|
Rehman AU, Santos-Cortez RLP, Morell RJ, Drummond MC, Ito T, Lee K, Khan AA, Basra MAR, Wasif N, Ayub M, Ali RA, Raza SI, Nickerson DA, Shendure J, Bamshad M, Riazuddin S, Billington N, Khan SN, Friedman PL, Griffith AJ, Ahmad W, Riazuddin S, Leal SM, Friedman TB. Mutations in TBC1D24, a gene associated with epilepsy, also cause nonsyndromic deafness DFNB86. Am J Hum Genet 2014; 94:144-52. [PMID: 24387994 DOI: 10.1016/j.ajhg.2013.12.004] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 12/06/2013] [Indexed: 01/12/2023] Open
Abstract
Inherited deafness is clinically and genetically heterogeneous. We recently mapped DFNB86, a locus associated with nonsyndromic deafness, to chromosome 16p. In this study, whole-exome sequencing was performed with genomic DNA from affected individuals from three large consanguineous families in which markers linked to DFNB86 segregate with profound deafness. Analyses of these data revealed homozygous mutation c.208G>T (p.Asp70Tyr) or c.878G>C (p.Arg293Pro) in TBC1D24 as the underlying cause of deafness in the three families. Sanger sequence analysis of TBC1D24 in an additional large family in which deafness segregates with DFNB86 identified the c.208G>T (p.Asp70Tyr) substitution. These mutations affect TBC1D24 amino acid residues that are conserved in orthologs ranging from fruit fly to human. Neither variant was observed in databases of single-nucleotide variants or in 634 chromosomes from ethnically matched control subjects. TBC1D24 in the mouse inner ear was immunolocalized predominantly to spiral ganglion neurons, indicating that DFNB86 deafness might be an auditory neuropathy spectrum disorder. Previously, six recessive mutations in TBC1D24 were reported to cause seizures (hearing loss was not reported) ranging in severity from epilepsy with otherwise normal development to epileptic encephalopathy resulting in childhood death. Two of our four families in which deafness segregates with mutant alleles of TBC1D24 were available for neurological examination. Cosegregation of epilepsy and deafness was not observed in these two families. Although the causal relationship between genotype and phenotype is not presently understood, our findings, combined with published data, indicate that recessive alleles of TBC1D24 can cause either epilepsy or nonsyndromic deafness.
Collapse
Affiliation(s)
- Atteeq U Rehman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert J Morell
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Meghan C Drummond
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Taku Ito
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Kwanghyuk Lee
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Asma A Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Muhammad Asim R Basra
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Naveed Wasif
- Center for Research in Molecular Medicine, Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore 54000, Pakistan
| | - Muhammad Ayub
- Institute of Biochemistry, University of Baluchistan, Quetta 87300, Pakistan
| | - Rana A Ali
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | - Syed I Raza
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael Bamshad
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Saima Riazuddin
- Division of Pediatric Otolaryngology - Head and Neck Surgery, Cincinnati Children's Research Foundation, Cincinnati, OH 45229 USA; Department of Otolaryngology - Head and Neck Surgery, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Neil Billington
- Laboratory of Molecular Physiology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shaheen N Khan
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan
| | | | - Andrew J Griffith
- Otolaryngology Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA
| | - Wasim Ahmad
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan
| | - Sheikh Riazuddin
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54500, Pakistan; Allama Iqbal Medical College and Jinnah Hospital Complex, University of Health Sciences, Lahore 54550, Pakistan
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, MD 20850, USA.
| |
Collapse
|
48
|
Abstract
Hearing is a particularly sensitive form of mechanosensation that relies on dedicated ion channels transducing sound-induced vibrations that hardly exceed Brownian motion. Attempts to molecularly identify these auditory transduction channels have put the focus on TRPs in ears. In Drosophila, hearing has been shown to involve TRPA, TRPC, TRPN, and TRPV subfamily members, with candidate auditory transduction channels including NOMPC (=TRPN1) and the TRPVs Nan and Iav. In vertebrates, TRPs are unlikely to form auditory transduction channels, yet most TRPs are expressed in inner ear tissues, and mutations in TRPN1, TRPVA1, TRPML3, TRPV4, and TRPC3/TRPC6 have been implicated in inner ear function. Starting with a brief introduction of fly and vertebrate auditory anatomies and transduction mechanisms, this review summarizes our current understanding of the auditory roles of TRPs.
Collapse
Affiliation(s)
- Damiano Zanini
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077, Göttingen, Germany
| | | |
Collapse
|
49
|
Isacoff EY, Jan LY, Minor DL. Conduits of life's spark: a perspective on ion channel research since the birth of neuron. Neuron 2013; 80:658-74. [PMID: 24183018 DOI: 10.1016/j.neuron.2013.10.040] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Heartbeats, muscle twitches, and lightning-fast thoughts are all manifestations of bioelectricity and rely on the activity of a class of membrane proteins known as ion channels. The basic function of an ion channel can be distilled into, "The hole opens. Ions go through. The hole closes." Studies of the fundamental mechanisms by which this process happens and the consequences of such activity in the setting of excitable cells remains the central focus of much of the field. One might wonder after so many years of detailed poking at such a seemingly simple process, is there anything left to learn?
Collapse
Affiliation(s)
- Ehud Y Isacoff
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
50
|
Abstract
Living organisms sense their physical environment through cellular mechanotransduction, which converts mechanical forces into electrical and biochemical signals. In turn, signal transduction serves a wide variety of functions, from basic cellular processes as diverse as proliferation, differentiation, migration, and apoptosis up to some of the most sophisticated senses, including touch and hearing. Accordingly, defects in mechanosensing potentially lead to diverse diseases and disorders such as hearing loss, cardiomyopathies, muscular dystrophies, chronic pain, and cancer. Here, we review the status of mechanically activated ion channel discovery and discuss current challenges to define their properties and physiological functions.
Collapse
Affiliation(s)
- Patrick Delmas
- Aix-Marseille-Université, CNRS, Centre de Recherche en Neurobiologie et Neurophysiologie de Marseille, UMR 7286, CS80011, Bd Pierre Dramard, 13344 Marseille, Cedex 15, France.
| | | |
Collapse
|