1
|
Song B, Fu J, Qian J, He T, Cheng J, Chiampanichayakul S, Anuchapreeda S, Fu J. Development of Mathematical Models Using circRNA Combinations ( circTulp4, circSlc8a1, and circStrn3) in Mouse Brain Tissue for Postmortem Interval Estimation. Int J Mol Sci 2025; 26:4495. [PMID: 40429639 DOI: 10.3390/ijms26104495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/28/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
The postmortem interval (PMI) is defined as the time interval between physiological death and the examination of the corpse, playing a critical role in forensic investigations. Traditional PMI estimation methods are often influenced by subjective and environmental factors. Circular RNAs (circRNAs), known for their stability, abundance, and conservation in brain tissue, show promise as biomarkers for PMI estimation. However, research on circRNAs in this context remains limited. This study aimed to develop PMI estimation models using circRNAs across multiple temperatures. By employing semi-quantitative reverse transcription-PCR, circTulp4, circSlc8a1, and circStrn3 were identified as reliable biomarkers for mouse brain tissue. Mathematical models were constructed using the reference genes 28S rRNA, mt-co1, and circCDR1as. At 4 °C, most equations had p-values below 0.05, with the equation using circSlc8a1 as a marker exhibiting the highest goodness of fit. Validation results indicated that the equation using circTulp4 as the reference gene had the highest accuracy. When applying the combined aforementioned three circRNAs, the equation using circCDR1as as the reference gene showed better accuracy. At 25 °C, all equations had R2 values greater than 0.86, but most cubic equations had p-values above 0.05. Validation results demonstrated that the circTulp4/mt-co1 equation had the highest accuracy. When applying combined circRNAs, the R2 values improved, and long-term PMI estimation was more accurate than short-term PMI estimation. At 35 °C, the linear equations had significantly poorer goodness of fit compared to nonlinear equations, and nonlinear equations exhibited better accuracy than linear equations. When applying the combined aforementioned three circRNAs, the accuracy of the three reference genes was similar, and the accuracy of long-term PMI estimation was consistently higher than that of short-term estimation. For the three-dimensional models, all R2 values exceeded 0.75 with p-values significantly below 0.0001. Validation results demonstrated higher accuracy at 25 °C and 35 °C, with superior performance for long-term PMI estimation. In summary, this study constructed PMI estimation models under multiple temperature conditions based on highly expressed circRNAs in mouse brain tissue, highlighting circTulp4, circSlc8a1, and circStrn3 as novel biomarkers. These findings offer a complementary tool for PMI estimation, particularly for long-term PMI estimation.
Collapse
Affiliation(s)
- Binghui Song
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
| | - Jiewen Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Forensic DNA, The Judicial Authentication Center, Southwest Medical University, Luzhou 646000, China
| | - Jie Qian
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Forensic DNA, The Judicial Authentication Center, Southwest Medical University, Luzhou 646000, China
| | - Ting He
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Forensic DNA, The Judicial Authentication Center, Southwest Medical University, Luzhou 646000, China
| | - Jingliang Cheng
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Forensic DNA, The Judicial Authentication Center, Southwest Medical University, Luzhou 646000, China
| | - Sawitree Chiampanichayakul
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Songyot Anuchapreeda
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Cancer Research Unit of Associated Medical Sciences (AMS CRU), Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellence in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Junjiang Fu
- Key Laboratory of Epigenetics and Oncology, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Precision Medicine and DNA Forensic Medicine, The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou 646000, China
- Laboratory of Forensic DNA, The Judicial Authentication Center, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
2
|
Chi R, Liu Y, Wang P, Yang F, Wang X, He X, Di R, Chu M. Estrogen-induced circFAM171A1 regulates sheep myoblast proliferation through the oar-miR-485-5p/MAPK15/MAPK pathway. Cell Mol Life Sci 2025; 82:123. [PMID: 40105989 PMCID: PMC11923336 DOI: 10.1007/s00018-025-05639-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
Estrogen is an important hormone that affects muscle development in female animals. Previous studies have shown that estrogen can protect muscle cells from apoptosis by inhibiting the MAPK signaling pathway. However, the molecular mechanisms by which estrogen-induced MAPK signaling regulates myoblast growth and development remain unclear. In this study, RNA-seq was performed on ovariectomized small-tailed Han (OR-STH) sheep and sham surgery small-tailed Han (STH) sheep to analyze the effects of estrogen on muscle growth and development in female animals. There were 8721 differentially expressed circRNAs (DECs), 143 differentially expressed miRNAs (DEMs) and 2238 differentially expressed mRNAs (DEGs) in the longissimus dorsi between the OR-STH and STH groups. Bioinformatics analysis revealed that the differentially expressed gene MAPK15 was significantly enriched in the MAPK signaling pathway, which is important for muscle development. Therefore, we constructed the ceRNA network circFAM171A1/oar-miR-485-5p/MAPK15 and explored its effect on muscle growth and development. The results of the molecular mechanism experiments indicated that circFAM171A1 can sponge oar-miR-485-5p to regulate MAPK15. The addition of the exogenous hormone estradiol (E2) to sheep myoblasts could induce circFAM171A1, regulate the expression of oar-miR-485-5p and MAPK15, and promote the proliferation of sheep myoblasts. The results showed that MAPK15 and circFAM171A1 significantly promoted the proliferation of myoblasts and inhibited the apoptosis of myoblasts in sheep, whereas oar-miR-485-5p inhibited the expression of MAPK15 and circFAM171A1, inhibited myoblast proliferation and promoted apoptosis. Furthermore, circFAM171A1 attenuated the inhibitory effect of oar-miR-485-5p on myoblasts. In summary, estrogen induced the expression of circFAM171A1 in sheep myoblasts, and circFAM171A1 can act as a sponge for oar-miR-485-5p to promote the expression of the target gene MAPK15 and ultimately regulate the proliferation of sheep myoblasts. This study provides new insights into the molecular mechanism of estrogen regulation of muscle growth and development in female animals.
Collapse
Affiliation(s)
- Runqing Chi
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
- Anhui Provincial Key Laboratory of Livestock and Poultry Product Safety Engineering, Hefei, 230031, China
| | - Peng Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Fan Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiangyu Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China
| | - Ran Di
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), No. 2 Yuanmingyuan West Rd, Beijing, 100193, China.
| |
Collapse
|
3
|
Hei W, Gong Y, Cai W, Li R, Chen J, Zhang W, Ji M, Li M, Yang Y, Cai C, Guo X, Li B. The Regulatory Role of CircAGGF1 in Myogenic Differentiation and Skeletal Muscle Development. Animals (Basel) 2025; 15:708. [PMID: 40075991 PMCID: PMC11898508 DOI: 10.3390/ani15050708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 02/26/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
Circular RNA (circRNA) has a significant impact on the maturation of skeletal muscle, although their precise functions within this framework remain largely uncharted. This study presents an investigation of the regulatory effect of circAGGF1 on myogenesis in myoblasts, including the potential molecular mechanisms involved. It is revealed that circAGGF1 facilitates the differentiation of myoblasts into other states while simultaneously enhancing the manifestation of type I muscle fibers. In vivo investigations with mice revealed the promotion of skeletal muscle expansion and maturation by circAGGF1, bolstering its regenerative capacity. Mechanistically, circAGGF1 interacts with miR-199a-3p by acting as a sponge, promoting the subsequent expression of Fgf7. Furthermore, rescue experiments indicated a counteraction of the myogenesis induced by circAGGF1 overexpression by miR-199a-3p. To summarize, this research highlights the role played by circAGGF1 in the development of skeletal muscle, providing a valuable resource for enhancing our understanding of skeletal muscle biology.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Xiaohong Guo
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.H.); (Y.G.); (W.C.); (R.L.); (J.C.); (W.Z.); (M.J.); (M.L.); (Y.Y.); (C.C.)
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China; (W.H.); (Y.G.); (W.C.); (R.L.); (J.C.); (W.Z.); (M.J.); (M.L.); (Y.Y.); (C.C.)
| |
Collapse
|
4
|
Jenks KR, Cai Y, Nayan ME, Tsimring K, Li K, Zepeda JC, Heller GR, Delepine C, Shih J, Yuan S, Zhu Y, Wang Y, Duan Y, Fu AKY, Ku T, Yun DH, Chung K, Mellios N, Sur M, Ip JPK. The noncoding circular RNA circHomer1 regulates synaptic development and experience-dependent plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.19.603416. [PMID: 39091722 PMCID: PMC11291094 DOI: 10.1101/2024.07.19.603416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Circular RNAs (circRNAs) are a class of closed-loop, single stranded RNAs whose expression is particularly enriched in the brain. Despite this enrichment and evidence that the expression of circRNAs are altered by synaptic development and in response to synaptic plasticity in vitro, the regulation by and function of the majority of circRNAs in experience-dependent plasticity in vivo remain unexplored. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of experience-dependent developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent mRNA forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following 3-day MD. Knockdown of circHomer1 delayed the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown also led to a reduction in average dendritic spine size prior to MD but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 knockdown impairs experience-dependent AMPA receptor endocytosis. Thus, the expression of multiple circRNAs are regulated by experience-dependent developmental plasticity, and our findings highlight the essential role of circHomer1 in V1 synaptic development and experience-dependent plasticity.
Collapse
Affiliation(s)
- Kyle R. Jenks
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- These authors contributed equally
| | - Ying Cai
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- These authors contributed equally
| | - Marvin Eduarte Nayan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- These authors contributed equally
| | - Katya Tsimring
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Keji Li
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - José C. Zepeda
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Gregg R. Heller
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jennifer Shih
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Shiyang Yuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangyang Duan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dae Hee Yun
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Nikolaos Mellios
- Circular Genomics Inc, Albuquerque, New Mexico, 87110, USA
- Previously at: University of New Mexico, Department of Neurosciences, Albuquerque, New Mexico, 87131, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
5
|
Zhang Q, Liu J, Wang W, Lin W, Ahmed W, Duan W, Huang S, Zhu Z, Chen L. The role of exosomes derived from stem cells in nerve regeneration: A contribution to neurological repair. Exp Neurol 2024; 380:114882. [PMID: 39002923 DOI: 10.1016/j.expneurol.2024.114882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/27/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Stem cell-derived exosomes have gained attention in regenerative medicine for their role in encouraging nerve regeneration and potential use in treating neurological diseases. These nanosized extracellular vesicles act as carriers of bioactive molecules, facilitating intercellular communication and enhancing the regenerative process in neural tissues. This comprehensive study explores the methods by which exosomes produced from various stem cells contribute to nerve healing, with a particular emphasis on their role in angiogenesis, inflammation, and cellular signaling pathways. By examining cutting-edge developments and exploring the potential of exosomes in delivering disease-specific miRNAs and proteins, we highlight their versatility in tailoring personalized therapeutic strategies. The findings presented here highlight the potential of stem cell-produced exosomes for use in neurological diseases therapy, establishing the door for future research into exosome-based neurotherapies.
Collapse
Affiliation(s)
- Qiankun Zhang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiale Liu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wei Wang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Wentong Lin
- Department of Orthopaedics, Chaozhou Hospital of Traditional Chinese Medicine, Chaozhou, China
| | - Waqas Ahmed
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Wenjie Duan
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Songze Huang
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihan Zhu
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China
| | - Lukui Chen
- Department of Neurosurgery, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
6
|
Sharma A, Bansal C, Sharma KL, Kumar A. Circular RNA: The evolving potential in the disease world. World J Med Genet 2024; 12:93011. [DOI: 10.5496/wjmg.v12.i1.93011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/23/2024] [Accepted: 07/02/2024] [Indexed: 09/19/2024] Open
Abstract
Circular RNAs (circRNAs), a new star of noncoding RNAs, are a group of endogenous RNAs that form a covalently closed circle and occur widely in the mammalian genome. Most circRNAs are conserved throughout species and frequently show stage-specific expression during various stages of tissue development. CircRNAs were a mystery discovery, as they were initially believed to be a product of splicing errors; however, subsequent research has shown that circRNAs can perform various functions and help in the regulation of splicing and transcription, including playing a role as microRNA (miRNA) sponges. With the application of high throughput next-generation technologies, circRNA hotspots were discovered. There are emerging indications that explain the association of circRNAs with human diseases, like cancers, developmental disorders, and inflammation, and circRNAs may be a new potential biomarker for the diagnosis and treatment outcome of various diseases, including cancer. After the discoveries of miRNAs and long noncoding RNAs, circRNAs are now acting as a novel research entity of interest in the field of RNA disease biology. In this review, we aim to focus on major updates on the biogeny and metabolism of circRNAs, along with their possible/established roles in major human diseases.
Collapse
Affiliation(s)
- Aarti Sharma
- Department of Research, Mayo Clinic Arizona, Phoenix, AZ 85054, United States
| | - Cherry Bansal
- Department of Pathology, Dr. S Tantia Medical College, Hospital and Research Center, Sri Ganganagar 335002, Rajasthan, India
| | - Kiran Lata Sharma
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, United States
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow 226014, Uttar Pradesh, India
| |
Collapse
|
7
|
Wang B, Tian L, Zhang Z, Liu Z, Li K, Zhang Q, Song Y, Qi J. CircTrim37 Ameliorates Intracerebral Hemorrhage Outcomes by Modulating Microglial Polarization via the miR-30c-5p/SOCS3 Axis. Mol Neurobiol 2024; 61:4038-4054. [PMID: 38055163 DOI: 10.1007/s12035-023-03776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/03/2023] [Indexed: 12/07/2023]
Abstract
Circular RNAs (circRNAs) have been progressively recognized as critical regulators in the pathology and pathophysiology of central nervous system disease. However, the potential role of circRNAs in intracerebral hemorrhage (ICH) is still largely unclear. Here, we demonstrate that circTrim37 expression was significantly upregulated at 3 days after ICH by circular RNA microarray and qPCR assays. Overexpression of circTrim37 could significantly ameliorate brain injury volume, brain edema, neurologic deficits, and inflammation in vivo after ICH. CircTrim37 promotes M2 polarization while restrains M1 polarization in vitro. Furthermore, circTrim37 acts as an endogenous sponge for miR-30c-5p, thereby inhibiting miR-30c-5p activity, leading to the upregulation of SOCS3 and making the balance of microglial response towards an M2 phenotype. Taken together, our results indicate the participation of circTrim37 and its coupling mechanism in ICH and provide a novel therapeutic target for ICH.
Collapse
Affiliation(s)
- Benshuai Wang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Lin Tian
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Zhen Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Zhiyi Liu
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Ke Li
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Qianqian Zhang
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China
| | - Yuejia Song
- Department of Endocrinology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China.
| | - Jiping Qi
- Department of Pathology, First Clinical Hospital, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
8
|
Wang C, Wang Q, Xu G, Sun Z, Zhang D, Ma C, Li Y, Wen D, Zhang X, Cong B. Circular RNA expression profiles and functional predication after restraint stress in the amygdala of rats. Front Mol Neurosci 2024; 17:1381098. [PMID: 38685915 PMCID: PMC11056511 DOI: 10.3389/fnmol.2024.1381098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Prolonged or repeated exposure to stress elevates the risk of various psychological diseases, many of which are characterized by central nervous system dysfunction. Recent studies have demonstrated that circular RNAs (circRNAs) are highly abundant in the mammalian brain. Although their precise expression and function remain unknown, they have been hypothesized to regulate transcriptional and post-transcriptional gene expression. In this investigation, we comprehensively analyzed whether restraint stress for 2 days altered the circRNA expression profile in the amygdala of male rats. The impact of restraint stress on behavior was evaluated using an elevated plus maze and open field test. Serum corticosterone levels were measured using an enzyme-linked immunosorbent assay. A total of 10,670 circRNAs were identified using RNA sequencing. Ten circRNAs were validated by reverse transcription and quantitative polymerase chain reaction analysis. Gene ontology and Kyoto encyclopedia of genes and genomes pathway analyzes supported the notion that genes associated with differentially expressed circRNAs are primarily implicated in neuronal activity and neurotransmitter transport. Moreover, the three differentially expressed circRNAs showed high specificity in the amygdala. Overall, these findings indicate that differentially expressed circRNAs are highly enriched in the amygdala and offer a potential direction for further research on restraint stress.
Collapse
Affiliation(s)
- Chuan Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Qian Wang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Guangming Xu
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Department of Forensic Medicine, The National Police University for Criminal Justice, Baoding, China
| | - Zhaoling Sun
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Dong Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- College of Integrative Medicine, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Chunling Ma
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Yingmin Li
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Di Wen
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Xiaojing Zhang
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
| | - Bin Cong
- College of Forensic Medicine, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Hebei Medical University, Shijiazhuang, China
- Hainan Tropical Forensic Medicine Academician Workstation, Haikou, China
| |
Collapse
|
9
|
Zhou Z, Zhang J, Zheng X, Pan Z, Zhao F, Gao Y. CIRI-Deep Enables Single-Cell and Spatial Transcriptomic Analysis of Circular RNAs with Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308115. [PMID: 38308181 PMCID: PMC11005702 DOI: 10.1002/advs.202308115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/03/2024] [Indexed: 02/04/2024]
Abstract
Circular RNAs (circRNAs) are a crucial yet relatively unexplored class of transcripts known for their tissue- and cell-type-specific expression patterns. Despite the advances in single-cell and spatial transcriptomics, these technologies face difficulties in effectively profiling circRNAs due to inherent limitations in circRNA sequencing efficiency. To address this gap, a deep learning model, CIRI-deep, is presented for comprehensive prediction of circRNA regulation on diverse types of RNA-seq data. CIRI-deep is trained on an extensive dataset of 25 million high-confidence circRNA regulation events and achieved high performances on both test and leave-out data, ensuring its accuracy in inferring differential events from RNA-seq data. It is demonstrated that CIRI-deep and its adapted version enable various circRNA analyses, including cluster- or region-specific circRNA detection, BSJ ratio map visualization, and trans and cis feature importance evaluation. Collectively, CIRI-deep's adaptability extends to all major types of RNA-seq datasets including single-cell and spatial transcriptomic data, which will undoubtedly broaden the horizons of circRNA research.
Collapse
Affiliation(s)
- Zihan Zhou
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Jinyang Zhang
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Xin Zheng
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Zhicheng Pan
- Center for Computational Biology Flatiron InstituteNew York10010USA
| | - Fangqing Zhao
- Beijing Institutes of Life ScienceChinese Academy of SciencesBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| | - Yuan Gao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information Beijing Institute of GenomicsChinese Academy of Sciences and China National Center for BioinformationBeijing100101China
- University of Chinese Academy of SciencesBeijing100101China
| |
Collapse
|
10
|
Qi L, Jiang W, He W, Li X, Wu J, Chen S, Liao Z, Yu S, Liu J, Sun Y, Wu Q, Dong C, Wang Q. Transcriptome profile analysis in spinal cord injury rats with transplantation of menstrual blood-derived stem cells. Front Mol Neurosci 2024; 17:1335404. [PMID: 38361743 PMCID: PMC10867146 DOI: 10.3389/fnmol.2024.1335404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/17/2024] Open
Abstract
Introduction Menstrual blood-derived stem cells (MenSCs) are vital in treating many degenerative and traumatic disorders. However, the underlying molecular mechanisms remain obscure in MenSCs-treating spinal cord injury (SCI) rats. Methods MenSCs were adopted into the injured sites of rat spinal cords at day 7 post surgery and the tissues were harvested for total RNA sequencing analysis at day 21 after surgery to investigate the expression patterns of RNAs. The differentially expressed genes (DEGs) were analyzed with volcano and heatmap plot. DEGs were sequentially analyzed by weighted gene co-expression network, functional enrichment, and competitive endogenous RNAs (ceRNA) network analysis. Next, expression of selected miRNAs, lncRNAs, circRNAs and mRNAs were validated by quantitative real-time polymerase chain reaction (qRT-PCR). Bioinformatics packages and extra databases were enrolled to scoop the genes functions and their interaction relationships. Results A total of 89 lncRNAs, 65 circRNAs, 120 miRNAs and 422 mRNAs were significantly upregulated and 65 lncRNAs, 72 circRNAs, 74 miRNAs, and 190 mRNAs were significantly downregulated in the MenSCs treated rats compared to SCI ones. Current investigation revealed that MenSCs treatment improve the recovery of the injured rats and the most significantly involved pathways in SCI regeneration were cell adhesion molecules, nature killer cell mediated cytotoxicity, primary immunodeficiency, chemokine signaling pathway, T cell receptor signaling pathway and B cell receptor signaling pathway. Moreover, the lncRNA-miRNA-mRNA and circRNA-miRNA-mRNA ceRNA network of SCI was constructed. Finally, the protein-protein interaction (PPI) network was constructed using the top 100 DE mRNAs. The constructed PPI network included 47 nodes and 70 edges. Discussion In summary, the above results revealed the expression profile and potential functions of differentially expressed (DE) RNAs in the injured spinal cords of rats in the MenSCs-treated and SCI groups, and this study may provide new clues to understand the mechanisms of MenSCs in treating SCI.
Collapse
Affiliation(s)
- Longju Qi
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Wenwei Jiang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Wenhua He
- Department of Basic Medicine, Luohe Medical College, Luohe, Henan, China
| | - Xiangzhe Li
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Jiahuan Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Shiyuan Chen
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Zehua Liao
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Shumin Yu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Jinyi Liu
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Yuyu Sun
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| | - Qinfeng Wu
- Rehabilitation Medicine Center, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou, Jiangsu, China
| | - Chuanming Dong
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Qinghua Wang
- Laboratory Animal Center, School of Medicine, Nantong University, Nantong, Jiangsu, China
- Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Zhu L, Han Y, Shu J. Changes in circMyt1l/rno-let-7d-5p/brain-derived neurotrophic factor. A damaged periventricular white matter damage model in neonatal rats. J Perinat Med 2024; 52:108-113. [PMID: 37936493 DOI: 10.1515/jpm-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/20/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES To investigate the function of circMyt1l/rno-let-7d-5p/BDNF in the white matter damage of premature rats. METHODS Bioinformatic analysis was used to analyze the differential expression of circMyt1l and its interacting miRNAs and mRNAs in rats with periventricular white matter damage. Rats at postnatal day 3 had their right common carotid artery permanently ligated, and were then exposed for 2 h to 6 % O2, or sham surgery and exposure to normal O2 levels (sham). CircMyt1l and rno-let-7d-5p expression was detected and BDNF protein levels were analyzed at 24, 48, and 72 h post hypoxia-ischemia. RESULTS Bioinformatic analysis suggested that circMyt1l, rno-let-7d-5p and BDNF interact. CircMyt1l expression decreased significantly relative to the sham-operated rats (p<0.01) in an exposure time-dependent manner. Contrastingly, rno-let-7d-5p increased significantly relative to the sham-operated rats (p<0.01) in an exposure time dependent manner. BDNF protein levels decreased significantly relative to the sham-operated rats (p<0.05) in an exposure time dependent manner. CONCLUSIONS The expression levels of circMyt1l/rno-let-7d-5p/BDNF are interrelated in periventricular white matter damage. Decreased circMyt1l expression of promoted the effect of rno-let-7d-5p and decreased the level of its target, BDNF.
Collapse
Affiliation(s)
- Lihua Zhu
- Jiangsu Health Vocational College, Nanjing, P.R. China
| | - Yiwen Han
- Jiangsu Health Vocational College, Nanjing, P.R. China
| | - Jiaping Shu
- Department of Pediatrics, School of Medicine, Southeast University, Nanjing, P.R. China
| |
Collapse
|
12
|
Meccariello R, Bellenchi GC, Pulcrano S, D’Addario SL, Tafuri D, Mercuri NB, Guatteo E. Neuronal dysfunction and gene modulation by non-coding RNA in Parkinson's disease and synucleinopathies. Front Cell Neurosci 2024; 17:1328269. [PMID: 38249528 PMCID: PMC10796818 DOI: 10.3389/fncel.2023.1328269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Over the last few decades, emerging evidence suggests that non-coding RNAs (ncRNAs) including long-non-coding RNA (lncRNA), microRNA (miRNA) and circular-RNA (circRNA) contribute to the molecular events underlying progressive neuronal degeneration, and a plethora of ncRNAs have been identified significantly misregulated in many neurodegenerative diseases, including Parkinson's disease and synucleinopathy. Although a direct link between neuropathology and causative candidates has not been clearly established in many cases, the contribution of ncRNAs to the molecular processes leading to cellular dysfunction observed in neurodegenerative diseases has been addressed, suggesting that they may play a role in the pathophysiology of these diseases. Aim of the present Review is to overview and discuss recent literature focused on the role of RNA-based mechanisms involved in different aspects of neuronal pathology in Parkinson's disease and synucleinopathy models.
Collapse
Affiliation(s)
- Rosaria Meccariello
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Gian Carlo Bellenchi
- Institute of Genetics and Biophysics, CNR, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
| | | | - Sebastian Luca D’Addario
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Computational and Translational Neuroscience Laboratory, Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| | - Domenico Tafuri
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
| | - Nicola B. Mercuri
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Ezia Guatteo
- Department of Medical and Movement Sciences and Wellness, University of Naples Parthenope, Naples, Italy
- Experimental Neurology Laboratory, Santa Lucia Foundation IRCCS, Rome, Italy
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD, United States
| |
Collapse
|
13
|
Pisanu C, Squassina A. RNA Biomarkers in Bipolar Disorder and Response to Mood Stabilizers. Int J Mol Sci 2023; 24:10067. [PMID: 37373213 DOI: 10.3390/ijms241210067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Bipolar disorder (BD) is a severe chronic disorder that represents one of the main causes of disability among young people. To date, no reliable biomarkers are available to inform the diagnosis of BD or clinical response to pharmacological treatment. Studies focused on coding and noncoding transcripts may provide information complementary to genome-wide association studies, allowing to correlate the dynamic evolution of different types of RNAs based on specific cell types and developmental stage with disease development or clinical course. In this narrative review, we summarize findings from human studies that evaluated the potential utility of messenger RNAs and noncoding transcripts, such as microRNAs, circular RNAs and long noncoding RNAs, as peripheral markers of BD and/or response to lithium and other mood stabilizers. The majority of available studies investigated specific targets or pathways, with large heterogeneity in the included type of cells or biofluids. However, a growing number of studies are using hypothesis-free designs, with some studies also integrating data on coding and noncoding RNAs measured in the same participants. Finally, studies conducted in neurons derived from induced-pluripotent stem cells or in brain organoids provide promising preliminary findings supporting the power and utility of these cellular models to investigate the molecular determinants of BD and clinical response.
Collapse
Affiliation(s)
- Claudia Pisanu
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, 09042 Monserrato, Italy
- Department of Psychiatry, Faculty of Medicine, Dalhousie University, Halifax, NS B3H 2E2, Canada
| |
Collapse
|
14
|
Xie X, Li K, Liang X, Tian L, Lin B, Yan J, Shi Y, Liu X, Xi Z. Identification and characterization of circular RNA in the model of autism spectrum disorder from PM 2.5 exposure. Front Genet 2023; 14:970465. [PMID: 37229188 PMCID: PMC10203163 DOI: 10.3389/fgene.2023.970465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
PM2.5 induces a series of effects on neurological disorders, including autism spectrum disorder (ASD), however, the mechanism is not completely clear yet. Circular RNAs (circRNAs) are a class of closed-loop structures that can be stably expressed in vivo. In our experiments, rats exposed to PM2.5 exhibited autism-like phenotypes, such as anxiety, and memory loss. To explore the etiology, we performed transcriptome sequencing and found significant differences in the expression of circRNA. A total of 7770 circRNAs were identified between the control and experimental groups, 18 of which were differentially expressed, we selected ten circRNAs and performed qRT-PCR and Sanger sequencing to validate them. By GO and KEGG enrichment analysis, we found differentially expressed circRNAs that were mainly enriched in processes related to placental development and reproduction. Finally, using bioinformatics, we predicted miRNAs and mRNAs that circ-Mbd5 and circ-Ash1l might regulate and constructed circRNA-miRNA-mRNA networks involving genes associated with ASD, suggesting that circRNAs might regulate the occurrence of ASD.
Collapse
Affiliation(s)
- Xiaoqian Xie
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Binzhou Medical University, Yantai, Shandong, China
| | - Kang Li
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | | | - Lei Tian
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bencheng Lin
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Jun Yan
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yue Shi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Zhuge Xi
- Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
- Binzhou Medical University, Yantai, Shandong, China
| |
Collapse
|
15
|
Zhang X, Wan M, Min X, Chu G, Luo Y, Han Z, Li W, Xu R, Luo J, Li W, Yang Y, Ma Y, Jiao L, Wang T. Circular RNA as biomarkers for acute ischemic stroke: A systematic review and meta-analysis. CNS Neurosci Ther 2023. [PMID: 37186176 DOI: 10.1111/cns.14220] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Rapid diagnosis of acute ischemic stroke (AIS) patients is still challenging, and reliable biomarkers are needed. Noncoding RNAs are important for many physiological activities, among which circular RNAs (circRNAs) have been proven to be more tissue-specific and conservative. Many recent studies found the potential of circRNAs as biomarkers for many diseases, including cardiovascular diseases, cancers, and ischemic stroke. This systemic review and meta-analysis aimed to identify circRNAs as potential biomarkers for AIS. METHODS This study has been prospectively registered in PROSPERO (Registration No. 11 CRD42021288033). Published literature comparing circRNA expression profiles between AIS and non-AIS in human and animal models were retrieved from the articles published by January 2023 in major databases. We descriptively summarized the included studies, conducted meta-analysis under a random effects model, and did bioinformatics analysis including Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. RESULTS Totally 23 studies were included, reporting 18 distinctive upregulated and 20 distinctive downregulated circRNAs. Diagnostic meta-analysis indicated discriminative ability of the circRNAs. Furthermore, circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1 were reported with the same regulation trend in more than one study (animal studies included). GO and KEGG enrichment analyses indicated that the target genes of these five circRNAs were enriched in regulating cell proliferation, apoptosis, and oxidative stress. CONCLUSIONS This study demonstrates that circRNAs (circRNA HECTD1, circRNA DLGAP4, circRNA CDC14A, circRNA SCMH1, and circRNA TLK1) generally are promising as potential biomarkers for AIS. However, due to the limited number of studies, diagnostic value of individual circRNA could not be validated. More in vitro and in vivo functional studies are needed.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Mengyao Wan
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoli Min
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Guanglei Chu
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Ran Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Jichang Luo
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Wenjing Li
- National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yutong Yang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Yan Ma
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
- Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- China International Neuroscience Institute (China-INI), Beijing, China
| |
Collapse
|
16
|
Zhang XH, Song YC, Qiu F, Wang ZC, Li N, Zhao FB. Hypoxic glioma cell-secreted exosomal circ101491 promotes the progression of glioma by regulating miR-125b-5p/EDN1. Brain Res Bull 2023; 195:55-65. [PMID: 36796652 DOI: 10.1016/j.brainresbull.2023.02.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023]
Abstract
Hypoxia and exosomes play important roles in the occurrence and development of glioma. While circRNAs are involved in biological processes of various tumors, the mechanism underlying exosome-dependent regulatory effects of circRNAs on the progression of glioma under hypoxia is unclear. Results suggested that circ101491 was overexpressed in tumor tissues and plasma exosomes of glioma patients, while the overexpression of circ101491 was closely related to the differentiation degree and TNM staging of the patients. Moreover, circ101491 overexpression promoted viability, invasion and migration of glioma cells both in vivo and in vitro; the above regulatory effects can be reversed by inhibition of circ101491 expression. Mechanistic studies revealed that circ101491 upregulated EDN1 expression through sponging miR-125b-5p, thus facilitating glioma progression. In summary, hypoxia could promote circ101491 overexpression in glioma cell-derived exosomes, and circ101491/miR-125b-5p/EDN1 regulatory axis might be implicated in the malignant progression of glioma.
Collapse
Affiliation(s)
- Xiao-Hui Zhang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China.
| | - Yi-Cun Song
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Feng Qiu
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Zheng-Cai Wang
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Nan Li
- Department of Pathology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, PR China
| | - Fang-Bo Zhao
- College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, PR China
| |
Collapse
|
17
|
Urdánoz-Casado A, Sánchez-Ruiz de Gordoa J, Robles M, Roldan M, Macías Conde M, Acha B, Blanco-Luquin I, Mendioroz M. circRNA from APP Gene Changes in Alzheimer's Disease Human Brain. Int J Mol Sci 2023; 24:ijms24054308. [PMID: 36901741 PMCID: PMC10002054 DOI: 10.3390/ijms24054308] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/09/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of age-related dementia. Amyloid precursor protein (APP) is the precursor of Aβ peptides, and its role in AD has been widely investigated. Recently, it has been reported that a circular RNA (circRNA) originated from APP gene can serve as a template for Aβ synthesis, postulating it as an alternative pathway for the Aβ biogenesis. Moreover, circRNAs play important roles in brain development and in neurological diseases. Therefore, our aim was to study the expression of a circAPP (hsa_circ_0007556) and its linear cognate in AD human entorhinal cortex, a brain region most vulnerable to AD pathology. First, we confirmed the presence of circAPP (hsa_circ_0007556) in human entorhinal cortex samples using RT-PCR and Sanger sequencing of PCR products. Next, a 0.49-fold decrease in circAPP (hsa_circ_0007556) levels was observed in entorhinal cortex of AD cases compared to controls (p-value < 0.05) by qPCR. In contrast, APP mRNA expression did not show changes in the entorhinal cortex between AD cases and controls (Fold-change = 1.06; p-value = 0.81). A negative correlation was found between Aβ deposits and circAPP (hsa_circ_0007556) and APP expression levels (Rho Spearman = -0.56, p-value < 0.001 and Rho Spearman = -0.44, p-values < 0.001, respectively). Finally, by using bioinformatics tools, 17 miRNAs were predicted to bind circAPP (hsa_circ_0007556), and the functional analysis predicted that they were involved in some pathways, such as the Wnt-signaling pathway (p = 3.32 × 10-6). Long-term potentiation (p = 2.86 × 10-5), among others, is known to be altered in AD. To sum up, we show that circAPP (hsa_circ_0007556) is deregulated in the entorhinal cortex of AD patients. These results add to the notion that circAPP (hsa_circ_0007556) could be playing a role in the pathogenesis of AD disease.
Collapse
Affiliation(s)
- Amaya Urdánoz-Casado
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Javier Sánchez-Ruiz de Gordoa
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Maitane Robles
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Miren Roldan
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Mónica Macías Conde
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
| | - Blanca Acha
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Idoia Blanco-Luquin
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
| | - Maite Mendioroz
- Neuroepigenetics Laboratory-Navarrabiomed, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Universidad Pública de Navarra (UPNA), Pamplona, 31008 Navarra, Spain
- Department of Neurology, Complejo Hospitalario de Navarra-IdiSNA (Navarra Institute for Health Research), Pamplona, 31008 Navarra, Spain
- Correspondence: ; Tel.: +34-848422677
| |
Collapse
|
18
|
Recent insights into the roles of circular RNAs in human brain development and neurologic diseases. Int J Biol Macromol 2023; 225:1038-1048. [PMID: 36410538 DOI: 10.1016/j.ijbiomac.2022.11.166] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/16/2022] [Indexed: 11/20/2022]
Abstract
Circular RNAs (circRNAs) are a novel class of non-coding RNAs. They are single-stranded RNA transcripts characterized with a closed loop structure making them resistant to degrading enzymes. Recently, circRNAs have been suggested with regulatory roles in gene expression involved in controlling various biological processes. Notably, they have demonstrated abundance, dynamic expression, back-splicing events, and spatiotemporally regulation in the human brain. Accordingly, they are expected to be involved in brain functions and related diseases. Studies in animals and human brain have revealed differential expression of circRNAs in brain compartments. Interestingly, contributing roles of circRNAs in the regulation of central nervous system (CNS) development have been demonstrated in a number of studies. It has been proposed that circRNAs play role in substantial neurological functions like neurotransmitter-associated tasks, neural cells maturation, and functions of synapses. Furthermore, 3 main pathways have been identified in association with circRNAs's host genes including axon guidance, Wnt signaling, and transforming growth factor beta (TGF-β) signaling pathways, which are known to be involved in substantial functions like migration and differentiation of neurons and specification of axons, and thus play role in brain development. In this review, we have an overview to the biogenesis, biological functions of circRNAs, and particularly their roles in human brain development and the pathogenesis of neurodegenerative diseases including Alzheimer's diseases, multiple sclerosis, Parkinson's disease and brain tumors.
Collapse
|
19
|
Ren X, Zhou X. Circ_0000011 promotes cerebral ischemia/reperfusion injury via miR-27a-3p-dependent regulation of NRIP1. Metab Brain Dis 2023; 38:295-306. [PMID: 35925446 DOI: 10.1007/s11011-022-00972-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/21/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Cerebral ischemia/reperfusion (I/R) can result in brain function impairments. Circular RNAs (circRNAs) have emerged as vital regulators in cerebral I/R injury. However, the functions of mmu_circ_0000011 in cerebral I/R injury are still unclear. Thus, in this study, we aimed to explore the effect of mmu_circ_0000011 on cerebral I/R injury. METHODS Oxygen-glucose deprivation and reperfusion (OGD/R)-induced HT-22 cells were used to mimic the condition of cerebral I/R injury in vitro. Cell Counting Kit-8 (CCK-8) assay, lactate dehydrogenase (LDH) assay, 5'-ethynyl-2'-deoxyuridine (EdU) assay and flow cytometry analysis were utilized to assess cell viability, LDH release, proliferation and apoptosis, respectively. qRT-PCR and western blot were performed to determined the levels of circ_0000011, miR-27a-3p and NRIP1. Dual-luciferase reporter assay and RNA pull-down assay were utilized to analyze the targeting relation of circ_0000011, miR-27a-3p and NRIP1. RESULTS OGD/R treatment inhibited HT-22 cell viability and promoted LDH release, cell apoptosis and inflammation. Circ_0000011 level was increased in OGD/R-induced HT-22 cells. Silencing of circ_0000011 promoted cell proliferation and inhibited LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. For mechanism analysis, circ_0000011 was demonstrated to sponge miR-27a-3p, which directly targeted NRIP1. MiR-27a-3p inhibition or NRIP1 overexpression ameliorated the impacts of circ_0000011 silencing on cell proliferation, LDH release, apoptosis and inflammation in OGD/R-treated HT-22 cells. CONCLUSIONS Circ_0000011 promotes OGD/R-induced HT-22 cell impairments by elevating NRIP1 through sponging miR-27a-3p.
Collapse
Affiliation(s)
- Xiaolin Ren
- Department of neurological function, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China
| | - Xinyu Zhou
- Department of Neurology, the First Affiliated Hospital of Kangda College of Nanjing Medical University, Lianyungang, China.
- Department of Neurology, the Affiliated Lianyungang Hospital of Xuzhou Medical University, No. 182, Tongguan North Road, Haizhou District, Lianyungang City, Jiangsu, China.
| |
Collapse
|
20
|
Liu Y, Chen Q, Bao J, Pu Y, Han J, Zhao H, Ma Y, Zhao Q. Genome-Wide Analysis of Circular RNAs Reveals circCHRNG Regulates Sheep Myoblast Proliferation via miR-133/SRF and MEF2A Axis. Int J Mol Sci 2022; 23:ijms232416065. [PMID: 36555706 PMCID: PMC9781509 DOI: 10.3390/ijms232416065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
As relatively new members of the non-coding RNA family, circRNAs play important roles in a variety of biological processes. However, the temporal expression pattern and the function of circRNAs during sheep skeletal muscle development remains unclear. This study aimed to identify circRNAs related to sheep skeletal muscle development and explore their roles in myoblast proliferation. The circRNA expression profiles of longissimus dorsi of sheep from F90, L30, and A3Y were obtained by the RNA-seq method. The function and mechanisms of the novel circCHRNG in muscle satellite cell proliferation were explored using CCK-8 assay, Western blot, qPCR, and dual-luciferase reporter assay. We identified 12,375 circRNAs, including 476, 133, and 233 DEcircRNAs found among three comparative groups. KEGG results showed that DEcircRNAs were enriched in muscle contraction, the regulation of cell proliferation, and the AMPK, insulin, and PI3K-Akt signaling pathways. Notably, a novel circRNA, termed circRNA CHRNG, acts as a miR-133 sponge to promote skeletal muscle satellite cell proliferation. Our study provides a systematic description of circRNAs of ovine skeletal muscle across fetal, lamb, and adult stages. GO and KEGG analyses showed that DEcircRNAs were enriched in multiple pathways associated with muscle development, such as the PI3K-Akt and AMPK signaling pathways. In addition, we propose that circCHRNG acts as a miR-133 sponge to upregulate the expression levels of SRF and MEF2A, thereby promoting myoblast proliferation.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qian Chen
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jingjing Bao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yabin Pu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China
- International Livestock Research Institute (ILRI), Nairobi 00100, Kenya
| | - Huijing Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuehui Ma
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianjun Zhao
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence:
| |
Collapse
|
21
|
Li Y, Wang H, Chen L, Wei K, Liu Y, Han Y, Xia X. Circ_0003611 regulates apoptosis and oxidative stress injury of Alzheimer's disease via miR-383-5p/KIF1B axis. Metab Brain Dis 2022; 37:2915-2924. [PMID: 35960460 DOI: 10.1007/s11011-022-01051-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 07/07/2022] [Indexed: 10/15/2022]
Abstract
Alzheimer's disease (AD) is a high incidence neurodegenerative disease. Emerging evidence suggests that circular RNAs (circRNAs) play an important modulator in the pathogenesis of AD. The aim of this paper was to reconnoiter the effects of circular RNA_0003611 (circ_0003611) on Aβ-triggered neuronal injury in AD. In this work, the abundance of circ_0003611 was augmented in AD patients and SH-SY5Y and SK-N-SH cells treated with Aβ. Aβ-mediated cell proliferation, apoptosis, inflammatory response, oxidative stress, and glycolysis were abolished through circ_0003611 silencing. Circ_0003611 worked as a miR-383-5p sponge, and the protective role of circ_0003611 absence on Aβ-triggered neuronal injury was overturned by releasing miR-383-5p. Meanwhile, miR-383-5p directly targeted KIF1B, and miR-383-5p upregulation might relieve Aβ-triggered neuronal injury by reducing KIF1B expression. Mechanical analysis discovered that circ_0003611 served as a sponge of miR-383-5p to impact KIF1B expression. These findings indicated that circ_0003611 improved Aβ-triggered neuronal injury in AD through targeting the miR-383-5p/KIF1B axis, which might deliver innovative therapy targeting for AD.
Collapse
Affiliation(s)
- Yong Li
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Hongli Wang
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Li Chen
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Kailun Wei
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yang Liu
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China
| | - Yanbai Han
- Sport and Health College of Guangxi Normal University, Guilin, China
| | - Xuewei Xia
- Department of Neurosurgery, Affiliated Hospital of Guilin Medical University, No.15 Lequn Road, Xiufeng District, Guilin, China.
| |
Collapse
|
22
|
Pasqualetti F, Rizzo M, Franceschi S, Lessi F, Paiar F, Buffa FM. New perspectives in liquid biopsy for glioma patients. Curr Opin Oncol 2022; 34:705-712. [PMID: 36093876 DOI: 10.1097/cco.0000000000000902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE OF REVIEW Gliomas are the most common primary tumors of the central nervous system. They are characterized by a disappointing prognosis and ineffective therapy that has shown no substantial improvements in the past 20 years. The lack of progress in treating gliomas is linked with the inadequacy of suitable tumor samples to plan translational studies and support laboratory developments. To overcome the use of tumor tissue, this commentary review aims to highlight the potential for the clinical application of liquid biopsy (intended as the study of circulating biomarkers in the blood), focusing on circulating tumor cells, circulating DNA and circulating noncoding RNA. RECENT FINDINGS Thanks to the increasing sensitivity of sequencing techniques, it is now possible to analyze circulating nucleic acids and tumor cells (liquid biopsy). SUMMARY Although studies on the use of liquid biopsy are still at an early stage, the potential clinical applications of liquid biopsy in the study of primary brain cancer are many and have the potential to revolutionize the approach to neuro-oncology, and importantly, they offer the possibility of gathering information on the disease at any time during its history.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Oncology, University of Oxford, Oxford, UK
- Radiation Oncology Unit, Pisa University Hospital
| | - Milena Rizzo
- Noncoding RNA group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa
| | | | | | | | - Francesca M Buffa
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Computing Sciences, Bocconi University, Milan, Italy
| |
Collapse
|
23
|
Profile of TREM2-Derived circRNA and mRNA Variants in the Entorhinal Cortex of Alzheimer’s Disease Patients. Int J Mol Sci 2022; 23:ijms23147682. [PMID: 35887031 PMCID: PMC9320643 DOI: 10.3390/ijms23147682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/04/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants in TREM2, a microglia-related gene, are well-known risk factors for Alzheimer’s disease (AD). Here, we report that TREM2 originates from circular RNAs (circRNAs), a novel class of non-coding RNAs characterized by a covalent and stable closed-loop structure. First, divergent primers were designed to amplify circRNAs by RT-PCR, which were further assessed by Sanger sequencing. Then, additional primer sets were used to confirm back-splicing junctions. In addition, HMC3 cells were used to assess the microglial expression of circTREM2s. Three candidate circTREM2s were identified in control and AD human entorhinal samples. One of the circRNAs, circTREM2_1, was consistently amplified by all divergent primer sets in control and AD entorhinal cortex samples as well as in HMC3 cells. In AD cases, a moderate negative correlation (r = −0.434) was found between the global average area of Aβ deposits in the entorhinal cortex and circTREM2_1 expression level. In addition, by bioinformatics tools, a total of 16 miRNAs were predicted to join with circTREM2s. Finally, TREM2 mRNA corresponding to four isoforms was profiled by RT-qPCR. TREM2 mRNA levels were found elevated in entorhinal samples of AD patients with low or intermediate ABC scores compared to controls. To sum up, a novel circRNA derived from the TREM2 gene, circTREM2_1, has been identified in the human entorhinal cortex and TREM2 mRNA expression has been detected to increase in AD compared to controls. Unraveling the molecular genetics of the TREM2 gene may help to better know the innate immune response in AD.
Collapse
|
24
|
Regulation of Non-Coding RNA in the Growth and Development of Skeletal Muscle in Domestic Chickens. Genes (Basel) 2022; 13:genes13061033. [PMID: 35741795 PMCID: PMC9222894 DOI: 10.3390/genes13061033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/28/2022] [Accepted: 06/06/2022] [Indexed: 02/04/2023] Open
Abstract
Chicken is the most widely consumed meat product worldwide and is a high-quality source of protein for humans. The skeletal muscle, which accounts for the majority of chicken products and contains the most valuable components, is tightly correlated to meat product yield and quality. In domestic chickens, skeletal muscle growth is regulated by a complex network of molecules that includes some non-coding RNAs (ncRNAs). As a regulator of muscle growth and development, ncRNAs play a significant function in the development of skeletal muscle in domestic chickens. Recent advances in sequencing technology have contributed to the identification and characterization of more ncRNAs (mainly microRNAs (miRNAs), long non-coding RNAs (LncRNAs), and circular RNAs (CircRNAs)) involved in the development of domestic chicken skeletal muscle, where they are widely involved in proliferation, differentiation, fusion, and apoptosis of myoblasts and satellite cells, and the specification of muscle fiber type. In this review, we summarize the ncRNAs involved in the skeletal muscle growth and development of domestic chickens and discuss the potential limitations and challenges. It will provide a theoretical foundation for future comprehensive studies on ncRNA participation in the regulation of skeletal muscle growth and development in domestic chickens.
Collapse
|
25
|
Dorostgou Z, Yadegar N, Dorostgou Z, Khorvash F, Vakili O. Novel insights into the role of circular RNAs in Parkinson disease: An emerging renaissance in the management of neurodegenerative diseases. J Neurosci Res 2022; 100:1775-1790. [PMID: 35642104 DOI: 10.1002/jnr.25094] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 05/11/2022] [Accepted: 05/15/2022] [Indexed: 11/06/2022]
Abstract
Parkinson's disease (PD), as a debilitating neurodegenerative disease, particularly affects the elderly population, and is clinically identified by resting tremor, rigidity, and bradykinesia. Pathophysiologically, PD is characterized by an early loss of dopaminergic neurons in the Substantia nigra pars compacta, accompanied by the extensive aggregation of alpha-synuclein (α-Syn) in the form of Lewy bodies. The onset of PD has been reported to be influenced by multiple biological molecules. In this context, circular RNAs (circRNAs), as tissue-specific noncoding RNAs with closed structures, have been recently demonstrated to involve in a set of PD's pathogenic processes. These RNA molecules can either up- or downregulate the expression of α-Syn, as well as moderating its accumulation through different regulatory mechanisms, in which targeting microRNAs (miRNAs) is considered the most common pathway. Since circRNAs have prominent structural and biological characteristics, they could also be considered as promising candidates for PD diagnosis and treatment. Unfortunately, PD has become a global health concern, and a large number of its pathogenic processes are still unclear; thus, it is crucial to elucidate the ambiguous aspects of PD pathophysiology to improve the efficiency of diagnostic and therapeutic strategies. In line with this fact, the current review aims to highlight the interplay between circRNAs and PD pathogenesis, and then discusses the diagnostic and therapeutic potential of circRNAs in PD progression. This study will thus be the first of its kind reviewing the relationship between circRNAs and PD.
Collapse
Affiliation(s)
- Zahra Dorostgou
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Negar Yadegar
- Department of Medical Laboratory Sciences, School of Paramedical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zeynab Dorostgou
- Department of Biology, Kavian Institute of Higher Education, Mashhad, Iran
| | - Fariborz Khorvash
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Isfahan Neurosciences Research Center, Al-zahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
CircSND1/miR-182-5p Axis Promotes Proliferative and Invasive Abilities of Thyroid Cancer via Binding Targeting MET. JOURNAL OF ONCOLOGY 2022; 2022:9175084. [PMID: 35677888 PMCID: PMC9170435 DOI: 10.1155/2022/9175084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/11/2022] [Accepted: 03/18/2022] [Indexed: 12/24/2022]
Abstract
Objective. To monitor the impacts of circSND1 upon thyroid cancer (TC) tissues and cells and its mechanisms. Methods. Thiazole blue (MTT) was adopted to monitor the impacts of circSND1 upon the proliferative abilities of TPC-1 and SW1736 cells. 5-Bromodeoxyuridine (BrdU) combined with flow cytometry was adopted to monitor the impacts of circSND1 upon the DNA synthesis of TPC-1 and SW1736 cells. We adopted transwell experiment to examine the impacts of circSND1 on cell invasive abilities of TPC-1 and SW1736 cells. The mRNA quantitative levels of circSND1, miR-182-5p, and mesenchymal epidermal transformation factor (MET) in TC tissues were detected by qRT-PCR experiment. We also adopted luciferase assay to verify the targeting interaction between miR-182-5p and MET or miR-182-5p and circSND1. Results. CircSND1 mRNA and MET mRNA were upregulated in thyroid cancer tissues. MiR-182-5p quantification was attenuated in thyroid cancer tissues. Downregulation of circSND1 suppressed TC progression in vivo and in vitro. Furthermore, luciferase report assay uncovered that miR-182-5p was a direct binding target of circSND1 and MET was a direct binding target of miR-182-5p. Besides, circSND1 regulated MET expression and thyroid cancer cell function via binding miR-182-5p. Conclusion. Overexpression of circSND1 in TC tissues and cells facilitates TC tumorigenesis and metastasis via suppressing the quantitative level of miR-182-5p and inducing the upregulation of MET mRNA and protein expression, which expected to offer fresh clues for the administration of TC.
Collapse
|
27
|
Shen Q, Xie B, Galaj E, Yu H, Li X, Lu Y, Zhang M, Wen D, Ma C. CircTmeff-1 in the nucleus accumbens regulates the reconsolidation of cocaine-associated memory. Brain Res Bull 2022; 185:64-73. [PMID: 35489671 DOI: 10.1016/j.brainresbull.2022.04.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/22/2022] [Accepted: 04/23/2022] [Indexed: 12/27/2022]
Abstract
Reconsolidation of drug memories is the process of restoring unstable memories after unconditioned (UCS; e.g., drugs) or conditioned stimulus (CS; e.g., drug-paired contexts), and provides promise for prevention of drug relapse. Circular RNAs (circRNAs) have important effects on the transcription and post-transcriptional regulation of gene expression. However, the role of circRNAs in the reconsolidation of drug memories is unclear. Here, we observed that cocaine-induced memory retrieval significantly increased circTmeff-1 level in the nucleus accumbens (NAc) core but not shell. Importantly, the disrupted expression of circTmeff-1 using virus in the NAc core damaged the reconsolidation of cocaine-associated memories. The knockdown of circTmeff-1 in the NAc shell or without UCS retrieval or 9 h after UCS retrieval had no such effects. Mechanistically, using bioinformatic analysis and loss- or gain- of function assays, we revealed that antagomiR-206 reversed the inhibitory effect of circTmeff-1 knockdown on the expression of brain-derived neurotrophic factor (BDNF) during the reconsolidation of cocaine-associated memories. Taken together, these results demonstrate the role of circTmeff-1 in the reconsolidation of cocaine-associated memory and that circTmeff-1 may function as a decoy for miR-206 to regulate the expression of BDNF.
Collapse
Affiliation(s)
- Qianchao Shen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Bing Xie
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Ewa Galaj
- Department of Psychological and Brain Sciences, Colgate University, 13 Oak Drive, Hamilton, NY 13346, USA
| | - Hailei Yu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Xiaojie Li
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Yun Lu
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Minglong Zhang
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| | - Chunling Ma
- College of Forensic Medicine, Hebei Medical University, Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, Hebei, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
28
|
Mousavi SM, Derakhshan M, Baharloii F, Dashti F, Mirazimi SMA, Mahjoubin-Tehran M, Hosseindoost S, Goleij P, Rahimian N, Hamblin MR, Mirzaei H. Non-coding RNAs and glioblastoma: Insight into their roles in metastasis. Mol Ther Oncolytics 2022; 24:262-287. [PMID: 35071748 PMCID: PMC8762369 DOI: 10.1016/j.omto.2021.12.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glioma, also known as glioblastoma multiforme (GBM), is the most prevalent and most lethal primary brain tumor in adults. Gliomas are highly invasive tumors with the highest death rate among all primary brain malignancies. Metastasis occurs as the tumor cells spread from the site of origin to another site in the brain. Metastasis is a multifactorial process, which depends on alterations in metabolism, genetic mutations, and the cancer microenvironment. During recent years, the scientific study of non-coding RNAs (ncRNAs) has led to new insight into the molecular mechanisms involved in glioma. Many studies have reported that ncRNAs play major roles in many biological procedures connected with the development and progression of glioma. Long ncRNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) are all types of ncRNAs, which are commonly dysregulated in GBM. Dysregulation of ncRNAs can facilitate the invasion and metastasis of glioma. The present review highlights some ncRNAs that have been associated with metastasis in GBM. miRNAs, circRNAs, and lncRNAs are discussed in detail with respect to their relevant signaling pathways involved in metastasis.
Collapse
Affiliation(s)
- Seyed Mojtaba Mousavi
- Department of Neurosciences and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Derakhshan
- Department of Pathology, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatereh Baharloii
- Department of Cardiology, Chamran Cardiovascular Research Education Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saereh Hosseindoost
- Brain and Spinal Cord Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Faculty of Biology, Sana Institute of Higher Education, Sari, Iran
| | - Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
- Department of Internal Medicine, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
29
|
Pitolli C, Marini A, Sette C, Pagliarini V. Non-Canonical Splicing and Its Implications in Brain Physiology and Cancer. Int J Mol Sci 2022; 23:ijms23052811. [PMID: 35269953 PMCID: PMC8911335 DOI: 10.3390/ijms23052811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
The advance of experimental and computational techniques has allowed us to highlight the existence of numerous different mechanisms of RNA maturation, which have been so far unknown. Besides canonical splicing, consisting of the removal of introns from pre-mRNA molecules, non-canonical splicing events may occur to further increase the regulatory and coding potential of the human genome. Among these, splicing of microexons, recursive splicing and biogenesis of circular and chimeric RNAs through back-splicing and trans-splicing processes, respectively, all contribute to expanding the repertoire of RNA transcripts with newly acquired regulatory functions. Interestingly, these non-canonical splicing events seem to occur more frequently in the central nervous system, affecting neuronal development and differentiation programs with important implications on brain physiology. Coherently, dysregulation of non-canonical RNA processing events is associated with brain disorders, including brain tumours. Herein, we summarize the current knowledge on molecular and regulatory mechanisms underlying canonical and non-canonical splicing events with particular emphasis on cis-acting elements and trans-acting factors that all together orchestrate splicing catalysis reactions and decisions. Lastly, we review the impact of non-canonical splicing on brain physiology and pathology and how unconventional splicing mechanisms may be targeted or exploited for novel therapeutic strategies in cancer.
Collapse
Affiliation(s)
- Consuelo Pitolli
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Alberto Marini
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Claudio Sette
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
| | - Vittoria Pagliarini
- Department of Neuroscience, Section of Human Anatomy, Catholic University of the Sacred Heart, 00168 Rome, Italy; (C.P.); (C.S.)
- GSTEP-Organoids Research Core Facility, IRCCS Fondazione Policlinico Universitario Agostino Gemelli, 00168 Rome, Italy;
- Correspondence:
| |
Collapse
|
30
|
Salami R, Salami M, Mafi A, Vakili O, Asemi Z. Circular RNAs and glioblastoma multiforme: focus on molecular mechanisms. Cell Commun Signal 2022; 20:13. [PMID: 35090496 PMCID: PMC8796413 DOI: 10.1186/s12964-021-00809-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/25/2021] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma multiforme (GBM), as a deadly and almost incurable brain cancer, is the most invasive form of CNS tumors that affects both children and adult population. It accounts for approximately half of all primary brain tumors. Despite the remarkable advances in neurosurgery, radiotherapy, and chemotherapeutic approaches, cell heterogeneity and numerous genetic alterations in cell cycle control, cell growth, apoptosis, and cell invasion, result in an undesirable resistance to therapeutic strategies; thereby, the median survival duration for GBM patients is unfortunately still less than two years. Identifying new therapeutics and employing the combination therapies may be considered as wonderful strategies against the GBM. In this regard, circular RNAs (circRNAs), as tumor inhibiting and/or stimulating RNA molecules, can regulate the cancer-developing processes, including cell proliferation, cell apoptosis, invasion, and chemoresistance. Hereupon, these molecules have been introduced as potentially effective therapeutic targets to defeat GBM. The current study aims to investigate the fundamental molecular and cellular mechanisms in association with circRNAs involved in GBM pathogenesis. Among multiple mechanisms, the PI3K/Akt/mTOR, Wnt/β-catenin, and MAPK signaling, angiogenic processes, and metastatic pathways will be thoroughly discussed to provide a comprehensive understanding of the role of circRNAs in pathophysiology of GBM. Video Abstract.
Collapse
Affiliation(s)
- Raziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Hamedan University of Medical Sciences, Hamedan, Iran
| | - Marziyeh Salami
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Alireza Mafi
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
31
|
Emergent Roles of Circular RNAs in Metabolism and Metabolic Disorders. Int J Mol Sci 2022; 23:ijms23031032. [PMID: 35162956 PMCID: PMC8834750 DOI: 10.3390/ijms23031032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 12/24/2022] Open
Abstract
Circular RNAs (circRNAs) are an emerging group of long non-coding RNAs (lncRNAs) and have attracted attention again according to the progress in high-throughput sequencing in recent years. circRNAs are genome transcripts produced from pre-messenger (m)RNA regions in a specific process called “back-splicing,” which forms covalently closed continuous loops. Due to their lack of a 5’ cap and 3’ poly-adenylated tails, circRNAs are remarkably more stable than linear RNAs. Functionally, circRNAs can endogenously sponge to microRNAs, interact with RNA-binding proteins (RBPs), or translate themselves. Moreover, circRNAs can be expressed in cell type- or tissue-specific expression patterns. Therefore, they are proposed to play essential roles in fine-tuning our body’s homeostasis by regulating transcription and translation processes. Indeed, there has been accumulating emergent evidence showing that dysregulation of circRNAs can lead to metabolic disorders. This study explored the current knowledge of circRNAs that regulate molecular processes associated with glucose and lipid homeostasis and related pathogeneses of metabolic disorders. We also suggest the potential role of circRNAs as disease biomarkers and therapeutic targets.
Collapse
|
32
|
Hwang T, Kim S, Chowdhury T, Yu HJ, Kim KM, Kang H, Won JK, Park SH, Shin JH, Park CK. Genome-wide perturbations of Alu expression and Alu-associated post-transcriptional regulations distinguish oligodendroglioma from other gliomas. Commun Biol 2022; 5:62. [PMID: 35042936 PMCID: PMC8766575 DOI: 10.1038/s42003-022-03011-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 12/27/2021] [Indexed: 01/09/2023] Open
Abstract
AbstractAlu is a primate-specific repeat element in the human genome and has been increasingly appreciated as a regulatory element in many biological processes. But the appreciation of Alu has been limited in tumorigenesis, especially for brain tumor. To investigate the relevance of Alu to the gliomagenesis, we studied Alu element-associated post-transcriptional processes and the RNA expression of the element by performing RNA-seq for a total of 41 pairs of neurotypical and diverse glioma brain tissues. We find that A-to-I editing and circular RNA levels, as well as Alu RNA expression, are decreased overall in gliomas, compared to normal tissue. Interestingly, grade 2 oligodendrogliomas are least affected in A-to-I editing and circular RNA levels among gliomas, whereas they have a higher proportion of down-regulated Alu subfamilies, compared to the other gliomas. These findings collectively imply a unique pattern of Alu-associated transcriptomes in grade 2 oligodendroglioma, providing an insight to gliomagenesis from the perspective of an evolutionary genetic element.
Collapse
|
33
|
Dai Y, Sheng Y, Deng Y, Wang H, Zhao Z, Yu X, Xu T. Circ_0000647 promotes cell injury by modulating miR-126-5p/TRAF3 axis in oxygen-glucose deprivation and reperfusion-induced SK-N-SH cell model. Int Immunopharmacol 2022; 104:108464. [PMID: 35021128 DOI: 10.1016/j.intimp.2021.108464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/09/2021] [Accepted: 12/12/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Emerging evidence has shown that circular RNAs (circRNAs) are involved in the pathogenesis of ischemic stroke (IS). Nonetheless, the function of circ_0000647 was not reported. METHODS Oxygen-glucose deprivation and reperfusion (OGD/R)-treated SK-N-SH cells were used to mimic cerebral ischemia/reperfusion (I/R) conditions. Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure the levels of circ_0000647, microRNA-126-5p (miR-126-5p) and TNF receptor associated factor 3 (TRAF3). Cell Counting Kit-8 (CCK-8) assay, 5'-ethynyl-2'-deoxyuridine (EDU) assay and flow cytometry analysis were employed to assess cell proliferation and apoptosis. Enzyme-linked immunosorbent assay (ELISA) was conducted for the concentrations of IL-6 and TNF-α. Oxidative stress was assessed by determining malondialdehyde (MDA) level and superoxide dismutase (SOD) activity. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were adopted to estimate the relationships of circ_0000647, miR-126-5p and TRAF3. The morphology and size of exosomes were observed via transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA) analysis. RESULTS Circ_0000647 was elevated in OGD/R-treated SK-N-SH cells. OGD/R treatment suppressed the proliferation and promoted the apoptosis, inflammation and oxidative stress in SK-N-SH cells, while circ_0000647 knockdown reversed the effects. Circ_0000647 could sponge miR-126-5p, which directly targeted TRAF3. MiR-126-5p overexpression alleviated OGD/R-induced SK-N-SH cell damage and miR-126-5p inhibition reversed the effect of circ_0000647 knockdown on OGD/R-induced SK-N-SH cell damage. Moreover, TRAF3 elevation abated miR-126-5p-mediated effect on SK-N-SH cell injury. In addition, exosomal circ_0000647 level was increased in OGD/R-stimulated SK-N-SH cells. CONCLUSION Circ_0000647 interference relieved OGD/R-induced SK-N-SH cell damage by altering miR-126-5p/TRAF3 axis.
Collapse
Affiliation(s)
- Yuanqiang Dai
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China
| | - Ying Sheng
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China
| | - Yu Deng
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China
| | - Heng Wang
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China
| | - Zhenzhen Zhao
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China
| | - Xiya Yu
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China.
| | - Tao Xu
- Department of Faculty of Anesthesiology, Changhai Hospital Affiliated to Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
34
|
Kong X, Xu R, Wang W, Zeng M, Li Y, Lin M, Zhou W, Fu X, Wu H. CircularLRRC7 is a Potential Tumor Suppressor Associated With miR-1281 and PDXP Expression in Glioblastoma. Front Mol Biosci 2021; 8:743417. [PMID: 34912844 PMCID: PMC8667166 DOI: 10.3389/fmolb.2021.743417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 11/09/2021] [Indexed: 12/30/2022] Open
Abstract
Circular RNAs (circRNAs) are usually enriched in neural tissues, yet about 80% circRNAs have lower expression in gliomas relative to normal brains, highlighting the importance of circRNAs as tumor suppressors. However, the clinical impact as well as the pathways regulated by the tumor-suppressive circRNAs remain largely unknown in glioblastoma (GBM). Through bioinformatic analysis followed by experimental validation, we found that hsa_circ_0114014 (circLRRC7) was dramatically down-regulated in GBM when compared with normal brain tissues (p < 0.0001). GBM patients with a lower circLRRC7 expression had poorer progression-free survival (PFS, p < 0.05) and overall survival (OS, p < 0.05). Analyses of the predicted target miRNAs of circLRRC7 in CSCD and CRI databases, in combination with the miRNA expression data in GBMs and normal brains from GSE database, revealed miR-1281 as a potential downstream target of circLRRC7. Subsequently, the target genes of hsa-mir-1281 were predicted by TargetScan, miRDB and miRNATAR databases. Intersection analysis and correlation test indicated that PDXP was a potential target of miR-1281. In summary, circLRRC7 may be a tumor suppressor that associated with miR-1281 and PDXP expression in GBM, which may provide novel therapeutic targets for GBM treatment.
Collapse
Affiliation(s)
- Xue Kong
- School of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Ruiting Xu
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Wei Wang
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Minghui Zeng
- Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yuan Li
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Mengyu Lin
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Wenchao Zhou
- Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| | - Xianming Fu
- School of Medicine, Shandong University, Jinan, China.,Department of Neurosurgery, Anhui Provincial Hospital, Shandong University, Hefei, China.,Department of Neurosurgery, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Haibo Wu
- Department of Pathology, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China.,Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, Intelligent Pathology Institute, University of Science and Technology of China, Hefei, China
| |
Collapse
|
35
|
Li JY, Li QQ, Sheng R. The role and therapeutic potential of exosomes in ischemic stroke. Neurochem Int 2021; 151:105194. [PMID: 34582960 DOI: 10.1016/j.neuint.2021.105194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/05/2021] [Accepted: 09/25/2021] [Indexed: 01/08/2023]
Abstract
Ischemic stroke is a disease caused by insufficient blood and oxygen supply to the brain, which is mainly due to intracranial arterial stenosis and middle cerebral artery occlusion. Exosomes play an important role in cerebral ischemia. Nucleic acid substances such as miRNA, circRNA, lncRNA in exosomes can play communication roles and improve cerebral ischemia by regulating the development and regeneration of the nervous system, remodeling of blood vessels and inhibiting neuroinflammation. Furthermore, exosomes modulate stroke through various mechanisms, including improving neural communication, promoting the development of neuronal cells and myelin synapses, neurovascular unit remodeling and maintaining homeostasis of the nervous system. At the same time, exosomes are also a good carrier of bioactive substances, which can be modified and targeted to the lesion site. Here, we review the roles of exosomes in cerebral ischemia, and discuss the possible mechanisms and potentials of modification of exosomes for targeting stroke, providing a new idea for the prevention and treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Jia-Ying Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Qi-Qi Li
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, China.
| |
Collapse
|
36
|
Cao D. An autoregulation loop in fust-1 for circular RNA regulation in Caenorhabditis elegans. Genetics 2021; 219:iyab145. [PMID: 34740247 PMCID: PMC8570788 DOI: 10.1093/genetics/iyab145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/24/2021] [Indexed: 01/22/2023] Open
Abstract
Many circular RNAs (circRNAs) are differentially expressed in different tissues or cell types, suggestive of specific factors that regulate their biogenesis. Here, taking advantage of available mutation strains of RNA-binding proteins (RBPs) in Caenorhabditis elegans, I performed a screening of circRNA regulation in 13 conserved RBPs. Among them, loss of FUST-1, the homolog of Fused in Sarcoma (FUS), caused downregulation of multiple circRNAs. By rescue experiments, I confirmed FUST-1 as a circRNA regulator. Through RNA sequencing using circRNA-enriched samples, circRNAs targets regulated by FUST-1 were identified globally, with hundreds of them significantly altered. Furthermore, I showed that FUST-1 regulates circRNA formation with only small to little effect on the cognate linear mRNAs. When recognizing circRNA pre-mRNAs, FUST-1 can affect both exon-skipping and circRNA in the same genes. Moreover, I identified an autoregulation loop in fust-1, where FUST-1, isoform a (FUST-1A) promotes the skipping of exon 5 of its own pre-mRNA, which produces FUST-1, isoform b (FUST-1B) with different N-terminal sequences. FUST-1A is the functional isoform in circRNA regulation. Although FUST-1B has the same functional domains as FUST-1A, it cannot regulate either exon-skipping or circRNA formation. This study provided an in vivo investigation of circRNA regulation, which will be helpful to understand the mechanisms that govern circRNA formation.
Collapse
Affiliation(s)
- Dong Cao
- Information Processing Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| |
Collapse
|
37
|
Wu S, Yang S, Qu H. circ_CHFR regulates ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by miR-15a-5p/EGFR axis in human brain microvessel endothelial cells. Open Life Sci 2021; 16:1053-1063. [PMID: 34676300 PMCID: PMC8483062 DOI: 10.1515/biol-2021-0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/29/2021] [Accepted: 05/25/2021] [Indexed: 12/25/2022] Open
Abstract
Oxidized low-density lipoprotein (ox-LDL) is a significant risk factor for various brain vascular diseases. Circular RNA (circRNA) is involved in the pathogenesis of brain vascular diseases. This study revealed the roles of circ_CHFR in ox-LDL-mediated cell proliferation, apoptosis, and endothelial-to-mesenchymal transition (EndoMT). Our results showed that circ_CHFR and EGFR expressions were dramatically upregulated, while miR-15a-5p expression was downregulated in ox-LDL-induced human brain microvessel endothelial cells (HBMECs) relative to control groups. circ_CHFR knockdown hindered the effects of ox-LDL exposure on cell proliferation, cell cycle, apoptosis, and EndoMT in HBMECs, whereas these impacts were abolished by miR-15a-5p inhibitor. In addition, circ_CHFR functioned as a sponge of miR-15a-5p and miR-15a-5p bound to EGFR. Thus, we concluded that circ_CHFR silencing hindered ox-LDL-mediated cell proliferation, apoptosis, and EndoMT by downregulating EGFR expression through sponging miR-15a-5p in HBMECs. Our findings provide a new mechanism for studying circRNA-directed therapy in ox-LDL-induced human brain vascular diseases.
Collapse
Affiliation(s)
- Shanwu Wu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Sheng Yang
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| | - Hongyan Qu
- Department of Neurosurgery, Sinopharm Dongfeng General Hospital, No. 16 Daling Road, Zhangwan District, Shiyan City, 442000, Hubei, China
| |
Collapse
|
38
|
Zhang L, Liu Y, Tao H, Zhu H, Pan Y, Li P, Liang H, Zhang B, Song J. Circular RNA circUBE2J2 acts as the sponge of microRNA-370-5P to suppress hepatocellular carcinoma progression. Cell Death Dis 2021; 12:985. [PMID: 34686662 PMCID: PMC8536678 DOI: 10.1038/s41419-021-04269-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/13/2021] [Accepted: 09/28/2021] [Indexed: 12/19/2022]
Abstract
Accumulating evidences indicate that circular RNAs (circRNAs), a class of non-coding RNAs, play important roles in tumorigenesis. However, the function of circRNAs in hepatocellular carcinoma is largely unknown. CircRNA microarray was performed to identify abnormally expressed circRNAs in HCC tissue samples. We conducted Kaplan-Meier survival analysis to explore the significance of circUBE2J2 in clinical prognosis. Then, we examined the functions of circUBE2J2 in HCC by cell proliferation, migration, and mouse xenograft assay. We identified miR-370-5P as a circUBE2J2-related microRNA by using biotin-labeled circUBE2J2 probe to perform RNA antisense purification (RAP) assay in HCC cells. The dual luciferase reporter assay and RNA pulldown assays were employed to verify the relationships among circUBE2J2, miRNA-370-5P, and KLF7. Microarray analysis and qRT-PCR verified a circRNA termed circUBE2J2 that was downregulated in HCC. Kaplan-Meier survival analysis showed that downregulated circUBE2J2 was correlated with poorer survival. CircUBE2J2 expression in HCC cells was selectively regulated via luciferase reporter assays; circUBE2J2 and KLF7 were observed to directly bind to miR-370-5P. Furthermore, knockdown of circUBE2J2 in HCC could downregulate KLF7, the target of miR-370-5P, thus promoting the proliferation and migration of HCC cells. Then the related experiment suggested that circUBE2J2 could regulate the expression of KLF7 by sponging miR-370-5p. In summary, we infer that circUBE2J2 may act as a competing endogenous RNA (ceRNA) to regulate KLF7 expression through sponging miR-370-5P and play a regulatory functions in HCC. CircUBE2J2 may be a diagnostic biomarker and potential target for HCC therapy.
Collapse
Affiliation(s)
- Lu Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Yachong Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Haisu Tao
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - He Zhu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Yonglong Pan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Pengcheng Li
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China.
| | - Jia Song
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China.
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, Hubei, P.R. China.
| |
Collapse
|
39
|
Sámano C, Mladinic M, Mazzone GL. Circular RNAs: The Novel Actors in Pathophysiology of Spinal Cord Injury. Front Integr Neurosci 2021; 15:758340. [PMID: 34720897 PMCID: PMC8551753 DOI: 10.3389/fnint.2021.758340] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Spinal Cord Injury (SCI) can elicit a progressive loss of nerve cells promoting disability, morbidity, and even mortality. Despite different triggering mechanisms, a cascade of molecular events involving complex gene alterations and activation of the neuroimmune system influence either cell damage or repair. Effective therapies to avoid secondary mechanisms underlying SCI are still lacking. The recent progression in circular RNAs (circRNAs) research has drawn increasing attention and opened a new insight on SCI pathology. circRNAs differ from traditional linear RNAs and have emerged as the active elements to regulate gene expression as well as to facilitate the immune response involved in pathophysiology-related conditions. In this review, we focus on the impact and possible close relationship of circRNAs with pathophysiological mechanisms following SCI, where circRNAs could be the key transcriptional regulatory molecules to define neuronal death or survival. Advances in circRNAs research provide new insight on potential biomarkers and effective therapeutic targets for SCI patients.
Collapse
Affiliation(s)
- Cynthia Sámano
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Cuajimalpa de Morelos, Mexico
| | - Miranda Mladinic
- Department of Biotechnology, University of Rijeka, Rijeka, Croatia
| | - Graciela L. Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Buenos Aires, Argentina
| |
Collapse
|
40
|
Peng Q, Wang J. Non-coding RNAs in melanoma: Biological functions and potential clinical applications. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:219-231. [PMID: 34514101 PMCID: PMC8424110 DOI: 10.1016/j.omto.2021.05.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Malignant melanoma (MM) is a malignant tumor that originates from melanocytes and has a high mortality rate. Therefore, early diagnosis and treatment are very important for survival. So far, the exact molecular mechanism leading to the occurrence of melanoma, especially the molecular metastatic mechanism, remains largely unknown. Non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNA (circRNAs), have been investigated and found to play vital roles in regulating tumor occurrence and development, including melanoma. In this review, we summarize the progress of recent research on the effects of ncRNAs on melanoma and attempt to elucidate the role of ncRNAs as molecular markers or potential targets that will provide promising application perspectives on melanoma.
Collapse
Affiliation(s)
- Qiu Peng
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Jia Wang
- Department of Immunology, Changzhi Medical College, Changzhi, Shanxi 046000 China
| |
Collapse
|
41
|
Bie F, Wang K, Xu T, Yuan J, Ding H, Lv B, Liu Y, Lan M. The potential roles of circular RNAs as modulators in traumatic spinal cord injury. Biomed Pharmacother 2021; 141:111826. [PMID: 34328121 DOI: 10.1016/j.biopha.2021.111826] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Spinal cord injury (SCI) may cause long-term physical impairment and bring a substantial burden to both the individual patient and society. Existing therapeutic approaches for SCI have proven inadequate. This is mainly owing to the incomplete understanding of the cellular and molecular events post-injury. Circular RNAs (circRNAs) represent a new class of non-coding RNAs with a covalently closed annular structure that participates in regulating the transcription of certain genes and are linked to various biological processes and diseases. Mounting evidence is indicative that circRNAs are highly expressed in the spinal cord and they play key roles in multiple processes of neurological diseases. Recently, a role for circRNAs as effectors of SCI has emerged, leading to the continuity of relevant research. In this review, we presented current studies with regards to the abnormality of circRNAs mediating SCI by affecting mechanisms of autophagy, apoptosis, inflammation, and neural regeneration. Furthermore, the potential clinical value of circRNAs as therapeutic targets of SCI was also analyzed.
Collapse
Affiliation(s)
- Fan Bie
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Kaiyang Wang
- Department of Orthopedics, Shanghai Jiao Tong University Sixth People's Hospital, Shanghai 200233, China.
| | - Tao Xu
- Department of Orthopedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Hua Ding
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| | - Bin Lv
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China; Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Yuwen Liu
- Department of Orthopedics, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, China.
| | - Min Lan
- Department of Rehabilitation Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212002, China.
| |
Collapse
|
42
|
Peng Peng, Yu H, Yongjin Li, Huang J, Yao S, Xing C, Liu W, Zhang B, Feng S. The emerging role of circular RNAs in spinal cord injury. J Orthop Translat 2021; 30:1-5. [PMID: 34401327 PMCID: PMC8326601 DOI: 10.1016/j.jot.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 05/02/2021] [Accepted: 06/09/2021] [Indexed: 01/07/2023] Open
Abstract
Spinal cord injury (SCI) is one kind of severe diseases with high mortality and morbidity worldwide, and lacks effective therapeutic interventions currently, which leads to not only permanent neurological impairments but also heavy social and economic burden. Recent studies have proved that circRNAs are highly expressed in neural tissues, regulating the neuronal and synaptic functions. What's more, significantly altered circRNAs expression profiles are closely associated with the pathophysiology of SCI. In this review, we summarize the current advance on the role of circRNAs in SCI, which may provide a better understanding of pathogenesis and therapeutic strategies of SCI. THE TRANSLATIONAL POTENTIAL OF THIS ARTICLE The Translational potential of this article is that A further understanding of circRNAs in the pathogenesis of SCI will promote the circRNA-based clinical applications.
Collapse
Affiliation(s)
- Peng Peng
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Yu
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongjin Li
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jingyuan Huang
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shengyu Yao
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Cong Xing
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Weixiao Liu
- Department of Orthopedics, Kuancheng Manzu Autonomous Country Hospital, Chengde, China
| | - Bin Zhang
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, No.154 Anshan Road, Heping District, Tianjin, 300052, China
- International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury,Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
43
|
Gender-Dependent Deregulation of Linear and Circular RNA Variants of HOMER1 in the Entorhinal Cortex of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179205. [PMID: 34502114 PMCID: PMC8430762 DOI: 10.3390/ijms22179205] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/11/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
The HOMER1 gene is involved in synaptic plasticity, learning and memory. Recent studies show that circular RNA derived from HOMER1 (circHOMER1) expression is altered in some Alzheimer’s disease (AD) brain regions. In addition, HOMER1 messenger (mRNA) levels have been associated with β-Amyloid (Aβ) deposits in brain cortical regions. Our aim was to measure the expression levels of HOMER1 circRNAs and their linear forms in the human AD entorhinal cortex. First, we showed downregulation of HOMER1B/C and HOMER1A mRNA and hsa_circ_0006916 and hsa_circ_0073127 levels in AD female cases compared to controls by RT-qPCR. A positive correlation was observed between HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073128 with HOMER1B/C protein only in females. Global average area of Aβ deposits in entorhinal cortex samples was negatively correlated with HOMER1B/C, HOMER1A mRNA, and hsa_circ_0073127 in both genders. Furthermore, no differences in DNA methylation were found in two regions of HOMER1 promoter between AD cases and controls. To sum up, we demonstrate that linear and circular RNA variants of HOMER1 are downregulated in the entorhinal cortex of female patients with AD. These results add to the notion that HOMER1 and its circular forms could be playing a female-specific role in the pathogenesis of AD.
Collapse
|
44
|
Comprehensive CircRNA Profiling and Selection of Key CircRNAs Reveal the Potential Regulatory Roles of CircRNAs throughout Ovarian Development and Maturation in Cynoglossus semilaevis. BIOLOGY 2021; 10:biology10090830. [PMID: 34571707 PMCID: PMC8468179 DOI: 10.3390/biology10090830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023]
Abstract
Simple Summary CircRNAs: as molecules involved in gene regulation, have become a new research hotspot in the non-coding RNA field. CircRNAs show tissue- or developmental stage-specific patterns of expression and can influence the expression levels of their parental genes. Recent studies have documented the potential biological roles of circRNAs in the growth, development, reproduction and health of humans and animals. Tongue sole (Cynoglossus semilaevis) is a marine flatfish that is an economically important farmed species in China. The commercial aquaculture of tongue sole has developed in the last few years because wild resources have decreased. Reproduction is regulated by brain-pituitary-gonad-liver axis which limits the development of artificial tongue sole culture. However, the roles of circRNAs in the ovarian development and maturation of tongue sole has never been reported. The identification of the potential functions of circRNAs provides a foundation for understanding the genetic mechanisms that regulate oocyte growth and maturation, which will allow the efficiency of tongue sole reproduction to be improved. Moreover, our findings extend the knowledge about a new type of endogenous RNA involved in regulating the ovarian development and maturation of tongue sole. Abstract CircRNAs are novel endogenous non-coding small RNAs involved in the regulation of multiple biological processes. However, little is known regarding circRNAs in ovarian development and maturation of fish. Our study, for the first time, provides the genome-wide overview of the types and relative abundances of circRNAs in tongue sole tissues during three ovarian developmental stages. We detected 6790 circRNAs in the brain, 5712 in the pituitary gland, 4937 in the ovary and 4160 in the liver. Some circRNAs exhibit tissue-specific expression, and qRT-PCR largely confirmed 6 differentially expressed (DE) circRNAs. Gene Ontology and KEGG pathway analyses of DE mRNAs were performed. Some DE circRNA parental genes were closely associated with biological processes in key signalling pathways and may play essential roles in ovarian development and maturation. We found that the selected circRNAs were involved in 10 pathways. RNase R digestion experiment and Sanger sequencing verified that the circRNA had a ring structure and was RNase R resistant. qRT-PCR results largely confirmed differential circRNA expression patterns from the RNA-seq data. These findings indicate that circRNAs are widespread in terms of present in production-related tissues of tongue sole with potentially important regulatory roles in ovarian development and maturation.
Collapse
|
45
|
Qi Y, Ma N, Chen X, Wang Y, Zhang W, Wan J. CircRtn4 Acts as the Sponge of miR-24-3p to Promote Neurite Growth by Regulating CHD5. Front Mol Neurosci 2021; 14:660429. [PMID: 34305525 PMCID: PMC8294096 DOI: 10.3389/fnmol.2021.660429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/09/2021] [Indexed: 11/18/2022] Open
Abstract
Circular RNAs (circRNAs) are covalently closed single-stranded RNA molecules. After derived from precursor mRNA back-splicing, circRNAs play important roles in many biological processes. Recently, it was shown that several circRNAs were enriched in the mammalian brain with unclear functions. The expression of circRtn4 in the mouse brain was increased with the differentiation of primary neurons. In our study, knockdown of circRtn4 inhibited neurite growth, while overexpression of circRtn4 significantly increased neurite length. By dual-luciferase reporter assay and RNA antisense purification assay, circRtn4 was identified as a miRNA sponge for miR-24-3p. Moreover, knockdown of miR-24-3p increased neurite length, while overexpression of miR-24-3p significantly inhibited neurite growth. Furthermore, CHD5 was confirmed to be a downstream target gene of miR-24-3p. And CHD5 silence counteracted the positive effect of circRtn4 overexpression on neurite growth. In conclusion, circRtn4 may act as the sponge for miR-24-3p to promote neurite growth by regulating CHD5.
Collapse
Affiliation(s)
- Yue Qi
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Nana Ma
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Xiaofan Chen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Yue Wang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Wei Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jun Wan
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University - The Hong Kong University of Science and Technology Medical Center, Shenzhen, China.,Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.,Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
46
|
Zhang J, Hu S, Ding R, Yuan J, Jia J, Wu T, Cheng X. CircSNHG5 Sponges Mir-495-3p and Modulates CITED2 to Protect Cartilage Endplate From Degradation. Front Cell Dev Biol 2021; 9:668715. [PMID: 34277611 PMCID: PMC8281349 DOI: 10.3389/fcell.2021.668715] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a highly prevalent degenerating disease that produces tremendous amount of low back and neck pain. The cartilage endplate (CEP) is vitally important to intervertebral discs in both physiological and pathological conditions. In addition, circular RNAs (circRNAs) have been shown to be involved in the regulation of various diseases, including IDD. However, the particular role of circRNAs in cervical vertebral CEP degeneration remains unclear. Here, we examined the unique role of circRNAs in CEP of patients with cervical fracture and degenerative cervical myelopathy (DCM). Methods Human competitive endogenous RNA (ceRNA) microarray was performed by previous research. Western blot (WB), immunofluorescence (IF), quantitative RT-PCR (qRT-PCR), luciferase assay, and fluorescence in situ hybridization (FISH) were employed to analyze the function of circSNHG5 and its downstream effectors, miR-495-3p, and CITED2. Results We demonstrated that circSNHG5 expression was substantially low in degenerative CEP tissues. Knockdown of circSNHG5 in chondrocytes resulted in a loss of cell proliferation and followed by degradation of extracellular matrix (ECM). In addition, circSNHG5 was shown to sponge miR-495-3p and modulate the expression of the downstream gene CITED2. This mechanism of action was further validated via overexpression and knockdown of CITED2. Conclusion Our findings identified a novel circSNHG5-miR-495-3p axis responsible for IDD progression. Future investigations into IDD therapy may benefit from targeting this axis.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Shen Hu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Rui Ding
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jinghong Yuan
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Tianlong Wu
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| | - Xigao Cheng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Institute of Orthopedics of Jiangxi Province, Nanchang, China.,Institute of Minimally Invasive Orthopedics, Nanchang University, Nanchang, China
| |
Collapse
|
47
|
Liao XQ, Yu HC, Diao LM, Lu L, Li H, Zhou YY, Qin HL, Huang QL, Lv TT, Huang XM. Differentially expressed circRNA and functional pathways in the hippocampus of epileptic mice based on next-generation sequencing. Kaohsiung J Med Sci 2021; 37:803-811. [PMID: 34110683 DOI: 10.1002/kjm2.12404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/25/2021] [Accepted: 05/11/2021] [Indexed: 11/11/2022] Open
Abstract
Epilepsy is a clinical syndrome caused by the highly synchronized abnormal discharge of brain neurons. It has the characteristics of paroxysmal, transient, repetitive, and stereotyped. Circular RNAs (circRNAs) are a recently discovered type of noncoding RNA with diverse cellular functions related to their excellent stability; additionally, some circRNAs can bind and regulate microRNAs (miRNAs). The present study was designed to screen the differentially expressed circRNA in an acute seizure model of epilepsy in mice, analyze the related miRNA and mRNA, and study their participating functions and enrichment pathways. In order to obtain the differential expression of circRNA in epilepsy and infer their function, we used next-generation sequencing and found significantly different transcripts. CIRI (circRNA identifier) software was used to predict circRNA from the hippocampus cDNA, EdgeR was applied for the differential circRNA analysis between samples, and Cytoscape 3.7.2 software was used to draw the network diagram. A total of 10,388 differentially expressed circRNAs were identified, of which 34 were upregulated and 66 were downregulated. Among them, mm9_circ_008777 and mm9_circ_004424 were the key upregulated genes, and their expression in the epilepsy group was verified using Quantitative real-time PCR (QPCR). The analysis indicated that the extracted gene ontology terms and Kyoto Encyclopedia of Genes and Genomes pathways were closely related to several epilepsy-associated processes. This study determined that mm9_circ_008777 and mm9_circ_004424 are potential biomarkers of epilepsy, which play important roles in epilepsy-related pathways. These results could help improve the understanding of the biological mechanisms of circRNAs and epilepsy treatments.
Collapse
Affiliation(s)
- Xian-Qiu Liao
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Hai-Chun Yu
- Guangxi Technological College of Machinery and Electricity, Nanning, China
| | - Li-Mei Diao
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Ling Lu
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Huan Li
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yan-Ying Zhou
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Hong-Ling Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, China
| | - Qi-Liu Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Ting-Ting Lv
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xiao-Mei Huang
- Department of Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
48
|
Circular RNA Plek promotes fibrogenic activation by regulating the miR-135b-5p/TGF-βR1 axis after spinal cord injury. Aging (Albany NY) 2021; 13:13211-13224. [PMID: 33982670 PMCID: PMC8148484 DOI: 10.18632/aging.203002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Objectives: The spinal cord rarely repairs itself when damaged; however, methods for encouraging nerves to regrow are on the horizon. Although circular RNAs (circRNAs) contribute to various biological processes, including neuronal processes, their functions in the subacute phase of spinal cord injury (SCI) have not been elucidated. In this study, we identified a novel circRNA, named CircPlek, with increased expression in spinal tissues after SCI. Materials and Methods: We predicted a regulatory relationship between CircPlek and miR-135b-5p, which showed the most obvious decrease in post-SCI expression. We established the CircPlek/miR-135b-5p/transforming growth factor-beta receptor type I (TGF-βR1) axis using a bioinformatics approach and further evaluated the potential function of the interaction network in vitro. Results: We confirmed that in TGF-β1-induced fibroblasts, the overexpression of miR-135b-5p or/and inhibition of CircPlek inhibited fibrosis activation via the Smad pathway. Inhibitors of miR-135b-5p had antagonistic effects on CircPlek. Conclusions: the CircPlek/miR-135b-5p/TGF-βR1 axis may exert important functions in SCI and is a potential therapeutic target.
Collapse
|
49
|
Zhou Z, Zheng X, Mei X, Li W, Qi S, Deng Y, Lei B. Hsa_circ_0080229 upregulates the expression of murine double minute-2 (MDM2) and promotes glioma tumorigenesis and invasion via the miR-1827 sponging mechanism. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:762. [PMID: 34268375 PMCID: PMC8246201 DOI: 10.21037/atm-20-7123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/21/2021] [Indexed: 12/17/2022]
Abstract
Background Glioma is the most common and fatal primary cranial tumor. The epidermal growth factor receptor (EGFR) plays an important role in the occurrence and treatment of glioma, which might function through a circular ribonucleic acid (circRNA)-related mechanism. Hsa_circ_0080229 (circ_0080229) has been identified as a circRNA arising from an EGFR gene in gliomas; however, little is known about its molecular mechanism to date. Methods To address this question, a series of experiments were conducted to confirm the effect of circ_0080229 in gliomas and identify the downstream mechanism. A quantitative real-time polymerase chain reaction (qRT-PCR) analysis and in-situ hybridization/fluorescence in-situ hybridization (ISH/FISH) testing were performed to identify the expression of circ_0080229 in patient samples. Bioinformatic analysis was carried out to explore the possible mechanism. Next, a series of in-vitro functional assays and in-vivo assays with a xenograft subcutaneous glioma model was carried out to confirm the effect of circ_0080229. Finally, qRT-PCR analysis and a Western Blot analysis were performed to verify the related mechanism. Results The expression of circ_0080229 was upregulated in both glioma tissues and cell lines related to unfavorable clinicopathologic characteristics. The expression of circ_0080229 was found to be inversely correlated with miR-1827, a micro-ribonucleic acid (miRNA) targeting murine double minute-2 (MDM2). The downregulation of circ_0080229 inhibited gliomas in vivo and suppressed U87 and U251 cell lines in vitro, which the transfection of the miR-1827 inhibitor could reverse. Concerning the mechanism, a block of circ_0080229 decreased MDM2 expression, while the inhibition of miR-1827 reversed this effect. Thus, circ_0080229 appears to target the downstream miR-1827/MDM2 signaling pathway. Conclusions Our results showed that the silencing of circ_0080229 upregulates the expression of miR-1827, which in turn resulted in the suppression of MDM2, and the mediation of the downstream P53 signaling pathway. Circ_0080229 exerted an effect in mediating tumor progression through the MDM2 signaling pathway by sponging miR-1827. Its importance as a potential prognostic biomarker in gliomas has thus been established.
Collapse
Affiliation(s)
- Zhiwei Zhou
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Faculty of Health Sciences, University of Macau, Taipa, Macau, China
| | - Xiuyuan Zheng
- Department of Rehabilitation Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xin Mei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Wengpeng Li
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Songtao Qi
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuefei Deng
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingxi Lei
- Department of Neurosurgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.,Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
50
|
Vangoor VR, Gomes‐Duarte A, Pasterkamp RJ. Long non-coding RNAs in motor neuron development and disease. J Neurochem 2021; 156:777-801. [PMID: 32970857 PMCID: PMC8048821 DOI: 10.1111/jnc.15198] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 12/11/2022]
Abstract
Long non-coding RNAs (lncRNAs) are RNAs that exceed 200 nucleotides in length and that are not translated into proteins. Thousands of lncRNAs have been identified with functions in processes such as transcription and translation regulation, RNA processing, and RNA and protein sponging. LncRNAs show prominent expression in the nervous system and have been implicated in neural development, function and disease. Recent work has begun to report on the expression and roles of lncRNAs in motor neurons (MNs). The cell bodies of MNs are located in cortex, brainstem or spinal cord and their axons project into the brainstem, spinal cord or towards peripheral muscles, thereby controlling important functions such as movement, breathing and swallowing. Degeneration of MNs is a pathological hallmark of diseases such as amyotrophic lateral sclerosis and spinal muscular atrophy. LncRNAs influence several aspects of MN development and disruptions in these lncRNA-mediated effects are proposed to contribute to the pathogenic mechanisms underlying MN diseases (MNDs). Accumulating evidence suggests that lncRNAs may comprise valuable therapeutic targets for different MNDs. In this review, we discuss the role of lncRNAs (including circular RNAs [circRNAs]) in the development of MNs, discuss how lncRNAs may contribute to MNDs and provide directions for future research.
Collapse
Affiliation(s)
- Vamshidhar R. Vangoor
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - Andreia Gomes‐Duarte
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| | - R. Jeroen Pasterkamp
- Department of Translational NeuroscienceUniversity Medical Center Utrecht Brain CenterUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|