1
|
Pirri F, McCormick CM. Oxytocin receptors within the caudal lateral septum regulate social approach-avoidance, long-term social discrimination, and anxiety-like behaviors in adult male and female rats. Neuropharmacology 2025; 271:110409. [PMID: 40074168 DOI: 10.1016/j.neuropharm.2025.110409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
OTR signaling promotes social approach or facilitates social avoidance, depending on the brain region involved. The lateral septum plays a critical role in regulating social interactions and memory. We investigated the role of OTR signaling in the caudodorsal lateral septum (LSc.d) in modulating social approach-avoidance behavior, long-term social discrimination memory, and anxiety-like behaviors in adult rats. Local infusion of the selective OTR antagonist L-368,899 (1 μg/0.5 μl) into the LSc.d decreased social approach, increased social vigilance, and reduced long-term social discrimination memory in both sexes. Administration of the biased OTR/Gq agonist carbetocin (0.5 μg/0.5 μl) reduced social approach and long-term social discrimination memory in both sexes, and had anxiogenic effects (increased latency to consume palatable food in test arena) only in males. In contrast, the full OTR agonist TGOT (50 ng/0.5 μl) had no effect on social approach or long-term social discrimination memory, and decreased latency to consume palatable food (anxiolytic effect). The results indicate that the oxytocin system can both promote and inhibit social behaviors depending on the differential activation of G-protein subunits and β-arrestins, as well as the pivotal role of the LS in modulating social and anxiety-like behavior in rats.
Collapse
Affiliation(s)
- Fardad Pirri
- Biological Sciences Department, Brock University, Canada
| | - Cheryl M McCormick
- Biological Sciences Department, Brock University, Canada; Psychology Department, Brock University, Canada.
| |
Collapse
|
2
|
Wallace KJ, Dupeyron S, Li M, Kelly AM. Early life social complexity shapes adult neural processing in the communal spiny mouse Acomys cahirinus. Psychopharmacology (Berl) 2025; 242:1025-1040. [PMID: 38055059 DOI: 10.1007/s00213-023-06513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
RATIONALE Early life social rearing has profound consequences on offspring behavior and resilience. Yet, most studies examining early life development in rodents use species whose young are born immobile and do not produce complex social behavior until later in development. Furthermore, models of rearing under increased social complexity, rather than deprivation, are needed to provide alternative insight into the development of social neural circuitry. OBJECTIVES To understand precocial offspring social development, we manipulated early life social complexity in the communal spiny mouse Acomys cahirinus and assessed long-term consequences on offspring social behavior, exploration, and neural responses to novel social stimuli. METHODS Spiny mouse pups were raised in the presence or absence of a non-kin breeding group. Upon adulthood, subjects underwent social interaction tests, an open field test, and a novel object test. Subjects were then exposed to a novel conspecific and novel group and neural responses were quantified via immunohistochemical staining in brain regions associated with social behavior. RESULTS Early life social experience did not influence behavior in the test battery, but it did influence social processing. In animals exposed to non-kin during development, adult lateral septal neural responses toward a novel conspecific were weaker and hypothalamic neural responses toward a mixed-sex group were stronger. CONCLUSIONS Communal species may exhibit robust behavioral resilience to the early life social environment. But the early life environment can affect how novel social information is processed in the brain during adulthood, with long-term consequences that are likely to shape their behavioral trajectory.
Collapse
Affiliation(s)
| | | | - Mutian Li
- Department of Psychology, Emory University, Atlanta, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, Atlanta, USA
| |
Collapse
|
3
|
Okuda Y, Li D, Maruyama Y, Sonobe H, Mano T, Tainaka K, Shinohara R, Furuyashiki T. The activation of the piriform cortex to lateral septum pathway during chronic social defeat stress is crucial for the induction of behavioral disturbance in mice. Neuropsychopharmacology 2025; 50:828-840. [PMID: 39638863 PMCID: PMC11914691 DOI: 10.1038/s41386-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/17/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Chronic stress induces neural dysfunctions and risks mental illnesses. Clinical and preclinical studies have established the roles of brain regions underlying emotional and cognitive functions in stress and depression. However, neural pathways to perceive sensory stimuli as stress to cause behavioral disturbance remain unknown. Using whole-brain imaging of Arc-dVenus neuronal response reporter mice and machine learning analysis, here we unbiasedly demonstrated different patterns of contribution of widely distributed brain regions to neural responses to acute and chronic social defeat stress (SDS). Among these brain regions, multiple sensory cortices, especially the piriform (olfactory) cortex, primarily contributed to classifying neural responses to chronic SDS. Indeed, SDS-induced activation of the piriform cortex was augmented with repetition of SDS, accompanied by impaired odor discrimination. Axonal tracing and chemogenetic manipulation showed that excitatory neurons in the piriform cortex directly project to the lateral septum and activate it in response to chronic SDS, thereby inducing behavioral disturbance. These results pave the way for identifying a spatially defined sequence of neural consequences of stress and the roles of sensory pathways in perceiving chronic stress in mental illness pathology.
Collapse
Affiliation(s)
- Yuki Okuda
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Dongrui Li
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Yuzuki Maruyama
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Hirokazu Sonobe
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan
| | - Tomoyuki Mano
- Computational Neuroethology Unit, Okinawa Institute of Science and Technology (OIST) Graduate University, Okinawa, 904-0412, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, 951-8585, Japan
| | - Ryota Shinohara
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| | - Tomoyuki Furuyashiki
- Division of Pharmacology, Kobe University Graduate School of Medicine, Kobe, 650-0017, Japan.
| |
Collapse
|
4
|
Guo H, Ali T, Li S. Neural circuits mediating chronic stress: Implications for major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2025; 137:111280. [PMID: 39909171 DOI: 10.1016/j.pnpbp.2025.111280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/18/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
Major depressive disorder (MDD), also known as depression, is a prevalent mental disorder that leads to severe disease burden worldwide. Over the past two decades, significant progress has been made in understanding the pathogenesis and developing novel treatments for MDD. Among the complicated etiologies of MDD, chronic stress is a major risk factor. Exploring the underlying brain circuit mechanisms of chronic stress regulation has been an area of active research for recent years. A growing body of preclinical and clinical research has revealed that abnormalities in the brain circuits are closely associated with failures in coping with stress in depressed individuals. Nevertheless, neural circuit mechanisms underlying chronic stress processing and the onset of depression remain a major puzzle. Here, we review recent literature focusing on circuit- and cell-type-specific dissection of depression-like behaviors in chronic stress-related animal models of MDD and outline the key questions.
Collapse
Affiliation(s)
- Hongling Guo
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China.
| | - Tahir Ali
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Shupeng Li
- State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen 518055, Guangdong, China; Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
5
|
Geng S, Zhang Z, Liu X, Sun H, Xu T, Sun C, Hu S, Liu A, Yang Z, Xie W, Mu M. Intermittent social isolation enhances social investigation but impairs social memory in adult male mice. Physiol Behav 2025; 291:114788. [PMID: 39710131 DOI: 10.1016/j.physbeh.2024.114788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Social isolation profoundly impacts motivated behavior and neural plasticity. While the effects of acute and chronic social isolation have been extensively studied, the consequences of intermittent isolation during adulthood, particularly relevant to modern lifestyles, remain poorly understood. This study investigated the impact of intermittent social isolation (ISI) on social behavior and brain activation in adult male mice. Compared to group-housed controls, ISI males exhibited heightened social investigation and increased social interaction, reminiscent of craving-like behaviors. Intriguingly, this enhanced social investigation was accompanied by impaired social recognition memory in a three-chamber sociability test. Furthermore, ISI induced distinct patterns of neural activation in brain regions governing social processing, including the paraventricular nucleus of the hypothalamus, the intermediate part of lateral septum, the paraventricular nucleus of the thalamus, and the thalamic periventricular gray. Notably, ISI did not affect anxiety-like behaviors or spatial memory, emphasizing its specific impact on social domains. These findings demonstrate that ISI during adulthood selectively enhances social investigation while disrupting social memory in male mice, possibly mediated by distinct neural circuits. Understanding the neurobiological mechanisms underlying these effects may inform interventions for individuals experiencing social isolation, an increasingly prevalent phenomenon in modern society.
Collapse
Affiliation(s)
- Shuyan Geng
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - Zixu Zhang
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China
| | - Xing Liu
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China
| | - Haoyu Sun
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - Tianxiang Xu
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - Chuanyao Sun
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - Shengru Hu
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - An Liu
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China
| | - Zhiyuan Yang
- School of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, PR China.
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China.
| | - Mingdao Mu
- School of Medicine, Southeast University, 87 Dingjiaqiao Road, Nanjing, PR China; The Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, The School of Life Science and Technology, Southeast University, 2 Sipailou Road, Nanjing, PR China.
| |
Collapse
|
6
|
George EM, Rosvall KA. How a territorial challenge changes sex steroid-related gene networks in the female brain: A field experiment with the tree swallow. Horm Behav 2025; 169:105698. [PMID: 39955841 DOI: 10.1016/j.yhbeh.2025.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/21/2024] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Territorial competition can stimulate secretion of testosterone (T), which is thought to act on neural circuits of aggression to promote further aggression. Here, we test the hypothesis that competition modulates sex steroid sensitivity and conversion in the brain, focused on the female tree swallow (Tachycineta bicolor). In this bird species, exogenous T enhances female aggression, but social competition for limited nesting territories does not stimulate systemic T elevation. We exposed free-living females to simulated territorial intrusions and sampled five regions of the vertebrate social behavior network (SBN). Using quantitative PCR, we measured mRNA abundance of: androgen receptor, 5-alpha reductase, estrogen receptor alpha, and aromatase. Using standard analyses, we found essentially no treatment effect on mRNA abundance in any one brain area; however, network analyses revealed marked socially-induced changes in gene co-expression across the SBN. After a territorial challenge, gene expression was more positively correlated with T, and genes specific to the androgen-signaling pathway were also more positively correlated with one another. The challenged brain also exhibited stronger negative correlations among genes in the nucleus taeniae, but stronger positive correlations between the lateral septum and bed nucleus of the stria terminalis. Together, these findings suggest that, in response to female-female territorial challenges, T acts on androgen-mediated circuits of aggression, with some divergence in gene regulation in the nucleus taeniae. The post-transcriptional consequences of these shifts require more research, but their existence underscores insights to be gained from analyzing the neuroendocrine properties of the SBN using network-level perspectives.
Collapse
Affiliation(s)
- Elizabeth M George
- Indiana University, Department of Biology, United States of America; The Ohio State University, Department of Evolution, Ecology, and Organismal Biology, United States of America.
| | | |
Collapse
|
7
|
Endo N, Hiraishi A, Goto S, Nozu H, Mannari-Sasagawa T, Horii-Hayashi N, Kitsuki M, Okuda M, Makinodan M, Nishi M. Dysregulated HPA axis during postnatal developmental stages in the BTBR T + Itpr3 tf/J mouse: A model of autism spectrum disorder. Neuropsychopharmacol Rep 2025; 45:e12508. [PMID: 39610036 DOI: 10.1002/npr2.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 11/30/2024] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder. Some children with ASD show enhanced cortisol response to stress. BTBR T+ Itpr3tf/J (BTBR) mice, an ASD model, display behavior consistent with the three diagnostic categories of ASD and exhibit an exaggerated response to stress in adulthood. However, it remains unclear how basal corticosterone levels change and how the hypothalamic-pituitary-adrenal axis responds to stress during the early life stages in BTBR mice. In this study, we found that basal corticosterone levels showed characteristic changes, peaking at weaning during postnatal development in both BTBR and control C57BL/6J (B6J) mice. Furthermore, we observed higher corticosterone and corticotropin-releasing hormone levels in BTBR mice than in B6J mice following acute stress exposure during weaning; however, adrenocorticotropic hormone levels were lower in BTBR mice. Glucocorticoid receptor mRNA expression levels in the hippocampus and lateral septum after stress were higher in BTBR mice than in B6J mice. This study documented changes in corticosterone levels at baseline during postnatal development in mice and showed that BTBR mice exhibited disrupted stress responses at weaning.
Collapse
Affiliation(s)
- Nozomi Endo
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
- Department of Pharmacology, School of Medicine, Hyogo Medical University, Nishinomiya, Japan
| | - Atsuo Hiraishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Sayaka Goto
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Hitoshi Nozu
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Takayo Mannari-Sasagawa
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
- KYOUSEI Science Center for Life and Nature, Nara Women's University, Nara, Japan
| | - Noriko Horii-Hayashi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Michiko Kitsuki
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Mamiko Okuda
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| | - Manabu Makinodan
- Department of Psychiatry, Nara Medical University, Kashihara, Japan
| | - Mayumi Nishi
- Department of Anatomy and Cell Biology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
8
|
Duarte-Guterman P, Skandalis DA, Merkl A, Geissler DB, Ehret G. Brain aromatase and its relationship with parental experience and behavior in male mice. Front Neurosci 2025; 19:1502764. [PMID: 40035063 PMCID: PMC11872740 DOI: 10.3389/fnins.2025.1502764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Introduction In most mammals, paternal care is not mandatory for raising offspring. In house mice, experience with pups governs the extent and quality of paternal care. First-time fathers undergo a dramatic transition from ignoring or killing pups to caring for pups. The behavioral shift occurs together with changes in brain estrogen signaling as indicated by changes in estrogen receptor presence and distribution in multiple areas regulating olfaction, emotion, and motivation. Methods We measured changes in the expression of aromatase, the enzyme converting testosterone into estrogen, as an indirect measure of estrogen synthesis, in various areas of the limbic system in mice with increasing paternal experience. Results The amount of paternal experience (5 or 27 days) was associated with increased numbers of immunocytochemically-identified aromatase expressing cells in the medial and cortical amygdala, posterior piriform cortex, and ventromedial hypothalamus. Functionally, these changes can be related to the disappearance of aggression or neglect towards pups when first-time fathers or, even more, well-experienced fathers are handling their own pups. In the lateral septum, the anterior piriform cortex and to some extent in the medial preoptic area, parental experience increased the number of aromatase-positive cells only in fathers with 27 days of experience, and only in the right hemisphere. This represents a novel case of brain-functional lateralization triggered by experience. Nuclei/areas associated with maternal care (medial preoptic area, bed nucleus of stria terminalis, nucleus accumbens) exhibited a left-hemisphere advantage in aromatase expressing cells, both in pup-naïve and pup-experienced males. This newly found lateralization may contribute to the left-hemisphere dominant processing and perception of pup calls to release parental behavior. Conclusion In general, the experience-dependent changes in aromatase expression we observed in most brain areas did not mirror the previously reported changes in estrogen receptors (ERα) when pup-naïve males became pup-caring fathers. Hence, paternal behavior may depend, in a brain area-specific way, on the differential action of estrogen through its receptors and/or direct local modulation of neural processing.
Collapse
Affiliation(s)
| | | | - Ariane Merkl
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| | | | - Günter Ehret
- Institute of Neurobiology, University of Ulm, Ulm, Germany
| |
Collapse
|
9
|
Li H, Li Y, Wang T, Li S, Liu H, Ning S, Shen W, Zhao Z, Wu H. Spatiotemporal Mapping of the Oxytocin Receptor at Single-Cell Resolution in the Postnatally Developing Mouse Brain. Neurosci Bull 2025; 41:224-242. [PMID: 39277552 PMCID: PMC11794781 DOI: 10.1007/s12264-024-01296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/24/2024] [Indexed: 09/17/2024] Open
Abstract
The oxytocin receptor (OXTR) has garnered increasing attention for its role in regulating both mature behaviors and brain development. It has been established that OXTR mediates a range of effects that are region-specific or period-specific. However, the current studies of OXTR expression patterns in mice only provide limited help due to limitations in resolution. Therefore, our objective was to generate a comprehensive, high-resolution spatiotemporal expression map of Oxtr mRNA across the entire developing mouse brain. We applied RNAscope in situ hybridization to investigate the spatiotemporal expression pattern of Oxtr in the brains of male mice at six distinct postnatal developmental stages (P7, P14, P21, P28, P42, P56). We provide detailed descriptions of Oxtr expression patterns in key brain regions, including the cortex, basal forebrain, hippocampus, and amygdaloid complex, with a focus on the precise localization of Oxtr+ cells and the variance of expression between different neurons. Furthermore, we identified some neuronal populations with high Oxtr expression levels that have been little studied, including glutamatergic neurons in the ventral dentate gyrus, Vgat+Oxtr+ cells in the basal forebrain, and GABAergic neurons in layers 4/5 of the cortex. Our study provides a novel perspective for understanding the distribution of Oxtr and encourages further investigations into its functions.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ying Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ting Wang
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shen Li
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Heli Liu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Shuyi Ning
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Wei Shen
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Zhe Zhao
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Haitao Wu
- Department of Neurobiology, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
- Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226019, China.
- Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
10
|
Shah DP, Sharma PR, Agarwal R, Barik A. A septo-hypothalamic-medullary circuit directs stress-induced analgesia. eLife 2025; 13:RP96724. [PMID: 39831900 PMCID: PMC11745492 DOI: 10.7554/elife.96724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025] Open
Abstract
Stress is a potent modulator of pain. Specifically, acute stress due to physical restraint induces stress-induced analgesia (SIA). However, where and how acute stress and pain pathways interface in the brain are poorly understood. Here, we describe how the dorsal lateral septum (dLS), a forebrain limbic nucleus, facilitates SIA through its downstream targets in the lateral hypothalamic area (LHA) of mice. Taking advantage of transsynaptic viral-genetic, optogenetic, and chemogenetic techniques, we show that the dLS→LHA circuitry is sufficient to drive analgesia and is required for SIA. Furthermore, our results reveal that the dLS→LHA pathway is opioid-dependent and modulates pain through the pro-nociceptive neurons in the rostral ventromedial medulla (RVM). Remarkably, we found that the inhibitory dLS neurons are recruited specifically when the mice struggle to escape under restraint and, in turn, inhibit excitatory LHA neurons. As a result, the RVM neurons downstream of LHA are disengaged, thus suppressing nociception. Together, we delineate a poly-synaptic pathway that can transform escape behavior in mice under restraint to acute stress into analgesia.
Collapse
Affiliation(s)
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of ScienceBengaluruIndia
| | - Arnab Barik
- Centre for Neuroscience, Indian Institute of ScienceBengaluruIndia
| |
Collapse
|
11
|
Puska G, Szendi V, Egyed M, Dimén D, Cservenák M, Dobolyi Á. Maternally activated connections of the ventral lateral septum reveal input from the posterior intralaminar thalamus. Brain Struct Funct 2025; 230:27. [PMID: 39775138 DOI: 10.1007/s00429-024-02870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 11/01/2024] [Indexed: 01/11/2025]
Abstract
The lateral septum (LS) demonstrates activation in response to pup exposure in mothers, and its lesions eliminate maternal behaviors suggesting it is part of the maternal brain circuitry. This study shows that the density of pup-activated neurons in the ventral subdivision of the LS (LSv) is nearly equivalent to that in the medial preoptic area (MPOA), the major regulatory site of maternal behavior in rat dams. However, when somatosensory inputs including suckling were not allowed, pup-activation was markedly reduced in the LSv. Retrograde tract tracing identified various brain regions potentially influencing LSv neuronal activation through their projections. Among all, anterograde tract tracing confirmed that the posterior intralaminar thalamic nucleus (PIL), implicated in processing touch-related stimuli, targets the pup-activated region of the LSv. Moreover, nerve terminals containing the maternally induced PIL neuropeptide parathyroid hormone 2 (PTH2), were found to form synaptic connections with c-Fos activated LSv neurons using electron microscopy. Confirmation of PTH2 + PIL fibers projecting to LSv was achieved by retrograde tract tracing methods. Furthermore, double retrograde injections revealed that neurons within the PIL can project to both LSv and MPOA, suggesting their simultaneous regulation by PIL input. We also established that septal neurons activated by the pups in the mother are GABAergic and send inhibitory projections to the MPOA and other components of the maternal brain circuitry. This implies that the LSv and MPOA form an interconnected subcircuit in the maternal brain network, which is primarily driven by somatosensory input from the pups via the PIL PTH2 + neurons.
Collapse
Affiliation(s)
- Gina Puska
- Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Szendi
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Máté Egyed
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Diána Dimén
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
- Department of Psychological and Brain Sciences, Addiction and Neuroplasticity Laboratory, Indiana University, Bloomington, IN, USA
| | - Melinda Cservenák
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Árpád Dobolyi
- Department of Physiology and Neurobiology, Laboratory of Molecular and Systems Neurobiology, Eötvös Loránd University, Budapest, Hungary.
- Department of Anatomy, Histology and Embryology, Laboratory of Neuromorphology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
12
|
Kondo H, Iwata T, Sato K, Koshiishi R, Suzuki H, Murata K, Spehr M, Touhara K, Nikaido M, Hirota J. Impaired pheromone detection and abnormal sexual behavior in female mice deficient for ancV1R. Curr Biol 2025; 35:21-35.e8. [PMID: 39577426 DOI: 10.1016/j.cub.2024.10.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 09/02/2024] [Accepted: 10/29/2024] [Indexed: 11/24/2024]
Abstract
Ancient vomeronasal receptor type-1 (ancV1R), a putative vomeronasal receptor, is highly conserved across a wide range of vertebrates and is expressed in the majority of vomeronasal sensory neurons, co-expressing with canonical vomeronasal receptors, V1Rs and V2Rs. The pseudogenization of ancV1R is closely associated with vomeronasal organ (VNO) degeneration, indicating its critical role in pheromone sensing. However, the specific role of ancV1R remains unknown. In this study, to elucidate the function of ancV1R, we conducted phenotypic analyses of ancV1R-deficient female mice. Behavioral analyses showed that ancV1R-deficient females exhibited rejective responses toward male sexual behavior and displayed no preference for male urine. Physiological analyses demonstrate that the loss-of-function mutation of ancV1R reduced VNO response to various pheromone cues, including male urine, the sexual enhancing pheromone exocrine gland-secreting peptide 1 (ESP1), and β-estradiol 3-sulfate. Pre-exposure to ESP1 did not overcome the rejection behavior caused by ancV1R deficiency. Analysis of neural activity in the vomeronasal system revealed increased responses in the medial amygdala and posteromedial cortical amygdala of mutant females upon contact with males but not in response to male urine alone. Additionally, upon male contacts, ancV1R-deficient females exhibited increased neural activity in the lateral septum, a stress-associated brain region, along with elevated stress hormone levels. Such effects were not observed in females exposed solely to male urine. These findings suggest that, in females, ancV1R facilitates VNO responses to pheromone stimuli and plays a crucial role in perceiving males as mating partners. The absence of ancV1R results in failure of male perception, leading to abnormal sexual behaviors and stress responses upon male contact.
Collapse
Affiliation(s)
- Hiro Kondo
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | - Tetsuo Iwata
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | - Koji Sato
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Riseru Koshiishi
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan
| | | | - Ken Murata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, 52074 Aachen, Germany
| | - Kazushige Touhara
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Tokyo 113-8657, Japan
| | - Masato Nikaido
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| | - Junji Hirota
- Department of Life Science and Technology, School of Life Science and Technology, Institute of Science Tokyo, Yokohama 226-8501, Japan; Center for Integrative Biosciences, Institute of Science Tokyo, Yokohama 226-8501, Japan.
| |
Collapse
|
13
|
Boi L, Menon R, Di Benedetto B. Astrocyte Morphological Adaptations in a Mouse Model of Social Anxiety Disorder. Methods Mol Biol 2025; 2896:181-189. [PMID: 40111605 DOI: 10.1007/978-1-0716-4366-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The social fear conditioning (SFC) paradigm, which is an animal model of social anxiety disorder, has been extensively used to investigate the cellular and molecular mechanisms underlying the psychopathology of this disorder. Studies using the SFC paradigm have suggested that the lateral septum (LS) plays a pivotal role in regulating social fear. While several lines of evidence have indicated the involvement of various neuronal mechanisms within the LS in modulating social fear, the role played by LS astrocytes in the tripartite synapses in regulating social fear expression is not yet fully understood. Over the years, astrocytes have emerged as key players in regulating synaptic transmission and a plethora of animal behaviors. Given their dynamic morphological and molecular response to various stimuli, studying astrocyte morphology remains an excellent tool for understanding their role in brain function and disease. By applying immunofluorescent-immunohistochemical methods, here we describe a protocol to characterize changes in the morphology of astrocytes in response to social fear acquisition using confocal microscopy.
Collapse
Affiliation(s)
- Laura Boi
- Department of Behavioral and Molecular Biology, University of Regensburg, Regensburg, Germany
| | - Rohit Menon
- Department of Behavioral and Molecular Biology, University of Regensburg, Regensburg, Germany
| | - Barbara Di Benedetto
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany.
- Regensburg Center of Neuroscience, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
14
|
Gryksa K, Schäfer T, Gareis F, Fuchs E, Royer M, Schmidtner AK, Bludau A, Neumann ID. Beyond fur color: differences in socio-emotional behavior and the oxytocin system between male BL6 and CD1 mice in adolescence and adulthood. Front Neurosci 2024; 18:1493619. [PMID: 39717700 PMCID: PMC11663876 DOI: 10.3389/fnins.2024.1493619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/08/2024] [Indexed: 12/25/2024] Open
Abstract
Introduction The development of stress-related psychopathologies, often associated with socio-emotional dysfunctions, is crucially determined by genetic and environmental factors, which shape the individual vulnerability or resilience to stress. Especially early adolescence is considered a vulnerable time for the development of psychopathologies. Various mouse strains are known to age-dependently differ in social, emotional, and endocrine stress responses based on genetic and epigenetic differences. This highlights the importance of the qualified selection of an adequate strain and age for any biomedical research. Neuropeptides like oxytocin (OXT) can contribute to individual and strain-dependent differences in emotional and social behaviors. Methods In this study, we compared anxiety- and fear-related, as well as social behavior and pain perception between male adolescent and adult mice of two commonly used strains, C57BL/6N (BL6) and CD1. Results We revealed BL6 mice as being more anxious, less social, and more susceptible toward non-social and social trauma, both in adolescence and adulthood. Furthermore, during development from adolescence toward adulthood, BL6 mice lack the reduction in fear- and anxiety-related behavior seen in adult CD1 mice and show even higher social fear-responses and perception of noxious stimuli during adulthood. Analysis of the OXT system, by means of receptor autoradiography and immunohistochemistry, showed strain- and age-specific differences in OXT receptor (OXTR) binding in relevant brain regions, but no differences in the number of hypothalamic OXT neurons. However, intracerebroventricular infusion of OXT did neither reduce the high level of anxiety-related nor of social fear-related behavior in adult BL6 mice. Discussion In summary, we show that male BL6 mice present an anxious and stress vulnerable phenotype in adolescence, which further exacerbates in adulthood, whereas CD1 mice show a more resilient socio-emotional state both in adolescence as well as during adulthood. These consistent behavioral differences between the two strains might only be partly mediated by differences in the OXT system but highlight the influence of early-life environment on socio-emotional behavior.
Collapse
|
15
|
Isaac J, Murugan M. Interconnected neural circuits mediating social reward. Trends Neurosci 2024; 47:1041-1054. [PMID: 39532581 PMCID: PMC11633286 DOI: 10.1016/j.tins.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Across species, social behaviors are shaped and maintained through positive reinforcement of affiliative social interactions. As with nonsocial rewards, the reinforcing properties of social interactions have been shown to involve interplay between various brain regions and the mesolimbic reward system. In this review, we summarize findings from rodent research on the neural circuits that encode and mediate different components of social reward-seeking behavior. We explore methods to parse and study social reward-related behaviors using available behavioral paradigms. We also compare the neural mechanisms that support social versus nonsocial reward-seeking. Finally, we discuss how internal state and neuromodulatory systems affect reward-seeking behavior and the neural circuits that underlie social reward.
Collapse
Affiliation(s)
- Jennifer Isaac
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA
| | - Malavika Murugan
- Neuroscience Graduate Program, Emory University, Atlanta, GA 30322, USA; Department of Biology, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
16
|
George K, Ahmad M. Input-specific properties of excitatory synapses on oxytocin receptor-expressing neurons in the lateral septum. J Neurophysiol 2024; 132:1867-1876. [PMID: 39541198 PMCID: PMC11687846 DOI: 10.1152/jn.00322.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/14/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024] Open
Abstract
Oxytocin receptor (OXTR) is expressed in a distinct population of neurons in the lateral septum (LS), among other brain regions, and is responsible for regulating various social and nonsocial behaviors, including reward processing, feeding, social memory, anxiety, and fear. The LS serves as a key link between the cortical and subcortical regions, yet the synaptic inputs that drive the OXTR-expressing LS neurons have not been characterized. Here, we established retrograde and anterograde viral tracing in the mouse brain to map the input connections of the intermediate part of the LS where OXTR neurons are concentrated. Utilizing pathway-specific optogenetic activation, we identified that the strongest cortical inputs to LS OXTR neurons are from the posteromedial amygdala cortex (PMCo) and the ventral hippocampus (vHipp). We further determined that these excitatory inputs exhibit distinct presynaptic and postsynaptic properties, with PMCo synapses displaying a lower release probability and smaller α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-to-N-methyl-d-aspartate (NMDA) receptor-mediated excitatory postsynaptic current (EPSC) ratio compared to vHipp synapses. Our results also demonstrated that both vHipp and PMCo inputs establish a direct excitatory and a disynaptic inhibitory circuit on LS OXTR neurons. These findings deepen our understanding of the synaptic control of LS OXTR neurons by cortical regions, carrying significant implications for the affective behaviors in which these neurons are involved.NEW & NOTEWORTHY This is the first identification and characterization of the cortical synaptic inputs that drive the oxytocin receptor (OXTR)-expressing neurons in the lateral septum (LS), which are involved in diverse affective behavior. The strongest cortical inputs to LS OXTR neurons are from the posteromedial amygdala cortex, an understudied cortical region that is beginning to gain prominence for its role in social behavior. The synapses from these projections show differences in properties compared to inputs from the ventral hippocampus.
Collapse
Affiliation(s)
- Kiran George
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| | - Mohiuddin Ahmad
- Department of Cell BiologyUniversity of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States
| |
Collapse
|
17
|
Norscia I, Hecker M, Caselli M, Collarini E, Gallego Aldama B, Borragán Santos S, Cordoni G. Social play in African savannah elephants may inform selection against aggression. Curr Zool 2024; 70:765-779. [PMID: 39678814 PMCID: PMC11634687 DOI: 10.1093/cz/zoae009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 02/28/2024] [Indexed: 12/17/2024] Open
Abstract
In social groups, competition for individual advantage is balanced with cooperation, for the collective benefit. Selection against aggression has favored cooperation and non-aggressive competitive strategies. Because social play is a behavioral system that fluctuates between cooperation and competition, selection against aggression might have especially influenced this behavior. African savannah elephants (Loxodonta africana) are a low aggressive species, therefore suitable to investigate this aspect. We collected all occurrences observational audio-video data on social play, aggression/threats, and affiliation on an African elephant colony housed in a 25-ha open space at Parque de la Naturaleza de Cabarceno (Cantabria, Spain) and composed of 4 family groups (3 immature males, 3 immature females, and 7 adult females) and 2 adult males. Anticipating the influence of reduced aggression, we found that social play decreased with age, persisting in adults, and that it was highest in males. Social play was associated with affiliation (informing cooperation). Indeed, individuals that were central in the social play network were also central in the affiliation network. For immature subjects, we found a correlation between social play and affiliation sociomatrices. However, such correlation was absent in adults and social play mostly occurred between families. Despite the limitations related to dealing with a small captive group, this study largely supports the idea that the features of social play in African savannah elephants may be related to low aggression. This investigation hints toward a non-purely cooperative use of play, possibly as a non-aggressive interaction that accommodates different levels of cooperation and competition.
Collapse
Affiliation(s)
- Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Martin Hecker
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Marta Caselli
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | - Edoardo Collarini
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| | | | | | - Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, Italy
| |
Collapse
|
18
|
Jiang C, Ruiz-Sanchez I, Mei C, Pittenger C. Circuit mechanisms underlying sexually dimorphic outcomes of early life stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625736. [PMID: 39651173 PMCID: PMC11623607 DOI: 10.1101/2024.11.27.625736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Stress during early life influences brain development and can affect social, motor, and emotional processes. We describe a striking sex difference in the effects of early life stress (ELS), which produces anhedonia and anxiety-like behaviors in female adolescent mice, as reported previously, but repetitive behavioral pathology and social deficits in male adolescent mice. Notably, this parallels sex differences seen in the prevalence of psychiatric symptoms: depression and anxiety disorders are more common in girls and women, whereas neurodevelopmental disorders like autism spectrum disorder and Tourette syndrome are markedly more common in boys and men. We characterized the effects of ELS on the medial prefrontal cortex (mPFC) and on its projections to the dorsal striatum (dStr) and lateral septum (LS). ELS males, but not females, developed hyperactivity in the cortico-striatal circuit and hypoactivity in the cortico-septal circuit. Chemogenetic manipulation of cortico-striatal projection neurons modulates repetitive behavioral pathology and social behaviors in stressed males, and anhedonia in stressed females. Activation of cortico-septal projection neurons rescues social deficits in stressed males. We conclude that early life stress produces sexually dimorphic behavioral effects, with potential relevance to human psychiatric symptoms, through its differential effects on cortico-striatal and cortico-septal circuits.
Collapse
|
19
|
Pirri F, Burke FF, McCormick CM. A protocol for investigating long-term social discrimination memory: Evidence in female and male Long Evans rats. PLoS One 2024; 19:e0311920. [PMID: 39570824 PMCID: PMC11581213 DOI: 10.1371/journal.pone.0311920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/26/2024] [Indexed: 11/24/2024] Open
Abstract
Social discrimination, the investigation of a novel peer more so than a familiar peer, is used as a measure of social memory. There is much less research on long-term social memory than short-term social memory, and no long-term social memory research in female rats. The majority of long-term social discrimination research has relied on long familiarization session of an hour or more and involved juveniles as the stimulus peers. Here we show that a 30-minute familiarization session is sufficient to produce social discrimination 24 h later in both male and female rats and allows for measurement of social approach. Other methodological considerations are described, such as: that age- and sex-matched stimulus peers can be used across a wider range of ages than the use of juveniles; evidence that a familiar peer in a novel location attenuates social discrimination; that the first 10 minutes of the social approach reliably shows a preference for the social peer over an object whereas the 30-minute session does not; and that 10-minute discrimination sessions are preferable to 5-minute sessions. The research satisfies the goal of obtaining an efficient procedure to investigate both the possibility of enhancing or diminishing social approach and social memory with experimental manipulations in both sexes.
Collapse
Affiliation(s)
- Fardad Pirri
- Department of Biological Sciences, Brock University, St. Catharines, Canada
| | | | - Cheryl M. McCormick
- Department of Biological Sciences, Brock University, St. Catharines, Canada
- Department of Psychology, Brock University, St. Catharines, Canada
| |
Collapse
|
20
|
Ren S, Wang S, Lv S, Gao J, Mao Y, Liu Y, Xie Q, Zhang T, Zhao L, Shi J. The nociceptive inputs of the paraventricular hypothalamic nucleus in formalin stimulated mice. Neurosci Lett 2024; 841:137948. [PMID: 39179131 DOI: 10.1016/j.neulet.2024.137948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
The paraventricular hypothalamic nucleus (PVH) is an important neuroendocrine center involved in pain regulation, but the nociceptive afferent routes for the nucleus are still unclear. We examined the profile of PVH receiving injurious information by a combination of retrograde tracing with Fluoro-Gold (FG) and FOS expression induced by formalin stimuli. The result showed that formalin injection induced significantly increased expression of FOS in the PVH, among which oxytocin containing neurons are one neuronal phenotype. Immunofluorescent staining of FG and FOS revealed that double labeled neurons were strikingly distributed in the area 2 of the cingulate cortex (Cg2), the lateral septal nucleus (LS), the periaqueductal gray (PAG), the posterior hypothalamic area (PH), and the lateral parabrachial nucleus (LPB). In the five regions, LPB had the biggest number and the highest ratio of FOS expression in FG labeled neurons, with main subnuclei distribution in the external, superior, dorsal, and central parts. Further immunofluorescent triple staining disclosed that about one third of FG and FOS double labeled neurons in the LPB were immunoreactive for calcitonin gene related peptide (CGRP). In conclusion, the present study demonstrates the nociceptive input profile of the PVH area under inflammatory pain and suggests that neurons in the LPB may play essential roles in transmitting noxious information to the PVH.
Collapse
Affiliation(s)
- Shuting Ren
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Shumin Wang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Siting Lv
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Jiaying Gao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yajie Mao
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Yuankun Liu
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Medical School of Yan'an University, Yan'an 716000, China
| | - Qiongyao Xie
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China; Student Brigade, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Ting Zhang
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Zhao
- Medical School of Yan'an University, Yan'an 716000, China.
| | - Juan Shi
- Department of Human Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, Preclinical School of Medicine, The Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
21
|
El-Kalliny M, Donaldson ZR. Social neuroscience: When more is merrier. Curr Biol 2024; 34:R907-R908. [PMID: 39378851 DOI: 10.1016/j.cub.2024.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Spiny mice are gregarious animals that prefer to socialize with large groups. A new pioneering study reveals an underlying neural circuit governing this social preference.
Collapse
Affiliation(s)
- Mostafa El-Kalliny
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical School, Aurora, CO 80045, USA
| | - Zoe R Donaldson
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO 80309, USA.
| |
Collapse
|
22
|
Fricker BA, Murugan M, Seifert AW, Kelly AM. Cingulate to septal circuitry facilitates the preference to affiliate with large peer groups. Curr Biol 2024; 34:4452-4463.e4. [PMID: 39265570 PMCID: PMC11486304 DOI: 10.1016/j.cub.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 08/13/2024] [Indexed: 09/14/2024]
Abstract
Despite the prevalence of large-group living across the animal kingdom, no studies have examined the neural mechanisms that make group living possible. Spiny mice, Acomys, have evolved to live in large groups and exhibit a preference to affiliate with large over small groups. Here, we determine the neural circuitry that facilitates the drive to affiliate with large groups. We first identify an anterior cingulate cortex (ACC) to lateral septum (LS) circuit that is more responsive to large than small groups of novel same-sex peers. Using chemogenetics, we then demonstrate that this circuit is necessary for both male and female group investigation preferences but only males' preference to affiliate with larger peer groups. Furthermore, inhibition of the ACC-LS circuit specifically impairs social, but not nonsocial, affiliative grouping preferences. These findings reveal a key circuit for the regulation of mammalian peer group affiliation.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA
| | - Malavika Murugan
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA
| | - Ashley W Seifert
- Department of Biology, University of Kentucky, 211 Thomas Hunt Morgan Building, Lexington, KY 40506, USA
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, USA.
| |
Collapse
|
23
|
Cordoni G, Norscia I. Nuancing 'Emotional' Social Play: Does Play Behaviour Always Underlie a Positive Emotional State? Animals (Basel) 2024; 14:2769. [PMID: 39409718 PMCID: PMC11475484 DOI: 10.3390/ani14192769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
This review focuses on social play, a complex behaviour that is often difficult to categorize. Although play has been typically associated with positive emotional states, a thorough examination of the literature indicates that it may relate to different emotional systems, from attachment to conflict. Play oscillates between competition and cooperation, and includes a spectrum in between; thus, quantitatively identifying and demonstrating the emotional nature of play remains challenging. We considered examples from human and non-human animal studies and explored the emotional and neuro-hormonal systems involved in play. We assessed ethological data possibly indicating the emotional states underlying play, and we focused on the cooperative and competitive elements of play. We investigated the relationship between play and affiliative/aggressive behaviours, the communicative meaning of play signals (especially primate play faces), and the motor and possibly emotional contagion function of rapid motor mimicry during play. From all the literature on play, this review selects and combines studies in an innovative way to present the methods (e.g., play indices and social network analysis), tools (e.g., sequential analysis and facial coding software), and evidence indicative of the emotional states underlying play, which is much more complex than previously thought.
Collapse
Affiliation(s)
- Giada Cordoni
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| | - Ivan Norscia
- Department of Life Sciences and Systems Biology, University of Torino, 10123 Turin, Italy
| |
Collapse
|
24
|
Arora I, Mal P, Arora P, Paul A, Kumar M. GABAergic implications in anxiety and related disorders. Biochem Biophys Res Commun 2024; 724:150218. [PMID: 38865810 DOI: 10.1016/j.bbrc.2024.150218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/05/2024] [Accepted: 06/02/2024] [Indexed: 06/14/2024]
Abstract
Evidence indicates that anxiety disorders arise from an imbalance in the functioning of brain circuits that govern the modulation of emotional responses to possibly threatening stimuli. The circuits under consideration in this context include the amygdala's bottom-up activity, which signifies the existence of stimuli that may be seen as dangerous. Moreover, these circuits encompass top-down regulatory processes that originate in the prefrontal cortex, facilitating the communication of the emotional significance associated with the inputs. Diverse databases (e.g., Pubmed, ScienceDirect, Web of Science, Google Scholar) were searched for literature using a combination of different terms e.g., "anxiety", "stress", "neuroanatomy", and "neural circuits", etc. A decrease in GABAergic activity is present in both anxiety disorders and severe depression. Research on cerebral functional imaging in depressive individuals has shown reduced levels of GABA within the cortical regions. Additionally, animal studies demonstrated that a reduction in the expression of GABAA/B receptors results in a behavioral pattern resembling anxiety. The amygdala consists of inhibitory networks composed of GABAergic interneurons, responsible for modulating anxiety responses in both normal and pathological conditions. The GABAA receptor has allosteric sites (e.g., α/γ, γ/β, and α/β) which enable regulation of neuronal inhibition in the amygdala. These sites serve as molecular targets for anxiolytic medications such as benzodiazepine and barbiturates. Alterations in the levels of naturally occurring regulators of these allosteric sites, along with alterations to the composition of the GABAA receptor subunits, could potentially act as mechanisms via which the extent of neuronal inhibition is diminished in pathological anxiety disorders.
Collapse
Affiliation(s)
- Indu Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Pankaj Mal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Poonam Arora
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Anushka Paul
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manish Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
25
|
Hu Q, Cai H, Ke X, Wang H, Zheng D, Chen Y, Wang Y, Chen G. The lateral septum partakes the regulation of propofol-induced anxiety-like behavior. Eur J Pharmacol 2024; 977:176756. [PMID: 38897021 DOI: 10.1016/j.ejphar.2024.176756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/23/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Repeated exposure to propofol during early brain development is associated with anxiety disorders in adulthood, yet the mechanisms underlying propofol-induced susceptibility to anxiety disorders remain elusive. The lateral septum (LS), primarily composed of γ-aminobutyric acidergic (GABAergic) neurons, serves as a key brain region in the regulation of anxiety. However, it remains unclear whether LS GABAergic neurons are implicated in propofol-induced anxiety. Therefore, we conducted c-Fos immunostaining of whole-brain slices from mice exposed to propofol during early life. Our findings indicate that propofol exposure activates GABAergic neurons in the LS. Selective activation of LS GABAergic neurons resulted in increased anxiety-like behavior, while selective inhibition of these neurons reduced such behaviors. These results suggest that the LS is a critical brain region involved in propofol-induced anxiety. Furthermore, we investigated the molecular mechanism of propofol-induced anxiety in the LS. Microglia activation underlies the development of anxiety. Immunofluorescence staining and Western blot analysis of LS revealed activated microglia and significantly elevated levels of phospho-NF-κB p65 protein. Additionally, a decrease in the number of neuronal spines was observed. Our study highlights the crucial role of the LS in the development of anxiety-like behavior in adulthood following childhood propofol exposure, accompanied by the activation of inflammatory pathways.
Collapse
Affiliation(s)
- Qian Hu
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Huajing Cai
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xinlong Ke
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Hongwei Wang
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Du Zheng
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yeru Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Yongjie Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Gang Chen
- Department of Anesthesiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
26
|
Goode TD, Alipio JB, Besnard A, Pathak D, Kritzer-Cheren MD, Chung A, Duan X, Sahay A. A dorsal hippocampus-prodynorphinergic dorsolateral septum-to-lateral hypothalamus circuit mediates contextual gating of feeding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.02.606427. [PMID: 39149322 PMCID: PMC11326193 DOI: 10.1101/2024.08.02.606427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Adaptive regulation of feeding depends on linkage of internal states and food outcomes with contextual cues. Human brain imaging has identified dysregulation of a hippocampal-lateral hypothalamic area (LHA) network in binge eating, but mechanistic instantiation of underlying cell-types and circuitry is lacking. Here, we identify an evolutionary conserved and discrete Prodynorphin (Pdyn)-expressing subpopulation of Somatostatin (Sst)-expressing inhibitory neurons in the dorsolateral septum (DLS) that receives primarily dorsal, but not ventral, hippocampal inputs. DLS(Pdyn) neurons inhibit LHA GABAergic neurons and confer context- and internal state-dependent calibration of feeding. Viral deletion of Pdyn in the DLS mimicked effects seen with optogenetic silencing of DLS Pdyn INs, suggesting a potential role for DYNORPHIN-KAPPA OPIOID RECEPTOR signaling in contextual regulation of food-seeking. Together, our findings illustrate how the dorsal hippocampus has evolved to recruit an ancient LHA feeding circuit module through Pdyn DLS inhibitory neurons to link contextual information with regulation of food consumption.
Collapse
Affiliation(s)
- Travis D Goode
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Jason Bondoc Alipio
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Antoine Besnard
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Devesh Pathak
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Michael D Kritzer-Cheren
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Ain Chung
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA
- Department of Physiology, University of California, San Francisco, CA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, CA
| | - Amar Sahay
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- BROAD Institute of Harvard and MIT, Cambridge, MA
| |
Collapse
|
27
|
Towner TT, Applegate DT, Coleman HJ, Papastrat KM, Varlinskaya EI, Werner DF. Patterns of neuronal activation following ethanol-induced social facilitation and social inhibition in adolescent cFos-LacZ male and female rats. Behav Brain Res 2024; 471:115118. [PMID: 38906480 PMCID: PMC11633836 DOI: 10.1016/j.bbr.2024.115118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Alcohol-associated social facilitation together with attenuated sensitivity to adverse alcohol effects play a substantial role in adolescent alcohol use and misuse, with adolescent females being more susceptible to adverse consequences of binge drinking than adolescent males. Adolescent rodents also demonstrate individual and sex differences in sensitivity to ethanol-induced social facilitation and social inhibition, therefore the current study was designed to identify neuronal activation patterns associated with ethanol-induced social facilitation and ethanol-induced social inhibition in male and female adolescent cFos-LacZ rats. Experimental subjects were given social interaction tests on postnatal day (P) 34, 36, and 38 after an acute challenge with 0, 0.5 and 0.75 g/kg ethanol, respectively, and β-galactosidase (β-gal) expression was assessed in brain tissue of subjects socially facilitated and socially inhibited by 0.75 g/kg ethanol. In females, positive correlations were evident between overall social activity and neuronal activation of seven out of 13 ROIs, including the prefrontal cortex and nucleus accumbens, with negative correlations evident in males. Assessments of neuronal activation patterns revealed drastic sex differences between ethanol responding phenotypes. In socially inhibited males, strong correlations were evident among almost all ROIs (90 %), with markedly fewer correlations among ROIs (38 %) seen in socially facilitated males. In contrast, interconnectivity in females inhibited by ethanol was only 10 % compared to nearly 60 % in facilitated subjects. However, hub analyses revealed convergence of brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects. Taken together, these findings demonstrate individual and sex-related differences in responsiveness to acute ethanol in adolescent rats, with sex differences more evident in socially inhibited by ethanol adolescents than their socially facilitated counterparts.
Collapse
Affiliation(s)
- Trevor T Towner
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Devon T Applegate
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Harper J Coleman
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Kimberly M Papastrat
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - Elena I Varlinskaya
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA
| | - David F Werner
- Developmental Exposure Alcohol Research Center (DEARC), Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, USA.
| |
Collapse
|
28
|
Grossmann CP, Sommer C, Fahliogullari IB, Neumann ID, Menon R. Mating-induced release of oxytocin in the mouse lateral septum: Implications for social fear extinction. Psychoneuroendocrinology 2024; 166:107083. [PMID: 38788461 DOI: 10.1016/j.psyneuen.2024.107083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
In mammals, some physiological conditions are associated with the high brain oxytocin (OXT) system activity. These include lactation in females and mating in males and females, both of which have been linked to reduced stress responsiveness and anxiolysis. Also, in a murine model of social fear conditioning (SFC), enhanced brain OXT signaling in lactating mice, specifically in the lateral septum (LS), was reported to underlie reduced social fear expression. Here, we studied the effects of mating in male mice on anxiety-related behaviour, social (and cued) fear expression and its extinction, and the activity of OXT neurons reflected by cFos expression and OXT release in the LS and amygdala. We further focused on the involvement of brain OXT in the mating-induced facilitation of social fear extinction. We could confirm the anxiolytic effect of mating in male mice irrespective of the occurrence of ejaculation. Further, we found that only successful mating resulting in ejaculation (Ej+) facilitated social fear extinction, whereas mating without ejaculation (Ej-) did not. In contrast, mating did not affect cues fear expression. Using the cellular activity markers cFos and pErk, we further identified the ventral LS (vLS) as a potential region participating in the effect of ejaculation on social fear extinction. In support, microdialysis experiments revealed a rise in OXT release within the LS, but not the amygdala, during mating. Finally, infusion of an OXT receptor antagonist into the LS before mating or into the lateral ventricle (icv) after mating demonstrated a significant role of brain OXT receptor-mediated signaling in the mating-induced facilitation of social fear extinction.
Collapse
Affiliation(s)
- Cindy P Grossmann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Christopher Sommer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | | | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
29
|
Wang D, Zhao D, Wang W, Hu F, Cui M, Liu J, Meng F, Liu C, Qiu C, Liu D, Xu Z, Wang Y, Zhang Y, Li W, Li C. How do lateral septum projections to the ventral CA1 influence sociability? Neural Regen Res 2024; 19:1789-1801. [PMID: 38103246 PMCID: PMC10960288 DOI: 10.4103/1673-5374.389304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 06/10/2023] [Accepted: 08/02/2023] [Indexed: 12/18/2023] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202408000-00033/figure1/v/2023-12-16T180322Z/r/image-tiff Social dysfunction is a risk factor for several neuropsychiatric illnesses. Previous studies have shown that the lateral septum (LS)-related pathway plays a critical role in mediating social behaviors. However, the role of the connections between the LS and its downstream brain regions in social behaviors remains unclear. In this study, we conducted a three-chamber test using electrophysiological and chemogenetic approaches in mice to determine how LS projections to ventral CA1 (vCA1) influence sociability. Our results showed that gamma-aminobutyric acid (GABA)-ergic neurons were activated following social experience, and that social behaviors were enhanced by chemogenetic modulation of these neurons. Moreover, LS GABAergic neurons extended their functional neural connections via vCA1 glutamatergic pyramidal neurons, and regulating LSGABA→vCA1Glu neural projections affected social behaviors, which were impeded by suppressing LS-projecting vCA1 neuronal activity or inhibiting GABAA receptors in vCA1. These findings support the hypothesis that LS inputs to the vCA1 can control social preferences and social novelty behaviors. These findings provide new insights regarding the neural circuits that regulate sociability.
Collapse
Affiliation(s)
- Dan Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Di Zhao
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Wentao Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fengai Hu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Minghu Cui
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Jing Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Fantao Meng
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Cuilan Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Changyun Qiu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Dunjiang Liu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Zhicheng Xu
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yameng Wang
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Yu Zhang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- College of Nursing, Binzhou Medical University, Binzhou, Shandong Province, China
| | - Wei Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| | - Chen Li
- Department of Rehabilitation Medicine, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Institute for Metabolic & Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
- Department of Psychology, Binzhou Medical University Hospital, Binzhou, Shandong Province, China
| |
Collapse
|
30
|
Zhang S, Zhang X, Li H, Wang D, Wang S, Wang Y, Zhao G, Dong H, Li J. Ventral Tegmental Area Glutamatergic Neurons Facilitated Emergence From Isoflurane Anesthesia Involves Excitation of Lateral Septum GABA-ergic Neurons in Mice. Anesth Analg 2024; 139:397-410. [PMID: 38048607 DOI: 10.1213/ane.0000000000006739] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
BACKGROUND Ventral tegmental area (VTA) glutamatergic neurons promote wakefulness in the sleep-wake cycle; however, their roles and neural circuit mechanisms during isoflurane (ISO) anesthesia remain unclear. METHODS Fiber photometry and in vivo electrophysiology were used to observe the changes in neuronal or terminal activity during ISO anesthesia and arousal processes. Optogenetic and anesthesia behaviors were used to investigate the effects of VTA glutamatergic neurons and their projections to the lateral septum (LS) during ISO anesthesia and arousal. Anterograde and retrograde tracings were performed to identify the connections between VTA glutamatergic neurons and the LS. RESULTS Population activity and firing rates of VTA glutamatergic neurons decreased during ISO anesthesia (ISO: 95% confidence interval [CI], 0.83-2.06 Spikes.s -1 vs wake: 95% CI, 3.53-7.83 Spikes.s -1 ; P =.0001; n = 34 from 4 mice). Optogenetic activation of VTA glutamatergic neurons reduced the burst-suppression ratio in electroencephalography (laser: 95% CI, 13.09%-28.76% vs pre: 95% CI, 52.85%-71.59%; P =.0009; n = 6) and facilitated emergence (ChR2: 95% CI, 343.3-388.0 seconds vs mCherry: 95% CI, 447.6-509.8 seconds; P < .0001; n = 11/12) from ISO anesthesia. VTA glutamatergic neurons monosynaptically innervated LS γ-aminobutyric acid (GABA)-ergic neurons. The activity of VTA glutamatergic terminals in the LS decreased during ISO anesthesia, and optogenetic activation of the VTA glutamatergic terminals in the LS facilitated emergence from ISO anesthesia. Furthermore, optogenetic activation of VTA glutamatergic terminals increased the firing rates of LS γ-aminobutyric acid-ergic (GABAergic) neurons (laser: 95% CI, 0.85-4.03 Spikes.s -1 vs pre: 95% CI, 0.24-0.78 Spikes.s -1 ; P =.008; n = 23 from 4 mice) during ISO anesthesia. CONCLUSIONS VTA glutamatergic neurons facilitated emergence from ISO anesthesia involving excitation of LS GABAergic neurons.
Collapse
Affiliation(s)
- Simin Zhang
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Xinxin Zhang
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Huiming Li
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Dan Wang
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Sa Wang
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuhao Wang
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Guangchao Zhao
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hailong Dong
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jiannan Li
- From the Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
31
|
Oliveira VEDM, Evrard F, Faure MC, Bakker J. Social isolation and aggression training lead to escalated aggression and hypothalamus-pituitary-gonad axis hyperfunction in mice. Neuropsychopharmacology 2024; 49:1266-1275. [PMID: 38337026 PMCID: PMC11224373 DOI: 10.1038/s41386-024-01808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Although the participation of sex hormones and sex hormone-responsive neurons in aggressive behavior has been extensively studied, the role of other systems within the hypothalamus-pituitary-gonadal (HPG) axis remains elusive. Here we assessed how the gonadotropin-releasing hormone (GnRH) and kisspeptin systems are impacted by escalated aggression in male mice. We used a combination of social isolation and aggression training (IST) to exacerbate mice's aggressive behavior. Next, low-aggressive (group-housed, GH) and highly aggressive (IST) mice were compared regarding neuronal activity in the target populations and hormonal levels, using immunohistochemistry and ELISA, respectively. Finally, we used pharmacological and viral approaches to manipulate neuropeptide signaling and expression, subsequently evaluating its effects on behavior. IST mice exhibited enhanced aggressive behavior compared to GH controls, which was accompanied by elevated neuronal activity in GnRH neurons and arcuate nucleus kisspeptin neurons. Remarkably, IST mice presented an increased number of kisspeptin neurons in the anteroventral periventricular nucleus (AVPV). In addition, IST mice exhibited elevated levels of luteinizing hormone (LH) in serum. Accordingly, activation and blockade of GnRH receptors (GnRHR) exacerbated and reduced aggression, respectively. Surprisingly, kisspeptin had intricate effects on aggression, i.e., viral ablation of AVPV-kisspeptin neurons impaired the training-induced rise in aggressive behavior whereas kisspeptin itself strongly reduced aggression in IST mice. Our results indicate that IST enhances aggressive behavior in male mice by exacerbating HPG-axis activity. Particularly, increased GnRH neuron activity and GnRHR signaling were found to underlie aggression whereas the relationship with kisspeptin remains puzzling.
Collapse
Affiliation(s)
- Vinícius Elias de Moura Oliveira
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128, Mainz, Germany.
| | - Florence Evrard
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Melanie C Faure
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium
| | - Julie Bakker
- Laboratory of Neuroendocrinology, GIGA-Neurosciences, University of Liege, 4000, Liege, Belgium.
| |
Collapse
|
32
|
Keppler E, Molas S. Prompting social investigation. eLife 2024; 13:e99363. [PMID: 38865180 PMCID: PMC11168743 DOI: 10.7554/elife.99363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024] Open
Abstract
A social memory pathway connecting the ventral hippocampus, the lateral septum and the ventral tegmental area helps to regulate how mice react to unknown individuals.
Collapse
Affiliation(s)
- Emma Keppler
- Institute for Behavioral Genetics, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
| | - Susanna Molas
- Institute for Behavioral Genetics, University of Colorado BoulderBoulderUnited States
- Department of Psychology and Neuroscience, University of Colorado BoulderBoulderUnited States
- Crnic Institute Boulder Branch, BioFrontiers Institute, University of Colorado BoulderBoulderUnited States
| |
Collapse
|
33
|
Zhou J, Wu JW, Song BL, Jiang Y, Niu QH, Li LF, Liu YJ. 5-HT1A receptors within the intermediate lateral septum modulate stress vulnerability in male mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110966. [PMID: 38354893 DOI: 10.1016/j.pnpbp.2024.110966] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Chronic stress is a major risk factor for psychiatric disorders. However, certain individuals may be at higher risk due to greater stress susceptibility. Elucidating the neurobiology of stress resilience and susceptibility may facilitate the development of novel strategies to prevent and treat stress-related disorders such as depression. Mounting evidence suggests that the serotonin (5-HT) system is a major regulator of stress sensitivity. In this study, we assessed the functions of 5-HT1A and 5-HT2A receptors within the lateral septum (LS) in regulating stress vulnerability. Among a group of male mice exposed to chronic social defeat stress (CSDS), 47.2% were classified as stress-susceptible, and these mice employed more passive coping strategies during the defeat and exhibited more severe anxiety- and depression-like behaviors during the following behavioral tests. These stress-susceptible mice also exhibited elevated neuronal activity in the LS as evidenced by greater c-Fos expression, greater activity of 5-HT neurons in both the dorsal and median raphe nucleus, and downregulated expression of the 5-HT1A receptor in the intermediate LS (LSi). Finally, we found the stress-induced social withdrawal symptoms could be rapidly relieved by LSi administration of 8-OH-DPAT, a 5-HT1A receptor agonist. These results indicate that 5-HT1A receptors within the LSi play an important role in stress vulnerability in mice. Therefore, modulation of stress vulnerable via 5-HT1A receptor activation in the LSi is a potential strategy to treat stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Jie Zhou
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Jiao-Wen Wu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Bai-Lin Song
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Yi Jiang
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China
| | - Qiu-Hong Niu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| | - Ying-Juan Liu
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang 473061, China..
| |
Collapse
|
34
|
Puska G, Szendi V, Dobolyi A. Lateral septum as a possible regulatory center of maternal behaviors. Neurosci Biobehav Rev 2024; 161:105683. [PMID: 38649125 DOI: 10.1016/j.neubiorev.2024.105683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
The lateral septum (LS) is involved in controlling anxiety, aggression, feeding, and other motivated behaviors. Lesion studies have also implicated the LS in various forms of caring behaviors. Recently, novel experimental tools have provided a more detailed insight into the function of the LS, including the specific role of distinct cell types and their neuronal connections in behavioral regulations, in which the LS participates. This article discusses the regulation of different types of maternal behavioral alterations using the distributions of established maternal hormones such as prolactin, estrogens, and the neuropeptide oxytocin. It also considers the distribution of neurons activated in mothers in response to pups and other maternal activities, as well as gene expressional alterations in the maternal LS. Finally, this paper proposes further research directions to keep up with the rapidly developing knowledge on maternal behavioral control in other maternal brain regions.
Collapse
Affiliation(s)
- Gina Puska
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Department of Zoology, University of Veterinary Medicine Budapest, Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary; Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
35
|
Bludau A, Schwartz U, Zeitler DM, Royer M, Meister G, Neumann ID, Menon R. Functional involvement of septal miR-132 in extinction and oxytocin-mediated reversal of social fear. Mol Psychiatry 2024; 29:1754-1766. [PMID: 37938765 PMCID: PMC11371636 DOI: 10.1038/s41380-023-02309-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
Social interactions are critical for mammalian survival and evolution. Dysregulation of social behavior often leads to psychopathologies such as social anxiety disorder, denoted by intense fear and avoidance of social situations. Using the social fear conditioning (SFC) paradigm, we analyzed expression levels of miR-132-3p and miR-124-3p within the septum, a brain region essential for social preference and avoidance behavior, after acquisition and extinction of social fear. Here, we found that SFC dynamically altered both microRNAs. Functional in vivo approaches using pharmacological strategies, inhibition of miR-132-3p, viral overexpression of miR-132-3p, and shRNA-mediated knockdown of miR-132-3p specifically within oxytocin receptor-positive neurons confirmed septal miR-132-3p to be critically involved not only in social fear extinction, but also in oxytocin-induced reversal of social fear. Moreover, Argonaute-RNA-co-immunoprecipitation-microarray analysis and further in vitro and in vivo quantification of target mRNA and protein, revealed growth differentiation factor-5 (Gdf-5) as a target of miR-132-3p. Septal application of GDF-5 impaired social fear extinction suggesting its functional involvement in the reversal of social fear. In summary, we show that septal miR-132-3p and its downstream target Gdf-5 regulate social fear expression and potentially mediate oxytocin-induced reversal of social fear.
Collapse
Affiliation(s)
- Anna Bludau
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Uwe Schwartz
- NGS Analysis Center, Biology and Pre-Clinical Medicine, University of Regensburg, Regensburg, Germany
| | - Daniela M Zeitler
- Regensburg Center for Biochemistry, Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Melanie Royer
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
- Regensburg Center for Biochemistry, Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Regensburg Center for Biochemistry, Laboratory of RNA Biology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| | - Rohit Menon
- Department of Behavioral and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
36
|
Rigney N, Campos-Lira E, Kirchner MK, Wei W, Belkasim S, Beaumont R, Singh S, Suarez SG, Hartswick D, Stern JE, de Vries GJ, Petrulis A. A vasopressin circuit that modulates mouse social investigation and anxiety-like behavior in a sex-specific manner. Proc Natl Acad Sci U S A 2024; 121:e2319641121. [PMID: 38709918 PMCID: PMC11098102 DOI: 10.1073/pnas.2319641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/02/2024] [Indexed: 05/08/2024] Open
Abstract
One of the largest sex differences in brain neurochemistry is the expression of the neuropeptide arginine vasopressin (AVP) within the vertebrate brain, with males having more AVP cells in the bed nucleus of the stria terminalis (BNST) than females. Despite the long-standing implication of AVP in social and anxiety-like behaviors, the circuitry underlying AVP's control of these behaviors is still not well defined. Using optogenetic approaches, we show that inhibiting AVP BNST cells reduces social investigation in males, but not in females, whereas stimulating these cells increases social investigation in both sexes, but more so in males. These cells may facilitate male social investigation through their projections to the lateral septum (LS), an area with the highest density of sexually differentiated AVP innervation in the brain, as optogenetic stimulation of BNST AVP → LS increased social investigation and anxiety-like behavior in males but not in females; the same stimulation also caused a biphasic response of LS cells ex vivo. Blocking the vasopressin 1a receptor (V1aR) in the LS eliminated all these responses. Together, these findings establish a sexually differentiated role for BNST AVP cells in the control of social investigation and anxiety-like behavior, likely mediated by their projections to the LS.
Collapse
Affiliation(s)
- Nicole Rigney
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Elba Campos-Lira
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Wei Wei
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Selma Belkasim
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Rachael Beaumont
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Sumeet Singh
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Delenn Hartswick
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| | | | - Aras Petrulis
- Neuroscience Institute, Georgia State University, Atlanta, GA30302
| |
Collapse
|
37
|
Chang X, Zhang H, Chen S. Neural circuits regulating visceral pain. Commun Biol 2024; 7:457. [PMID: 38615103 PMCID: PMC11016080 DOI: 10.1038/s42003-024-06148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Visceral hypersensitivity, a common clinical manifestation of irritable bowel syndrome, may contribute to the development of chronic visceral pain, which is a major challenge for both patients and health providers. Neural circuits in the brain encode, store, and transfer pain information across brain regions. In this review, we focus on the anterior cingulate cortex and paraventricular nucleus of the hypothalamus to highlight the progress in identifying the neural circuits involved in visceral pain. We also discuss several neural circuit mechanisms and emphasize the importance of cross-species, multiangle approaches and the identification of specific neurons in determining the neural circuits that control visceral pain.
Collapse
Affiliation(s)
- Xiaoli Chang
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| | - Haiyan Zhang
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Shaozong Chen
- Research Institute of Acupuncture and Moxibustion, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
| |
Collapse
|
38
|
Liu YJ, Wang Y, Wu JW, Zhou J, Song BL, Jiang Y, Li LF. GABAergic synapses from the ventral lateral septum to the paraventricular nucleus of hypothalamus modulate anxiety. Front Neurosci 2024; 18:1337207. [PMID: 38567287 PMCID: PMC10985145 DOI: 10.3389/fnins.2024.1337207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Emotional disorders, such as anxiety and depression, represent a major societal problem; however, the underlying neurological mechanism remains unknown. The ventral lateral septum (LSv) is implicated in regulating processes related to mood and motivation. In this study, we found that LSv GABAergic neurons were significantly activated in mice experiencing chronic social defeat stress (CSDS) after exposure to a social stressor. We then controlled LSv GABAergic neuron activity using a chemogenetic approach. The results showed that although manipulation of LSv GABAergic neurons had little effect on anxiety-like behavioral performances, the activation of LSv GABAergic neurons during CSDS worsened social anxiety during a social interaction (SI) test. Moreover, LSv GABAergic neurons showed strong projections to the paraventricular nucleus (PVN) of the hypothalamus, which is a central hub for stress reactions. Remarkably, while activation of GABAergic LSv-PVN projections induced social anxiety under basal conditions, activation of this pathway during CSDS alleviated social anxiety during the SI test. On the other hand, the chemogenetic manipulation of LSv GABAergic neurons or LSvGABA-PVN projections had no significant effect on despair-like behavioral performance in the tail suspension test. Overall, LS GABAergic neurons, particularly the LSv GABAergic-PVN circuit, has a regulatory role in pathological anxiety and is thus a potential therapeutic target for the treatment of emotional disorders.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lai-Fu Li
- Research Center of Henan Provincial Agricultural Biomass Resource Engineering and Technology, College of Life Science and Agriculture, Nanyang Normal University, Nanyang, China
| |
Collapse
|
39
|
Towner TT, Applegate DT, Coleman HJ, Varlinskaya EI, Werner DF. Patterns of neuronal activation following ethanol-induced social facilitation and social inhibition in adolescent cFos-LacZ male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583793. [PMID: 38559141 PMCID: PMC10979894 DOI: 10.1101/2024.03.06.583793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Motives related to the enhancement of the positive effects of alcohol on social activity within sexes are strongly associated with alcohol use disorder and are a major contributor to adolescent alcohol use and heavy drinking. This is particularly concerning given that heightened vulnerability of the developing adolescent brain. Despite this linkage, it is unknown how adolescent non-intoxicated social behavior relates to alcohol's effects on social responding, and how the social brain network differs in response within individuals that are socially facilitated or inhibited by alcohol. Sex effects for social facilitation and inhibition during adolescence are conserved in rodents in high and low drinkers, respectively. In the current study we used cFos-LacZ transgenic rats to evaluate behavior and related neural activity in male and female subjects that differed in their social facilitatory or social inhibitory response to ethanol. Subjects were assessed using social interaction on postnatal days 34, 36 and 38 after a 0, 0.5 and 0.75 g/kg ethanol challenge, respectively, with brain tissue being evaluated following the final social interaction. Subjects were binned into those that were socially facilitated or inhibited by ethanol using a tertile split within each sex. Results indicate that both males and females facilitated by ethanol display lower social activity in the absence of ethanol compared to socially inhibited subjects. Analyses of neural activity revealed that females exhibited differences in 54% of examined socially relevant brain regions of interest (ROIs) compared to only 8% in males, with neural activity in females socially inhibited by ethanol generally being lower than facilitated subjects. Analysis of socially relevant ROI neural activity to social behavior differed for select brain regions as a function of sex, with the prefrontal cortex and nucleus accumbens being negatively correlated in males, but positively correlated in females. Females displayed additional positive correlations in other ROIs, and sex differences were noted across the rostro-caudal claustrum axis. Importantly, neural activity largely did not correlate with locomotor activity. Functional network construction of social brain regions revealed further sex dissociable effects, with 90% interconnectivity in males socially inhibited by ethanol compared to 38% of facilitated subjects, whereas interconnectivity in females inhibited by ethanol was 10% compared to nearly 60% in facilitated subjects. However, hub analyses converged on similar brain regions in males and females, with the nucleus accumbens being a hub region in socially inhibited subjects, whereas the central amygdala was disconnected in facilitated subjects. Taken together, these findings support unified brain regions that contribute to social facilitation or inhibition from ethanol despite prominent sex differences in the social brain network.
Collapse
|
40
|
Crespi BJ. The Roots of Science, Technology, Engineering, and Mathematics: What Are the Evolutionary and Neural Bases of Human Mathematics and Technology? BRAIN, BEHAVIOR AND EVOLUTION 2024; 99:1-12. [PMID: 38368855 DOI: 10.1159/000537908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
INTRODUCTION Neural exaptations represent descent via transitions to novel neural functions. A primary transition in human cognitive and neural evolution was from a predominantly socially oriented primate brain to a brain that also instantiates and subserves science, technology, and engineering, all of which depend on mathematics. Upon what neural substrates and upon what evolved cognitive mechanisms did human capacities for science, technology, engineering, and mathematics (STEM), and especially its mathematical underpinnings, emerge? Previous theory focuses on roles for tools, language, and arithmetic in the cognitive origins of STEM, but none of these factors appears sufficient to support the transition. METHODS In this article, I describe and evaluate a novel hypothesis for the neural origins and substrates of STEM-based cognition: that they are based in human kinship systems and human maximizing of inclusive fitness. RESULTS The main evidence for this hypothesis is threefold. First, as demonstrated by anthropologists, human kinship systems exhibit complex mathematical and geometrical structures that function under sets of explicit rules, and such systems and rules pervade and organize all human cultures. Second, human kinship underlies the core algebraic mechanism of evolution, maximization of inclusive fitness, quantified as personal reproduction plus the sum of all effects on reproduction of others, each multiplied by their coefficient of relatedness to self. This is the only "natural" equation expected to be represented in the human brain. Third, functional imaging studies show that kinship-related cognition activates frontal-parietal regions that are also activated in STEM-related tasks. In turn, the decision-making that integrates kinship levels with costs and benefits from alternative behaviors has recently been shown to recruit the lateral septum, a hub region that combines internal (from the prefrontal cortex, amygdala, and other regions) and external information relevant to social behavior, using a dedicated subsystem of neurons specific to kinship. CONCLUSIONS Taken together, these lines of evidence suggest that kinship systems and kin-associated behaviors may represent exaptations for the origin of human STEM.
Collapse
Affiliation(s)
- Bernard J Crespi
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
41
|
Fricker BA, Kelly AM. From grouping and cooperation to menstruation: Spiny mice (Acomys cahirinus) are an emerging mammalian model for sociality and beyond. Horm Behav 2024; 158:105462. [PMID: 38000170 DOI: 10.1016/j.yhbeh.2023.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/22/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
While spiny mice are primarily used as a model for Type II diabetes and for studying complex tissue regeneration, they are also an emerging model for a variety of studies examining hormones, behavior, and the brain. We began studying the spiny mouse to take advantage of their highly gregarious phenotype to examine how the brain facilitates large group-living. However, this unique rodent can be readily bred and maintained in the lab and can be used to ask a wide variety of scientific questions. In this brief communication we provide an overview of studies that have used spiny mice for exploring physiology and behavior. Additionally, we describe how the spiny mouse can serve as a useful model for researchers interested in studying precocial development, menstruation, cooperation, and various grouping behaviors. With increasingly available technological advancements for non-traditional organisms, spiny mice are well-positioned to become a valuable organism in the behavioral neuroscience community.
Collapse
Affiliation(s)
- Brandon A Fricker
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| | - Aubrey M Kelly
- Department of Psychology, Emory University, 36 Eagle Row, Atlanta, GA 30322, United States of America.
| |
Collapse
|
42
|
Rodriguez LA, Tran MN, Garcia-Flores R, Oh S, Phillips RA, Pattie EA, Divecha HR, Kim SH, Shin JH, Lee YK, Montoya C, Jaffe AE, Collado-Torres L, Page SC, Martinowich K. TrkB-dependent regulation of molecular signaling across septal cell types. Transl Psychiatry 2024; 14:52. [PMID: 38263132 PMCID: PMC10805920 DOI: 10.1038/s41398-024-02758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
The lateral septum (LS), a GABAergic structure located in the basal forebrain, is implicated in social behavior, learning, and memory. We previously demonstrated that expression of tropomyosin kinase receptor B (TrkB) in LS neurons is required for social novelty recognition. To better understand molecular mechanisms by which TrkB signaling controls behavior, we locally knocked down TrkB in LS and used bulk RNA-sequencing to identify changes in gene expression downstream of TrkB. TrkB knockdown induces upregulation of genes associated with inflammation and immune responses, and downregulation of genes associated with synaptic signaling and plasticity. Next, we generated one of the first atlases of molecular profiles for LS cell types using single nucleus RNA-sequencing (snRNA-seq). We identified markers for the septum broadly, and the LS specifically, as well as for all neuronal cell types. We then investigated whether the differentially expressed genes (DEGs) induced by TrkB knockdown map to specific LS cell types. Enrichment testing identified that downregulated DEGs are broadly expressed across neuronal clusters. Enrichment analyses of these DEGs demonstrated that downregulated genes are uniquely expressed in the LS, and associated with either synaptic plasticity or neurodevelopmental disorders. Upregulated genes are enriched in LS microglia, associated with immune response and inflammation, and linked to both neurodegenerative disease and neuropsychiatric disorders. In addition, many of these genes are implicated in regulating social behaviors. In summary, the findings implicate TrkB signaling in the LS as a critical regulator of gene networks associated with psychiatric disorders that display social deficits, including schizophrenia and autism, and with neurodegenerative diseases, including Alzheimer's.
Collapse
Affiliation(s)
- Lionel A Rodriguez
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Matthew Nguyen Tran
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Renee Garcia-Flores
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Seyun Oh
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Robert A Phillips
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Elizabeth A Pattie
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Heena R Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Sun Hong Kim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Carly Montoya
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Andrew E Jaffe
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Leonardo Collado-Torres
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA
| | - Stephanie C Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
| | - Keri Martinowich
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
43
|
Simon RC, Fleming WT, Senthilkumar P, Briones BA, Ishii KK, Hjort MM, Martin MM, Hashikawa K, Sanders AD, Golden SA, Stuber GD. Opioid-driven disruption of the septal complex reveals a role for neurotensin-expressing neurons in withdrawal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575766. [PMID: 38293241 PMCID: PMC10827099 DOI: 10.1101/2024.01.15.575766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Because opioid withdrawal is an intensely aversive experience, persons with opioid use disorder (OUD) often relapse to avoid it. The lateral septum (LS) is a forebrain structure that is important in aversion processing, and previous studies have linked the lateral septum (LS) to substance use disorders. It is unclear, however, which precise LS cell types might contribute to the maladaptive state of withdrawal. To address this, we used single-nucleus RNA-sequencing to interrogate cell type specific gene expression changes induced by chronic morphine and withdrawal. We discovered that morphine globally disrupted the transcriptional profile of LS cell types, but Neurotensin-expressing neurons (Nts; LS-Nts neurons) were selectively activated by naloxone. Using two-photon calcium imaging and ex vivo electrophysiology, we next demonstrate that LS-Nts neurons receive enhanced glutamatergic drive in morphine-dependent mice and remain hyperactivated during opioid withdrawal. Finally, we showed that activating and silencing LS-Nts neurons during opioid withdrawal regulates pain coping behaviors and sociability. Together, these results suggest that LS-Nts neurons are a key neural substrate involved in opioid withdrawal and establish the LS as a crucial regulator of adaptive behaviors, specifically pertaining to OUD.
Collapse
Affiliation(s)
- Rhiana C. Simon
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Weston T. Fleming
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Pranav Senthilkumar
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Brandy A. Briones
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Kentaro K. Ishii
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Madelyn M. Hjort
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Madison M. Martin
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Koichi Hashikawa
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Andrea D. Sanders
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
| | - Sam A. Golden
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Biological Structure, University of Washington, Seattle, WA, 98195, USA
| | - Garret D. Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion (NAPE), University of Washington, Seattle, WA, 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
44
|
Zhan S, Qi Z, Cai F, Gao Z, Xie J, Hu J. Oxytocin neurons mediate stress-induced social memory impairment. Curr Biol 2024; 34:36-45.e4. [PMID: 38103551 DOI: 10.1016/j.cub.2023.11.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 10/27/2023] [Accepted: 11/17/2023] [Indexed: 12/19/2023]
Abstract
Oxytocin has long been thought to play a substantial role in social behaviors, such as social attachment and parenting behavior. However, how oxytocin neurons respond to social and non-social stimuli is largely unknown, especially in high temporal resolution. Here, we recorded the in vivo real-time responses of oxytocin neurons in the paraventricular nucleus of the hypothalamus (PVN) in freely behaving mice. Our results revealed that oxytocin neurons were activated more significantly by stressors than social stimuli. The activation of oxytocin neurons was precisely correlated with struggling behavior during stress. Furthermore, we found that oxytocin mediated stress-induced social memory impairment. Our results reveal an important role of PVN oxytocin neurons in stress-induced social amnesia.
Collapse
Affiliation(s)
- Shulu Zhan
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China; Institute of Neuroscience, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenhua Qi
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China
| | - Fang Cai
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China
| | - Zilong Gao
- Chinese Institute for Brain Research, Beijing (CIBR), Bldg. 3, No. 9, YIKE Rd, Zhongguancun Life Science Park, Changping District, Beijing 102206, China.
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, China.
| | - Ji Hu
- School of Life Science and Technology, ShanghaiTech University, 393 Huaxia Middle Road, Shanghai 201210, China; Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200030, China.
| |
Collapse
|
45
|
Parrella NF, Hill AT, Dipnall LM, Loke YJ, Enticott PG, Ford TC. Inhibitory dysfunction and social processing difficulties in autism: A comprehensive narrative review. J Psychiatr Res 2024; 169:113-125. [PMID: 38016393 DOI: 10.1016/j.jpsychires.2023.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/04/2023] [Accepted: 11/15/2023] [Indexed: 11/30/2023]
Abstract
The primary inhibitory neurotransmitter γ-aminobutyric acid (GABA) has a prominent role in regulating neural development and function, with disruption to GABAergic signalling linked to behavioural phenotypes associated with neurodevelopmental disorders, particularly autism. Such neurochemical disruption, likely resulting from diverse genetic and molecular mechanisms, particularly during early development, can subsequently affect the cellular balance of excitation and inhibition in neuronal circuits, which may account for the social processing difficulties observed in autism and related conditions. This comprehensive narrative review integrates diverse streams of research from several disciplines, including molecular neurobiology, genetics, epigenetics, and systems neuroscience. In so doing it aims to elucidate the relevance of inhibitory dysfunction to autism, with specific focus on social processing difficulties that represent a core feature of this disorder. Many of the social processing difficulties experienced in autism have been linked to higher levels of the excitatory neurotransmitter glutamate and/or lower levels of inhibitory GABA. While current therapeutic options for social difficulties in autism are largely limited to behavioural interventions, this review highlights the psychopharmacological studies that explore the utility of GABA modulation in alleviating such difficulties.
Collapse
Affiliation(s)
| | - Aron T Hill
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Department of Psychiatry, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lillian M Dipnall
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Early Life Epigenetics Group, Deakin University, Geelong, Australia
| | - Yuk Jing Loke
- Epigenetics Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Talitha C Ford
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Centre for Human Psychopharmacology, Faculty of Health, Arts and Design, Swinburne University of Technology, Melbourne, Victoria, Australia
| |
Collapse
|
46
|
Menon R, Neumann ID. Detection, processing and reinforcement of social cues: regulation by the oxytocin system. Nat Rev Neurosci 2023; 24:761-777. [PMID: 37891399 DOI: 10.1038/s41583-023-00759-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 10/29/2023]
Abstract
Many social behaviours are evolutionarily conserved and are essential for the healthy development of an individual. The neuropeptide oxytocin (OXT) is crucial for the fine-tuned regulation of social interactions in mammals. The advent and application of state-of-the-art methodological approaches that allow the activity of neuronal circuits involving OXT to be monitored and functionally manipulated in laboratory mammals have deepened our understanding of the roles of OXT in these behaviours. In this Review, we discuss how OXT promotes the sensory detection and evaluation of social cues, the subsequent approach and display of social behaviour, and the rewarding consequences of social interactions in selected reproductive and non-reproductive social behaviours. Social stressors - such as social isolation, exposure to social defeat or social trauma, and partner loss - are often paralleled by maladaptations of the OXT system, and restoring OXT system functioning can reinstate socio-emotional allostasis. Thus, the OXT system acts as a dynamic mediator of appropriate behavioural adaptations to environmental challenges by enhancing and reinforcing social salience and buffering social stress.
Collapse
Affiliation(s)
- Rohit Menon
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany
| | - Inga D Neumann
- Department of Behavioural and Molecular Neurobiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
47
|
Luong K, Bernardo MF, Lindstrom M, Alluri RK, Rose GJ. Brain regions controlling courtship behavior in the bluehead wrasse. Curr Biol 2023; 33:4937-4949.e3. [PMID: 37898122 PMCID: PMC10764105 DOI: 10.1016/j.cub.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/30/2023] [Accepted: 10/04/2023] [Indexed: 10/30/2023]
Abstract
Bluehead wrasses (Thalassoma bifasciatum) follow a socially controlled mechanism of sex determination. A socially dominant initial-phase (IP) female is able to transform into a new terminal-phase (TP) male if the resident TP male is no longer present. TP males display an elaborate array of courtship behaviors, including both color changes and motor behaviors. Little is known concerning the neural circuits that control male-typical courtship behaviors. This study used glutamate iontophoresis to identify regions that may be involved in courtship. Stimulation of the following brain regions elicited diverse types of color change responses, many of which appear similar to courtship color changes: the ventral telencephalon (supracommissural nucleus of the ventral telencephalon [Vs], lateral nucleus of the ventral telencephalon [Vl], ventral nucleus of the ventral telencephalon [Vv], and dorsal nucleus of the ventral telencephalon [Vd]), parts of the preoptic area (NPOmg and NPOpc), entopeduncular nucleus, habenular nucleus, and pretectal nuclei (PSi and PSm). Stimulation of two regions in the posterior thalamus (central posterior thalamic [CP] and dorsal posterior thalamic [DP]) caused movements of the pectoral fins that are similar to courtship fluttering and vibrations. Furthermore, these responses were elicited in female IP fish, indicating that circuits for sexual behaviors typical of TP males exist in females. Immunohistochemistry results revealed regions that are more active in fish that are not courting: interpeduncular nucleus, red nucleus, and ventrolateral thalamus (VL). Taken together, we propose that the telencephalic-habenular-interpeduncular pathway plays an important role in controlling and regulating courtship behaviors in TP males; in this model, in response to telencephalic input, the habenular nucleus inhibits the interpeduncular nucleus, thereby dis-inhibiting forebrain regions and promoting the expression of courtship behaviors.
Collapse
Affiliation(s)
- Kyphuong Luong
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA.
| | - Madeline F Bernardo
- School of Medicine, University of Utah, 30 N 1900 E, Salt Lake City, UT 84132, USA
| | - Michael Lindstrom
- College of Osteopathic Medicine, New York Institute of Technology, 101 Northern Blvd, Glen Head, NY 11545, USA
| | - Rishi K Alluri
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| | - Gary J Rose
- School of Biological Sciences, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA
| |
Collapse
|
48
|
Wayne CR, Karam AM, McInnis AL, Arms CM, Kaller MD, Maruska KP. Impacts of repeated social defeat on behavior and the brain in a cichlid fish. J Exp Biol 2023; 226:jeb246322. [PMID: 37909345 DOI: 10.1242/jeb.246322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 10/20/2023] [Indexed: 11/03/2023]
Abstract
Social defeat is a powerful experience leading to drastic changes in physiology and behavior, many of which are negative. For example, repeated social defeat in vertebrates results in reduced reproductive success, sickness and behavioral abnormalities that threaten individual survival and species persistence. However, little is known about what neural mechanisms are involved in determining whether an individual is resilient or susceptible to repeated social defeat stress. It also remains unknown whether exclusive use of reactive behaviors after repeated social defeat is maintained over time and impacts future behaviors during subsequent contests. We used a resident-intruder experiment in the African cichlid fish Astatotilapia burtoni to investigate the behavior and neural correlates of these two opposing groups. Behavior was quantified by watching fish during defeat trials and used to distinguish resilient and susceptible individuals. Both resilient and susceptible fish started with searching and freezing behaviors, with searching decreasing and freezing increasing after repeated social defeat. After a 4 day break period, resilient fish used both searching and freezing behaviors during a social defeat encounter with a new resident, while susceptible fish almost exclusively used freezing behaviors. By quantifying neural activation using pS6 in socially relevant brain regions, we identified differential neural activation patterns associated with resilient and susceptible fish and found nuclei that co-varied and may represent functional networks. These data provide the first evidence of specific conserved brain networks underlying social stress resilience and susceptibility in fishes.
Collapse
Affiliation(s)
- C Rose Wayne
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Ava M Karam
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Alora L McInnis
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Catherine M Arms
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| | - Michael D Kaller
- School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
49
|
Aloni E, Tibi M, Hochgerner H, Zeisel A. Sexual dimorphism in synaptic inputs to the mouse amygdala and orbital cortex. Front Neurosci 2023; 17:1258284. [PMID: 37901417 PMCID: PMC10601666 DOI: 10.3389/fnins.2023.1258284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
The medial amygdala (MeA) is a sexually dimorphic brain region that regulates fear responses, emotional memories, and social behaviors. It is known to be larger and contains more cells in males. The MeA integrates information through input connections from olfactory regions, bed nucleus of the stria terminalis, ventral hippocampus, and thalamic and hypothalamic structures. We hypothesize that in addition to the size differences, there are differences in regional connectivity between the sexes. In this study, we utilized G-deleted rabies monosynaptic retrograde tracing to compare amygdala presynaptic cells in male and female whole mouse brains. We report differences in connection patterns to the amygdala, with higher overall connectivity (presynaptic per starter) in males and a larger fraction of inputs originating from the bed nucleus of the stria terminalis, lateral septum, and medial preoptic area. Furthermore, we examined input connections to the orbital cortex (ORB), a brain region shown to be larger in volume in females, and found the opposite trend, where females had more total inputs. Together, our findings extend the evidence for sexual dimorphism in the brain to the neuronal wiring pattern, with likely impacts on behavior and disease susceptibility.
Collapse
Affiliation(s)
| | | | | | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
50
|
Xie Y, Reid CM, Granados AA, Garcia MT, Dale-Huang F, Hanson SM, Mancia W, Liu J, Adam M, Mosto O, Pisco AO, Alvarez-Buylla A, Harwell CC. Developmental origin and local signals cooperate to determine septal astrocyte identity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.08.561428. [PMID: 37873089 PMCID: PMC10592657 DOI: 10.1101/2023.10.08.561428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Astrocyte specification during development is influenced by both intrinsic and extrinsic factors, but the precise contribution of each remains poorly understood. Here we show that septal astrocytes from Nkx2.1 and Zic4 expressing progenitor zones are allocated into non-overlapping domains of the medial (MS) and lateral septal nuclei (LS) respectively. Astrocytes in these areas exhibit distinctive molecular and morphological features tailored to the unique cellular and synaptic circuit environment of each nucleus. Using single-nucleus (sn) RNA sequencing, we trace the developmental trajectories of cells in the septum and find that neurons and astrocytes undergo region and developmental stage-specific local cell-cell interactions. We show that expression of the classic morphogens Sonic hedgehog (Shh) and Fibroblast growth factors (Fgfs) by MS and LS neurons respectively, functions to promote the molecular specification of local astrocytes in each region. Finally, using heterotopic cell transplantation, we show that both morphological and molecular specifications of septal astrocytes are highly dependent on the local microenvironment, regardless of developmental origins. Our data highlights the complex interplay between intrinsic and extrinsic factors shaping astrocyte identities and illustrates the importance of the local environment in determining astrocyte functional specialization.
Collapse
Affiliation(s)
- Yajun Xie
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
| | - Christopher M. Reid
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
- Department of Neurobiology, Harvard Medical School, Boston, MA
- Ph.D. Program in Neuroscience, Harvard University, Boston, MA
| | | | - Miguel Turrero Garcia
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
| | - Fiona Dale-Huang
- Department of Neurology, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Sarah M. Hanson
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
| | - Walter Mancia
- Department of Neurology, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Jonathan Liu
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
| | - Manal Adam
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
| | - Olivia Mosto
- Department of Neurobiology, Harvard Medical School, Boston, MA
| | | | - Arturo Alvarez-Buylla
- Department of Neurology, University of California, San Francisco, CA
- Department of Neurological Surgery, University of California, San Francisco, CA
| | - Corey C. Harwell
- Department of Neurology, University of California, San Francisco, CA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, San Francisco, CA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA
- Lead contact
| |
Collapse
|