1
|
Hoffmann C, Ruff KM, Edu IA, Shinn MK, Tromm JV, King MR, Pant A, Ausserwöger H, Morgan JR, Knowles TPJ, Pappu RV, Milovanovic D. Synapsin Condensation is Governed by Sequence-Encoded Molecular Grammars. J Mol Biol 2025; 437:168987. [PMID: 39947282 PMCID: PMC11903162 DOI: 10.1016/j.jmb.2025.168987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/04/2025] [Accepted: 02/06/2025] [Indexed: 02/19/2025]
Abstract
Multiple biomolecular condensates coexist at the pre- and post- synapse to enable vesicle dynamics and controlled neurotransmitter release in the brain. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Using computational analysis, we show that the IDRs of SV proteins feature evolutionarily conserved non-random compositional biases and sequence patterns. Synapsin-1 is essential for condensation of SVs, and its C-terminal IDR has been shown to be a key driver of condensation. Focusing on this IDR, we dissected the contributions of two conserved features namely the segregation of polar and proline residues along the linear sequence, and the compositional preference for arginine over lysine. Scrambling the blocks of polar and proline residues weakens the driving forces for forming micron-scale condensates. However, the extent of clustering in subsaturated solutions remains equivalent to that of the wild-type synapsin-1. In contrast, substituting arginine with lysine significantly weakens both the driving forces for condensation and the extent of clustering in subsaturated solutions. Co-expression of the scrambled variant of synapsin-1 with synaptophysin results in a gain-of-function phenotype in cells, whereas arginine to lysine substitutions eliminate condensation in cells. We report an emergent consequence of synapsin-1 condensation, which is the generation of interphase pH gradients that is realized via differential partitioning of protons between coexisting phases. This pH gradient is likely to be directly relevant for vesicular ATPase functions and the loading of neurotransmitters. Our studies highlight how conserved IDR grammars serve as drivers of synapsin-1 condensation.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Kiersten M Ruff
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Irina A Edu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Min Kyung Shinn
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Johannes V Tromm
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Matthew R King
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Avnika Pant
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Hannes Ausserwöger
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jennifer R Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thomson Road, Cambridge CB3 0HE, United Kingdom
| | - Rohit V Pappu
- Department of Biomedical Engineering and Center for Biomolecular Condensates, James McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience Berlin, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany; Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany; Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA.
| |
Collapse
|
2
|
Rupert J, Milovanovic D. At the crossroads of calcium signaling, protein synthesis and neuropeptide release. eLife 2025; 14:e106553. [PMID: 40172946 PMCID: PMC11964446 DOI: 10.7554/elife.106553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
By influencing calcium homeostasis, local protein synthesis and the endoplasmic reticulum, a small protein called Rab10 emerges as a crucial cytoplasmic regulator of neuropeptide secretion.
Collapse
Affiliation(s)
- Jakob Rupert
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE)Berlin and BonnGermany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE)Berlin and BonnGermany
| |
Collapse
|
3
|
Chhabra A, Hoffmann C, Pérez GA, Korobeinikov AA, Rentsch J, Hümpfer N, Kokwaro L, Gnidovec L, Petrovic A, Wallace JN, Tromm JV, Román-Vendrell C, Johnson EC, Ranković B, Perego E, Volpi T, Fernández-Busnadiego R, Köster S, Rizzoli SO, Ewers H, Morgan JR, Milovanovic D. Condensates of synaptic vesicles and synapsin are molecular beacons for actin sequestering and polymerization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.19.604346. [PMID: 39071264 PMCID: PMC11275919 DOI: 10.1101/2024.07.19.604346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Neuronal communication relies on precisely maintained synaptic vesicle (SV) clusters, which assemble via liquid-liquid phase separation (LLPS). This process requires synapsins, the major synaptic phosphoproteins, which are known to bind actin. The reorganization of SVs, synapsins and actin is a hallmark of synaptic activity, but their interplay is still unclear. Here, we combined the reconstitution approaches, expansion microscopy, super-resolution imaging and cryo-electron tomography to dissect the roles of synapsin-SV condensates in the organization of the presynaptic actin cytoskeleton. Our data indicate that LLPS of synapsin initiates actin polymerization, allowing for SV:synapsin:actin assemblies to facilitate the mesoscale organization of SV clusters along axons mimicking the native presynaptic organization in both lamprey and mammalian synapses. Understanding the relationship between the actin network and synapsin-SVs condensates is an essential building block on a roadmap to unravel how coordinated neurotransmission along the axon enables circuit function and behavior.
Collapse
Affiliation(s)
- Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Gerard Aguilar Pérez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Aleksandr A. Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Nadja Hümpfer
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Linda Kokwaro
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Luka Gnidovec
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Arsen Petrovic
- Institute for Neuropathology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Jaqulin N. Wallace
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Johannes Vincent Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Cristina Román-Vendrell
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Emma C. Johnson
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Branislava Ranković
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Eleonora Perego
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Tommaso Volpi
- Department of Radiology and Biomedical Imaging, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | - Sarah Köster
- Institute for X-Ray Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Silvio O. Rizzoli
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, 37073, Göttingen, Germany
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Jennifer R. Morgan
- The Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, 02543 Woods Hole, MA, USA
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
4
|
Peng J, Cui Y, Liang H, Xu S, Weng L, Ru M, Ali R, Wei Q, Ruan J, Huang J. Integrated transcriptomic hypothalamic-pituitary-ovarian axis network analysis reveals the role of energy availability on egg production in layers. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 20:66-79. [PMID: 39949733 PMCID: PMC11821414 DOI: 10.1016/j.aninu.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 02/16/2025]
Abstract
Energy is a crucial component for maintaining egg production in layers. The hypothalamic-pituitary-ovarian (HPO) axis is an energy-sensitive functional axis for follicle development, synthesis, and secretion of reproductive hormones, and plays a key role in modulating sustained ovulation in layers. To investigate the mechanism of integrated network regulation of the HPO axis under energy fluctuation, ninety Hy-line brown layers (265-day-old, 1.92 ± 0.02 kg) were randomly divided into three groups for a 17-day experiment: a control group (Con group) fed ad libitum from days 1 to 17, an energy-deprived group (ED group) that was fed ad libitum from days 1 to 12 and then underwent a fasting period from days 13 to 17 to induce a pause in laying, and a re-fed group (Rf group) that fasted for seven days (specifically, days 1 to 5, day 7, and day 9), had ad libitum access to feed on days 6 and 8, and was continuously fed from days 10 to 17. Each treatment consisted of 10 replicates with 3 birds per replicate. The study found that energy deprivation significantly decreased reproductive performance such as egg laying rate, ovarian index, number of small yellow follicles (SYF), and normal hierarchical follicles (NHIE) (P < 0.05), which recovered after refeeding, indicating the importance of energy availability for sustained ovulation in layers. In addition, estradiol (E2), estradiol to progesterone (E2/P4) ratio, and luteinizing hormone (LH) displayed changes similar to follicle number, whereas follicle-stimulating hormone (FSH) exhibited a contrasting pattern. Transcriptome analysis revealed that energy deprivation downregulated genes related to energy and appetite-regulated neurotransmitter receptors and neuropeptides in the hypothalamus. These signals combined to inhibit gonadotropin-releasing hormone (GnRH) secretion and subsequently downregulated the crucial genes responsible for synthesizing gonadotropins, gonadotropin-releasing hormone receptor (GnRHR), and glycoprotein hormones alpha chain (CGA). Consequently, this suppression of the hypothalamus and pituitary affected ovarian function through ovarian steroidogenesis and the extracellular matrix (ECM)-receptor interaction. These findings suggest that energy deprivation inhibits the function of the HPO axis, leading to impaired follicle development and reduced egg production, and that refeeding can partially restore these indicators.
Collapse
Affiliation(s)
- Jianling Peng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yong Cui
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Haiping Liang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Shenyijun Xu
- Academy of Pharmacy, Xi’an Jiaotong-Liverpool University, Jiangsu 215123, China
| | - Linjian Weng
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Ru
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ramlat Ali
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Qing Wei
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jiming Ruan
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jianzhen Huang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
5
|
Espay AJ, Lees AJ, Cardoso F, Frucht SJ, Erskine D, Sandoval IM, Bernal-Conde LD, Sturchio A, Imarisio A, Hoffmann C, Montemagno KT, Milovanovic D, Halliday GM, Manfredsson FP. The α-synuclein seed amplification assay: Interpreting a test of Parkinson's pathology. Parkinsonism Relat Disord 2025; 131:107256. [PMID: 39794217 DOI: 10.1016/j.parkreldis.2024.107256] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025]
Abstract
The α-synuclein seed amplification assay (αSyn-SAA) sensitively detects Lewy pathology, the amyloid state of α-synuclein, in the cerebrospinal fluid (CSF) of patients with Parkinson's disease (PD). The αSyn-SAA harnesses the physics of seeding, whereby a superconcentrated solution of recombinant α-synuclein lowers the thermodynamic threshold (nucleation barrier) for aggregated α-synuclein to act as a nucleation catalyst ("seed") to trigger the precipitation (nucleation) of monomeric α-synuclein into pathology. This laboratory setup increases the signal for identifying a catalyst if one is present in the tissue examined. The result is binary: positive, meaning precipitation occurred, and a catalyst is present, or negative, meaning no precipitation, therefore no catalyst. Since protein precipitation via seeding can only occur at a concentration many-fold higher than the human brain, laboratory-elicited seeding does not mean human brain seeding. We suggest that a positive αSyn-SAA reveals the presence of pathological α-synuclein but not the underlying etiology for the precipitation of monomeric α-synuclein into its pathological form. Thus, a positive αSyn-SAA supports a clinical diagnosis of PD but cannot inform disease pathogenesis, ascertain severity, predict the rate of progression, define biology or biological subtypes, or monitor treatment response.
Collapse
Affiliation(s)
- Alberto J Espay
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA.
| | - Andrew J Lees
- The National Hospital, Queen Square and Reta Lila Weston Institute for Neurological Studies University College London, London, UK
| | - Francisco Cardoso
- Movement Disorders Unit, Neurology Service, Internal Medicine Department, The Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Steven J Frucht
- The Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, New York University Langone Health, New York, NY, USA
| | - Daniel Erskine
- Translational and Clinical Research Institute, Newcastle University, UK
| | - Ivette M Sandoval
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Luis Daniel Bernal-Conde
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Andrea Sturchio
- James J. and Joan A. Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA; Laboratory of Translational Neuropharmacology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Alberto Imarisio
- Department of Molecular Medicine, University of Pavia, 27100, Pavia, Italy; Neurogenetics Research Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Kora T Montemagno
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany; Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Glenda M Halliday
- School of Medical Sciences, Faculty of Medicine and Health and the Brain and Mind Centre, University of Sydney, Camperdown, New South Wales, 2050, Australia
| | - Fredric P Manfredsson
- Department of Translational Neuroscience and the Muhammad Ali Parkinson Center, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
6
|
Qurban A, Zhang M, Zu H, Yao K. Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway. FRONT BIOSCI-LANDMRK 2025; 30:27111. [PMID: 39862102 DOI: 10.31083/fbl27111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD. In this study, we investigated whether cellular cholesterol deficiency affects SV mobility, with the aim of identifying the mechanism that links cellular cholesterol loss to synaptopathy in AD. METHODS Lentiviruses carrying 3β-hydroxysteroid-Δ24 reductase-complementary DNA (DHCR24-cDNA), DHCR24-short hairpin RNA (DHCR24- shRNA) or empty lentiviral vectors were transfected into SHSY-5Y cells in order to construct DHCR24 knock-down and knock-in models, along with corresponding controls. Filipin III cholesterol staining was employed to visualize membrane and intracellular cholesterol in the different cell models, and fluorescence intensity was assessed using confocal microscopy. Additionally, we performed immunoblotting to quantify the expression of DHCR24, total calmodulin-dependent protein kinase 2 (CAMK-2), p-CAMK2 (T286), caveolin-1, total synapsin-1, phosphorylated synapsin-1 (p-synapsin-1; S605), and synaptophysin in each experimental group. RESULTS In DHCR24-silenced cells, the loss of cellular cholesterol caused by knock-down of DCHR24 resulted in a significant decrease in the levels of phosphorylated CAMK2 (p-CAMK2) and phosphorylated synapsin-1 (p-synapsin-1) compared to control cells. The reduction in p-CAMK2 and p-synapsin-1 could disrupt SV mobility, thereby reducing replenishment of the readily releasable pool (RRP) from the reserve pool (RP). Furthermore, cells with DHCR24 knock-down showed downregulation of caveolin-1, a crucial lipid raft marker, compared to control cells. Conversely, elevated cellular cholesterol levels caused by knock-in of DHCR24 reversed the effects of cholesterol deficiency, suggesting that CAMK2-mediated synapsin-1 phosphorylation may be regulated in a lipid raft-associated manner. Additionally, we found that cellular cholesterol loss could significantly downregulate the expression of synaptophysin protein, which is vital for SV biogenesis and synaptic plasticity. CONCLUSION These results suggest that depletion of cellular cholesterol following knock-down of DHCR24 can decrease synaptophysin protein expression and impair SV mobility by regulating the CAMK2-meditated synapsin-1 phosphorylation pathway, potentially via a lipid raft-associated mechanism. Our study indicates a critical role for cellular cholesterol deficiency in AD-related synaptopathy, thus highlighting the potential for targeting cellular cholesterol metabolism in therapeutic strategies.
Collapse
Affiliation(s)
- Atikam Qurban
- Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Mengqi Zhang
- Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Hengbing Zu
- Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| | - Kai Yao
- Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China
| |
Collapse
|
7
|
McCaig CD. Synaptic Physiology Depends on Electrical Forces and Liquid-Liquid Phase Separation. Rev Physiol Biochem Pharmacol 2025; 187:339-359. [PMID: 39838018 DOI: 10.1007/978-3-031-68827-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Pre- and post-synaptic events are regulated by liquid-liquid phase separation and this phenomenon requires multiple electrical forces. Both axonal transport and the organization of postsynaptic excitatory and inhibitory receptors are regulated by LLPS, with its mandatory electrical drivers ultimately determining our cognitive health and capacity.
Collapse
Affiliation(s)
- Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland, UK
| |
Collapse
|
8
|
Yuan X, Li W, Yan Q, Ou Y, Long Q, Zhang P. Biomarkers of mature neuronal differentiation and related diseases. Future Sci OA 2024; 10:2410146. [PMID: 39429212 PMCID: PMC11497955 DOI: 10.1080/20565623.2024.2410146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 09/16/2024] [Indexed: 10/22/2024] Open
Abstract
The nervous system regulates perception, cognition and behavioral responses by serving as the body's primary communication system for receiving, regulating and transmitting information. Neurons are the fundamental structures and units of the nervous system. Their differentiation and maturation processes rely on the expression of specific biomarkers. Neuron-specific intracellular markers can be used to determine the degree of neuronal maturation. Neuronal cytoskeletal proteins dictate the shape and structure of neurons, while synaptic plasticity and signaling processes are intricately associated with neuronal synaptic markers. Furthermore, abnormal expression levels of biomarkers can serve as diagnostic indicators for nervous system diseases. This article reviews the markers of mature neuronal differentiation and their relationship with nervous system diseases.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Wen Li
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qi Yan
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Ya Ou
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Qingxi Long
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| | - Pingshu Zhang
- Department of Neurology, Kailuan General Hospital Affiliated to North China University of Science & Technology, Tangshan, Hebei Province, 063000, China
- Hebei Provincial Key Laboratory of Neurobiological Function, Department of Neurology, Tangshan, Hebei Province, 063000, China
| |
Collapse
|
9
|
Neuhaus C, Alfken J, Frost J, Matthews L, Hoffmann C, Ganzella M, Milovanovic D, Salditt T. Morphology and intervesicle distances in condensates of synaptic vesicles and synapsin. Biophys J 2024; 123:4123-4134. [PMID: 39520054 PMCID: PMC11628805 DOI: 10.1016/j.bpj.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/17/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Synaptic vesicle clusters or pools are functionally important constituents of chemical synapses. In the so-called reserve and the active pools, neurotransmitter-loaded synaptic vesicles (SVs) are stored and conditioned for fusion with the synaptic membrane and subsequent neurotransmitter release during synaptic activity. Vesicle clusters can be considered as so-called membraneless compartments, which form by liquid-liquid phase separation. Synapsin as one of the most abundant synaptic proteins has been identified as a major driver of pool formation. It has been shown to induce liquid-liquid phase separation and form condensates on its own in solution, but also has been shown to integrate vesicles into condensates in vitro. In this process, the intrinsically disordered region of synapsin is believed to play a critical role. Here, we first investigate the solution structure of synapsin and SVs separately by small-angle x-ray scattering. In the limit of low momentum transfer q, the scattering curve for synapsin gives clear indication for supramolecular aggregation (condensation). We then study mixtures of SVs and synapsin-forming condensates, aiming at the morphology and intervesicle distances, i.e., the structure of the condensates in solution. To obtain the structure factor S(q) quantifying intervesicle correlation, we divide the scattering curve of condensates by that of pure SV suspensions. Analysis of S(q) in combination with numerical simulations of cluster aggregation indicates a noncompact fractal-like vesicular fluid with rather short intervesicle distances at the contact sites.
Collapse
Affiliation(s)
| | | | - Jakob Frost
- Institut für Röntgenphysik, Göttingen, Germany
| | - Lauren Matthews
- The European Synchrotron Radiation Facility, Grenoble, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Marcelo Ganzella
- Laboratory of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Göttingen, Germany.
| |
Collapse
|
10
|
Suzuki C, Yamaguchi J, Mitsui S, Sanada T, Trejo JAO, Kakuta S, Tanaka K, Suda Y, Hatano T, Hattori N, Tanida I, Uchiyama Y. Direct evidence for ultrastructures of the α-synuclein-associated synaptic vesicle pool in presynaptic terminals. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167494. [PMID: 39233262 DOI: 10.1016/j.bbadis.2024.167494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/06/2024]
Abstract
SNCA/PARK1 encodes α-synuclein, which is associated with familial Parkinson's disease. Despite its abundance in presynaptic terminals, the aggregation mechanism of α-synuclein and its relationship with Parkinson's disease have not yet been elucidated. Moreover, the ultrastructures of α-synuclein localization sites in neuronal presynaptic terminals remain unclear. Therefore, we herein generated transgenic mice expressing human α-synuclein tagged with mKate2 (hSNCA-mKate2 mice). These mice exhibited normal growth and fertility and had no motor dysfunction relative to their wild-type littermates, even at one year old. α-Synuclein-mKate2 accumulated in presynaptic terminals, particularly between Purkinje cells in the cerebellum and neurons in cerebellar nuclei. α-Synuclein-mKate2 was associated with the presynaptic marker, synaptophysin. In-resin CLEM and immunoelectron or electron microscopy revealed that α-synuclein-mKate2 localized on the surface of synaptic vesicles that were tightly arranged and assembled to form large synaptic pools in the cerebellum with negligible effects on the active zone. These results suggest that α-synuclein-associated ultrastructures in the presynaptic terminals of hSNCA-mKate2 mice reflect the structures of α-synuclein-assembled synaptic vesicle pools, and the size of vesicle pools increased. This transgenic mouse model will be a valuable tool for studying α-synuclein-associated synaptic vesicle pools.
Collapse
Affiliation(s)
- Chigure Suzuki
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Juntendo University Center for Diversity and Inclusion, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Shun Mitsui
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahito Sanada
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Soichirou Kakuta
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Laboratory of Morphology and Image Analysis, Biomedical Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Kenichi Tanaka
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan; Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Taku Hatano
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan
| | - Isei Tanida
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan.
| | - Yasuo Uchiyama
- Department of Cellular and Molecular Neuropathology, Research Institute for Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan; Department of Drug Discovery Research for Synucleopathies, Juntendo University Graduate School of Medicine, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
11
|
Reichlmeir M, Duecker RP, Röhrich H, Key J, Schubert R, Abell K, Possemato AP, Stokes MP, Auburger G. The ataxia-telangiectasia disease protein ATM controls vesicular protein secretion via CHGA and microtubule dynamics via CRMP5. Neurobiol Dis 2024; 203:106756. [PMID: 39615799 DOI: 10.1016/j.nbd.2024.106756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024] Open
Abstract
The autosomal recessive disease ataxia-telangiectasia (A-T) presents with cerebellar degeneration, immunodeficiency, radiosensitivity, capillary dilatations, and pulmonary infections. Most symptoms outside the nervous system can be explained by failures of the disease protein ATM as a Ser/Thr-kinase to coordinate DNA damage repair. However, ATM in adult neurons has cytoplasmic localization and vesicle association, where its roles remain unclear. Here, we defined novel ATM protein targets in human neuroblastoma cells, and filtered initial pathogenesis events in ATM-null mouse cerebellum. Profiles of global proteome and phosphoproteomics - both direct ATM/ATR substrates and overall phosphorylation changes - confirmed previous findings for NBN, MRE11, MDC1, CHEK1, EIF4EBP1, AP3B2, PPP2R5C, SYN1 and SLC2A1. Even stronger downregulation of ATM/ATR substrate phosphopeptides after ATM-depletion was documented for CHGA, EXPH5, NBEAL2 and CHMP6 as key factors of protein secretion and endosome dynamics, as well as for CRMP5, DISP2, PHACTR1, PLXNC1, INA and TPX2 as neurite extension factors. Prominent effects on semaphorin-CRMP5-microtubule signals and ATM association with CRMP5 were validated. As a functional consequence, microtubules were stabilized, and neurite retraction ensued. The impact of ATM on secretory granules confirms previous ATM-null cerebellar transcriptome findings. This study provides the first link of A-T neural atrophy to growth cone collapse and aberrant microtubule dynamics.
Collapse
Affiliation(s)
- Marina Reichlmeir
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ruth Pia Duecker
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Hanna Röhrich
- Institute for Experimental Pediatric Hematology and Oncology, Medical Faculty, Goethe-University Frankfurt, Komturstrasse 3a, 60528 Frankfurt am Main, Germany.
| | - Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| | - Ralf Schubert
- Division for Allergy, Pneumatology and Cystic Fibrosis, Department for Children and Adolescence, Goethe-University, Frankfurt am Main, Germany.
| | - Kathryn Abell
- Cell Signaling Technology, Inc., Danvers, MA 01923, USA.
| | | | | | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Exp. Neurology, Heinrich Hoffmann Str. 7, 60590 Frankfurt am Main, Germany.
| |
Collapse
|
12
|
Yang Z, Yoshii SR, Sakai Y, Zhang J, Chino H, Knorr RL, Mizushima N. Autophagy adaptors mediate Parkin-dependent mitophagy by forming sheet-like liquid condensates. EMBO J 2024; 43:5613-5634. [PMID: 39420095 PMCID: PMC11574277 DOI: 10.1038/s44318-024-00272-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 09/20/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
During PINK1- and Parkin-mediated mitophagy, autophagy adaptors are recruited to damaged mitochondria to promote their selective degradation. Autophagy adaptors such as optineurin (OPTN) and NDP52 facilitate mitophagy by recruiting the autophagy-initiation machinery, and assisting engulfment of damaged mitochondria through binding to ubiquitinated mitochondrial proteins and autophagosomal ATG8 family proteins. Here, we demonstrate that OPTN and NDP52 form sheet-like phase-separated condensates with liquid-like properties on the surface of ubiquitinated mitochondria. The dynamic and liquid-like nature of OPTN condensates is important for mitophagy activity, because reducing the fluidity of OPTN-ubiquitin condensates suppresses the recruitment of ATG9 vesicles and impairs mitophagy. Based on these results, we propose a dynamic liquid-like, rather than a stoichiometric, model of autophagy adaptors to explain the interactions between autophagic membranes (i.e., ATG9 vesicles and isolation membranes) and mitochondrial membranes during Parkin-mediated mitophagy. This model underscores the importance of liquid-liquid phase separation in facilitating membrane-membrane contacts, likely through the generation of capillary forces.
Collapse
Affiliation(s)
- Zi Yang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Saori R Yoshii
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuji Sakai
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Biosystems Science, Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
- Interdisciplinary Theoretical and Mathematical Sciences (iTHEMS) Program, RIKEN, Wako, Saitama, Japan
- School of Science/Graduate School of Nanobioscience, Yokohama City University, Yokohama, Japan
| | - Jing Zhang
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Haruka Chino
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Harvard Medical school, Boston, MA, USA
| | - Roland L Knorr
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Noboru Mizushima
- Department of Biochemistry and Molecular Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- International Research Center for Neurointelligence (WPI-IRCN), UTIAS, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
13
|
Hoffmann C, Ruff KM, Edu I, Kyung Shinn M, Tromm J, King M, Pant A, Ausserwoeger H, Morgan J, Knowles T, Pappu RV, Milovanovic D. Synapsin condensation is governed by sequence-encoded molecular grammars. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.03.606464. [PMID: 39131319 PMCID: PMC11312526 DOI: 10.1101/2024.08.03.606464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Multiple biomolecular condensates coexist at the pre- and post- synapse to enable vesicle dynamics and controlled neurotransmitter release in the brain. In pre-synapses, intrinsically disordered regions (IDRs) of synaptic proteins are drivers of condensation that enable clustering of synaptic vesicles (SVs). Using computational analysis, we show that the IDRs of SV proteins feature evolutionarily conserved non-random compositional biases and sequence patterns. Synapsin-1 is essential for condensation of SVs, and its C-terminal IDR has been shown to be a key driver of condensation. Focusing on this IDR, we dissected the contributions of two conserved features namely the segregation of polar and proline residues along the linear sequence, and the compositional preference for arginine over lysine. Scrambling the blocks of polar and proline residues weakens the driving forces for forming micron-scale condensates. However, the extent of clustering in subsaturated solutions remains equivalent to that of the wild-type synapsin-1. In contrast, substituting arginine with lysine significantly weakens both the driving forces for condensation and the extent of clustering in subsaturated solutions. Co-expression of the scrambled variant of synapsin-1 with synaptophysin results in a gain-of-function phenotype in cells, whereas arginine to lysine substitutions eliminate condensation. We report an emergent consequence of synapsin-1 condensation, which is the generation of interphase pH gradients realized via differential partitioning of protons between coexisting phases. This pH gradient is likely to be directly relevant for vesicular ATPase functions and the loading of neurotransmitters. Our study highlights how conserved IDR grammars serve as drivers of synapsin-1 condensation.
Collapse
|
14
|
Zhu M, Xu H, Jin Y, Kong X, Xu B, Liu Y, Yu H. Synaptotagmin-1 undergoes phase separation to regulate its calcium-sensitive oligomerization. J Cell Biol 2024; 223:e202311191. [PMID: 38980206 PMCID: PMC11232894 DOI: 10.1083/jcb.202311191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/17/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Synaptotagmin-1 (Syt1) is a calcium sensor that regulates synaptic vesicle fusion in synchronous neurotransmitter release. Syt1 interacts with negatively charged lipids and the SNARE complex to control the fusion event. However, it remains incompletely understood how Syt1 mediates Ca2+-trigged synaptic vesicle fusion. Here, we discovered that Syt1 undergoes liquid-liquid phase separation (LLPS) to form condensates both in vitro and in living cells. Syt1 condensates play a role in vesicle attachment to the PM and efficiently recruit SNAREs and complexin, which may facilitate the downstream synaptic vesicle fusion. We observed that Syt1 condensates undergo a liquid-to-gel-like phase transition, reflecting the formation of Syt1 oligomers. The phase transition can be blocked or reversed by Ca2+, confirming the essential role of Ca2+ in Syt1 oligomer disassembly. Finally, we showed that the Syt1 mutations causing Syt1-associated neurodevelopmental disorder impair the Ca2+-driven phase transition. These findings reveal that Syt1 undergoes LLPS and a Ca2+-sensitive phase transition, providing new insights into Syt1-mediated vesicle fusion.
Collapse
Affiliation(s)
- Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Han Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulei Jin
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Xiaoxu Kong
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Bingkuan Xu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| |
Collapse
|
15
|
Tromm JV, Milovanovic D. Synaptotagmin-1 in phase: Condensate biology reveals new insights into the synaptic calcium sensor. J Cell Biol 2024; 223:e202408073. [PMID: 39287685 PMCID: PMC11408922 DOI: 10.1083/jcb.202408073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Two recent papers by Mehta et al. and Zhu et al. in this issue (https://doi.org/10.1083/jcb.202311191) discover that synaptotagmin-1, the primary calcium sensor at the synapse, forms biomolecular condensates, identifying a new layer of regulation in calcium-triggered synaptic vesicle exocytosis.
Collapse
Affiliation(s)
- Johannes Vincent Tromm
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| |
Collapse
|
16
|
Reshetniak S, Bogaciu CA, Bonn S, Brose N, Cooper BH, D'Este E, Fauth M, Fernández-Busnadiego R, Fiosins M, Fischer A, Georgiev SV, Jakobs S, Klumpp S, Köster S, Lange F, Lipstein N, Macarrón-Palacios V, Milovanovic D, Moser T, Müller M, Opazo F, Outeiro TF, Pape C, Priesemann V, Rehling P, Salditt T, Schlüter O, Simeth N, Steinem C, Tchumatchenko T, Tetzlaff C, Tirard M, Urlaub H, Wichmann C, Wolf F, Rizzoli SO. The synaptic vesicle cluster as a controller of pre- and postsynaptic structure and function. J Physiol 2024. [PMID: 39367860 DOI: 10.1113/jp286400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024] Open
Abstract
The synaptic vesicle cluster (SVC) is an essential component of chemical synapses, which provides neurotransmitter-loaded vesicles during synaptic activity, at the same time as also controlling the local concentrations of numerous exo- and endocytosis cofactors. In addition, the SVC hosts molecules that participate in other aspects of synaptic function, from cytoskeletal components to adhesion proteins, and affects the location and function of organelles such as mitochondria and the endoplasmic reticulum. We argue here that these features extend the functional involvement of the SVC in synapse formation, signalling and plasticity, as well as synapse stabilization and metabolism. We also propose that changes in the size of the SVC coalesce with changes in the postsynaptic compartment, supporting the interplay between pre- and postsynaptic dynamics. Thereby, the SVC could be seen as an 'all-in-one' regulator of synaptic structure and function, which should be investigated in more detail, to reveal molecular mechanisms that control synaptic function and heterogeneity.
Collapse
Affiliation(s)
- Sofiia Reshetniak
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Cristian A Bogaciu
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology, Center for Molecular Neurobiology Hamburg, Hamburg, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Elisa D'Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Michael Fauth
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Maksims Fiosins
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | - André Fischer
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Svilen V Georgiev
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Jakobs
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Stefan Klumpp
- Theoretical Biophysics Group, Institute for the Dynamics of Complex Systems, Georg-August University Göttingen, Göttingen, Germany
| | - Sarah Köster
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Felix Lange
- Research Group Structure and Dynamics of Mitochondria, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Noa Lipstein
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin, Germany
| | | | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Tobias Moser
- Institute for Auditory Neuroscience, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Marcus Müller
- Institute for Theoretical Physics, Georg-August University Göttingen, Göttingen, Germany
| | - Felipe Opazo
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Constantin Pape
- Institute of Computer Science, Georg-August University Göttingen, Göttingen, Germany
| | - Viola Priesemann
- Georg-August-University Göttingen, Faculty of Physics, Institute for the Dynamics of Complex Systems, Friedrich-Hund-Platz 1, Göttingen, Germany
- Max-Planck Institute for Dynamics and Self-Organization, Am Fassberg 17, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tim Salditt
- Institute for X-Ray Physics, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Oliver Schlüter
- Clinic for Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Nadja Simeth
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August University Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Christian Tetzlaff
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Marilyn Tirard
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Carolin Wichmann
- Institute for Auditory Neuroscience University Medical Center Göttingen, Göttingen, Germany
- Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
| | - Fred Wolf
- Max-Planck-Institute for Dynamics and Self-Organization, 37077 Göttingen and Institute for Dynamics of Biological Networks, Georg-August University Göttingen, Göttingen, Germany
| | - Silvio O Rizzoli
- Institute for Neuro- and Sensory Physiology and Biostructural Imaging of Neurodegeneration (BIN) Center, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
17
|
Choi J, Rafiq NM, Park D. Liquid-liquid phase separation in presynaptic nerve terminals. Trends Biochem Sci 2024; 49:888-900. [PMID: 39198083 DOI: 10.1016/j.tibs.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024]
Abstract
The presynaptic nerve terminal is crucial for transmitting signals to the adjacent cell. To fulfill this role, specific proteins with distinct functions are concentrated in spatially confined areas within the nerve terminals. A recent concept termed liquid-liquid phase separation (LLPS) has provided new insights into how this process may occur. In this review, we aim to summarize the LLPS of proteins in different parts of the presynaptic nerve terminals, including synaptic vesicle (SV) clusters, the active zone (AZ), and the endocytic zone, with an additional focus on neurodegenerative diseases (NDDs), where the functional relevance of these properties is explored. Last, we propose new perspectives and future directions for the role of LLPS in presynaptic nerve terminals.
Collapse
Affiliation(s)
- Jiyoung Choi
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, South Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, South Korea
| | - Nisha M Rafiq
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen 72076, Germany
| | - Daehun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, South Korea; Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, South Korea.
| |
Collapse
|
18
|
Ruan K, Bai G, Fang Y, Li D, Li T, Liu X, Lu B, Lu Q, Songyang Z, Sun S, Wang Z, Zhang X, Zhou W, Zhang H. Biomolecular condensates and disease pathogenesis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1792-1832. [PMID: 39037698 DOI: 10.1007/s11427-024-2661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024]
Abstract
Biomolecular condensates or membraneless organelles (MLOs) formed by liquid-liquid phase separation (LLPS) divide intracellular spaces into discrete compartments for specific functions. Dysregulation of LLPS or aberrant phase transition that disturbs the formation or material states of MLOs is closely correlated with neurodegeneration, tumorigenesis, and many other pathological processes. Herein, we summarize the recent progress in development of methods to monitor phase separation and we discuss the biogenesis and function of MLOs formed through phase separation. We then present emerging proof-of-concept examples regarding the disruption of phase separation homeostasis in a diverse array of clinical conditions including neurodegenerative disorders, hearing loss, cancers, and immunological diseases. Finally, we describe the emerging discovery of chemical modulators of phase separation.
Collapse
Affiliation(s)
- Ke Ruan
- The First Affiliated Hospital & School of Life Sciences, Ministry of Education Key Laboratory for Membrane-less Organelles & Cellular Dynamics, Hefei National Research Center for Interdisciplinary Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Ge Bai
- Nanhu Brain-computer Interface Institute, Hangzhou, 311100, China.
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Yanshan Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Tingting Li
- Department of Biomedical Informatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, 510000, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, 200030, China.
| | - Zhou Songyang
- State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation and Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Zheng Wang
- The Second Affiliated Hospital, School of Basic Medical Sciences, Institute of Biomedical Innovation, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Xin Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310024, China.
| | - Wen Zhou
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Hong Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
19
|
Tsentsevitsky AN, Sibgatullina GV, Odoshivkina YG, Khuzakhmetova VF, Tokmakova AR, Ponomareva AA, Salnikov VV, Zakirjanova GF, Petrov AM, Bukharaeva EA. Functional and Structural Changes in Diaphragm Neuromuscular Junctions in Early Aging. Int J Mol Sci 2024; 25:8959. [PMID: 39201644 PMCID: PMC11354816 DOI: 10.3390/ijms25168959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/10/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Age-related impairment of the diaphragm causes respiratory complications. Neuromuscular junction (NMJ) dysfunction can be one of the triggering events in diaphragm weaknesses in old age. Prominent structural and functional alterations in diaphragm NMJs were described in elderly rodents, but NMJ changes in middle age remain unclear. Here, we compared diaphragm muscles from young adult (3 months) and middle-aged (12 months) BALB/c mice. Microelectrode recordings, immunofluorescent staining, electron microscopy, myography, and whole-body plethysmography were used. We revealed presynaptic (i) and postsynaptic (ii) changes. The former (i) included an increase in both action potential propagation velocity and neurotransmitter release evoked by low-, moderate-, and high-frequency activity but a decrease in immunoexpression of synapsin 1 and synaptic vesicle clustering. The latter (ii) consisted of a decrease in currents via nicotinic acetylcholine receptors and the area of their distribution. These NMJ changes correlated with increased contractile responses to moderate- to high-frequency nerve activation. Additionally, we found alterations in the pattern of respiration (an increase in peak inspiratory flow and a tendency of elevation of the tidal volume), which imply increased diaphragm activity in middle-aged mice. We conclude that enhancement of neuromuscular communication (due to presynaptic mechanism) accompanied by improved contractile responses occurs in the diaphragm in early aging.
Collapse
Affiliation(s)
- Andrei N. Tsentsevitsky
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Guzel V. Sibgatullina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Yulia G. Odoshivkina
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| | - Venera F. Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Anna R. Tokmakova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Anastasia A. Ponomareva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Vadim V. Salnikov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| | - Guzalia F. Zakirjanova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
| | - Alexey M. Petrov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
- Department of Normal Physiology, Kazan State Medical University, 49 Butlerova Street, 420012 Kazan, Russia
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia
| | - Ellya A. Bukharaeva
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center “Kazan Scientific Center of RAS”, 2/31 Lobachevsky Street, P.O. Box 30, 420111 Kazan, Russia; (A.N.T.); (G.V.S.); (Y.G.O.); (V.F.K.); (A.R.T.); (A.A.P.); (V.V.S.); (G.F.Z.)
| |
Collapse
|
20
|
Goniotaki D, Tamagnini F, Biasetti L, Rumpf S, Troakes C, Pollack SJ, Ukwesa S, Sun H, Kraev I, Serpell LC, Noble W, Staras K, Hanger DP. Tau-mediated synaptic dysfunction is coupled with HCN channelopathy. Alzheimers Dement 2024; 20:5629-5646. [PMID: 38994745 PMCID: PMC11350046 DOI: 10.1002/alz.14074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/01/2024] [Accepted: 05/25/2024] [Indexed: 07/13/2024]
Abstract
INTRODUCTION In tauopathies, altered tau processing correlates with impairments in synaptic density and function. Changes in hyperpolarization-activated cyclic nucleotide-gated (HCN) channels contribute to disease-associated abnormalities in multiple neurodegenerative diseases. METHODS To investigate the link between tau and HCN channels, we performed histological, biochemical, ultrastructural, and functional analyses of hippocampal tissues from Alzheimer's disease (AD), age-matched controls, Tau35 mice, and/or Tau35 primary hippocampal neurons. RESULTS Expression of specific HCN channels is elevated in post mortem AD hippocampus. Tau35 mice develop progressive abnormalities including increased phosphorylated tau, enhanced HCN channel expression, decreased dendritic branching, reduced synapse density, and vesicle clustering defects. Tau35 primary neurons show increased HCN channel expression enhanced hyperpolarization-induced membrane voltage "sag" and changes in the frequency and kinetics of spontaneous excitatory postsynaptic currents. DISCUSSION Our findings are consistent with a model in which pathological changes in tauopathies impact HCN channels to drive network-wide structural and functional synaptic deficits. HIGHLIGHTS Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are functionally linked to the development of tauopathy. Expression of specific HCN channels is elevated in the hippocampus in Alzheimer's disease and the Tau35 mouse model of tauopathy. Increased expression of HCN channels in Tau35 mice is accompanied by hyperpolarization-induced membrane voltage "sag" demonstrating a detrimental effect of tau abnormalities on HCN channel function. Tau35 expression alters synaptic organization, causing a loosened vesicle clustering phenotype in Tau35 mice.
Collapse
Affiliation(s)
- Despoina Goniotaki
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Francesco Tamagnini
- Department of PharmacySchool of ChemistryFood and PharmacyUniversity of ReadingReadingUK
| | - Luca Biasetti
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Svenja‐Lotta Rumpf
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Claire Troakes
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Saskia J. Pollack
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Shalom Ukwesa
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Haoyue Sun
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| | - Igor Kraev
- Electron Microscopy SuiteSTEM FacultyThe Open UniversityMilton KeynesUK
| | - Louise C. Serpell
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Wendy Noble
- Department of Clinical and Biomedical SciencesUniversity of ExeterExeterUK
| | - Kevin Staras
- Sussex NeuroscienceSchool of Life SciencesUniversity of SussexBrightonUK
| | - Diane P. Hanger
- Department of Basic and Clinical NeuroscienceInstitute of PsychiatryPsychology & NeuroscienceMaurice Wohl Clinical Neuroscience InstituteKing's College LondonLondonUK
| |
Collapse
|
21
|
Wang JR, Zhang JY, Ji WK. Biogenesis of Rab14-positive Endosome Buds at Golgi-endosome Contacts by the RhoBTB3-SHIP164-Vps26B Complex. Curr Med Sci 2024; 44:864-866. [PMID: 38900387 DOI: 10.1007/s11596-024-2901-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/09/2024] [Indexed: 06/21/2024]
Affiliation(s)
- Jing-Ru Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jun-Yao Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei-Ke Ji
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, 430030, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Shenzhen Bay Laboratory, Shenzhen, 518132, China.
| |
Collapse
|
22
|
Bruentgens F, Moreno Velasquez L, Stumpf A, Parthier D, Breustedt J, Benfenati F, Milovanovic D, Schmitz D, Orlando M. The Lack of Synapsin Alters Presynaptic Plasticity at Hippocampal Mossy Fibers in Male Mice. eNeuro 2024; 11:ENEURO.0330-23.2024. [PMID: 38866497 PMCID: PMC11223178 DOI: 10.1523/eneuro.0330-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
Synapsins are highly abundant presynaptic proteins that play a crucial role in neurotransmission and plasticity via the clustering of synaptic vesicles. The synapsin III isoform is usually downregulated after development, but in hippocampal mossy fiber boutons, it persists in adulthood. Mossy fiber boutons express presynaptic forms of short- and long-term plasticity, which are thought to underlie different forms of learning. Previous research on synapsins at this synapse focused on synapsin isoforms I and II. Thus, a complete picture regarding the role of synapsins in mossy fiber plasticity is still missing. Here, we investigated presynaptic plasticity at hippocampal mossy fiber boutons by combining electrophysiological field recordings and transmission electron microscopy in a mouse model lacking all synapsin isoforms. We found decreased short-term plasticity, i.e., decreased facilitation and post-tetanic potentiation, but increased long-term potentiation in male synapsin triple knock-out (KO) mice. At the ultrastructural level, we observed more dispersed vesicles and a higher density of active zones in mossy fiber boutons from KO animals. Our results indicate that all synapsin isoforms are required for fine regulation of short- and long-term presynaptic plasticity at the mossy fiber synapse.
Collapse
Affiliation(s)
- Felicitas Bruentgens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Laura Moreno Velasquez
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Alexander Stumpf
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Daniel Parthier
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
| | - Jörg Breustedt
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genoa 16163, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa 16132, Italy
| | - Dragomir Milovanovic
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
| | - Dietmar Schmitz
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin 13125, Germany
- German Center for Neurodegenerative Diseases (DZNE) Berlin, Berlin 10117, Germany
- Einstein Center for Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität Berlin, Berlin 10117, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität zu Berlin, Berlin 10115, Germany
| | - Marta Orlando
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
- NeuroCure Cluster of Excellence, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin 10117, Germany
| |
Collapse
|
23
|
Jackson J, Hoffmann C, Scifo E, Wang H, Wischhof L, Piazzesi A, Mondal M, Shields H, Zhou X, Mondin M, Ryan EB, Döring H, Prehn JHM, Rottner K, Giannone G, Nicotera P, Ehninger D, Milovanovic D, Bano D. Actin-nucleation promoting factor N-WASP influences alpha-synuclein condensates and pathology. Cell Death Dis 2024; 15:304. [PMID: 38693139 PMCID: PMC11063037 DOI: 10.1038/s41419-024-06686-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/07/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson's disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.
Collapse
Affiliation(s)
- Joshua Jackson
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Christian Hoffmann
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Enzo Scifo
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Han Wang
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
| | - Lena Wischhof
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Antonia Piazzesi
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | - Hanna Shields
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Xuesi Zhou
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Magali Mondin
- University Bordeaux, CNRS, INSERM, BIC, UAR 3420, F-33000, Bordeaux, France
| | - Eanna B Ryan
- RCSI Centre for Systems Medicine and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences; SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Hermann Döring
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen H M Prehn
- RCSI Centre for Systems Medicine and Department of Physiology and Medical Physics, RCSI University of Medicine and Health Sciences; SFI FutureNeuro Research Centre, Dublin 2, Ireland
| | - Klemens Rottner
- Division of Molecular Cell Biology, Zoological Institute, Technische Universität Braunschweig; Department of Cell Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Gregory Giannone
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | | | - Dan Ehninger
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| | - Dragomir Milovanovic
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany.
| | - Daniele Bano
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
24
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
25
|
Chato-Astrain I, Pronot M, Coppola T, Martin S. Molecular Organization and Regulation of the Mammalian Synapse by the Post-Translational Modification SUMOylation. Cells 2024; 13:420. [PMID: 38474384 PMCID: PMC10930594 DOI: 10.3390/cells13050420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Neurotransmission occurs within highly specialized compartments forming the active synapse where the complex organization and dynamics of the interactions are tightly orchestrated both in time and space. Post-translational modifications (PTMs) are central to these spatiotemporal regulations to ensure an efficient synaptic transmission. SUMOylation is a dynamic PTM that modulates the interactions between proteins and consequently regulates the conformation, the distribution and the trafficking of the SUMO-target proteins. SUMOylation plays a crucial role in synapse formation and stabilization, as well as in the regulation of synaptic transmission and plasticity. In this review, we summarize the molecular consequences of this protein modification in the structural organization and function of the mammalian synapse. We also outline novel activity-dependent regulation and consequences of the SUMO process and explore how this protein modification can functionally participate in the compartmentalization of both pre- and post-synaptic sites.
Collapse
Affiliation(s)
- Isabel Chato-Astrain
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Marie Pronot
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK;
| | - Thierry Coppola
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| | - Stéphane Martin
- Université Côte d’Azur, CNRS, Inserm, IPMC, Sophia Antipolis, F-06560 Valbonne, France; (I.C.-A.); (T.C.)
| |
Collapse
|
26
|
Alfken J, Neuhaus C, Major A, Taskina A, Hoffmann C, Ganzella M, Petrovic A, Zwicker D, Fernández-Busnadiego R, Jahn R, Milovanovic D, Salditt T. Vesicle condensation induced by synapsin: condensate size, geometry, and vesicle shape deformations. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:8. [PMID: 38270681 PMCID: PMC11233366 DOI: 10.1140/epje/s10189-023-00404-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/28/2023] [Indexed: 01/26/2024]
Abstract
We study the formation of vesicle condensates induced by the protein synapsin, as a cell-free model system mimicking vesicle pool formation in the synapse. The system can be considered as an example of liquid-liquid phase separation (LLPS) in biomolecular fluids, where one phase is a complex fluid itself consisting of vesicles and a protein network. We address the pertinent question why the LLPS is self-limiting and stops at a certain size, i.e., why macroscopic phase separation is prevented. Using fluorescence light microscopy, we observe different morphologies of the condensates (aggregates) depending on the protein-to-lipid ratio. Cryogenic electron microscopy then allows us to resolve individual vesicle positions and shapes in a condensate and notably the size and geometry of adhesion zones between vesicles. We hypothesize that the membrane tension induced by already formed adhesion zones then in turn limits the capability of vesicles to bind additional vesicles, resulting in a finite condensate size. In a simple numerical toy model we show that this effect can be accounted for by redistribution of effective binding particles on the vesicle surface, accounting for the synapsin-induced adhesion zone.
Collapse
Affiliation(s)
- Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - András Major
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
| | - Alyona Taskina
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany
- Theorie Biologischer Flüssigkeiten, Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany
| | - Christian Hoffmann
- Molekulare Neurowissenschaften, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Marcelo Ganzella
- Labor für Neurobiologie, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, Am Fassberg 11, 37077, Göttingen, Germany
| | - Arsen Petrovic
- Institut für Neuropathologie, Universitätsmedizin Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - David Zwicker
- Theorie Biologischer Flüssigkeiten, Max-Planck-Institut für Dynamik und Selbstorganisation, Am Fassberg 11, 37077, Göttingen, Germany
| | - Rubén Fernández-Busnadiego
- Institut für Neuropathologie, Universitätsmedizin Göttingen, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Reinhard Jahn
- Labor für Neurobiologie, Max-Planck-Institut für multidisziplinäre Naturwissenschaften, Am Fassberg 11, 37077, Göttingen, Germany
| | - Dragomir Milovanovic
- Molekulare Neurowissenschaften, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Charitéplatz 1, 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany.
| |
Collapse
|
27
|
Moors TE, Milovanovic D. Defining a Lewy Body: Running Up the Hill of Shifting Definitions and Evolving Concepts. JOURNAL OF PARKINSON'S DISEASE 2024; 14:17-33. [PMID: 38189713 PMCID: PMC10836569 DOI: 10.3233/jpd-230183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
Lewy bodies (LBs) are pathological hallmarks of Parkinson's disease and dementia with Lewy bodies, characterized by the accumulation of α-synuclein (αSyn) protein in the brain. While LBs were first described a century ago, their formation and morphogenesis mechanisms remain incompletely understood. Here, we present a historical overview of LB definitions and highlight the importance of semantic clarity and precise definitions when describing brain inclusions. Recent breakthroughs in imaging revealed shared features within LB subsets and the enrichment of membrane-bound organelles in these structures, challenging the conventional LB formation model. We discuss the involvement of emerging concepts of liquid-liquid phase separation, where biomolecules demix from a solution to form dense condensates, as a potential LB formation mechanism. Finally, we emphasize the need for the operational definitions of LBs based on morphological characteristics and detection protocols, particularly in studies investigating LB formation mechanisms. A better understanding of LB organization and ultrastructure can contribute to the development of targeted therapeutic strategies for synucleinopathies.
Collapse
Affiliation(s)
- Tim E. Moors
- Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
28
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
29
|
Li D, Ai S, Huang C, Liu ZH, Wang HL. Icariin rescues developmental BPA exposure induced spatial memory deficits in rats. Toxicol Appl Pharmacol 2024; 482:116776. [PMID: 38043803 DOI: 10.1016/j.taap.2023.116776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Bisphenol A (BPA) has been implicated in cognitive impairment. Icariin is the main active ingredient extracted from Epimedium Herb with protective function of nervous system. However, the potential therapeutic effects of Icariin on spatial memory deficits induced by developmental BPA exposure in Sprague-Dawley rats have not been investigated. This study investigated the therapeutic effect of Icariin (10 mg/kg/day, from postnatal day (PND) 21 to PND 60 by gavage) on spatial memory deficits in rat induced by developmental BPA exposure (1 mg/kg/day, from embryonic to PND 60), demonstrating that Icariin can markedly improve spatial memory in BPA-exposed rat. Furthermore, intra-gastric administration of Icariin could attenuate abnormal hippocampal cell dispersion and loss, improved the dendritic spine density and Nissl bodies. Moreover, Icariin reversed BPA induced reduction of frequency of miniature excitatory postsynaptic currents(mEPSC) and decrease of Vesicular glutamate transporter 1(VGlut1). Collectively, Icariin could effectively rescue BPA-induced spatial memory impairment in male rats by preventing cell loss and reduction of dendritic spines in the hippocampus. In addition, we also found that VGlut1 is a critical target in the repair of BPA-induced spatial memory by Icariin. Thus, Icariin may be a promising therapeutic agent to attenuate BPA-induced spatial memory deficits.
Collapse
Affiliation(s)
- Danyang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Shu Ai
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Chengqing Huang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China
| | - Zhi-Hua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| | - Hui-Li Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui Province 230009, China.
| |
Collapse
|
30
|
Hoffmann C, Milovanovic D. Dipping contacts - a novel type of contact site at the interface between membraneless organelles and membranes. J Cell Sci 2023; 136:jcs261413. [PMID: 38149872 PMCID: PMC10785658 DOI: 10.1242/jcs.261413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
Liquid-liquid phase separation is a major mechanism for organizing macromolecules, particularly proteins with intrinsically disordered regions, in compartments not limited by a membrane or a scaffold. The cell can therefore be perceived as a complex emulsion containing many of these membraneless organelles, also referred to as biomolecular condensates, together with numerous membrane-bound organelles. It is currently unclear how such a complex concoction operates to allow for intracellular trafficking, signaling and metabolic processes to occur with high spatiotemporal precision. Based on experimental observations of synaptic vesicle condensates - a membraneless organelle that is in fact packed with membranes - we present here the framework of dipping contacts: a novel type of contact site between membraneless organelles and membranes. In this Hypothesis, we propose that our framework of dipping contacts can serve as a foundation to investigate the interface that couples the diffusion and material properties of condensates to biochemical processes occurring in membranes. The identity and regulation of this interface is especially critical in the case of neurodegenerative diseases, where aberrant inclusions of misfolded proteins and damaged organelles underlie cellular pathology.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- National Center for X-ray Tomography, Advanced Light Source, Berkeley, CA 94720, USA
- Einstein Center for Neuroscience, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Berlin and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
31
|
Hoffmann C, Murastov G, Tromm JV, Moog JB, Aslam MA, Matkovic A, Milovanovic D. Electric Potential at the Interface of Membraneless Organelles Gauged by Graphene. NANO LETTERS 2023; 23:10796-10801. [PMID: 37862690 PMCID: PMC10722609 DOI: 10.1021/acs.nanolett.3c02915] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/15/2023] [Indexed: 10/22/2023]
Abstract
Eukaryotic cells contain membrane-bound and membrane-less organelles that are often in contact with each other. How the interface properties of membrane-less organelles regulate their interactions with membranes remains challenging to assess. Here, we employ graphene-based sensors to investigate the electrostatic properties of synapsin 1, a major synaptic phosphoprotein, either in a single phase or after undergoing phase separation to form synapsin condensates. Using these graphene-based sensors, we discover that synapsin condensates generate strong electrical responses that are otherwise absent when synapsin is present as a single phase. By introducing atomically thin dielectric barriers, we show that the electrical response originates in an electric double layer whose formation governs the interaction between synapsin condensates and graphene. Our data indicate that the interface properties of the same protein are substantially different when the protein is in a single phase versus within a biomolecular condensate, unraveling that condensates can harbor ion potential differences at their interface.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Gennadiy Murastov
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Johannes Vincent Tromm
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Jean-Baptiste Moog
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| | - Muhammad Awais Aslam
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Aleksandar Matkovic
- Chair
of Physics, Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, 8700 Leoben, Austria
| | - Dragomir Milovanovic
- Laboratory
of Molecular Neuroscience, German Center
for Neurodegenerative Diseases (DZNE), 10117 Berlin, Germany
| |
Collapse
|
32
|
Czajka T, Neuhaus C, Alfken J, Stammer M, Chushkin Y, Pontoni D, Hoffmann C, Milovanovic D, Salditt T. Lipid vesicle pools studied by passive X-ray microrheology. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2023; 46:123. [PMID: 38060069 PMCID: PMC10703982 DOI: 10.1140/epje/s10189-023-00375-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/07/2023] [Indexed: 12/08/2023]
Abstract
Vesicle pools can form by attractive interaction in a solution, mediated by proteins or divalent ions such as calcium. The pools, which are alternatively also denoted as vesicle clusters, form by liquid-liquid phase separation (LLPS) from an initially homogeneous solution. Due to the short range liquid-like order of vesicles in the pool or cluster, the vesicle-rich phase can also be regarded as a condensate, and one would like to better understand not only the structure of these systems, but also their dynamics. The diffusion of vesicles, in particular, is expected to change when vesicles are arrested in a pool. Here we investigate whether passive microrheology based on X-ray photon correlation spectroscopy (XPCS) is a suitable tool to study model systems of artificial lipid vesicles exhibiting LLPS, and more generally also other heterogeneous biomolecular fluids. We show that by adding highly scattering tracer particles to the solution, valuable information on the single vesicle as well as collective dynamics can be inferred. While the correlation functions reveal freely diffusing tracer particles in solutions at low CaCl[Formula: see text] concentrations, the relaxation rate [Formula: see text] shows a nonlinear dependence on [Formula: see text] at a higher concentration of around 8 mM CaCl[Formula: see text], characterised by two linear regimes with a broad cross-over. We explain this finding based on arrested diffusion in percolating vesicle clusters.
Collapse
Affiliation(s)
- Titus Czajka
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Charlotte Neuhaus
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Jette Alfken
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Moritz Stammer
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany
| | - Yuriy Chushkin
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Diego Pontoni
- European Synchrotron Radiation Facility, 38043, Grenoble Cedex 9, France
| | - Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Tim Salditt
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
33
|
Wilfling F, Kaksonen M, Stachowiak J. Protein condensates as flexible platforms for membrane traffic. Curr Opin Cell Biol 2023; 85:102258. [PMID: 37832166 PMCID: PMC11165926 DOI: 10.1016/j.ceb.2023.102258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
With an essential role in nearly every physiological process and disease state, trafficking vesicles are fundamental to cell biology. Canonical understanding of membrane traffic has been driven by key achievements in structural biology. Nonetheless, discoveries over the past few years progressively point to the critical role of intrinsically disordered domains and proteins, which lack a well-defined secondary structure. From the initiation of endocytosis and the sequestration of synaptic vesicles to the stabilization of endoplasmic reticulum exit sites and the extension of the autophagic cup, flexible protein condensates, rich in intrinsic disorder, are increasingly implicated. While important debates about the physical nature and mechanistic interpretation of these findings remain, the significance of transient, multivalent protein assemblies in membrane traffic is increasingly clear.
Collapse
Affiliation(s)
- Florian Wilfling
- Max Planck Institute of Biophysics, Mechanisms of Cellular Quality Control, Frankfurt a. M., Germany.
| | - Marko Kaksonen
- University of Geneva, Department of Biochemistry, Geneva, Switzerland.
| | - Jeanne Stachowiak
- University of Texas at Austin, Department of Biomedical Engineering, USA; University of Texas at Austin, Department of Chemical Engineering, USA.
| |
Collapse
|
34
|
Longfield SF, Mollazade M, Wallis TP, Gormal RS, Joensuu M, Wark JR, van Waardenberg AJ, Small C, Graham ME, Meunier FA, Martínez-Mármol R. Tau forms synaptic nano-biomolecular condensates controlling the dynamic clustering of recycling synaptic vesicles. Nat Commun 2023; 14:7277. [PMID: 37949856 PMCID: PMC10638352 DOI: 10.1038/s41467-023-43130-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Neuronal communication relies on the release of neurotransmitters from various populations of synaptic vesicles. Despite displaying vastly different release probabilities and mobilities, the reserve and recycling pool of vesicles co-exist within a single cluster suggesting that small synaptic biomolecular condensates could regulate their nanoscale distribution. Here, we performed a large-scale activity-dependent phosphoproteome analysis of hippocampal neurons in vitro and identified Tau as a highly phosphorylated and disordered candidate protein. Single-molecule super-resolution microscopy revealed that Tau undergoes liquid-liquid phase separation to generate presynaptic nanoclusters whose density and number are regulated by activity. This activity-dependent diffusion process allows Tau to translocate into the presynapse where it forms biomolecular condensates, to selectively control the mobility of recycling vesicles. Tau, therefore, forms presynaptic nano-biomolecular condensates that regulate the nanoscale organization of synaptic vesicles in an activity-dependent manner.
Collapse
Affiliation(s)
- Shanley F Longfield
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mahdie Mollazade
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Tristan P Wallis
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Rachel S Gormal
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Merja Joensuu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Jesse R Wark
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | | | - Christopher Small
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia
| | - Mark E Graham
- Synapse Proteomics, Children's Medical Research Institute (CMRI), The University of Sydney, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
- School of Biomedical Science, The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| | - Ramón Martínez-Mármol
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute (QBI), The University of Queensland; St Lucia Campus, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
35
|
Li Q, Song Q, Guo W, Cao Y, Cui X, Chen D, Shum HC. Synthetic Membraneless Droplets for Synaptic-Like Clustering of Lipid Vesicles. Angew Chem Int Ed Engl 2023; 62:e202313096. [PMID: 37728515 DOI: 10.1002/anie.202313096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/21/2023]
Abstract
In eukaryotic cells, the membraneless organelles (MLOs) formed via liquid-liquid phase separation (LLPS) are found to interact intimately with membranous organelles (MOs). One major mode is the clustering of MOs by MLOs, such as the formation of clusters of synaptic vesicles at nerve terminals mediated by the synapsin-rich MLOs. Aqueous droplets, including complex coacervates and aqueous two-phase systems, have been plausible MLO-mimics to emulate or elucidate biological processes. However, neither of them can cluster lipid vesicles (LVs) like MLOs. In this work, we develop a synthetic droplet assembled from a combination of two different interactions underlying the formation of these two droplets, namely, associative and segregative interactions, which we call segregative-associative (SA) droplets. The SA droplets cluster and disperse LVs recapitulating the key functional features of synapsin condensates, which can be attributed to the weak electrostatic interaction environment provided by SA droplets. This work suggests LLPS with combined segregative and associative interactions as a possible route for synaptic clustering of lipid vesicles and highlights SA droplets as plausible MLO-mimics and models for studying and mimicking related cellular dynamics.
Collapse
Affiliation(s)
- Qingchuan Li
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, P.R.China
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China
| | - Qingchun Song
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wei Guo
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China
| | - Yang Cao
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xinyu Cui
- Department of Public Health, Mudanjiang Medical University, Mudanjiang, 157000, P. R. China
| | - Dairong Chen
- School of Chemistry & Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, 27 Shanda Nanlu, Jinan, Shandong, P.R.China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
- Advanced Biomedical Instrumentation Centre, Hong Kong Science Park, Shatin, New Territories, Hong Kong (SAR), Hong Kong, China
| |
Collapse
|
36
|
Sigrist SJ, Haucke V. Orchestrating vesicular and nonvesicular membrane dynamics by intrinsically disordered proteins. EMBO Rep 2023; 24:e57758. [PMID: 37680133 PMCID: PMC10626433 DOI: 10.15252/embr.202357758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Compartmentalization by membranes is a common feature of eukaryotic cells and serves to spatiotemporally confine biochemical reactions to control physiology. Membrane-bound organelles such as the endoplasmic reticulum (ER), the Golgi complex, endosomes and lysosomes, and the plasma membrane, continuously exchange material via vesicular carriers. In addition to vesicular trafficking entailing budding, fission, and fusion processes, organelles can form membrane contact sites (MCSs) that enable the nonvesicular exchange of lipids, ions, and metabolites, or the secretion of neurotransmitters via subsequent membrane fusion. Recent data suggest that biomolecule and information transfer via vesicular carriers and via MCSs share common organizational principles and are often mediated by proteins with intrinsically disordered regions (IDRs). Intrinsically disordered proteins (IDPs) can assemble via low-affinity, multivalent interactions to facilitate membrane tethering, deformation, fission, or fusion. Here, we review our current understanding of how IDPs drive the formation of multivalent protein assemblies and protein condensates to orchestrate vesicular and nonvesicular transport with a special focus on presynaptic neurotransmission. We further discuss how dysfunction of IDPs causes disease and outline perspectives for future research.
Collapse
Affiliation(s)
- Stephan J Sigrist
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
| | - Volker Haucke
- Department of Biology, Chemistry, PharmacyFreie Universität BerlinBerlinGermany
- Department of Molecular Pharmacology and Cell BiologyLeibniz Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
37
|
Bünger I, Talucci I, Kreye J, Höltje M, Makridis KL, Foverskov Rasmussen H, van Hoof S, Cordero-Gomez C, Ullrich T, Sedlin E, Kreissner KO, Hoffmann C, Milovanovic D, Turko P, Paul F, Meckies J, Verlohren S, Henrich W, Chaoui R, Maric HM, Kaindl AM, Prüss H. Synapsin autoantibodies during pregnancy are associated with fetal abnormalities. Brain Behav Immun Health 2023; 33:100678. [PMID: 37692096 PMCID: PMC10483408 DOI: 10.1016/j.bbih.2023.100678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023] Open
Abstract
Anti-neuronal autoantibodies can be transplacentally transferred during pregnancy and may cause detrimental effects on fetal development. It is unclear whether autoantibodies against synapsin-I, one of the most abundant synaptic proteins, are associated with developmental abnormalities in humans. We recruited a cohort of 263 pregnant women and detected serum synapsin-I IgG autoantibodies in 13.3% using cell-based assays. Seropositivity was strongly associated with abnormalities of fetal development including structural defects, intrauterine growth retardation, amniotic fluid disorders and neuropsychiatric developmental diseases in previous children (odds ratios of 3-6.5). Autoantibodies reached the fetal circulation and were mainly of IgG1/IgG3 subclasses. They bound to conformational and linear synapsin-I epitopes, five distinct epitopes were identified using peptide microarrays. The findings indicate that synapsin-I autoantibodies may be clinically useful biomarkers or even directly participate in the disease process of neurodevelopmental disorders, thus being potentially amenable to antibody-targeting interventional strategies in the future.
Collapse
Affiliation(s)
- Isabel Bünger
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Ivan Talucci
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Jakob Kreye
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Berlin Institute of Health (BIH), 10178, Berlin, Germany
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Markus Höltje
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Konstantin L. Makridis
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Helle Foverskov Rasmussen
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Scott van Hoof
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - César Cordero-Gomez
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Tim Ullrich
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Eva Sedlin
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Department of Neonatology, Helios Klinikum, Berlin-Buch, Germany
| | - Kai Oliver Kreissner
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Christian Hoffmann
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Dragomir Milovanovic
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
| | - Paul Turko
- Institute of Integrative Neuroanatomy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Friedemann Paul
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Jessica Meckies
- Gynecology Practice Frauenärztinnen am Schloß, 12163, Berlin, Germany
| | - Stefan Verlohren
- Department of Obstetrics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Wolfgang Henrich
- Department of Obstetrics, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Rabih Chaoui
- Center for Prenatal Diagnosis and Human Genetics, 10719, Berlin, Germany
| | - Hans Michael Maric
- Rudolf Virchow Center, Center for Integrative and Translational Bioimaging, University of Würzburg, Josef-Schneider-Str. 2, 97080, Würzburg, Germany
| | - Angela M. Kaindl
- Department of Pediatric Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Center for Chronically Sick Children, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
- Institute of Cell Biology and Neurobiology, Charité- Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| | - Harald Prüss
- German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, 10117, Berlin, Germany
| |
Collapse
|
38
|
Hoffmann C, Rentsch J, Tsunoyama TA, Chhabra A, Aguilar Perez G, Chowdhury R, Trnka F, Korobeinikov AA, Shaib AH, Ganzella M, Giannone G, Rizzoli SO, Kusumi A, Ewers H, Milovanovic D. Synapsin condensation controls synaptic vesicle sequestering and dynamics. Nat Commun 2023; 14:6730. [PMID: 37872159 PMCID: PMC10593750 DOI: 10.1038/s41467-023-42372-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Neuronal transmission relies on the regulated secretion of neurotransmitters, which are packed in synaptic vesicles (SVs). Hundreds of SVs accumulate at synaptic boutons. Despite being held together, SVs are highly mobile, so that they can be recruited to the plasma membrane for their rapid release during neuronal activity. However, how such confinement of SVs corroborates with their motility remains unclear. To bridge this gap, we employ ultrafast single-molecule tracking (SMT) in the reconstituted system of native SVs and in living neurons. SVs and synapsin 1, the most highly abundant synaptic protein, form condensates with liquid-like properties. In these condensates, synapsin 1 movement is slowed in both at short (i.e., 60-nm) and long (i.e., several hundred-nm) ranges, suggesting that the SV-synapsin 1 interaction raises the overall packing of the condensate. Furthermore, two-color SMT and super-resolution imaging in living axons demonstrate that synapsin 1 drives the accumulation of SVs in boutons. Even the short intrinsically-disordered fragment of synapsin 1 was sufficient to restore the native SV motility pattern in synapsin triple knock-out animals. Thus, synapsin 1 condensation is sufficient to guarantee reliable confinement and motility of SVs, allowing for the formation of mesoscale domains of SVs at synapses in vivo.
Collapse
Affiliation(s)
- Christian Hoffmann
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Jakob Rentsch
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Akshita Chhabra
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Gerard Aguilar Perez
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Rajdeep Chowdhury
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Franziska Trnka
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Aleksandr A Korobeinikov
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany
| | - Ali H Shaib
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Multidisciplinary Sciences, 37077, Göttingen, Germany
| | - Gregory Giannone
- Interdisciplinary Institute for Neuroscience, University of Bordeaux, UMR 5297, F-33000, Bordeaux, France
| | - Silvio O Rizzoli
- University Medical Center Göttingen, Institute for Neuro- and Sensory Physiology, Germany; Biostructural Imaging of Neurodegeneration (BIN) Center, Göttingen, Germany; Excellence Cluster Multiscale Bioimaging, 37073, Göttingen, Germany
| | - Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST); Onna-son, Okinawa, 904-0495, Japan
| | - Helge Ewers
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195, Berlin, Germany
| | - Dragomir Milovanovic
- Laboratory of Molecular Neuroscience, German Center for Neurodegenerative Diseases (DZNE), 10117, Berlin, Germany.
| |
Collapse
|
39
|
Toledo PL, Gianotti AR, Vazquez DS, Ermácora MR. Protein nanocondensates: the next frontier. Biophys Rev 2023; 15:515-530. [PMID: 37681092 PMCID: PMC10480383 DOI: 10.1007/s12551-023-01105-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/21/2023] [Indexed: 09/09/2023] Open
Abstract
Over the past decade, myriads of studies have highlighted the central role of protein condensation in subcellular compartmentalization and spatiotemporal organization of biological processes. Conceptually, protein condensation stands at the highest level in protein structure hierarchy, accounting for the assembly of bodies ranging from thousands to billions of molecules and for densities ranging from dense liquids to solid materials. In size, protein condensates range from nanocondensates of hundreds of nanometers (mesoscopic clusters) to phase-separated micron-sized condensates. In this review, we focus on protein nanocondensation, a process that can occur in subsaturated solutions and can nucleate dense liquid phases, crystals, amorphous aggregates, and fibers. We discuss the nanocondensation of proteins in the light of general physical principles and examine the biophysical properties of several outstanding examples of nanocondensation. We conclude that protein nanocondensation cannot be fully explained by the conceptual framework of micron-scale biomolecular condensation. The evolution of nanocondensates through changes in density and order is currently under intense investigation, and this should lead to the development of a general theoretical framework, capable of encompassing the full range of sizes and densities found in protein condensates.
Collapse
Affiliation(s)
- Pamela L. Toledo
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Alejo R. Gianotti
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Diego S. Vazquez
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| | - Mario R. Ermácora
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, 1876, Bernal, Buenos Aires, Argentina
- Grupo de Biología Estructural y Biotecnología, IMBICE, CONICET, Universidad Nacional de Quilmes, Bernal, Argentina
| |
Collapse
|
40
|
Yoshida T, Takenaka KI, Sakamoto H, Kojima Y, Sakano T, Shibayama K, Nakamura K, Hanawa-Suetsugu K, Mori Y, Hirabayashi Y, Hirose K, Takamori S. Compartmentalization of soluble endocytic proteins in synaptic vesicle clusters by phase separation. iScience 2023; 26:106826. [PMID: 37250768 PMCID: PMC10209458 DOI: 10.1016/j.isci.2023.106826] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/10/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Synaptic vesicle (SV) clusters, which reportedly result from synapsin's capacity to undergo liquid-liquid phase separation (LLPS), constitute the structural basis for neurotransmission. Although these clusters contain various endocytic accessory proteins, how endocytic proteins accumulate in SV clusters remains unknown. Here, we report that endophilin A1 (EndoA1), the endocytic scaffold protein, undergoes LLPS under physiologically relevant concentrations at presynaptic terminals. On heterologous expression, EndoA1 facilitates the formation of synapsin condensates and accumulates in SV-like vesicle clusters via synapsin. Moreover, EndoA1 condensates recruit endocytic proteins such as dynamin 1, amphiphysin, and intersectin 1, none of which are recruited in vesicle clusters by synapsin. In cultured neurons, like synapsin, EndoA1 is compartmentalized in SV clusters through LLPS, exhibiting activity-dependent dispersion/reassembly cycles. Thus, beyond its essential function in SV endocytosis, EndoA1 serves an additional structural function by undergoing LLPS, thereby accumulating various endocytic proteins in dynamic SV clusters in concert with synapsin.
Collapse
Affiliation(s)
- Tomofumi Yoshida
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Koh-ichiro Takenaka
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kojima
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takumi Sakano
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koyo Shibayama
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kyoko Hanawa-Suetsugu
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Yasunori Mori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| | - Shigeo Takamori
- Laboratory of Neural Membrane Biology, Graduate School of Brain Science, Doshisha University, Kyoto 610-0394, Japan
| |
Collapse
|
41
|
Margiotta A. Role of SNAREs and Rabs in Myelin Regulation. Int J Mol Sci 2023; 24:ijms24119772. [PMID: 37298723 DOI: 10.3390/ijms24119772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The myelin sheath is an insulating layer around the nerves of the brain and spinal cord which allows a fast and efficient nerve conduction. Myelin is made of protein and fatty substances and gives protection for the propagation of the electrical impulse. The myelin sheath is formed by oligodendrocytes in the central nervous system (CNS) and by Schwann cells in the peripheral nervous system (PNS). The myelin sheath presents a highly organized structure and expands both radially and longitudinally, but in a different way and with a different composition. Myelin alterations determine the onset of several neuropathies, as the electrical signal can be slowed or stopped. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and ras (rat sarcoma)-associated binding proteins (rabs) have been proved to contribute to several aspects regarding the formation of myelin or dysmyelination. Here, I will describe the role of these proteins in regulating membrane trafficking and nerve conduction, myelin biogenesis and maintenance.
Collapse
Affiliation(s)
- Azzurra Margiotta
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
42
|
Mukhamedyarov MA, Khabibrakhmanov AN, Khuzakhmetova VF, Giniatullin AR, Zakirjanova GF, Zhilyakov NV, Mukhutdinova KA, Samigullin DV, Grigoryev PN, Zakharov AV, Zefirov AL, Petrov AM. Early Alterations in Structural and Functional Properties in the Neuromuscular Junctions of Mutant FUS Mice. Int J Mol Sci 2023; 24:9022. [PMID: 37240370 PMCID: PMC10218837 DOI: 10.3390/ijms24109022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is manifested as skeletal muscle denervation, loss of motor neurons and finally severe respiratory failure. Mutations of RNA-binding protein FUS are one of the common genetic reasons of ALS accompanied by a 'dying back' type of degeneration. Using fluorescent approaches and microelectrode recordings, the early structural and functional alterations in diaphragm neuromuscular junctions (NMJs) were studied in mutant FUS mice at the pre-onset stage. Lipid peroxidation and decreased staining with a lipid raft marker were found in the mutant mice. Despite the preservation of the end-plate structure, immunolabeling revealed an increase in levels of presynaptic proteins, SNAP-25 and synapsin 1. The latter can restrain Ca2+-dependent synaptic vesicle mobilization. Indeed, neurotransmitter release upon intense nerve stimulation and its recovery after tetanus and compensatory synaptic vesicle endocytosis were markedly depressed in FUS mice. There was a trend to attenuation of axonal [Ca2+]in increase upon nerve stimulation at 20 Hz. However, no changes in neurotransmitter release and the intraterminal Ca2+ transient in response to low frequency stimulation or in quantal content and the synchrony of neurotransmitter release at low levels of external Ca2+ were detected. At a later stage, shrinking and fragmentation of end plates together with a decrease in presynaptic protein expression and disturbance of the neurotransmitter release timing occurred. Overall, suppression of synaptic vesicle exo-endocytosis upon intense activity probably due to alterations in membrane properties, synapsin 1 levels and Ca2+ kinetics could be an early sign of nascent NMJ pathology, which leads to neuromuscular contact disorganization.
Collapse
Affiliation(s)
- Marat A. Mukhamedyarov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Aydar N. Khabibrakhmanov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Venera F. Khuzakhmetova
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Arthur R. Giniatullin
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Guzalia F. Zakirjanova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Nikita V. Zhilyakov
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| | - Kamilla A. Mukhutdinova
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Dmitry V. Samigullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
- Department of Radiophotonics and Microwave Technologies, Kazan National Research Technical University, 10 K. Marx St., Kazan 420111, Russia
| | - Pavel N. Grigoryev
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Andrey V. Zakharov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Laboratory of Neurobiology, Kazan Federal University, Kazan 420008, Russia
| | - Andrey L. Zefirov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
| | - Alexey M. Petrov
- Department of Normal Physiology, Kazan State Medial University, 49 Butlerova St., Kazan 420012, Russia; (M.A.M.)
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center ‘‘Kazan Scientific Center of RAS”, 2/31 Lobachevsky St., P.O. Box 30, Kazan 420111, Russia (N.V.Z.)
| |
Collapse
|