1
|
Qin F, Wang Y, Yang C, Ren Y, Wei Q, Tang Y, Xu J, Wang H, Luo F, Luo Q, Luo X, Liu X, Yang D, Zuo X, Yang Y, Cheng C, Xu J, Wang W, Liu T, Yi P. hnRNPL phase separation activates PIK3CB transcription and promotes glycolysis in ovarian cancer. Nat Commun 2025; 16:4828. [PMID: 40413189 PMCID: PMC12103590 DOI: 10.1038/s41467-025-60115-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 05/13/2025] [Indexed: 05/27/2025] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecologic tumors worldwide, with unclear underlying mechanisms of pathogenesis. RNA-binding proteins (RBPs) primarily direct post-transcriptional regulation through modulating RNA metabolism. Recent evidence demonstrates that RBPs are also implicated in transcriptional control. However, the role and mechanism of RBP-mediated transcriptional regulation in tumorigenesis remain largely unexplored. Here, we show that the RBP heterogeneous ribonucleoprotein L (hnRNPL) interacts with chromatin and regulates gene transcription by forming phase-separated condensates in ovarian cancer. hnRNPL phase separation activates PIK3CB transcription and glycolysis, thus promoting ovarian cancer progression. Notably, we observe that the PIK3CB promoter is transcribed to produce a non-coding RNA which interacts with hnRNPL and promotes hnRNPL condensation. Furthermore, hnRNPL is significantly amplified in ovarian cancer, and its high expression predicts poor prognosis for ovarian cancer patients. By using cell-derived xenograft and patient-derived organoid models, we show that hnRNPL knockdown suppresses ovarian tumorigenesis. Together, our study reveals that phase separation of the chromatin-associated RBP hnRNPL promotes PIK3CB transcription and glycolysis to facilitate tumorigenesis in ovarian cancer. The formed hnRNPL-PIK3CB-AKT axis depending on phase separation can serve as a potential therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Fengjiang Qin
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuya Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chenyue Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yifei Ren
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qinglv Wei
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Tang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jie Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haocheng Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fatao Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qingya Luo
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xin Luo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoyi Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dan Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xinzhao Zuo
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yu Yang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chunming Cheng
- Department of Radiation Oncology James Comprehensive Cancer Center and College of Medicine, The Ohio State University, Columbus Ohio, USA
| | - Jing Xu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Tao Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Ping Yi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Qin C, Wang YL, Zheng J, Wan XB, Fan XJ. Current perspectives in drug targeting intrinsically disordered proteins and biomolecular condensates. BMC Biol 2025; 23:118. [PMID: 40325419 PMCID: PMC12054275 DOI: 10.1186/s12915-025-02214-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Intrinsically disordered proteins (IDPs) and biomolecular condensates are critical for cellular processes and physiological functions. Abnormal biomolecular condensates can cause diseases such as cancer and neurodegenerative disorders. IDPs, including intrinsically disordered regions (IDRs), were previously considered undruggable due to their lack of stable binding pockets. However, recent evidence indicates that targeting them can influence cellular processes. This review explores current strategies to target IDPs and biomolecular condensates, potential improvements, and the challenges and opportunities in this evolving field.
Collapse
Affiliation(s)
- Caolitao Qin
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Yun-Long Wang
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China
| | - Xiang-Bo Wan
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
- Provincial Key Laboratory of Radiation Medicine in Henan, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, People's Republic of China.
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, People's Republic of China.
| |
Collapse
|
3
|
Hwang HJ, Sheard KM, Cox RT. Drosophila Clu ribonucleoprotein particle dynamics rely on the availability of functional Clu and translating ribosomes. J Cell Sci 2025; 138:jcs263730. [PMID: 40302698 DOI: 10.1242/jcs.263730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Drosophila Clu is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm. Unlike stress granules and processing bodies (P-bodies), Clu particles disassemble under nutritional or oxidative stress. However, it is unclear how disrupting protein synthesis affects Clu particle dynamics, especially given that Clu binds mRNA and ribosomes. Here, we capitalize on ex vivo and in vivo imaging of Drosophila female germ cells to determine what domains of Clu are necessary for Clu particle assembly and how manipulating translation affects particle dynamics. Using domain deletion analysis, we identified three domains of Clu essential for particle assembly. We also demonstrated that overexpressing functional Clu led to disassembly of particles. In addition, we inhibited translation using cycloheximide and puromycin. In contrast to P-bodies, cycloheximide treatment did not disassemble Clu particles yet puromycin treatment did. Surprisingly, cycloheximide stabilized particles under oxidative and nutritional stress. These findings demonstrate that Clu particles display novel dynamics in response to altered ribosome activity and support a model where they function as translation hubs whose assembly heavily depends on the dynamic availability of translating ribosomes.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Kelsey M Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Rachel T Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814, USA
| |
Collapse
|
4
|
Solyga M, Besse F. Attenuating the neuronal response to chronic stress through transcription factor aggregation. Trends Neurosci 2025; 48:245-246. [PMID: 40069073 DOI: 10.1016/j.tins.2025.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
How do neurons cope with chronic stress? In a recent study using blind Drosophila models, Shekhar and colleagues uncovered that chronic sensory deprivation induces brain-wide accumulation of aggregates sequestering transcription factors of the Integrated Stress Response (ISR). However, this protective mechanism prevents cells from triggering adapted transcriptional responses upon exogenous stress.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
5
|
Vidal Ceballos A, Geissmann A, Favaro DC, Deshpande P, Elbaum-Garfinkle S. RNA guanine content and G-quadruplex structure tune the phase behavior and material properties of biomolecular condensates. Sci Rep 2025; 15:9295. [PMID: 40102453 PMCID: PMC11920403 DOI: 10.1038/s41598-025-88499-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/28/2025] [Indexed: 03/20/2025] Open
Abstract
RNA binding proteins (RBPs) are enriched in phase separated biomolecular assemblies across cell types. These RBPs often harbor arginine-glycine rich RGG motifs, which can drive phase separation, and can preferentially interact with RNA G-quadruplex (G4) structures, particularly in the neuron. Increasing evidence underscores the important role that RNA sequence and structure play in contributing to the form and function of protein condensates, however, less is known about the role of G4 RNAs and their interaction with RGG domains specifically. In this study we focused on the model protein, Fragile X mental retardation protein (FMRP), to investigate how G4-containing RNA sequences impact the phase behavior and material properties of condensates. FMRP is implicated in the development of Fragile X Syndrome, and is enriched in neuronal granules where it is thought to aid in mRNA trafficking and translational control. Here, we examined RNA sequences with increasing G content and G4 propensity in complex with the RGG-containing low complexity region (LCR) of FMRP. We found, that while increasing G content triggers aggregation of poly-arginine, all RNA sequences supported phase separation into liquid droplets with FMRP-LCR. Combining microrheology, and fluorescence recovery after photobleaching, we measured a moderate increase in viscosity and decrease in dynamics for increasing G-content, and detected no measurable increase in elasticity as a function of G4 structure. Additionally, we found that while methylation of FMRP decreased RNA binding affinity, this modification did not impact condensate material properties suggesting that RNA sequence/structure can play a greater role than binding affinity in determining the emergent properties of condensates. Together, this work lends much needed insight into the ways in which G-rich RNA sequences tune the assembly, dynamics and material properties of protein/RNA condensates and/or granules.
Collapse
Affiliation(s)
- Alfredo Vidal Ceballos
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Anna Geissmann
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Denize C Favaro
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
| | - Priyasha Deshpande
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA
| | - Shana Elbaum-Garfinkle
- Structural Biology Initiative, Advanced Science Research Center, CUNY, New York, NY, USA.
- Ph.D. Program in Chemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biochemistry, Graduate Center of the City University of New York, New York, NY, USA.
- Ph.D. Program in Biology, Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
6
|
Torun A, Tuğral H, Banerjee S. Crosstalk Between Phase-Separated Membraneless Condensates and Membrane-Bound Organelles in Cellular Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40095243 DOI: 10.1007/5584_2025_852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Compartmentalization in eukaryotic cells allows the spatiotemporal regulation of biochemical processes, in addition to allowing specific sets of proteins to interact in a regulated as well as stochastic manner. Although membrane-bound organelles are thought to be the key players of cellular compartmentalization, membraneless biomolecular condensates such as stress granules, P bodies, and many others have recently emerged as key players that are also thought to bring order to a highly chaotic environment. Here, we have evaluated the latest studies on biomolecular condensates, specifically focusing on how they interact with membrane-bound organelles and modulate each other's functions. We also highlight the importance of this interaction in neurodegenerative and cardiovascular diseases as well as in cancer.
Collapse
Affiliation(s)
- Aydan Torun
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Hoşnaz Tuğral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Türkiye.
| |
Collapse
|
7
|
de Queiroz BR, Laghrissi H, Rajeev S, Blot L, De Graeve F, Dehecq M, Hallegger M, Dag U, Dunoyer de Segonzac M, Ramialison M, Cazevieille C, Keleman K, Ule J, Hubstenberger A, Besse F. Axonal RNA localization is essential for long-term memory. Nat Commun 2025; 16:2560. [PMID: 40089499 PMCID: PMC11910521 DOI: 10.1038/s41467-025-57651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Localization of mRNAs to neuronal terminals, coupled to local translation, has emerged as a prevalent mechanism controlling the synaptic proteome. However, the physiological regulation and function of this process in the context of mature in vivo memory circuits has remained unclear. Here, we combined synaptosome RNA profiling with whole brain high-resolution imaging to uncover mRNAs with different localization patterns in the axons of Drosophila Mushroom Body memory neurons, some exhibiting regionalized, input-dependent, recruitment along axons. By integrating transcriptome-wide binding approaches and functional assays, we show that the conserved Imp RNA binding protein controls the transport of mRNAs to Mushroom Body axons and characterize a mutant in which this transport is selectively impaired. Using this unique mutant, we demonstrate that axonal mRNA localization is required for long-term, but not short-term, behavioral memory. This work uncovers circuit-dependent mRNA targeting in vivo and demonstrates the importance of local RNA regulation in memory consolidation.
Collapse
Affiliation(s)
- Bruna R de Queiroz
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Hiba Laghrissi
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Seetha Rajeev
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Lauren Blot
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Fabienne De Graeve
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Marine Dehecq
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Martina Hallegger
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Oxford-GSK Institute of Molecular and Computational Medicine (IMCM), Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ugur Dag
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | | | - Mirana Ramialison
- Murdoch Children's Research Institute, Department of Paediatrics, Royal Children's Hospital, University of Melbourne, Parkville, VIC, Australia
- Australian Regenerative Medicine Institute, Clayton, VIC, Australia
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Murdoch Children's Research Institute, University of Melbourne, Parkville, VIC, Australia
| | | | - Krystyna Keleman
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA, USA
| | - Jernej Ule
- The Francis Crick Institute, London, UK
- UK Dementia Research Institute at King's College London, London, UK
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Arnaud Hubstenberger
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France
| | - Florence Besse
- Institut de Biologie Valrose, Université Côte d'Azur, CNRS, Inserm, Nice, France.
| |
Collapse
|
8
|
Tang GX, Zeng ST, Wang J, Yan JT, Chen SB, Huang ZS, Chen XC, Tan JH. Deciphering Phase-Separated Mitochondrial RNA Granules under Stress Conditions with the Mitoribosome-Targeting Small Molecule. Anal Chem 2025; 97:4387-4396. [PMID: 39968811 DOI: 10.1021/acs.analchem.4c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
RNA granules are liquid-liquid-phase-separated condensates comprising RNA and proteins. Despite growing insights into their biological functions, studies have predominantly relied on biological methodologies lacking adequate chemical tools. Here, we introduce ICP-CHARGINGS, a concept for efficiently identifying chemical probes to characterize RNA granules of interest among nucleic acid-targeting agents. Focusing on mitochondrial RNA granules (MRGs), whose functions remain elusive, we developed a methodology within this framework and identified NATA, a new fluorescent molecule that, following mechanistic studies, was found to bind to the mitoribosome, enabling MRG labeling and recognition. Using NATA to reveal the potential buffering roles of MRGs, we demonstrated a close correlation between MRG maintenance and assembly and cellular survival and proliferation under cold shock and hypoxic stress. Overall, the introduction and implementation of the ICP-CHARGINGS strategy provide a specialized chemical tool for advancing our comprehension of MRG biology and establish a paradigm for elucidating RNA structures within RNA granules that can be targeted by small molecules, paving the way for developing tailored chemical probes for diverse RNA granules in future research.
Collapse
Affiliation(s)
- Gui-Xue Tang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jia-Tong Yan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
9
|
Bergmann C, Mousaei K, Rizzoli SO, Tchumatchenko T. How energy determines spatial localisation and copy number of molecules in neurons. Nat Commun 2025; 16:1424. [PMID: 39915472 PMCID: PMC11802781 DOI: 10.1038/s41467-025-56640-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
In neurons, the quantities of mRNAs and proteins are traditionally assumed to be determined by functional, electrical or genetic factors. Yet, there may also be global, currently unknown computational rules that are valid across different molecular species inside a cell. Surprisingly, our results show that the energy for molecular turnover is a significant cellular expense, en par with spiking cost, and which requires energy-saving strategies. We show that the drive to save energy determines transcript quantities and their location while acting differently on each molecular species depending on the length, longevity and other features of the respective molecule. We combined our own data and experimental reports from five other large-scale mRNA and proteomics screens, comprising more than ten thousand molecular species to reveal the underlying computational principles of molecular localisation. We found that energy minimisation principles explain experimentally-reported exponential rank distributions of mRNA and protein copy numbers. Our results further reveal robust energy benefits when certain mRNA classes are moved into dendrites, for example mRNAs of proteins with long amino acid chains or mRNAs with large non-coding regions and long half-lives proving surprising insights at the level of molecular populations.
Collapse
Affiliation(s)
- Cornelius Bergmann
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Kanaan Mousaei
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Silvio O Rizzoli
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen Center for Biostructural Imaging of Neurodegeneration, BIN Humboldtallee 23, 37073, Göttingen, Germany
| | - Tatjana Tchumatchenko
- Institute of Experimental Epileptology and Cognition Research, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
10
|
Winden KD, Ruiz JF, Sahin M. Construction destruction: Contribution of dyregulated proteostasis to neurodevelopmental disorders. Curr Opin Neurobiol 2025; 90:102934. [PMID: 39612590 PMCID: PMC11839335 DOI: 10.1016/j.conb.2024.102934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/03/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Genetic causes of neurodevelopmental disorders (NDDs) such as epilepsy and autism spectrum disorder are rapidly being uncovered. The genetic risk factors that are responsible for various NDDs fall into many categories, and while some genes such as those involved in synaptic transmission are expected, there are several other classes of genes whose involvement in these disorders is not intuitive. One such group of genes is involved in protein synthesis and degradation, and the balance between these opposing pathways is termed proteostasis. Here, we review these pathways, the genetics of the related neurological disorders, and some potential disease mechanisms. Improved understanding of this collection of genetic disorders will be informative for the pathogenesis of these disorders and imply novel therapeutic strategies.
Collapse
Affiliation(s)
- Kellen D Winden
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Juan F Ruiz
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Rosamund Stone Zander Translational Neuroscience Center, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
11
|
Majumder P, Chatterjee B, Akter K, Ahsan A, Tan SJ, Huang CC, Chu JF, Shen CKJ. Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD. Cell Mol Biol Lett 2025; 30:6. [PMID: 39815169 PMCID: PMC11737055 DOI: 10.1186/s11658-024-00684-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive. METHOD Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons. RESULTS We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca2+-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous. CONCLUSIONS This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.
Collapse
Affiliation(s)
- Pritha Majumder
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.).
| | - Biswanath Chatterjee
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Khadiza Akter
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Asmar Ahsan
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Su Jie Tan
- Institute of Molecular Medicine, College of Medicine, National Chen Kung University, Tainan, Taiwan (R.O.C.)
| | - Chi-Chen Huang
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.)
| | - Jen-Fei Chu
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
| | - Che-Kun James Shen
- PhD Program in Medical Neuroscience, Taipei Medical University, Taipei, Taiwan (R.O.C.).
- Institute of Molecular Biology, Academia Sinica, Nangang, Taipei, 115, Taiwan (R.O.C.).
| |
Collapse
|
12
|
Gill SK, Gomer RH. New therapeutic approaches for fibrosis: harnessing translational regulation. Trends Mol Med 2024:S1471-4914(24)00312-5. [PMID: 39690057 DOI: 10.1016/j.molmed.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and debilitating lung disease characterized by excessive extracellular matrix deposition and tissue scarring. The median survival of patients with IPF is only 4.5 years following diagnosis, and effective treatment options are scarce. Recent studies found aberrant translation of specific mRNAs in various fibrosing diseases, highlighting the role of key translational regulators, including RNA binding proteins (RBPs), microRNAs, long noncoding RNAs, and transcript modifications. Notably, when inhibited, 10 profibrotic RBPs cause a significant attenuation of fibrosis, illuminating potential therapeutic targets. In this review, we describe translational regulation in fibrosis and highlight a model where a conserved evolutionary mechanism may explain this regulation.
Collapse
Affiliation(s)
- Sumeen Kaur Gill
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Richard H Gomer
- Department of Biology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
13
|
Graeve FD, Debreuve E, Pushpalatha KV, Zhang X, Rahmoun S, Kozlowski D, Cedilnik N, Vijayakumar J, Cassini P, Schaub S, Descombes X, Besse F. An image-based RNAi screen identifies the EGFR signaling pathway as a regulator of Imp RNP granules. J Cell Sci 2024; 137:jcs262119. [PMID: 39479884 PMCID: PMC11698055 DOI: 10.1242/jcs.262119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/18/2024] [Indexed: 12/12/2024] Open
Abstract
Biomolecular condensates have recently retained much attention given that they provide a fundamental mechanism of cellular organization. Among those, cytoplasmic ribonucleoprotein (RNP) granules selectively and reversibly concentrate RNA molecules and regulatory proteins, thus contributing to the spatiotemporal regulation of associated RNAs. Extensive in vitro work has unraveled the molecular and chemical bases of RNP granule assembly. The signaling pathways controlling this process in a cellular context are, however, still largely unknown. Here, we aimed at identifying regulators of cytoplasmic RNP granules characterized by the presence of the evolutionarily conserved Imp RNA-binding protein (a homolog of IGF2BP proteins). We performed a high-content image-based RNAi screen targeting all Drosophila genes encoding RNA-binding proteins, phosphatases and kinases. This led to the identification of dozens of genes regulating the number of Imp-positive RNP granules in S2R+ cells, among which were components of the MAPK pathway. Combining functional approaches, phospho-mapping and generation of phospho-variants, we further showed that EGFR signaling inhibits Imp-positive RNP granule assembly through activation of the MAPK-ERK pathway and downstream phosphorylation of Imp at the S15 residue. This work illustrates how signaling pathways can regulate cellular condensate assembly by post-translational modifications of specific components.
Collapse
Affiliation(s)
- Fabienne De Graeve
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Eric Debreuve
- Université Côte D'Azur, CNRS, INRIA, I3S, 06902 Sophia Antipolis, France
| | | | - Xuchun Zhang
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Somia Rahmoun
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Djampa Kozlowski
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Nicolas Cedilnik
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Jeshlee Vijayakumar
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Paul Cassini
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| | - Sebastien Schaub
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
- Université Sorbonne, CNRS, LBDV, 06230 Villefranche-sur-mer, France
| | - Xavier Descombes
- Université Côte D'Azur, INRIA, CNRS, I3S, 06902 Sophia Antipolis, France
| | - Florence Besse
- Université Côte D'Azur, CNRS, Inserm, Institut de Biologie Valrose, 06108 Nice, France
| |
Collapse
|
14
|
Solyga M, Majumdar A, Besse F. Regulating translation in aging: from global to gene-specific mechanisms. EMBO Rep 2024; 25:5265-5276. [PMID: 39562712 PMCID: PMC11624266 DOI: 10.1038/s44319-024-00315-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/23/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Aging is characterized by a decline in various biological functions that is associated with changes in gene expression programs. Recent transcriptome-wide integrative studies in diverse organisms and tissues have revealed a gradual uncoupling between RNA and protein levels with aging, which highlights the importance of post-transcriptional regulatory processes. Here, we provide an overview of multi-omics analyses that show the progressive uncorrelation of transcriptomes and proteomes during the course of healthy aging. We then describe the molecular changes leading to global downregulation of protein synthesis with age and review recent work dissecting the mechanisms involved in gene-specific translational regulation in complementary model organisms. These mechanisms include the recognition of regulated mRNAs by trans-acting factors such as miRNA and RNA-binding proteins, the condensation of mRNAs into repressive cytoplasmic RNP granules, and the pausing of ribosomes at specific residues. Lastly, we mention future challenges of this emerging field, possible buffering functions as well as potential links with disease.
Collapse
Affiliation(s)
- Mathilde Solyga
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France
| | - Amitabha Majumdar
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Pune, Maharashtra, India
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
15
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
16
|
Li M, Yang X, Zhang D, Tian Y, Jia ZC, Liu WH, Hao RR, Chen YS, Chen MX, Liu YG. A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals. Crit Rev Biotechnol 2024:1-21. [PMID: 39592156 DOI: 10.1080/07388551.2024.2425989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/17/2024] [Accepted: 10/20/2024] [Indexed: 11/28/2024]
Abstract
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
Collapse
Affiliation(s)
- Min Li
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Xue Yang
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Di Zhang
- Department of Biology, Hong Kong Baptist University, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Yuan Tian
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Zi-Chang Jia
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Wen-Hui Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| | - Rui-Rui Hao
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Yun-Sheng Chen
- Clinical Laboratory, Shenzhen Children's Hospital, Shenzhen, China
| | - Mo-Xian Chen
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| | - Ying-Gao Liu
- State Key Laboratory of Wheat Improvement, College of Life Science, Shandong Agricultural University, Taian, China
| |
Collapse
|
17
|
Li Y, Liu Y, Yu XY, Xu Y, Pan X, Sun Y, Wang Y, Song YH, Shen Z. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct Target Ther 2024; 9:305. [PMID: 39551864 PMCID: PMC11570651 DOI: 10.1038/s41392-024-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Once considered unconventional cellular structures, membraneless organelles (MLOs), cellular substructures involved in biological processes or pathways under physiological conditions, have emerged as central players in cellular dynamics and function. MLOs can be formed through liquid-liquid phase separation (LLPS), resulting in the creation of condensates. From neurodegenerative disorders, cardiovascular diseases, aging, and metabolism to cancer, the influence of MLOs on human health and disease extends widely. This review discusses the underlying mechanisms of LLPS, the biophysical properties that drive MLO formation, and their implications for cellular function. We highlight recent advances in understanding how the physicochemical environment, molecular interactions, and post-translational modifications regulate LLPS and MLO dynamics. This review offers an overview of the discovery and current understanding of MLOs and biomolecular condensate in physiological conditions and diseases. This article aims to deliver the latest insights on MLOs and LLPS by analyzing current research, highlighting their critical role in cellular organization. The discussion also covers the role of membrane-associated condensates in cell signaling, including those involving T-cell receptors, stress granules linked to lysosomes, and biomolecular condensates within the Golgi apparatus. Additionally, the potential of targeting LLPS in clinical settings is explored, highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State key laboratory of cardiovascular disease, Beijing, 100037, P. R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, P. R. China
| | - Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
18
|
Méndez-Albelo NM, Sandoval SO, Xu Z, Zhao X. An in-depth review of the function of RNA-binding protein FXR1 in neurodevelopment. Cell Tissue Res 2024; 398:63-77. [PMID: 39155323 PMCID: PMC11976896 DOI: 10.1007/s00441-024-03912-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 07/30/2024] [Indexed: 08/20/2024]
Abstract
FMR1 autosomal homolog 1 (FXR1) is an RNA-binding protein that belongs to the Fragile X-related protein (FXR) family. FXR1 is critical for development, as its loss of function is intolerant in humans and results in neonatal death in mice. Although FXR1 is expressed widely including the brain, functional studies on FXR1 have been mostly performed in cancer cells. Limited studies have demonstrated the importance of FXR1 in the brain. In this review, we will focus on the roles of FXR1 in brain development and pathogenesis of brain disorders. We will summarize the current knowledge in FXR1 in the context of neural biology, including structural features, isoform diversity and nomenclature, expression patterns, post-translational modifications, regulatory mechanisms, and molecular functions. Overall, FXR1 emerges as an important regulator of RNA metabolism in the brain, with strong implications in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Natasha M Méndez-Albelo
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular Cellular Pharmacology Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Soraya O Sandoval
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Zhiyan Xu
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
19
|
Kiebler MA, Bauer KE. RNA granules in flux: dynamics to balance physiology and pathology. Nat Rev Neurosci 2024; 25:711-725. [PMID: 39367081 DOI: 10.1038/s41583-024-00859-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/06/2024]
Abstract
The life cycle of an mRNA is a complex process that is tightly regulated by interactions between the mRNA and RNA-binding proteins, forming molecular machines known as RNA granules. Various types of these membrane-less organelles form inside cells, including neurons, and contribute critically to various physiological processes. RNA granules are constantly in flux, change dynamically and adapt to their local environment, depending on their intracellular localization. The discovery that RNA condensates can form by liquid-liquid phase separation expanded our understanding of how compartments may be generated in the cell. Since then, a plethora of new functions have been proposed for distinct condensates in cells that await their validation in vivo. The finding that dysregulation of RNA granules (for example, stress granules) is likely to affect neurodevelopmental and neurodegenerative diseases further boosted interest in this topic. RNA granules have various physiological functions in neurons and in the brain that we would like to focus on. We outline examples of state-of-the-art experiments including timelapse microscopy in neurons to unravel the precise functions of various types of RNA granule. Finally, we distinguish physiologically occurring RNA condensation from aberrant aggregation, induced by artificial RNA overexpression, and present visual examples to discriminate both forms in neurons.
Collapse
Affiliation(s)
- Michael A Kiebler
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany.
| | - Karl E Bauer
- Biomedical Center (BMC), Department of Cell Biology and Anatomy, Medical Faculty, Ludwig-Maximilians-University, Planegg-Martinsried, Germany
| |
Collapse
|
20
|
Hwang HJ, Sheard KM, Cox RT. Drosophila Clueless ribonucleoprotein particles display novel dynamics that rely on the availability of functional protein and polysome equilibrium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.609023. [PMID: 39229069 PMCID: PMC11370489 DOI: 10.1101/2024.08.21.609023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The cytoplasm is populated with many ribonucleoprotein (RNP) particles that post-transcriptionally regulate mRNAs. These membraneless organelles assemble and disassemble in response to stress, performing functions such as sequestering stalled translation pre-initiation complexes or mRNA storage, repression and decay. Drosophila Clueless (Clu) is a conserved multi-domain ribonucleoprotein essential for mitochondrial function that forms dynamic particles within the cytoplasm. Unlike well-known RNP particles, stress granules and Processing bodies, Clu particles completely disassemble under nutritional or oxidative stress. However, it is poorly understood how disrupting protein synthesis affects Clu particle dynamics, especially since Clu binds mRNA and ribosomes. Here, we capitalize on ex vivo and in vivo imaging of Drosophila female germ cells to determine what domains of Clu are necessary for Clu particle assembly, how manipulating translation using translation inhibitors affects particle dynamics, and how Clu particle movement relates to mitochondrial association. Using Clu deletion analysis and live and fixed imaging, we identified three protein domains in Clu, which are essential for particle assembly. In addition, we demonstrated that overexpressing functional Clu disassembled particles, while overexpression of deletion constructs did not. To examine how decreasing translation affects particle dynamics, we inhibited translation in Drosophila germ cells using cycloheximide and puromycin. In contrast to stress granules and Processing bodies, cycloheximide treatment did not disassemble Clu particles yet puromycin treatment did. Surprisingly, cycloheximide stabilized particles in the presence of oxidative and nutritional stress. These findings demonstrate that Clu particles have novel dynamics in response to altered ribosome activity compared to stress granules and Processing bodies and support a model where they function as hubs of translation whose assembly heavily depends on the dynamic availability of polysomes.
Collapse
Affiliation(s)
- Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation, Rockville, MD
| | - Kelsey M. Sheard
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
- Henry M. Jackson Foundation, Rockville, MD
- Current address: Meso Scale Diagnostics LLC, Gaithersburg, MD 20877
| | - Rachel T. Cox
- Department of Biochemistry and Molecular Biology, Uniformed Services University, Bethesda, MD 20814
| |
Collapse
|
21
|
Zocher S. Targeting neuronal epigenomes for brain rejuvenation. EMBO J 2024; 43:3312-3326. [PMID: 39009672 PMCID: PMC11329789 DOI: 10.1038/s44318-024-00148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 07/17/2024] Open
Abstract
Aging is associated with a progressive decline of brain function, and the underlying causes and possible interventions to prevent this cognitive decline have been the focus of intense investigation. The maintenance of neuronal function over the lifespan requires proper epigenetic regulation, and accumulating evidence suggests that the deterioration of the neuronal epigenetic landscape contributes to brain dysfunction during aging. Epigenetic aging of neurons may, however, be malleable. Recent reports have shown age-related epigenetic changes in neurons to be reversible and targetable by rejuvenation strategies that can restore brain function during aging. This review discusses the current evidence that identifies neuronal epigenetic aging as a driver of cognitive decline and a promising target of brain rejuvenation strategies, and it highlights potential approaches for the specific manipulation of the aging neuronal epigenome to restore a youthful epigenetic state in the brain.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases, Tatzberg 41, 01307, Dresden, Germany.
| |
Collapse
|
22
|
Chekulaeva M. Mechanistic insights into the basis of widespread RNA localization. Nat Cell Biol 2024; 26:1037-1046. [PMID: 38956277 DOI: 10.1038/s41556-024-01444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 05/20/2024] [Indexed: 07/04/2024]
Abstract
The importance of subcellular mRNA localization is well established, but the underlying mechanisms mostly remain an enigma. Early studies suggested that specific mRNA sequences recruit RNA-binding proteins (RBPs) to regulate mRNA localization. However, despite the observation of thousands of localized mRNAs, only a handful of these sequences and RBPs have been identified. This suggests the existence of alternative, and possibly predominant, mechanisms for mRNA localization. Here I re-examine currently described mRNA localization mechanisms and explore alternative models that could account for its widespread occurrence.
Collapse
Affiliation(s)
- Marina Chekulaeva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
23
|
Nguyen DTM, Koppers M, Farías GG. Endoplasmic reticulum - condensate interactions in protein synthesis and secretion. Curr Opin Cell Biol 2024; 88:102357. [PMID: 38626704 DOI: 10.1016/j.ceb.2024.102357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/18/2024]
Abstract
In the past decade, a growing amount of evidence has demonstrated that organelles do not act autonomously and independently but rather communicate with each other to coordinate different processes for proper cellular function. With a highly extended network throughout the cell, the endoplasmic reticulum (ER) plays a central role in interorganelle communication through membrane contact sites. Here, we highlight recent evidence indicating that the ER also forms contacts with membrane-less organelles. These interactions contribute to the dynamic assembly and disassembly of condensates and controlled protein secretion. Additionally, emerging evidence suggests their involvement in mRNA localization and localized translation. We further explore exciting future directions of this emerging theme in the organelle contact site field.
Collapse
Affiliation(s)
- Dan T M Nguyen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Max Koppers
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Ginny G Farías
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
24
|
Gao M. Me31B: a key repressor in germline regulation and beyond. Biosci Rep 2024; 44:BSR20231769. [PMID: 38606619 PMCID: PMC11065648 DOI: 10.1042/bsr20231769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/13/2024] Open
Abstract
Maternally Expressed at 31B (Me31B), an evolutionarily conserved ATP-dependent RNA helicase, plays an important role in the development of the germline across diverse animal species. Its cellular functionality has been posited as a translational repressor, participating in various RNA metabolism pathways to intricately regulate the spatiotemporal expression of RNAs. Despite its evident significance, the precise role and mechanistic underpinnings of Me31B remain insufficiently understood. This article endeavors to comprehensively review historic and recent research on Me31B, distill the major findings, discern generalizable patterns in Me31B's functions across different research contexts, and provide insights into its fundamental role and mechanism of action. The primary focus of this article centers on elucidating the role of Drosophila Me31B within the germline, while concurrently delving into pertinent research on its orthologs within other species and cellular systems.
Collapse
Affiliation(s)
- Ming Gao
- Biology Department, Indiana University Northwest, Gary, IN, U.S.A
| |
Collapse
|
25
|
Wright BW, Wilusz JE. An unexpected path for Malat1 in neurons: trafficking out of the nucleus for translation. Genes Dev 2024; 38:291-293. [PMID: 38688680 PMCID: PMC11146587 DOI: 10.1101/gad.351820.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The Malat1 (metastasis-associated lung adenocarcinoma transcript 1) long noncoding RNA is highly and broadly expressed in mammalian tissues, accumulating in the nucleus where it modulates expression and pre-mRNA processing of many protein-coding genes. In this issue of Genes & Development, Xiao and colleagues (doi:10.1101/gad.351557.124) report that a significant fraction of Malat1 transcripts in cultured mouse neurons are surprisingly exported from the nucleus. These transcripts are packaged with Staufen proteins in RNA granules and traffic down the lengths of neurites. They then can be released in a stimulus-dependent manner to be locally translated into a microprotein that alters neuronal gene expression patterns.
Collapse
Affiliation(s)
- Bradley W Wright
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
26
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. Genes Dev 2024; 38:294-307. [PMID: 38688681 PMCID: PMC11146593 DOI: 10.1101/gad.351557.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Synaptic function in neurons is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear long noncoding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 using antisense oligonucleotides (ASOs) stimulates the expression of particular pre- and postsynaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized in puncta of both axons and dendrites that costain with Staufen1 protein, similar to neuronal RNA granules formed by locally translated mRNAs. Ribosome profiling of cultured mouse cortical neurons identified ribosome footprints within a 5' region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP-coding sequence in mouse embryonic stem cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wild-type neurons and showed that M1 expression was enhanced by synaptic stimulation with KCl. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA;
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, California 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
27
|
Xiao W, Halabi R, Lin CH, Nazim M, Yeom KH, Black DL. The lncRNA Malat1 is trafficked to the cytoplasm as a localized mRNA encoding a small peptide in neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578240. [PMID: 38352368 PMCID: PMC10862813 DOI: 10.1101/2024.02.01.578240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic function is modulated by local translation of mRNAs that are transported to distal portions of axons and dendrites. The Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) is broadly expressed across cell types, almost exclusively as a nuclear non-coding RNA. We found that in differentiating neurons, a portion of Malat1 RNA redistributes to the cytoplasm. Depletion of Malat1 from neurons stimulated expression of particular pre- and post- synaptic proteins, implicating Malat1 in their regulation. Neuronal Malat1 is localized to both axons and dendrites in puncta that co-stain with Staufen1 protein, similar to neuronal granules formed by locally translated mRNAs. Ribosome profiling of mouse cortical neurons identified ribosome footprints within a region of Malat1 containing short open reading frames. The upstream-most reading frame (M1) of the Malat1 locus was linked to the GFP coding sequence in mouse ES cells. When these gene-edited cells were differentiated into glutamatergic neurons, the M1-GFP fusion protein was expressed. Antibody staining for the M1 peptide confirmed its presence in wildtype neurons, and showed enhancement of M1 expression after synaptic stimulation with KCL. Our results indicate that Malat1 serves as a cytoplasmic coding RNA in the brain that is both modulated by and modulates synaptic function.
Collapse
Affiliation(s)
- Wen Xiao
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Reem Halabi
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Chia-Ho Lin
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Mohammad Nazim
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Kyu-Hyeon Yeom
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Molecular Biology Institute, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
28
|
Castillo PE, Jung H, Klann E, Riccio A. Presynaptic Protein Synthesis in Brain Function and Disease. J Neurosci 2023; 43:7483-7488. [PMID: 37940588 PMCID: PMC10634577 DOI: 10.1523/jneurosci.1454-23.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 11/10/2023] Open
Abstract
Local protein synthesis in mature brain axons regulates the structure and function of presynaptic boutons by adjusting the presynaptic proteome to local demands. This crucial mechanism underlies experience-dependent modifications of brain circuits, and its dysregulation may contribute to brain disorders, such as autism and intellectual disability. Here, we discuss recent advancements in the axonal transcriptome, axonal RNA localization and translation, and the role of presynaptic local translation in synaptic plasticity and memory.
Collapse
Affiliation(s)
- Pablo E Castillo
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Hosung Jung
- Department of Anatomy, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Eric Klann
- Center for Neural Science, New York University, New York, New York 10003
- New York University Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016
| | - Antonella Riccio
- UCL Laboratory for Molecular Cell Biology University College London, London, WC1E 6BT, United Kingdom
| |
Collapse
|
29
|
Martin JR, Chatterjee A, Salecker I. Editorial: Neurobiology of Drosophila: the 19th NeuroFly-2022 meeting. Front Physiol 2023; 14:1237065. [PMID: 37398908 PMCID: PMC10311247 DOI: 10.3389/fphys.2023.1237065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/04/2023] Open
Affiliation(s)
| | - Abhishek Chatterjee
- Institut d'Écologie et des Sciences de l'Environnement de Paris (iEES-Paris), INRAE, Versailles, France
| | - Iris Salecker
- Institut de Biologie de l'École Normale Supérieure (IBENS), ENS, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|