1
|
Chivatá-Ávila JA, Rojas-Estevez P, Muñoz-Suarez AM, Caro-Morales E, Rengifo AC, Torres-Fernández O, Lozano JM, Álvarez-Díaz DA. Mild Zika Virus Infection in Mice Without Motor Impairments Induces Working Memory Deficits, Anxiety-like Behaviors, and Dysregulation of Immunity and Synaptic Vesicle Pathways. Viruses 2025; 17:405. [PMID: 40143332 PMCID: PMC11946058 DOI: 10.3390/v17030405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/04/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND The Zika virus (ZIKV) is an arbovirus linked to "Congenital Zika Syndrome" and a range of neurodevelopmental disorders (NDDs), with microcephaly as the most severe manifestation. Milder NDDs, such as autism spectrum disorders and delays in neuropsychomotor and language development, often go unnoticed in neonates, resulting in long-term social and academic difficulties. Murine models of ZIKV infection can be used to mimic part of the spectrum of motor and cognitive deficits observed in humans. These can be evaluated through behavioral tests, enabling comparison with gene expression profiles and aiding in the characterization of ZIKV-induced NDDs. OBJECTIVES This study aimed to identify genes associated with behavioral changes following a subtle ZIKV infection in juvenile BALB/c mice. METHODS Neonatal mice were subcutaneously inoculated with ZIKV (MH544701.2) on postnatal day 1 (DPN) at a dose of 6.8 × 103 PFU. Viral presence in the cerebellum and cortex was quantified at 10- and 30-days post-infection (DPI) using RT-qPCR. Neurobehavioral deficits were assessed at 30 DPI through T-maze, rotarod, and open field tests. Next-Generation Sequencing (NGS) was performed to identify differentially expressed genes (DEGs), which were analyzed through Gene Ontology (GO) and KEGG enrichment. Gene interaction networks were then constructed to explore gene interactions in the most enriched biological categories. RESULTS A ZIKV infection model was successfully established, enabling brain infection while allowing survival beyond 30 DPI. The infection induced mild cognitive behavioral changes, though motor and motivational functions remained unaffected. These cognitive changes were linked to the functional repression of synaptic vesicles and alterations in neuronal structure, suggesting potential disruptions in neuronal plasticity. CONCLUSIONS Moderate ZIKV infection with circulating strains from the 2016 epidemic may cause dysregulation of genes related to immune response, alterations in cytoskeletal organization, and modifications in cellular transport mediated by vesicles. Despite viral control, neurocognitive effects persisted, including memory deficits and anxiety-like behaviors, highlighting the long-term neurological consequences of ZIKV infection in models that show no apparent malformations.
Collapse
Affiliation(s)
- Jaime Alexander Chivatá-Ávila
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
| | - Paola Rojas-Estevez
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
| | - Alejandra M. Muñoz-Suarez
- Grupo de Animales de Laboratorio, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.M.M.-S.); (E.C.-M.)
| | - Esthefanny Caro-Morales
- Grupo de Animales de Laboratorio, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.M.M.-S.); (E.C.-M.)
| | - Aura Caterine Rengifo
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.C.R.); (O.T.-F.)
| | - Orlando Torres-Fernández
- Grupo de Morfología Celular, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (A.C.R.); (O.T.-F.)
| | - Jose Manuel Lozano
- Grupo Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá 11001, Colombia;
| | - Diego A. Álvarez-Díaz
- Grupo de Genómica de Microorganismos Emergentes, Dirección de Investigación en Salud Pública, Instituto Nacional de Salud, Bogotá 111321, Colombia; (J.A.C.-Á.); (P.R.-E.)
- Grupo de Investigación y Desarrollo en Vacunas y Biológicos Estratégicos en Salud Pública, Dirección de Producción, Instituto Nacional de Salud, Bogotá 111321, Colombia
| |
Collapse
|
2
|
Vesci L, Martinelli G, Liu Y, Tagliavento L, Dell’Agli M, Wu Y, Soldi S, Sagheddu V, Piazza S, Sangiovanni E, Meneguzzo F. The New Phytocomplex AL0042 Extracted from Red Orange By-Products Inhibits the Minimal Hepatic Encephalopathy in Mice Induced by Thioacetamide. Biomedicines 2025; 13:686. [PMID: 40149662 PMCID: PMC11940312 DOI: 10.3390/biomedicines13030686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/06/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Minimal hepatic encephalopathy (MHE) is a clinical condition characterized by neurological impairments, including brain inflammation, arising from the accumulation of toxic metabolites associated with liver dysfunction and leaky gut. This study investigated the pharmacological activity of a new phytocomplex extracted from red orange by-products (AL0042) using hydrodynamic cavitation and consisting of a mixture of pectin, polyphenols, and essential oils. Methods: Preliminary in vitro studies evaluated the impact on the epithelial integrity (TEER) of enterocytes challenged by a pro-inflammatory cocktail. The effect of AL0042 was then evaluated in a model of thioacetamide (TAA)-treated mice that mimics MHE. A group of 8-10-week-old male C57BL/6 mice was intraperitoneally injected with TAA to establish the MHE model. The intervention group received TAA along with AL0042 (20 mg/kg, administered orally once daily for 7 days). At the end of the treatment, the rotarod test was conducted to evaluate motor ability, along with the evaluation of blood biochemical, liver, and brain parameters. Results: In vitro, AL0042 (250 μg/mL) partially recovered the TEER values, although anti-inflammatory mechanisms played a negligible role. In vivo, compared with the control group, the test group showed significant behavioral differences, together with alterations in plasma ammonia, serum TNF-α, ALT, AST, corticosterone levels, and SOD activity. Moreover, histological data confirmed the anti-inflammatory effect at liver and brain level. Conclusions: AL0042 treatment revealed a significant therapeutic effect on the TAA-induced MHE mouse model, curbing oxidative stress and peripheral and central inflammation, thus suggesting that its pharmacological activity deserves to be further investigated in clinical studies.
Collapse
Affiliation(s)
- Loredana Vesci
- Research and Development, Alfasigma S.p.A., 00071 Pomezia, Italy;
| | - Giulia Martinelli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yongqiang Liu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | | | - Mario Dell’Agli
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Yunfei Wu
- Department of Pharmacology, Discovery Services, BioDuro-Sundia, Shanghai 200131, China; (Y.L.); (Y.W.)
| | - Sara Soldi
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Valeria Sagheddu
- AAT Srl–Advanced Analytical Technologies, 29017 Fiorenzuola d’Arda, Italy; (S.S.); (V.S.)
| | - Stefano Piazza
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences “Rodolfo Paoletti”, Università degli Studi di Milano, 20133 Milano, Italy; (G.M.); (S.P.); (E.S.)
| | - Francesco Meneguzzo
- Institute of Bioeconomy, National Research Council of Italy, 50019 Florence, Italy
| |
Collapse
|
3
|
Evans MA, Chavkin NW, Sano S, Sun H, Sardana T, Ravi R, Doviak H, Wang Y, Yura Y, Polizio AH, Horitani K, Ogawa H, Hirschi KK, Walsh K. Tet2-mediated clonal hematopoiesis modestly improves neurological deficits and is associated with inflammation resolution in the subacute phase of experimental stroke. Front Cell Neurosci 2024; 18:1487867. [PMID: 39742155 PMCID: PMC11685025 DOI: 10.3389/fncel.2024.1487867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/12/2024] [Indexed: 01/03/2025] Open
Abstract
Introduction Recent work has revealed that clonal hematopoiesis (CH) is associated with a higher risk of numerous age-related diseases, including ischemic stroke, however little is known about whether it influences stroke outcome independent of its widespread effects on cardiovascular disease. Studies suggest that leukocytes carrying CH driver mutations have an enhanced inflammatory profile, which could conceivably exacerbate brain injury after a stroke. Methods Using a competitive bone marrow transplant model of Tet2-mediated CH, we tested the hypothesis that CH would lead to a poorer outcome after ischemic stroke by augmenting brain inflammation. Stroke was induced in mice by middle cerebral artery occlusion and neurological outcome was assessed at acute (24 h) and subacute (14 d) timepoints. Brains were collected at both time points for histological, immunofluorescence and gene expression assays. Results Unexpectedly, Tet2-mediated CH had no effect on acute stroke outcome but led to a reduction in neurological deficits during the subacute phase. This improved neurological outcome was associated with lower levels of brain inflammation as evidenced by lower transcript levels of various inflammatory molecules alongside reduced astrogliosis. Discussion These findings suggest that Tet2-mediated CH may have beneficial effects on outcome after stroke, contrasting with the conventional understanding of CH whereby leukocytes with driver mutations promote disease by exacerbating inflammation.
Collapse
Affiliation(s)
- Megan A. Evans
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Nicholas W. Chavkin
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Soichi Sano
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hanna Sun
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Taneesha Sardana
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ramya Ravi
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Heather Doviak
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ying Wang
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Yoshimitsu Yura
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ariel H. Polizio
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Keita Horitani
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Hayato Ogawa
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Karen K. Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Kenneth Walsh
- Hematovascular Biology Center, Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States
| |
Collapse
|
4
|
Jahan I, Harun-Ur-Rashid M, Islam MA, Sharmin F, Al Jaouni SK, Kaki AM, Selim S. Neuronal plasticity and its role in Alzheimer's disease and Parkinson's disease. Neural Regen Res 2024; 21:01300535-990000000-00637. [PMID: 39688547 PMCID: PMC12094540 DOI: 10.4103/nrr.nrr-d-24-01019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/09/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
ABSTRACT Neuronal plasticity, the brain's ability to adapt structurally and functionally, Is essential for learning, memory, and recovery from injuries. In neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease, this plasticity is disrupted, leading to cognitive and motor deficits. This review explores the mechanisms of neuronal plasticity and its effect on Alzheimer's disease and Parkinson's disease. Alzheimer's disease features amyloid-beta plaques and tau tangles that impair synaptic function, while Parkinson's disease involves the loss of dopaminergic neurons affecting motor control. Enhancing neuronal plasticity offers therapeutic potential for these diseases. A systematic literature review was conducted using databases such as PubMed, Scopus, and Google Scholar, focusing on studies of neuronal plasticity in Alzheimer's disease and Parkinson's disease. Data synthesis identified key themes such as synaptic mechanisms, neurogenesis, and therapeutic strategies, linking molecular insights to clinical applications. Results highlight that targeting synaptic plasticity mechanisms, such as long-term potentiation and long-term depression, shows promise. Neurotrophic factors, advanced imaging techniques, and molecular tools (e.g., clustered regularly interspaced short palindromic repeats and optogenetics) are crucial in understanding and enhancing plasticity. Current therapies, including dopamine replacement, deep brain stimulation, and lifestyle interventions, demonstrate the potential to alleviate symptoms and improve outcomes. In conclusion, enhancing neuronal plasticity through targeted therapies holds significant promise for treating neurodegenerative diseases. Future research should integrate multidisciplinary approaches to fully harness the therapeutic potential of neuronal plasticity in Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Israt Jahan
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Harun-Ur-Rashid
- Department of Chemistry, International University of Business Agriculture and Technology (IUBAT), Sector 10, Uttara Model Town, Dhaka, Bangladesh
| | - Md. Aminul Islam
- Genetic Engineering and Biotechnology Research Laboratory (GEBRL), Centre for Advanced Research in Sciences (CARS), University of Dhaka, Dhaka, Bangladesh
| | - Farhana Sharmin
- Department of Anatomy, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah M. Kaki
- Department of Anesthesia and Pain Medicine, Director of Pain Clinic, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
5
|
Zhang X, Ji S, Yang Y, Sun X, Wang H, Yang Y, Deng X, Wang Y, Li C, Tian J. LPM682000012, a Synthetic Neuroactive Steroid That Ameliorates Epileptic Seizures by Downregulating the Serpina3n/NF-κB Signaling Pathway. Molecules 2024; 29:5286. [PMID: 39598675 PMCID: PMC11596644 DOI: 10.3390/molecules29225286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/29/2024] Open
Abstract
Epilepsy is characterized by abnormal neuronal firing in the brain. Several therapeutic strategies exist for epilepsy; however, several patients remain poorly treated. Therefore, the development of effective treatments remains a high priority in the field. Neuroactive steroids can potentiate extra-synaptic and synaptic GABAA receptors, thereby providing therapeutic benefits relative to benzodiazepines. This research study investigated the therapeutic effectiveness and underlying mechanisms of LPM682000012, a new synthetic neuroactive steroid-positive allosteric modulator (PAM) of GABAA receptors employed for treating epilepsy. Acute and chronic rat epilepsy models were established to identify the anti-seizure potency of LPM682000012. The dose-dependent sedative effects of LPM682000012 and Ganaxolone in normal rats were evaluated, which revealed that they both dose-dependently alleviated acute epileptic seizure in the pentylenetetrazol (PTZ)-mediated seizure model. Furthermore, LPM682000012 indicated an enhanced safety profile than Ganaxolone. Moreover, LPM682000012 also indicated therapeutic effects in the kainic acid (KA)-induced chronic spontaneous seizure model. Morphologically, LPM682000012 decreased neuronal loss in the hippocampal CA1 and CA3 regions and increased dendritic spine density in the CA1 region. In addition, mechanical analyses, including transcriptomics, Western blot, and proteomics analyses, revealed that the Serpina3n/NF-κB signaling pathway was up-regulated in epileptic rat hippocampal tissue, and LPM682000012 treatment reversed these changes. In summary, this report demonstrated that the novel neurosteroid GABAA PAM LPM682000012 activated the synaptic and extra-synaptic GABAA receptors and alleviated KA-induced neuronal loss and synaptic remodeling, potentially by down-regulating the Serpina3n/NF-κB signaling pathways. The results provide evidence that LPM682000012 is a potential anti-seizure pharmacotherapy candidate for epilepsy and warrants further research.
Collapse
Affiliation(s)
- Xiaofan Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Shengmin Ji
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Yue Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Xiaohui Sun
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Hui Wang
- R & D Center, Luye Pharma Group Ltd., Yantai 264003, China;
| | - Yifan Yang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Xuan Deng
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Yunjie Wang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Chunmei Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| | - Jingwei Tian
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China; (X.Z.); (S.J.); (Y.Y.); (X.S.); (Y.Y.); (X.D.); (Y.W.)
| |
Collapse
|
6
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
7
|
Ohm M, Hosseini S, Lonnemann N, He W, More T, Goldmann O, Medina E, Hiller K, Korte M. The potential therapeutic role of itaconate and mesaconate on the detrimental effects of LPS-induced neuroinflammation in the brain. J Neuroinflammation 2024; 21:207. [PMID: 39164713 PMCID: PMC11337794 DOI: 10.1186/s12974-024-03188-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory treatment, inflammation and its consequences remain a major challenge in the field of medicine. Inflammatory reactions can lead to life-threatening conditions such as septic shock, while chronic inflammation has the potential to worsen the condition of body tissues and ultimately lead to significant impairment of their functionality. Although the central nervous system has long been considered immune privileged to peripheral immune responses, recent research has shown that strong immune responses in the periphery also affect the brain, leading to reactive microglia, which belong to the innate immune system and reside in the brain, and neuroinflammation. The inflammatory response is primarily a protective mechanism to defend against pathogens and tissue damage. However, excessive and chronic inflammation can have negative effects on neuronal structure and function. Neuroinflammation underlies the pathogenesis of many neurological and neurodegenerative diseases and can accelerate their progression. Consequently, targeting inflammatory signaling pathways offers potential therapeutic strategies for various neuropathological conditions, particularly Parkinson's and Alzheimer's disease, by curbing inflammation. Here the blood-brain barrier is a major hurdle for potential therapeutic strategies, therefore it would be highly advantageous to foster and utilize brain innate anti-inflammatory mechanisms. The tricarboxylic acid cycle-derived metabolite itaconate is highly upregulated in activated macrophages and has been shown to act as an immunomodulator with anti-inflammatory and antimicrobial functions. Mesaconate, an isomer of itaconate, similarly reduces the inflammatory response in macrophages. Nevertheless, most studies have focused on its esterified forms and its peripheral effects, while its influence on the CNS remained largely unexplored. Therefore, this study investigated the immunomodulatory and therapeutic potential of endogenously synthesized itaconate and its isomer mesaconate in lipopolysaccharide (LPS)-induced neuroinflammatory processes. Our results show that both itaconate and mesaconate reduce LPS-induced neuroinflammation, as evidenced by lower levels of inflammatory mediators, reduced microglial reactivity and a rescue of synaptic plasticity, the cellular correlate of learning and memory processes in the brain. Overall, this study emphasizes that both itaconate and mesaconate have therapeutic potential for neuroinflammatory processes in the brain and are of remarkable importance due to their endogenous origin and production, which usually leads to high tolerance.
Collapse
Affiliation(s)
- Melanie Ohm
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
| | - Shirin Hosseini
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
- Neuroinflammation and Neurodegeneration Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Niklas Lonnemann
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany
| | - Wei He
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Tushar More
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany
| | - Oliver Goldmann
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Eva Medina
- Infection Immunology Research Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany
| | - Karsten Hiller
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), TU Braunschweig, 38106, Braunschweig, Germany.
| | - Martin Korte
- Department of Cellular Neurobiology, Zoological Institute, TU Braunschweig, 38106, Braunschweig, Germany.
- Neuroinflammation and Neurodegeneration Group, Helmholtz Centre for Infection Research, 38124, Braunschweig, Germany.
| |
Collapse
|
8
|
Costa B, Vale N. Virus-Induced Epilepsy vs. Epilepsy Patients Acquiring Viral Infection: Unravelling the Complex Relationship for Precision Treatment. Int J Mol Sci 2024; 25:3730. [PMID: 38612542 PMCID: PMC11011490 DOI: 10.3390/ijms25073730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/04/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
The intricate relationship between viruses and epilepsy involves a bidirectional interaction. Certain viruses can induce epilepsy by infecting the brain, leading to inflammation, damage, or abnormal electrical activity. Conversely, epilepsy patients may be more susceptible to viral infections due to factors, such as compromised immune systems, anticonvulsant drugs, or surgical interventions. Neuroinflammation, a common factor in both scenarios, exhibits onset, duration, intensity, and consequence variations. It can modulate epileptogenesis, increase seizure susceptibility, and impact anticonvulsant drug pharmacokinetics, immune system function, and brain physiology. Viral infections significantly impact the clinical management of epilepsy patients, necessitating a multidisciplinary approach encompassing diagnosis, prevention, and treatment of both conditions. We delved into the dual dynamics of viruses inducing epilepsy and epilepsy patients acquiring viruses, examining the unique features of each case. For virus-induced epilepsy, we specify virus types, elucidate mechanisms of epilepsy induction, emphasize neuroinflammation's impact, and analyze its effects on anticonvulsant drug pharmacokinetics. Conversely, in epilepsy patients acquiring viruses, we detail the acquired virus, its interaction with existing epilepsy, neuroinflammation effects, and changes in anticonvulsant drug pharmacokinetics. Understanding this interplay advances precision therapies for epilepsy during viral infections, providing mechanistic insights, identifying biomarkers and therapeutic targets, and supporting optimized dosing regimens. However, further studies are crucial to validate tools, discover new biomarkers and therapeutic targets, and evaluate targeted therapy safety and efficacy in diverse epilepsy and viral infection scenarios.
Collapse
Affiliation(s)
- Bárbara Costa
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| | - Nuno Vale
- PerMed Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal;
- CINTESIS@RISE, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Department of Community Medicine, Information and Health Decision Sciences (MEDCIDS), Faculty of Medicine, University of Porto, Rua Doutor Plácido da Costa, s/n, 4200-450 Porto, Portugal
| |
Collapse
|
9
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
10
|
Zhang YM, Wei RM, Feng YZ, Zhang KX, Ge YJ, Kong XY, Li XY, Chen GH. Sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression and cognitive impairment: The role of pro-inflammatory cytokines and synaptic plasticity-associated proteins. J Neuroimmunol 2024; 386:578252. [PMID: 38086228 DOI: 10.1016/j.jneuroim.2023.578252] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/18/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Growing evidence indicates that neuroinflammation plays a critical role in anxiety, depression, and cognitive impairment. Sleep loss disrupts the host's immune balance and increases neuroinflammation. This study explored whether chronic sleep deprivation aggravates lipopolysaccharide-induced anxiety, depression, and cognitive impairment and assessed the underlying mechanisms. Lipopolysaccharide (250 μg/kg) was administered to adult mice for 9 days, accompanied with daily intermittent sleep deprivation from 12:00 to 18:00 by using an activity wheel. Anxiety, depression, and cognitive function were evaluated using a task battery consisting of an open field, elevated plus maze, tail suspension, forced swimming, and Morris water maze tests. The levels of pro-inflammatory cytokines and synaptic plasticity-associated proteins were examined by enzyme-linked immunosorbent assay and western blot, respectively. The results showed that lipopolysaccharide increased anxiety- and depression-like behaviors, impaired cognitive function, uprelated interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and decreased brain-derived neurotrophic factor (BDNF), postsynaptic density-95 (PSD-95), and synaptophysin (SYN), which were aggravated by chronic sleep deprivation. These results suggest that chronic sleep deprivation exerted adverse effects on lipopolysaccharide-induced anxiety, depression, and cognitive impairment, which was associated with changes in pro-inflammatory cytokines and synaptic plasticity associated proteins.
Collapse
Affiliation(s)
- Yue-Ming Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Ru-Meng Wei
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Yi-Zhou Feng
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Kai-Xuan Zhang
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Yi-Jun Ge
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Xiao-Yi Kong
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China
| | - Xue-Yan Li
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China.
| | - Gui-Hai Chen
- Department of Neurology (Sleep Disorders), The Affiliated Chaohu Hospital of Anhui Medical University, Hefei 238000, Anhui, PR China.
| |
Collapse
|
11
|
Bove F, Angeloni B, Sanginario P, Rossini PM, Calabresi P, Di Iorio R. Neuroplasticity in levodopa-induced dyskinesias: An overview on pathophysiology and therapeutic targets. Prog Neurobiol 2024; 232:102548. [PMID: 38040324 DOI: 10.1016/j.pneurobio.2023.102548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/29/2023] [Accepted: 11/26/2023] [Indexed: 12/03/2023]
Abstract
Levodopa-induced dyskinesias (LIDs) are a common complication in patients with Parkinson's disease (PD). A complex cascade of electrophysiological and molecular events that induce aberrant plasticity in the cortico-basal ganglia system plays a key role in the pathophysiology of LIDs. In the striatum, multiple neurotransmitters regulate the different forms of physiological synaptic plasticity to provide it in a bidirectional and Hebbian manner. In PD, impairment of both long-term potentiation (LTP) and long-term depression (LTD) progresses with disease and dopaminergic denervation of striatum. The altered balance between LTP and LTD processes leads to unidirectional changes in plasticity that cause network dysregulation and the development of involuntary movements. These alterations have been documented, in both experimental models and PD patients, not only in deep brain structures but also at motor cortex. Invasive and non-invasive neuromodulation treatments, as deep brain stimulation, transcranial magnetic stimulation, or transcranial direct current stimulation, may provide strategies to modulate the aberrant plasticity in the cortico-basal ganglia network of patients affected by LIDs, thus restoring normal neurophysiological functioning and treating dyskinesias. In this review, we discuss the evidence for neuroplasticity impairment in experimental PD models and in patients affected by LIDs, and potential neuromodulation strategies that may modulate aberrant plasticity.
Collapse
Affiliation(s)
- Francesco Bove
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Benedetta Angeloni
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Pasquale Sanginario
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Paolo Maria Rossini
- Brain Connectivity Laboratory, Department of Neuroscience and Neurorehabilitation, IRCCS San Raffaele Roma, Rome, Italy
| | - Paolo Calabresi
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Riccardo Di Iorio
- Neurology Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy; Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
12
|
Gholami M, Sadegh M, Koroush-Arami M, Norouzi S, Arismani RJ, Asadi E, Amini M, Khodayari N. Targeting memory loss with aspirin, a molecular mechanism perspective for future therapeutic approaches. Inflammopharmacology 2023; 31:2827-2842. [PMID: 37924473 DOI: 10.1007/s10787-023-01347-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 11/06/2023]
Abstract
Acetylsalicylic acid (ASA), also known as aspirin, was discovered in 1897 as an acetylated form of salicylate. It has been widely used for its anti-inflammatory and antiplatelet effects. It is commonly used for its cardiovascular benefits and is prescribed as secondary prophylaxis after a heart attack. Furthermore, low-dose, long-term ASA is used to reduce the risk of heart attack and stroke in individuals without prior cardiovascular disease. Acetylsalicylic acid acts as a non-selective inhibitor of cyclooxygenase (COX), which inhibits the synthesis of prostaglandins and prevents pro-inflammatory cytokines. Findings suggest that targeting cytokines and growth factors could be a potential therapeutic strategy for reducing neuroinflammation and slowing down the progression of dementia. Additionally, prostaglandins contribute to synaptic plasticity and can act as retrograde messengers in synapses. Research has implicated COX-1, one of the isoforms of the enzyme, in neuroinflammation and neurodegenerative disorders. The inhibition of COX-1 might potentially prevent impairments in working memory and reduce neuroinflammation caused by beta-amyloid proteins in some conditions, such as Alzheimer's disease (AD). Cyclooxygenase-2, an inducible form of the enzyme, is expressed in cortical and hippocampal neurons and is associated with long-term synaptic plasticity. The inhibition or knockout of COX-2 has been shown to decrease long-term potentiation, a process involved in memory formation. Studies have also demonstrated that the administration of COX-2 inhibitors impairs cognitive function and memory acquisition and recall in animal models. There remains a debate regarding the effects of aspirin on dementia and cognitive decline. Although some studies suggest a possible protective effect of non-steroidal anti-inflammatory drugs, including aspirin, against the development of AD, others have shown inconsistent evidence. This review provides an overview of the effects of ASA or its active metabolite salicylate on learning, memory, and synaptic plasticity.
Collapse
Affiliation(s)
- Masoumeh Gholami
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran.
| | - Mehdi Sadegh
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Masoumeh Koroush-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Rasoul Jafari Arismani
- Department of Urologic Surgery, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Erfan Asadi
- Medical Student, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Mohammad Amini
- Medical Student, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Nahid Khodayari
- Department of Physiology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
13
|
Alexander C, Parsaee A, Vasefi M. Polyherbal and Multimodal Treatments: Kaempferol- and Quercetin-Rich Herbs Alleviate Symptoms of Alzheimer's Disease. BIOLOGY 2023; 12:1453. [PMID: 37998052 PMCID: PMC10669725 DOI: 10.3390/biology12111453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
Alzheimer's Disease (AD) is a progressive neurodegenerative disorder impairing cognition and memory in the elderly. This disorder has a complex etiology, including senile plaque and neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity. Current treatment options are limited, so alternative treatments such as herbal medicine could suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state, maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and quercetin-rich cocktail could treat AD-related brain damage.
Collapse
Affiliation(s)
- Claire Alexander
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| | - Ali Parsaee
- Biological Science, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Maryam Vasefi
- Department of Biology, Lamar University, Beaumont, TX 77705, USA
| |
Collapse
|
14
|
Patitucci E, Lipp I, Stickland RC, Wise RG, Tomassini V. Changes in brain perfusion with training-related visuomotor improvement in MS. Front Mol Neurosci 2023; 16:1270393. [PMID: 38025268 PMCID: PMC10665528 DOI: 10.3389/fnmol.2023.1270393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system. A better understanding of the mechanisms supporting brain plasticity in MS would help to develop targeted interventions to promote recovery. A total of 29 MS patients and 19 healthy volunteers underwent clinical assessment and multi-modal MRI acquisition [fMRI during serial reaction time task (SRT), DWI, T1w structural scans and ASL of resting perfusion] at baseline and after 4-weeks of SRT training. Reduction of functional hyperactivation was observed in MS patients following the training, shown by the stronger reduction of the BOLD response during task execution compared to healthy volunteers. The functional reorganization was accompanied by a positive correlation between improvements in task accuracy and the change in resting perfusion after 4 weeks' training in right angular and supramarginal gyri in MS patients. No longitudinal changes in WM and GM measures and no correlation between task performance improvements and brain structure were observed in MS patients. Our results highlight a potential role for CBF as an early marker of plasticity, in terms of functional (cortical reorganization) and behavioral (performance improvement) changes in MS patients that may help to guide future interventions that exploit preserved plasticity mechanisms.
Collapse
Affiliation(s)
- Eleonora Patitucci
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Ilona Lipp
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Rachael Cecilia Stickland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
| | - Richard G. Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
| | - Valentina Tomassini
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff, United Kingdom
- Institute for Advanced Biomedical Technologies, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Department of Neurosciences, Imaging and Clinical Sciences, University of Chieti-Pescara “G. d’Annunzio,”Chieti, Italy
- Division of Psychological Medicine and Clinical Neurosciences, Cardiff University School of Medicine, Cardiff, United Kingdom
| |
Collapse
|
15
|
Bourcier CH, Michel-Flutot P, Emam L, Adam L, Gasser A, Vinit S, Mansart A. ß1-adrenergic blockers preserve neuromuscular function by inhibiting the production of extracellular traps during systemic inflammation in mice. Front Immunol 2023; 14:1228374. [PMID: 37809074 PMCID: PMC10556451 DOI: 10.3389/fimmu.2023.1228374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
Severe inflammation via innate immune system activation causes organ dysfunction. Among these, the central nervous system (CNS) is particularly affected by encephalopathies. These symptoms are associated with the activation of microglia and a potential infiltration of leukocytes. These immune cells have recently been discovered to have the ability to produce extracellular traps (ETs). While these components capture and destroy pathogens, deleterious effects occur such as reduced neuronal excitability correlated with excessive ETs production. In this study, the objectives were to determine (1) whether immune cells form ETs in the CNS during acute inflammation (2) whether ETs produce neuromuscular disorders and (3) whether an immunomodulatory treatment such as β1-adrenergic blockers limits these effects. We observed an infiltration of neutrophils in the CNS, an activation of microglia and a production of ETs following lipopolysaccharide (LPS) administration. Atenolol, a β1-adrenergic blocker, significantly decreased the production of ETs in both microglia and neutrophils. This treatment also preserved the gastrocnemius motoneuron excitability. Similar results were observed when the production of ETs was prevented by sivelestat, an inhibitor of ET formation. In conclusion, our results demonstrate that LPS administration increases neutrophils infiltration into the CNS, activates immune cells and produces ETs that directly impair neuromuscular function. Prevention of ETs formation by β1-adrenergic blockers partly restores this function and could be a good target in order to reduce adverse effects in severe inflammation such as sepsis but also in other motor related pathologies linked to ETs production.
Collapse
Affiliation(s)
- Camille H. Bourcier
- END-ICAP, INSERM U1179, UVSQ-Université Paris-Saclay, Versailles, France
- Infection et Inflammation (2I), INSERM U1173, UVSQ-Université Paris-Saclay, Versailles, France
| | | | - Laila Emam
- Infection et Inflammation (2I), INSERM U1173, UVSQ-Université Paris-Saclay, Versailles, France
| | - Lucille Adam
- Infection et Inflammation (2I), INSERM U1173, UVSQ-Université Paris-Saclay, Versailles, France
| | - Adeline Gasser
- Infection et Inflammation (2I), INSERM U1173, UVSQ-Université Paris-Saclay, Versailles, France
| | - Stéphane Vinit
- END-ICAP, INSERM U1179, UVSQ-Université Paris-Saclay, Versailles, France
| | - Arnaud Mansart
- Infection et Inflammation (2I), INSERM U1173, UVSQ-Université Paris-Saclay, Versailles, France
| |
Collapse
|
16
|
Escobar AP, Bonansco C, Cruz G, Dagnino-Subiabre A, Fuenzalida M, Negrón I, Sotomayor-Zárate R, Martínez-Pinto J, Jorquera G. Central and Peripheral Inflammation: A Common Factor Causing Addictive and Neurological Disorders and Aging-Related Pathologies. Int J Mol Sci 2023; 24:10083. [PMID: 37373230 PMCID: PMC10298583 DOI: 10.3390/ijms241210083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Many diseases and degenerative processes affecting the nervous system and peripheral organs trigger the activation of inflammatory cascades. Inflammation can be triggered by different environmental conditions or risk factors, including drug and food addiction, stress, and aging, among others. Several pieces of evidence show that the modern lifestyle and, more recently, the confinement associated with the COVID-19 pandemic have contributed to increasing the incidence of addictive and neuropsychiatric disorders, plus cardiometabolic diseases. Here, we gather evidence on how some of these risk factors are implicated in activating central and peripheral inflammation contributing to some neuropathologies and behaviors associated with poor health. We discuss the current understanding of the cellular and molecular mechanisms involved in the generation of inflammation and how these processes occur in different cells and tissues to promote ill health and diseases. Concomitantly, we discuss how some pathology-associated and addictive behaviors contribute to worsening these inflammation mechanisms, leading to a vicious cycle that promotes disease progression. Finally, we list some drugs targeting inflammation-related pathways that may have beneficial effects on the pathological processes associated with addictive, mental, and cardiometabolic illnesses.
Collapse
Affiliation(s)
- Angélica P. Escobar
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Christian Bonansco
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Gonzalo Cruz
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Alexies Dagnino-Subiabre
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Marco Fuenzalida
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ignacio Negrón
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Ramón Sotomayor-Zárate
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
| | - Jonathan Martínez-Pinto
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gonzalo Jorquera
- Centro de Neurobiología y Fisiopatología Integrativa (CENFI), Instituto de Fisiología, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 2360102, Chile; (A.P.E.); (C.B.); (G.C.); (M.F.); (I.N.); (R.S.-Z.)
- Instituto de Nutrición y Tecnología de los Alimentos (INTA), Universidad de Chile, Santiago 7830490, Chile
| |
Collapse
|
17
|
Li Puma DD, Colussi C, Bandiera B, Puliatti G, Rinaudo M, Cocco S, Paciello F, Re A, Ripoli C, De Chiara G, Bertozzi A, Palamara AT, Piacentini R, Grassi C. Interleukin 1β triggers synaptic and memory deficits in Herpes simplex virus type-1-infected mice by downregulating the expression of synaptic plasticity-related genes via the epigenetic MeCP2/HDAC4 complex. Cell Mol Life Sci 2023; 80:172. [PMID: 37261502 DOI: 10.1007/s00018-023-04817-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Extensive research provides evidence that neuroinflammation underlies numerous brain disorders. However, the molecular mechanisms by which inflammatory mediators determine synaptic and cognitive dysfunction occurring in neurodegenerative diseases (e.g., Alzheimer's disease) are far from being fully understood. Here we investigated the role of interleukin 1β (IL-1β), and the molecular cascade downstream the activation of its receptor, to the synaptic dysfunction occurring in the mouse model of multiple Herpes simplex virus type-1 (HSV-1) reactivations within the brain. These mice are characterized by neuroinflammation and memory deficits associated with a progressive accumulation of neurodegenerative hallmarks (e.g., amyloid-β protein and tau hyperphosphorylation). Here we show that mice undergone two HSV-1 reactivations in the brain exhibited increased levels of IL-1β along with significant alterations of: (1) cognitive performances; (2) hippocampal long-term potentiation; (3) expression synaptic-related genes and pre- and post-synaptic proteins; (4) dendritic spine density and morphology. These effects correlated with activation of the epigenetic repressor MeCP2 that, in association with HDAC4, affected the expression of synaptic plasticity-related genes. Specifically, in response to HSV-1 infection, HDAC4 accumulated in the nucleus and promoted MeCP2 SUMOylation that is a post-translational modification critically affecting the repressive activity of MeCP2. The blockade of IL-1 receptors by the specific antagonist Anakinra prevented the MeCP2 increase and the consequent downregulation of gene expression along with rescuing structural and functional indices of neurodegeneration. Collectively, our findings provide novel mechanistic evidence on the role played by HSV-1-activated IL-1β signaling pathways in synaptic deficits leading to cognitive impairment.
Collapse
Affiliation(s)
- Domenica Donatella Li Puma
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Claudia Colussi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Bruno Bandiera
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Giulia Puliatti
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Marco Rinaudo
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Sara Cocco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Fabiola Paciello
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Agnese Re
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
| | - Cristian Ripoli
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| | - Giovanna De Chiara
- Institute of Translational Pharmacology, National Research Council (CNR), 00133, Rome, Italy
| | - Alessia Bertozzi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Department of Engineering, Istituto di Analisi dei Sistemi ed Informatica "Antonio Ruberti", National Research Council, 00185, Rome, Italy
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore Di Sanità, 00161, Rome, Italy
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Cenci Bolognetti Foundation, 00185, Rome, Italy
| | - Roberto Piacentini
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy.
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy.
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, 00168, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168, Rome, Italy
| |
Collapse
|
18
|
Marciante AB, Mitchell GS. Mild inflammation impairs acute intermittent hypoxia-induced phrenic long-term facilitation by a spinal adenosine-dependent mechanism. J Neurophysiol 2023; 129:799-806. [PMID: 36883762 PMCID: PMC10069977 DOI: 10.1152/jn.00035.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Inflammation undermines neuroplasticity, including serotonin-dependent phrenic long-term facilitation (pLTF) following moderate acute intermittent hypoxia (mAIH: 3, 5-min episodes, arterial Po2: 40-50 mmHg; 5-min intervals). Mild inflammation elicited by a low dose of the TLR-4 receptor agonist, lipopolysaccharide (LPS; 100 µg/kg, ip), abolishes mAIH-induced pLTF by unknown mechanisms. In the central nervous system, neuroinflammation primes glia, triggering ATP release and extracellular adenosine accumulation. As spinal adenosine 2 A (A2A) receptor activation impairs mAIH-induced pLTF, we hypothesized that spinal adenosine accumulation and A2A receptor activation are necessary in the mechanism whereby LPS impairs pLTF. We report that 24 h after LPS injection in adult male Sprague Dawley rats: 1) adenosine levels increase in ventral spinal segments containing the phrenic motor nucleus (C3-C5; P = 0.010; n = 7/group) and 2) cervical spinal A2A receptor inhibition (MSX-3, 10 µM, 12 µL intrathecal) rescues mAIH-induced pLTF. In LPS vehicle-treated rats (saline, ip), MSX-3 enhanced pLTF versus controls (LPS: 110 ± 16% baseline; controls: 53 ± 6%; P = 0.002; n = 6/group). In LPS-treated rats, pLTF was abolished as expected (4 ± 6% baseline; n = 6), but intrathecal MSX-3 restored pLTF to levels equivalent to MSX-3-treated control rats (120 ± 14% baseline; P < 0.001; n = 6; vs. LPS controls with MSX-3: P = 0.539). Thus, inflammation abolishes mAIH-induced pLTF by a mechanism that requires increased spinal adenosine levels and A2A receptor activation. As repetitive mAIH is emerging as a treatment to improve breathing and nonrespiratory movements in people with spinal cord injury or ALS, A2A inhibition may offset undermining effects of neuroinflammation associated with these neuromuscular disorders.NEW & NOTEWORTHY Mild inflammation undermines motor plasticity elicited by mAIH. In a model of mAIH-induced respiratory motor plasticity (phrenic long-term facilitation; pLTF), we report that inflammation induced by low-dose lipopolysaccharide undermines mAIH-induced pLTF by a mechanism requiring increased cervical spinal adenosine and adenosine 2 A receptor activation. This finding advances the understanding of mechanisms impairing neuroplasticity, potentially undermining the ability to compensate for the onset of lung/neural injury or to harness mAIH as a therapeutic modality.
Collapse
Affiliation(s)
- Alexandria B Marciante
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy & McKnight Brain Institute, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
19
|
Non-competitive AMPA glutamate receptors antagonism by perampanel as a strategy to counteract hippocampal hyper-excitability and cognitive deficits in cerebral amyloidosis. Neuropharmacology 2023; 225:109373. [PMID: 36502868 DOI: 10.1016/j.neuropharm.2022.109373] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 11/26/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Pathological accumulation of Aβ oligomers has been linked to neuronal networks hyperexcitability, potentially underpinned by glutamatergic AMPA receptors (AMPARs) dysfunction. We aimed to investigate whether the non-competitive block of AMPARs was able to counteract the alteration of hippocampal epileptic threshold, and of synaptic plasticity linked to Aβ oligomers accumulation, being this glutamate receptor a valuable specific therapeutic target. In this work, we showed that the non-competitive AMPARs antagonist perampanel (PER) which, per se, did not affect physiological synaptic transmission, was able to counteract Aβ-induced hyperexcitability. Moreover, AMPAR antagonism was able to counteract Aβ-induced hippocampal LTP impairment and hippocampal-based cognitive deficits in Aβ oligomers-injected mice, while retaining antiseizure efficacy. Beside this, AMPAR antagonism was also able to reduce the increased expression of proinflammatory cytokines in this mice model, also suggesting the presence of an anti-inflammatory activity. Thus, targeting AMPARs might be a valuable strategy to reduce both hippocampal networks hyperexcitability and synaptic plasticity deficits induced by Aβ oligomers accumulation.
Collapse
|
20
|
Qin Z, Shi DD, Li W, Cheng D, Zhang YD, Zhang S, Tsoi B, Zhao J, Wang Z, Zhang ZJ. Berberine ameliorates depression-like behaviors in mice via inhibiting NLRP3 inflammasome-mediated neuroinflammation and preventing neuroplasticity disruption. J Neuroinflammation 2023; 20:54. [PMID: 36859349 PMCID: PMC9976521 DOI: 10.1186/s12974-023-02744-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
OBJECTIVES Neuroinflammation has been suggested that affects the processing of depression. There is renewed interest in berberine owing to its anti-inflammatory effects. Herein, we investigated whether berberine attenuate depressive-like behaviors via inhibiting NLRP3 inflammasome activation in mice model of depression. METHODS Adult male C57BL/6N mice were administrated corticosterone (CORT, 20 mg/kg/day) for 35 days. Two doses (100 mg/kg/day and 200 mg/kg/day) of berberine were orally administrated from day 7 until day 35. Behavioral tests were performed to measure the depression-like behaviors alterations. Differentially expressed gene analysis was performed for RNA-sequencing data in the prefrontal cortex. NLRP3 inflammasome was measured by quantitative reverse transcription polymerase chain reaction, western blotting, and immunofluorescence labeling. The neuroplasticity and synaptic function were measured by immunofluorescence labeling, Golgi-Cox staining, transmission electron microscope, and whole-cell patch-clamp recordings. RESULTS The results of behavioral tests demonstrated that berberine attenuated the depression-like behaviors induced by CORT. RNA-sequencing identified that NLRP3 was markedly upregulated after long-term CORT exposure. Berberine reversed the concentrations of peripheral and brain cytokines, NLRP3 inflammasome elicited by CORT in the prefrontal cortex and hippocampus were decreased by berberine. In addition, the lower frequency of neuronal excitation as well as the dendritic spine reduction were reversed by berberine treatment. Together, berberine increases hippocampal adult neurogenesis and synaptic plasticity induced by CORT. CONCLUSION The anti-depressants effects of berberine were accompanied by reduced the neuroinflammatory response via inhibiting the activation of NLRP3 inflammasome and rescued the neuronal deterioration via suppression of impairments in synaptic plasticity and neurogenesis.
Collapse
Affiliation(s)
- Zongshi Qin
- grid.11135.370000 0001 2256 9319Peking University Clinical Research Institute, Peking University, Beijing, China ,grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dong-Dong Shi
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqi Li
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Dan Cheng
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ying-Dan Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- grid.16821.3c0000 0004 0368 8293Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bun Tsoi
- grid.16890.360000 0004 1764 6123Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jia Zhao
- grid.194645.b0000000121742757School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhang-Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
21
|
Keshri N, Nandeesha H. Dysregulation of Synaptic Plasticity Markers in Schizophrenia. Indian J Clin Biochem 2023; 38:4-12. [PMID: 36684500 PMCID: PMC9852406 DOI: 10.1007/s12291-022-01068-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/05/2022] [Indexed: 01/25/2023]
Abstract
Schizophrenia is a mental disorder characterized by cognitive impairment resulting in compromised quality of life. Since the regulation of synaptic plasticity has functional implications in various aspects of cognition such as learning, memory, and neural circuit maturation, the dysregulation of synaptic plasticity is considered as a pathobiological feature of schizophrenia. The findings from our recently concluded studies indicate that there is an alteration in levels of synaptic plasticity markers such as neural cell adhesion molecule-1 (NCAM-1), Neurotropin-3 (NT-3) and Matrix-mettaloproteinase-9 (MMP-9) in schizophrenia patients. The objective of the present article is to review the role of markers of synaptic plasticity in schizophrenia. PubMed database (http;//www.ncbi.nlm.nih.gov/pubmed) was used to perform an extensive literature search using the keywords schizophrenia and synaptic plasticity. We conclude that markers of synaptic plasticity are altered in schizophrenia and may lead to complications of schizophrenia including cognitive dysfunction.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry, JIPMER, Puducherry, 605006 India
| | | |
Collapse
|
22
|
Ghaderi S, Komaki A, Salehi I, Basir Z, Rashno M. Possible mechanisms involved in the protective effects of chrysin against lead-induced cognitive decline: An in vivo study in a rat model. Biomed Pharmacother 2023; 157:114010. [PMID: 36402029 DOI: 10.1016/j.biopha.2022.114010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 11/17/2022] Open
Abstract
Lead (Pb) is a highly poisonous environmental pollutant that can induce cognitive decline. Chrysin, a natural flavonoid compound, has anti-oxidative, anti-inflammatory, and neuroprotective properties in different neurodegenerative disorders. The present study was designed to examine the putative effects of chrysin against Pb-induced cognitive impairment and the possible involved mechanisms. Adult male Wistar rats were exposed to Pb acetate (500 ppm in standard drinking water) either alone or in combination with daily oral administration of chrysin (30 mg/kg) for eight consecutive weeks. During the eight-week period of the study, the cognitive capacity of the rats was evaluated by employing both novel object recognition and passive avoidance tests. On day 56, hippocampal synaptic plasticity (long-term potentiation; LTP) was recorded in perforant path-dentate gyrus (PP-DG) synapses to assess field excitatory postsynaptic potentials (fEPSPs) slope and population spike (PS) amplitude. Subsequently, pro- and anti-inflammatory cytokines and histological changes were evaluated in the cerebral cortex and hippocampus of the rats. Moreover, Pb levels in blood and brain tissues were assessed. The results showed that Pb exposure causes cognitive decline, inhibition of hippocampal LTP induction, imbalance of pro- and anti-inflammatory cytokines, enhancement of Pb levels in blood and brain tissues, and neuronal loss. However, chrysin treatment improved cognitive dysfunction, ameliorated hippocampal LTP impairment, modulated inflammatory status, reduced Pb concentration, and prevented neuronal loss in the Pb-exposed rats. The results suggest that chrysin alleviates Pb-induced cognitive deficit, possibly through mitigation of hippocampal synaptic dysfunction, modulation of inflammatory status, reduction of Pb concentration, and prevention of neuronal loss.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran; Asadabad School of Medical Sciences, Asadabad, Iran
| | - Zahra Basir
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Masome Rashno
- Asadabad School of Medical Sciences, Asadabad, Iran; Student Research Committee, Asadabad School of Medical Sciences, Asadabad, Iran.
| |
Collapse
|
23
|
Zhang Y, Zhang M. Systemic inflammatory response syndrome-mediated neuronal plasticity in the central nervous system contributes to neurocognitive complications of extracorporeal membrane oxygenation. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2154857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Ying Zhang
- Department of Cardiovascular Surgery, Xi’an International Medical Center Hospital, Xi’an, People’s Republic of China
| | - Ming Zhang
- Department of Basic Medical Laboratory, The General Hospital of Western Theater Command, Chengdu, People’s Republic of China
| |
Collapse
|
24
|
Wu Z, Huang J, Bai X, Wang Q, Wang F, Xu J, Tang H, Yin C, Wang Y, Yu F, Zhang H. Ginsenoside-Rg1 mitigates cardiac arrest-induced cognitive damage by modulating neuroinflammation and hippocampal plasticity. Eur J Pharmacol 2022; 938:175431. [PMID: 36463944 DOI: 10.1016/j.ejphar.2022.175431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Ginsenoside-Rg1 can effectively ameliorate mental disorders, but whether ginsenoside-Rg1 plays a neuroprotective role in cardiac arrest and cardiopulmonary resuscitation (CA/CPR)-induced cognitive impairment remains unclear. In this study, a 5-min asphyxia-based CA/CPR rat model was established to explore the mechanisms underlying the effects of ginsenoside-Rg1 (40 mg·kg-1·d-1, ip, 14 days) on its cognitive alterations. These CA/CPR rats displayed spatial learning and memory impairment in the Morris water maze, as reflected in the compromised basal synaptic transmission and long-term potentiation (LTP) at the Schaffer collateral of hippocampal CA1 area in vivo electrophysiology, whereas the ginsenoside-Rg1 remarkably mitigated these alterations. Next, we found that ginsenoside-Rg1 inhibited hippocampal neuroinflammation by alleviating the CA/CPR-induced hippocampal activation of microglia and astrocytes and the overexpression of related proinflammatory cytokines interleukin-1β (IL-1β) and tumour necrosis factor-α (TNF-α). In addition, ginsenoside-Rg1 improved CA/CPR-induced hippocampal neuronal apoptosis, dendritic spines and synaptic ultrastructure defects as associated with the upregulation of the key synaptic regulatory proteins. Furthermore, ginsenoside-Rg1 could ameliorate CA/CPR-induced aberrant expression of the key regulators of hippocampal glutamate signaling pathways, excitatory amino acid transporter 2 (EAAT2), excitatory amino acid transporter 1 (EAAT1), Glutamine Synthetase (GS), GluN2B, and glutamate. In conclusion, ginsenoside-Rg1 exerts its neuroprotective effects by ameliorating hippocampus-dependent neuroglia activation-mediated neuroinflammation and neuroplasticity deficits, shedding new light on the therapeutic intervention of CA/CPR-related cognitive disorders.
Collapse
Affiliation(s)
- Zhangbi Wu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jialin Huang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Xiaojie Bai
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Qunan Wang
- School of Public Health, Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes/Anhui Provincial Key Laboratory of Population Health and Aristogenics, Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei, 230032, China
| | - Fen Wang
- Department of Geriatric Endocrinology, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Jun Xu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Huiping Tang
- Hefei National Laboratory for Physical Sciences at the Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China; Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Chunying Yin
- Cryo-EM Center, University of Science and Technology of China, Hefei, 230027, China
| | - Yu Wang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Feng Yu
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Hong Zhang
- Department of Emergency Medicine, the First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
25
|
Transcriptome Profiling in the Hippocampi of Mice with Experimental Autoimmune Encephalomyelitis. Int J Mol Sci 2022; 23:ijms232314829. [PMID: 36499161 PMCID: PMC9738199 DOI: 10.3390/ijms232314829] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS), approximates the key histopathological, clinical, and immunological features of MS. Hippocampal dysfunction in MS and EAE causes varying degrees of cognitive and emotional impairments and synaptic abnormalities. However, the molecular alterations underlying hippocampal dysfunctions in MS and EAE are still under investigation. The purpose of this study was to identify differentially expressed genes (DEGs) in the hippocampus of mice with EAE in order to ascertain potential genes associated with hippocampal dysfunction. Gene expression in the hippocampus was analyzed by RNA-sequencing and validated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Gene expression analysis revealed 1202 DEGs; 1023 were upregulated and 179 were downregulated in the hippocampus of mice with EAE (p-value < 0.05 and fold change >1.5). Gene ontology (GO) analysis showed that the upregulated genes in the hippocampi of mice with EAE were associated with immune system processes, defense responses, immune responses, and regulation of immune responses, whereas the downregulated genes were related to learning or memory, behavior, and nervous system processes in the GO biological process. The expressions of hub genes from the search tool for the retrieval of interacting genes/proteins (STRING) analysis were validated by RT-qPCR. Additionally, gene set enrichment analysis showed that the upregulated genes in the hippocampus were associated with inflammatory responses: interferon-γ responses, allograft rejection, interferon-α responses, IL6_JAK_STAT3 signaling, inflammatory responses, complement, IL2_STAT5 signaling, TNF-α signaling via NF-κB, and apoptosis, whereas the downregulated genes were related to synaptic plasticity, dendritic development, and development of dendritic spine. This study characterized the transcriptome pattern in the hippocampi of mice with EAE and signaling pathways underpinning hippocampal dysfunction. However, further investigation is needed to determine the applicability of these findings from this rodent model to patients with MS. Collectively, these results indicate directions for further research to understand the mechanisms behind hippocampal dysfunction in EAE.
Collapse
|
26
|
Brief Maternal Separation Promotes Resilience to Anxiety-like and Depressive-like Behaviors in Female C57BL/6J Offspring with Imiquimod-Induced Psoriasis. Brain Sci 2022; 12:brainsci12091250. [PMID: 36138986 PMCID: PMC9497052 DOI: 10.3390/brainsci12091250] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022] Open
Abstract
Background: Psoriasis is a common chronic inflammatory skin disease that often causes depression. Early life experience affects brain development and relates to depression. Whether the effect of different MS protocols in early life on anxiety-like and depressive-like behaviors in female offspring with imiquimod (IMQ)-induced psoriasis is unknown. Methods: C57BL/6J mice were subjected to no separation (NMS), brief MS (15 min/day, MS15) or long MS (180 min/day, MS180) from postpartum days (PPD) 1 to PPD21. Then, 5% imiquimod cream was applied for 8 days in adults. Behavioral tests, skin lesions and hippocampal protein expression were also assessed. Results: We found significant psoriasis-like skin lesions in female mice following IMQ application, and mice showed anxiety-like and depressive-like behaviors. Further, increased microglial activation and decreased expression of neuroplasticity were detected in mice following IMQ application. However, after MS15 in early life, mice showed decreased anxiety-like and depressive-like behaviors, indicating resilience. Further, inhibited hippocampal neuroinflammation and increased neuroplasticity were detected. Conclusions: Collectively, this study confirms that brief MS confers resilience to the behavior deficits in female offspring with IMQ-induced psoriasis and reverses the activation of neuroinflammation and the damage of neuroplasticity injury.
Collapse
|
27
|
Weinstock ZL, Benedict RHB. Cognitive Relapse in Multiple Sclerosis: New Findings and Directions for Future Research. NEUROSCI 2022; 3:510-520. [PMID: 39483431 PMCID: PMC11523726 DOI: 10.3390/neurosci3030036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/18/2022] [Indexed: 11/03/2024] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, demyelinating disease of the central nervous system, often presenting with brain atrophy and cognitive impairment (CI). In the relapsing-remitting phenotype, cognitive performance is increasingly recognized to decline acutely during MS relapse, with varying degrees of recovery afterwards. Therefore, CI in MS may result from incomplete recovery from episodes of so-called "cognitive relapse", gradual neurodegeneration, or both. Among a variety of validated measures of cognitive performance, the Symbol Digit Modalities Test (SDMT) represents the most sensitive measure of cognitive decline and is easily translated to clinical practice. In fact, cognitive relapse identified using the SDMT has been reported in clinically relapsing cohorts as well as in individuals with no other neurological signs, suggesting that routine cognitive assessment may be necessary to fully appreciate the extent of a patient's disease activity. The aim of this narrative review is as follows: (1) to provide the historical context for neuropsychological assessment in MS, (2) to provide a summation of key studies describing the cognitive relapse phenomenon, and (3) to discuss current gaps in our knowledge and highlight avenues for future research.
Collapse
Affiliation(s)
- Zachary L. Weinstock
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—State University of New York, Buffalo, NY 14203, USA
| | - Ralph H. B. Benedict
- Jacobs MS Center for Treatment and Research, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo—State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|
28
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
29
|
Suresh P, Jasmin S, Yen Y, Hsu HJ, Varinthra P, Pairojana T, Chen CC, Liu IY. Attenuation of HECT-E3 ligase expression rescued memory deficits in 3xTg-AD mice. Front Aging Neurosci 2022; 14:916904. [PMID: 35966798 PMCID: PMC9372289 DOI: 10.3389/fnagi.2022.916904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most common progressive neurodegenerative disorders that cause deterioration of cognitive functions. Recent studies suggested that the accumulation of inflammatory molecules and impaired protein degradation mechanisms might both play a critical role in the progression of AD. Autophagy is a major protein degradation pathway that can be controlled by several HECT-E3 ligases, which then regulates the expression of inflammatory molecules. E3 ubiquitin ligases are known to be upregulated in several neurodegenerative diseases. Here, we studied the expressional change of HECT-E3 ligase using M01 on autophagy and inflammasome pathways in the context of AD pathogenesis. Our results demonstrated that the M01 treatment reversed the working memory deficits in 3xTg-AD mice when examined with the T-maze and reversal learning with the Morris water maze. Additionally, the electrophysiology recordings indicated that M01 treatment enhanced the long-term potentiation in the hippocampus of 3xTg-AD mice. Together with the improved memory performance, the expression levels of the NLRP3 inflammasome protein were decreased. On the other hand, autophagy-related molecules were increased in the hippocampus of 3xTg-AD mice. Furthermore, the protein docking analysis indicated that the binding affinity of M01 to the WWP1 and NEDD4 E3 ligases was the highest among the HECT family members. The western blot analysis also confirmed the decreased expression level of NEDD4 protein in the M01-treated 3xTg-AD mice. Overall, our results demonstrate that the modulation of HECT-E3 ligase expression level can be used as a strategy to treat early memory deficits in AD by decreasing NLRP3 inflammasome molecules and increasing the autophagy pathway.
Collapse
Affiliation(s)
- Pavithra Suresh
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Sureka Jasmin
- Department of Molecular Biology and Human Genetics, Tzu Chi University, Hualien City, Taiwan
| | - Yun Yen
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei City, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei City, Taiwan
- Cancer Center, Taipei Municipal WanFang Hospital, Taipei City, Taiwan
- Center for Cancer Translational Research, Tzu Chi University, Hualien City, Taiwan
| | - Hao-Jen Hsu
- Department of Life Sciences, Tzu Chi University, Hualien City, Taiwan
| | | | - Tanita Pairojana
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
| | - Chien-Chang Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Ingrid Y. Liu
- Institute of Medical Sciences, Tzu Chi University, Hualien City, Taiwan
- *Correspondence: Ingrid Y. Liu
| |
Collapse
|
30
|
Orekhova K, Centelleghe C, Di Guardo G, Graïc JM, Cozzi B, Trez D, Verin R, Mazzariol S. Systematic validation and assessment of immunohistochemical markers for central nervous system pathology in cetaceans, with emphasis on auditory pathways. PLoS One 2022; 17:e0269090. [PMID: 35648776 PMCID: PMC9159615 DOI: 10.1371/journal.pone.0269090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/14/2022] [Indexed: 12/23/2022] Open
Abstract
Cetacean neuropathology is a developing field that aims to assess structural and neurochemical changes involved in neurodegenerative, infectious and traumatic processes, however markers used previously in cetaceans have rarely undergone systematic validation. This is a prerequisite to investigating the potential damage inflicted on the cetacean auditory system by anthropogenic noise. In order to assess apoptotic, neuroinflammatory and structural aberrations on a protein level, the baseline expression of biomarker proteins has to be characterized, implementing a systematic approach to validate the use of anti-human and anti-laboratory animal antibodies in dolphin tissues. This approach was taken to study 12 different antibodies associated with hypoxic-ischemic, inflammatory, plastic and excitatory-inhibitory changes implicated in acoustic trauma within the ventral cochlear nuclei and inferior colliculi of 20 bottlenose dolphins (Tursiops truncatus). Out of the 12 tested antibodies, pro-apoptotic protease factor 1 (Apaf-1), diacylglycerolkinase-ζ (DGK-ζ), B-cell lymphoma related protein 2 (Bcl-2), amyloid-β peptide (Aβ) and neurofilament 200 (NF200) were validated employing Western blot analyses and immunohistochemistry (IHC). The results of the validation process indicate specific patterns of immunoreactivity that are comparable to those reported in other mammals, thus suggesting a key panel of IHC biomarkers of pathological processes in the cetacean brain. As a consequence, the antibodies tested in this study may constitute a valid tool for supporting existing diagnostic methods in neurological diseases. The approach of systematic validation of IHC markers in cetaceans is proposed as a standard practice, in order for results to be transparent, reliable and comparable.
Collapse
Affiliation(s)
- Ksenia Orekhova
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
- * E-mail:
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Giovanni Di Guardo
- Faculty of Veterinary Medicine, University of Teramo, Località Piano d’Accio, Teramo, Italy
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Davide Trez
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Ranieri Verin
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| | - Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Legnaro, Padova, Italy
| |
Collapse
|
31
|
Osterlund Oltmanns JR, Schaeffer EA, Goncalves Garcia M, Donaldson TN, Acosta G, Sanchez LM, Davies S, Savage DD, Wallace DG, Clark BJ. Sexually dimorphic organization of open field behavior following moderate prenatal alcohol exposure. Alcohol Clin Exp Res 2022; 46:861-875. [PMID: 35315075 PMCID: PMC9117438 DOI: 10.1111/acer.14813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/03/2022] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) can produce deficits in a wide range of cognitive functions but is especially detrimental to behaviors requiring accurate spatial information processing. In open field environments, spatial behavior is organized such that animals establish "home bases" marked by long stops focused around one location. Progressions away from the home base are circuitous and slow, while progressions directed toward the home base are non-circuitous and fast. The impact of PAE on the organization of open field behavior has not been experimentally investigated. METHODS In the present study, adult female and male rats with moderate PAE or saccharin exposure locomoted a circular high walled open field for 30 minutes under lighted conditions. RESULTS The findings indicate that PAE and sex influence the organization of open field behavior. Consistent with previous literature, PAE rats exhibited greater locomotion in the open field. Novel findings from the current study indicate that PAE and sex also impact open field measures specific to spatial orientation. While all rats established a home base on the periphery of the open field, PAE rats, particularly males, exhibited significantly less clustered home base stopping with smaller changes in heading between stops. PAE also impaired progression measures specific to distance estimation, while sex alone impacted progression measures specific to direction estimation. CONCLUSIONS These findings support the conclusion that adult male rats have an increased susceptibility to the effects of PAE on the organization of open field behavior.
Collapse
Affiliation(s)
| | - Ericka A Schaeffer
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Tia N Donaldson
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Gabriela Acosta
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Lilliana M Sanchez
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Suzy Davies
- Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Daniel D Savage
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| | - Douglas G Wallace
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Benjamin J Clark
- Department of Psychology, The University of New Mexico, Albuquerque, New Mexico, USA.,Department of Neurosciences, The University of New Mexico, Albuquerque, New Mexico, USA
| |
Collapse
|
32
|
Monascus purpureus Fermented Product Ameliorates Learning and Memory Impairment in the Amyloid Precursor Protein Transgenic J20 Mouse Model of Alzheimer’s Disease. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8050193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Evidence suggests that various hallmarks such as amyloid overproduction, tau dysfunction, insulin resistance/diabetic mechanisms, and neuroinflammation are associated with Alzheimer’s disease (AD). This study investigated the bioactive functions of ankaflavin (AK) and monascin (MS) in the fermented product of Monascus purpureus and found their abilities to ameliorate AD by modifying several important pathogenic factors including improved cognitive function, reversed behavioral deficits, reduced hippocampal β-amyloid peptide (Aβ) burden, decreased tau hyper-phosphorylation, and reduced neuroinflammation in the J20 mouse model of AD compared to wild type. Monascus purpureus fermented product (MPFP) was suggested to act as a peroxisome proliferator-activated receptor (PPAR)-γ agonist and it was compared against the action of a well-known anti-diabetic PPAR-γ agonist rosiglitazone. MPFP could be a promising therapeutic strategy for disease modification in AD.
Collapse
|
33
|
Han YMY, Yau SY, Chan MMY, Wong CK, Chan AS. Altered Cytokine and BDNF Levels in Individuals with Autism Spectrum Disorders. Brain Sci 2022; 12:brainsci12040460. [PMID: 35447993 PMCID: PMC9026457 DOI: 10.3390/brainsci12040460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
Previous studies have shown that immunological factors are involved in the pathogenesis of autism spectrum disorders (ASDs). The present study examined whether immunological abnormalities are associated with cognitive and behavioral deficits in children with ASD and whether children with ASD show different immunological biomarkers and brain-derived neurotrophic factor BDNF levels than typically developing (TD) children. Sixteen children with TD and 18 children with ASD, aged 6–18 years, voluntarily participated in the study. Participants’ executive functions were measured using neuropsychological tests, and behavioral measures were measured using parent ratings. Immunological measures were assessed by measuring the participants’ blood serum levels of chemokine ligand 2 (CCL2) and chemokine ligand 5 (CCL5). Children with ASD showed greater deficits in cognitive functions as well as altered levels of immunological measures when compared to TD children, and their cognitive functions and behavioral deficits were significantly associated with increased CCL5 levels and decreased BDNF levels. These results provide evidence to support the notion that altered immune functions and neurotrophin deficiency are involved in the pathogenesis of ASD.
Collapse
Affiliation(s)
- Yvonne M. Y. Han
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
- Correspondence: ; Tel.: +852-2766-7578
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Melody M. Y. Chan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China; (S.-Y.Y.); (M.M.Y.C.)
| | - Chun-Kwok Wong
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China;
| | - Agnes S. Chan
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong SAR, China;
| |
Collapse
|
34
|
van den Heuvel LL, Suliman S, Bröcker E, Kilian S, Stalder T, Kirschbaum C, Seedat S. The association between hair cortisol levels, inflammation and cognitive functioning in females. Psychoneuroendocrinology 2022; 136:105619. [PMID: 34896739 DOI: 10.1016/j.psyneuen.2021.105619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/09/2021] [Accepted: 12/01/2021] [Indexed: 01/31/2023]
Abstract
Glucocorticoids and inflammatory markers can influence cognitive function. Hair cortisol concentrations (HCC) reflect longer-term hypothalamic pituitary adrenal (HPA) axis function and combined with immune markers can provide insights into how HPA-axis and immune pathways interact to influence cognition. We examined the association between HCC and high sensitivity c-reactive protein (hsCRP) levels, as well as the interaction between HCC and hsCRP, and cognitive function in a sample of 153 females, aged between 18 and 79 years, from a cross-sectional case-control study (SHARED ROOTS), conducted in Cape Town, South Africa from May 2014 until June 2017. We examined whether HCC and hsCRP levels were associated with performance on neurocognitive tests in both unadjusted and adjusted linear regression models. HCC demonstrated a significant inverse association with verbal working memory in both unadjusted (p = 0.010) and adjusted (p = 0.016) analyses. There were significant interactions between HCC and hsCRP on verbal intelligence (p = 0.016), language (p = 0.023) and executive function (p = 0.008) scores, such that at low HCC hsCRP levels were positively associated with language (p = 0.020) and executive function (p = 0.006) scores and at high HCC hsCRP levels were inversely associated with verbal intelligence (p = 0.034) scores. Though the results did not survive correction for multiple comparisons, they suggest stress-related neuroendocrine effects on working memory impairment. Furthermore, under physiological conditions and low long-term HCC, there may be positive effects of peripheral inflammatory markers on cognitive performance, whereas there may be detrimental effects when the HPA-axis is dysregulated as reflected by high long-term cortisol output.
Collapse
Affiliation(s)
- Leigh Luella van den Heuvel
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sharain Suliman
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Erine Bröcker
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Sanja Kilian
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa.
| | - Tobias Stalder
- Clinical Psychology and Psychotherapy, University of Siegen, Obergraben 23, Siegen 57072, Germany.
| | - Clemens Kirschbaum
- Biological Psychology, TU Dresden, Zellescher Weg 19, Dresden D-01062, Germany.
| | - Soraya Seedat
- Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie van Zijl Drive, Tygerberg, Cape Town 7505, South Africa; South African Medical Research Council / Stellenbosch University Genomics of Brain Disorders Research Unit, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Research Chair in Posttraumatic Stress Disorder, Department of Psychiatry, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
35
|
Abstract
The last century was characterized by a significant scientific effort aimed at unveiling the neurobiological basis of learning and memory. Thanks to the characterization of the mechanisms regulating the long-term changes of neuronal synaptic connections, it was possible to understand how specific neural networks shape themselves during the acquisition of memory traces or complex motor tasks. In this chapter, we will summarize the mechanisms underlying the main forms of synaptic plasticity taking advantage of the studies performed in the hippocampus and in the nucleus striatum, key brain structures that play a crucial role in cognition. Moreover, we will discuss how the molecular pathways involved in the induction of physiologic synaptic long-term changes could be disrupted during neurodegenerative and neuroinflammatory disorders, highlighting the translational relevance of this intriguing research field.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Antonio de Iure
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy
| | - Barbara Picconi
- IRCCS San Raffaele Roma, Laboratory of Experimental Neurophysiology, Rome, Italy; University San Raffaele, Rome, Italy.
| |
Collapse
|
36
|
Di Filippo M, Mancini A, Bellingacci L, Gaetani L, Mazzocchetti P, Zelante T, La Barbera L, De Luca A, Tantucci M, Tozzi A, Durante V, Sciaccaluga M, Megaro A, Chiasserini D, Salvadori N, Lisetti V, Portaccio E, Costa C, Sarchielli P, Amato MP, Parnetti L, Viscomi MT, Romani L, Calabresi P. Interleukin-17 affects synaptic plasticity and cognition in an experimental model of multiple sclerosis. Cell Rep 2021; 37:110094. [PMID: 34879272 DOI: 10.1016/j.celrep.2021.110094] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/06/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022] Open
Abstract
Cognitive impairment (CI) is a disabling concomitant of multiple sclerosis (MS) with a complex and controversial pathogenesis. The cytokine interleukin-17A (IL-17A) is involved in the immune pathogenesis of MS, but its possible effects on synaptic function and cognition are still largely unexplored. In this study, we show that the IL-17A receptor (IL-17RA) is highly expressed by hippocampal neurons in the CA1 area and that exposure to IL-17A dose-dependently disrupts hippocampal long-term potentiation (LTP) through the activation of its receptor and p38 mitogen-activated protein kinase (MAPK). During experimental autoimmune encephalomyelitis (EAE), IL-17A overexpression is paralleled by hippocampal LTP dysfunction. An in vivo behavioral analysis shows that visuo-spatial learning abilities are preserved when EAE is induced in mice lacking IL-17A. Overall, this study suggests a key role for the IL-17 axis in the neuro-immune cross-talk occurring in the hippocampal CA1 area and its potential involvement in synaptic dysfunction and MS-related CI.
Collapse
MESH Headings
- Animals
- Behavior, Animal
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- Cognition
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/physiopathology
- Encephalomyelitis, Autoimmune, Experimental/psychology
- Interleukin-17/genetics
- Interleukin-17/metabolism
- Long-Term Potentiation
- Male
- Mice, Biozzi
- Mice, Inbred C57BL
- Mice, Knockout
- Neuronal Plasticity
- Receptors, Interleukin-17/genetics
- Receptors, Interleukin-17/metabolism
- Signal Transduction
- Spatial Learning
- Synapses/metabolism
- Synapses/pathology
- p38 Mitogen-Activated Protein Kinases
- Mice
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy.
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Petra Mazzocchetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Teresa Zelante
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Livia La Barbera
- Unit of Molecular Neurosciences, Department of Medicine, University Campus-Biomedico, Rome, Italy
| | - Antonella De Luca
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Michela Tantucci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Valentina Durante
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Miriam Sciaccaluga
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Alfredo Megaro
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Davide Chiasserini
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Nicola Salvadori
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Viviana Lisetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Florence, Italy
| | - Cinzia Costa
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paola Sarchielli
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Maria Teresa Viscomi
- Section of Histology and Embryology, Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luigina Romani
- Section of Pathology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Paolo Calabresi
- Neurology, Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Rome, Italy; Section of Neurology, Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
37
|
Gao J, Zhang W, Chai X, Tan X, Yang Z. Asparagine endopeptidase deletion ameliorates cognitive impairments by inhibiting proinflammatory microglial activation in MPTP mouse model of Parkinson disease. Brain Res Bull 2021; 178:120-130. [PMID: 34838642 DOI: 10.1016/j.brainresbull.2021.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022]
Abstract
In addition to motor dysfunction, cognitive impairments have been reported to occur in patients with early-stage Parkinson's disease (PD). In this study, we examined a PD mouse model induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). This treatment led to the degeneration of nigrostriatal dopaminergic neurons in mice, a phenomenon that is consistent with previous studies. Besides, spatial memory and object recognition of MPTP-treated mice were impaired, as denoted by the Morris water maze (MWM) and novel object recognition (NOR) tests, respectively. Moreover, hippocampal synaptic plasticity (long-term potentiation and depotentiation) and the levels of synaptic proteins in hippocampus were decreased after MPTP treatment. We also found that MPTP resulted in the microglial activation and an inflammatory response in the striatum and hippocampus. Mammalian asparagine endopeptidase (AEP), a cysteine lysosomal protease, is involved in the cleavage and activation of Toll-like receptors (TLRs). The deletion of AEP can inhibit TLR4 in a mouse model of Alzheimer's disease, and TLR4 is upregulated in PD, inducing microglial activation and inflammation. We found that AEP deletion provided greater resistance to the toxic effects of MPTP. AEP knockout ameliorated the cognition and the synaptic plasticity defects in the hippocampus. Furthermore, AEP deletion decreased the expression of TLR4 and reduced microglial activation and the levels of several proinflammatory cytokines. Thus, we suggest that AEP plays a role in the inflammation induced by MPTP, and TLR4 might also involve in this process. AEP deletion could be a possible treatment strategy for the cognitive deficits of PD.
Collapse
Affiliation(s)
- Jing Gao
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China; School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Wenxin Zhang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xueqing Chai
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiaoyue Tan
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China
| | - Zhuo Yang
- Medical School, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for Ministry of Education, Nankai University, Tianjin 300071, China.
| |
Collapse
|
38
|
de Paula GC, Brunetta HS, Engel DF, Gaspar JM, Velloso LA, Engblom D, de Oliveira J, de Bem AF. Hippocampal Function Is Impaired by a Short-Term High-Fat Diet in Mice: Increased Blood-Brain Barrier Permeability and Neuroinflammation as Triggering Events. Front Neurosci 2021; 15:734158. [PMID: 34803583 PMCID: PMC8600238 DOI: 10.3389/fnins.2021.734158] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Worldwide, and especially in Western civilizations, most of the staple diets contain high amounts of fat and refined carbohydrates, leading to an increasing number of obese individuals. In addition to inducing metabolic disorders, energy dense food intake has been suggested to impair brain functions such as cognition and mood control. Here we demonstrate an impaired memory function already 3 days after the start of a high-fat diet (HFD) exposure, and depressive-like behavior, in the tail suspension test, after 5 days. These changes were followed by reduced synaptic density, changes in mitochondrial function and astrocyte activation in the hippocampus. Preceding or coinciding with the behavioral changes, we found an induction of the proinflammatory cytokines TNF-α and IL-6 and an increased permeability of the blood–brain barrier (BBB), in the hippocampus. Finally, in mice treated with a TNF-α inhibitor, the behavioral and BBB alterations caused by HFD-feeding were mitigated suggesting that inflammatory signaling was critical for the changes. In summary, our findings suggest that HFD rapidly triggers hippocampal dysfunction associated with BBB disruption and neuroinflammation, promoting a progressive breakdown of synaptic and metabolic function. In addition to elucidating the link between diet and cognitive function, our results might be relevant for the comprehension of the neurodegenerative process.
Collapse
Affiliation(s)
- Gabriela Cristina de Paula
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil.,Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Henver S Brunetta
- Multicenter Graduate Program in Physiological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Daiane F Engel
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil.,Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - Joana M Gaspar
- Postgraduate Program in Biochemistry, Department of Biochemistry, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Licio A Velloso
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas, Brazil
| | - David Engblom
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden
| | - Jade de Oliveira
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Andreza Fabro de Bem
- Department of Clinical and Experimental Medicine, Faculty of Medicine and Health, Linköping University, Linköping, Sweden.,Department of Physiological Science, University of Brasília, Brasília, Brazil
| |
Collapse
|
39
|
Kerekes N, Sanchéz-Pérez AM, Landry M. Neuroinflammation as a possible link between attention-deficit/hyperactivity disorder (ADHD) and pain. Med Hypotheses 2021; 157:110717. [PMID: 34717072 DOI: 10.1016/j.mehy.2021.110717] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/01/2021] [Accepted: 10/17/2021] [Indexed: 12/17/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) and pathological pain are two complex syndromes of multifactorial origin. Despite their prevalence and broad impacts, these conditions are seldom recognized and managed simultaneously. The co-existence of neuropsychiatric conditions (such as ADHD) and altered pain perception and chronic pain has been noted in children, and the comorbidity of ADHD and chronic pain is well documented in adults. Pathophysiological studies have suggested dysfunction of the dopaminergic system as a common neurochemical basis for comorbid ADHD and pain. Considerable evidence supports the role of neuroinflammation in the pathophysiology of both. We suggest that central neuroinflammation underlies altered pain perception and pain sensitization in persons with ADHD. Based on our hypothesis, targeting neuroinflammation may serve as a potential new therapeutic intervention to treat ADHD and comorbid pain in children and adolescents and a preventive strategy for the development of chronic pain in adults with ADHD.
Collapse
Affiliation(s)
- Nóra Kerekes
- Department of Health Sciences, University West, Trollhättan 461 86, Sweden.
| | - Ana Maria Sanchéz-Pérez
- Neurobiotechnology Laboratory, Faculty of Health Sciences, Institute of Advanced Materials (INAM), University Jaume I, Castellon 120 71, Spain
| | - Marc Landry
- University of Bordeaux, CNRS, Institute for Neurodegenrative Diseases, IMN, UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
40
|
Song Z, Bian Z, Zhang Z, Wang X, Zhu A, Zhu G. Astrocytic Kir4.1 regulates NMDAR/calpain signaling axis in lipopolysaccharide-induced depression-like behaviors in mice. Toxicol Appl Pharmacol 2021; 429:115711. [PMID: 34474083 DOI: 10.1016/j.taap.2021.115711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/25/2021] [Accepted: 08/28/2021] [Indexed: 12/16/2022]
Abstract
The activation of Nod-like receptor protein 3 (NLRP3) inflammasome propagates pro-inflammatory signaling cascades linking to depression-like behaviors. However, the signaling pathway contributing to NLRP3 inflammasome activation and depression-like behaviors is still not clear. In this study, we evidenced that lipopolysaccharide (LPS) injection (i.p.) triggered depression-like behaviors, promoted the expression of Kir4.1, p-GluN2B and calpain-1, and activated NLRP3 inflammasome. The blockage of N-methyl-d-aspartate receptors (NMDAR) by memantine reduced LPS-induced depression-like behaviors, NLRP3 inflammasome and astrocyte activation, and calpain-1 expression. Additionally, memantine also inhibited LPS-induced reduction of postsynaptic density protein 95 (PSD-95) and Arc expression. Specific reduction of Kir4.1 in astrocytes attenuated LPS-induced expression of NLRP3 and calpain-1, and phosphorylation of GluN2B. Interestingly, LPS-induced expression of calpain-1 largely co-localized with GFAP, indicating the specific function of calpain-1 in astrocytes. Together, these data indicate that astrocytic Kir4.1 could regulate NMDAR/calpain-1 signaling axis, contributing to depression-like behaviors, likely through regulating NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Zhujin Song
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China; School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Zhijuan Bian
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Zhengrong Zhang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China
| | - Aisong Zhu
- School of Basic Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei 230038, China.
| |
Collapse
|
41
|
Bellingacci L, Mancini A, Gaetani L, Tozzi A, Parnetti L, Di Filippo M. Synaptic Dysfunction in Multiple Sclerosis: A Red Thread from Inflammation to Network Disconnection. Int J Mol Sci 2021; 22:ijms22189753. [PMID: 34575917 PMCID: PMC8469646 DOI: 10.3390/ijms22189753] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/24/2022] Open
Abstract
Multiple sclerosis (MS) has been clinically considered a chronic inflammatory disease of the white matter; however, in the last decade growing evidence supported an important role of gray matter pathology as a major contributor of MS-related disability and the involvement of synaptic structures assumed a key role in the pathophysiology of the disease. Synaptic contacts are considered central units in the information flow, involved in synaptic transmission and plasticity, critical processes for the shaping and functioning of brain networks. During the course of MS, the immune system and its diffusible mediators interact with synaptic structures leading to changes in their structure and function, influencing brain network dynamics. The purpose of this review is to provide an overview of the existing literature on synaptic involvement during experimental and human MS, in order to understand the mechanisms by which synaptic failure eventually leads to brain networks alterations and contributes to disabling MS symptoms and disease progression.
Collapse
Affiliation(s)
- Laura Bellingacci
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Alessandro Tozzi
- Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy;
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.B.); (A.M.); (L.G.); (L.P.)
- Correspondence: ; Tel.: +39-075-578-3830
| |
Collapse
|
42
|
Lenert ME, Avona A, Garner KM, Barron LR, Burton MD. Sensory Neurons, Neuroimmunity, and Pain Modulation by Sex Hormones. Endocrinology 2021; 162:bqab109. [PMID: 34049389 PMCID: PMC8237991 DOI: 10.1210/endocr/bqab109] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 12/16/2022]
Abstract
The inclusion of women in preclinical pain studies has become more commonplace in the last decade as the National Institutes of Health (NIH) released its "Sex as a Biological Variable" mandate. Presumably, basic researchers have not had a comprehensive understanding about neuroimmune interactions in half of the population and how hormones play a role in this. To date, we have learned that sex hormones contribute to sexual differentiation of the nervous system and sex differences in behavior throughout the lifespan; however, the cycling of sex hormones does not always explain these differences. Here, we highlight recent advances in our understanding of sex differences and how hormones and immune interactions influence sensory neuron activity to contribute to physiology and pain. Neuroimmune mechanisms may be mediated by different cell types in each sex, as the actions of immune cells are sexually dimorphic. Unfortunately, the majority of studies assessing neuronal contributions to immune function have been limited to males, so it is unclear if the mechanisms are similar in females. Finally, pathways that control cellular metabolism, like nuclear receptors, have been shown to play a regulatory role both in pain and inflammation. Overall, communication between the neuroimmune and endocrine systems modulate pain signaling in a sex-dependent manner, but more research is needed to reveal nuances of these mechanisms.
Collapse
Affiliation(s)
- Melissa E Lenert
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Amanda Avona
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Katherine M Garner
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Luz R Barron
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| | - Michael D Burton
- Neuroimmunology and Behavior Laboratory, Center for Advanced Pain Studies (CAPS), Department of Neuroscience, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, Texas 75080, USA
| |
Collapse
|
43
|
Protective effect of methanol leaf extract of Cnidoscolus aconitifolius against lipopolysaccharides-induced cortico-hippocampal neuroinflammation, oxidative stress and memory impairment. ADVANCES IN TRADITIONAL MEDICINE 2021. [DOI: 10.1007/s13596-021-00578-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
44
|
Alpha-Synuclein as a Prominent Actor in the Inflammatory Synaptopathy of Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22126517. [PMID: 34204581 PMCID: PMC8234932 DOI: 10.3390/ijms22126517] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is considered the most common disorder of synucleinopathy, which is characterised by intracellular inclusions of aggregated and misfolded α-synuclein (α-syn) protein in various brain regions, and the loss of dopaminergic neurons. During the early prodromal phase of PD, synaptic alterations happen before cell death, which is linked to the synaptic accumulation of toxic α-syn specifically in the presynaptic terminals, affecting neurotransmitter release. The oligomers and protofibrils of α-syn are the most toxic species, and their overexpression impairs the distribution and activation of synaptic proteins, such as the SNARE complex, preventing neurotransmitter exocytosis and neuronal synaptic communication. In the last few years, the role of the immune system in PD has been increasingly considered. Microglial and astrocyte activation, the gene expression of proinflammatory factors, and the infiltration of immune cells from the periphery to the central nervous system (CNS) represent the main features of the inflammatory response. One of the actors of these processes is α-syn accumulation. In light of this, here, we provide a systematic review of PD-related α-syn and inflammation inter-players.
Collapse
|
45
|
Mancini A, Ghiglieri V, Parnetti L, Calabresi P, Di Filippo M. Neuro-Immune Cross-Talk in the Striatum: From Basal Ganglia Physiology to Circuit Dysfunction. Front Immunol 2021; 12:644294. [PMID: 33953715 PMCID: PMC8091963 DOI: 10.3389/fimmu.2021.644294] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/16/2021] [Indexed: 01/02/2023] Open
Abstract
The basal ganglia network is represented by an interconnected group of subcortical nuclei traditionally thought to play a crucial role in motor learning and movement execution. During the last decades, knowledge about basal ganglia physiology significantly evolved and this network is now considered as a key regulator of important cognitive and emotional processes. Accordingly, the disruption of basal ganglia network dynamics represents a crucial pathogenic factor in many neurological and psychiatric disorders. The striatum is the input station of the circuit. Thanks to the synaptic properties of striatal medium spiny neurons (MSNs) and their ability to express synaptic plasticity, the striatum exerts a fundamental integrative and filtering role in the basal ganglia network, influencing the functional output of the whole circuit. Although it is currently established that the immune system is able to regulate neuronal transmission and plasticity in specific cortical areas, the role played by immune molecules and immune/glial cells in the modulation of intra-striatal connections and basal ganglia activity still needs to be clarified. In this manuscript, we review the available evidence of immune-based regulation of synaptic activity in the striatum, also discussing how an abnormal immune activation in this region could be involved in the pathogenesis of inflammatory and degenerative central nervous system (CNS) diseases.
Collapse
Affiliation(s)
- Andrea Mancini
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | | | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| | - Paolo Calabresi
- Section of Neurology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Rome, Italy.,Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, Università degli Studi di Perugia, Perugia, Italy
| |
Collapse
|
46
|
Wang J, Yue B, Zhang X, Guo X, Sun Z, Niu R. Effect of exercise on microglial activation and transcriptome of hippocampus in fluorosis mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143376. [PMID: 33172640 DOI: 10.1016/j.scitotenv.2020.143376] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/02/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Fluorosis is a widespread endemic disease. Reports have shown that high fluoride causes the dysfunction of central nervous system (CNS) in animals. The neurotoxicity of fluoride may be related to the activation of microglia. Moreover, numerous studies have found that exercise facilitates the plasticity of structure and function in CNS, partly owing to the regulation of microglia activation. The present study was conducted to explore the effect of exercise on the microglial activation of hippocampus in fluorosis mice. One hundred adult female Institute of Cancer Research (ICR) mice were randomly divided into 4 groups: control group (group C, distilled water by gavage); exercise group (group E, distilled water by gavage and treadmill exercise); fluoride group [group F, 24 mg/kg sodium fluoride (NaF) by gavage]; fluoride plus exercise group (group F + E, 24 mg/kg NaF by gavage and treadmill exercise). After 8 weeks, hippocampal morphological structure, microglial activation and RNA transcriptome of mice in each group were evaluated by hematoxylin and eosin (HE) staining, Nissl staining, immunohistochemistry (IHC), quantitative real time PCR (QRT-PCR) and transcriptome sequencing. We discovered that the number of M1-type microglia in fluorosis-mice hippocampus was significantly increased when compared to group C; group F + E showed a decrease in the number of M1-type microglia with the comparison to group F. In addition, the hippocampal transcriptome analysis showed that 576 differential expression genes (DEG) were confirmed in group F, compared to group C, and 670 DEG were differently expressed in group F + E when compared to group F. Gene Ontology (GO) analysis showed that changed genes were implicated in regulation of transcription, DNA-templated, integral component of membrane and adenosine triphosphate (ATP) binding. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of 670 DEG was helpful to find neuroactive ligand-receptor interaction pathway. In conclusion, these results indicate that treadmill running inhibits the excessive activation of microglia in hippocampus of the fluoride-toxic mice, accompanied with the alteration of neuroactive ligand-receptor interaction pathway.
Collapse
Affiliation(s)
- Jixiang Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Baijuan Yue
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xuhua Zhang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Xin Guo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Zilong Sun
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Ruiyan Niu
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China.
| |
Collapse
|
47
|
Doskas T, Vavougios GD, Karampetsou P, Kormas C, Synadinakis E, Stavrogianni K, Sionidou P, Serdari A, Vorvolakos T, Iliopoulos I, Vadikolias Κ. Neurocognitive impairment and social cognition in multiple sclerosis. Int J Neurosci 2021; 132:1229-1244. [PMID: 33527857 DOI: 10.1080/00207454.2021.1879066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
PURPOSE/AIM OF THE STUDY The impairment of neurocognitive functions occurs in all subtypes of multiple sclerosis, even from the earliest stages of the disease. Commonly reported manifestations of cognitive impairment include deficits in attention, conceptual reasoning, processing efficiency, information processing speed, memory (episodic and working), verbal fluency (language), and executive functions. Multiple sclerosis patients also suffer from social cognition impairment, which affects their social functioning. The objective of the current paper is to assess the effect of neurocognitive impairment and its potential correlation with social cognition performance and impairment in multiple sclerosis patients. MATERIALS AND METHODS An overview of the available-to-date literature on neurocognitive impairment and social cognition performance in multiple sclerosis patients by disease subtype was performed. RESULTS It is not clear if social cognition impairment occurs independently or secondarily to neurocognitive impairment. There are associations of variable strengths between neurocognitive and social cognition deficits and their neural basis is increasingly investigated. CONCLUSIONS The prompt detection of neurocognitive predictors of social cognition impairment that may be applicable to all multiple sclerosis subtypes and intervention are crucial to prevent further neural and social cognition decline in multiple sclerosis patients.
Collapse
Affiliation(s)
- Triantafyllos Doskas
- Department of Neurology, Athens Naval Hospital, Athens, Greece.,Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | | | | | | | | | | | | - Aspasia Serdari
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Theofanis Vorvolakos
- Department of Psychiatry, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Ioannis Iliopoulos
- Department of Neurology, University Hospital of Alexandroupolis, Alexandroupolis, Greece
| | | |
Collapse
|
48
|
Boffa G, Massacesi L, Inglese M, Mariottini A, Capobianco M, Moiola L, Amato MP, Cottone S, Gualandi F, De Gobbi M, Greco R, Scimè R, Frau J, Zimatore GB, Bertolotto A, Comi G, Uccelli A, Signori A, Angelucci E, Innocenti C, Ciceri F, Repice AM, Sormani MP, Saccardi R, Mancardi G. Long-term Clinical Outcomes of Hematopoietic Stem Cell Transplantation in Multiple Sclerosis. Neurology 2021; 96:e1215-e1226. [PMID: 33472915 DOI: 10.1212/wnl.0000000000011461] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/23/2020] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine whether autologous hematopoietic stem cell transplantation (aHSCT) is able to induce durable disease remission in people with multiple sclerosis (MS), we analyzed the long-term outcomes after transplantation in a large cohort of patients with MS. METHODS To be included, a minimum dataset (consisting of age, MS phenotype, Expanded Disability Status Scale [EDSS] score at baseline, information on transplantation technology, and at least 1 follow-up visit after transplantation) was required. RESULTS Two hundred ten patients were included (relapsing-remitting [RR] MS 122 [58%]). Median baseline EDSS score was 6 (1-9); mean follow-up was 6.2 (±5.0) years. Among patients with RRMS, disability worsening-free survival (95% confidence interval [CI]) was 85.5% (76.9%-94.1%) at 5 years and 71.3% (57.8%-84.8%) at 10 years. In patients with progressive MS, disability worsening-free survival was 71.0% (59.4%-82.6%) and 57.2% (41.8%-72.7%) at 5 and 10 years, respectively. In patients with RRMS, EDSS significantly reduced after aHSCT (p = 0.001; mean EDSS change per year -0.09 [95% CI -0.15% to -0.04%]). In patients with RRMS, the use of the BCNU+Etoposide+Ara-C+Melphalan (BEAM) + anti-thymocyte globulin (ATG) conditioning protocol was independently associated with a reduced risk of no evidence of disease activity 3 failure (hazard ratio 0.27 [95% CI 0.14-0.50], p < 0.001). Three patients died within 100 days from aHSCT (1.4%); no deaths occurred in patients transplanted after 2007. CONCLUSIONS aHSCT prevents disability worsening in the majority of patients and induces durable improvement in disability in patients with RRMS. The BEAM + ATG conditioning protocol is associated with a more pronounced suppression of clinical relapses and MRI inflammatory activity. CLASSIFICATION OF EVIDENCE This study provides Class IV evidence that for people with MS, aHSCT induces durable disease remission in most patients.
Collapse
Affiliation(s)
- Giacomo Boffa
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Luca Massacesi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Matilde Inglese
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy.
| | - Alice Mariottini
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Marco Capobianco
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Lucia Moiola
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Maria Pia Amato
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Salvatore Cottone
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Francesca Gualandi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Marco De Gobbi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Raffaella Greco
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Rosanna Scimè
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Jessica Frau
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Giovanni Bosco Zimatore
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Antonio Bertolotto
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Giancarlo Comi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Antonio Uccelli
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Alessio Signori
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Emanuele Angelucci
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Chiara Innocenti
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Fabio Ciceri
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Anna Maria Repice
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Maria Pia Sormani
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Riccardo Saccardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| | - Gianluigi Mancardi
- From the Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (G.B., M.I., A.U., G.M.) and Biostatistics Unit (A.S., M.P.S.), University of Genoa; San Martino Hospital (G.B.), Genoa; Department of Neurosciences Drugs (L. Massacesi, A.M., A.M.R.), Child Health and Department of Neurology 2 (L. Massacesi, A.M., A.M.R.), and Cell Therapy and Transfusion Medicine Unit (C.I., R. Saccardi), Careggi University Hospital, Florence; Ospedale Policlinico San Martino (M.I., A.U., G.M.), IRCCS, Genoa; Department of Neurology (M.C., A.B.), San Luigi Gonzaga Hospital, Orbassano; Department of Neurology (L. Moiola, G.C.) and Department of Haematology and Bone Marrow Transplant (R.G., F.C.), Vita-Salute San Raffaele University, San Raffaele Scientific Institute, Milan; Department NEUROFARBA (M.P.A.), Section Neurological Sciences, University of Florence IRCCS Fondazione Don Carlo Gnocchi; Department of Neurology (S.C.) and Department of Haematology (R. Scimè), Villa Sofia Hospital, Palermo; Department of Haematology and Bone Marrow Transplant Unit (F.G., E.A.), Policlinico San Martino IRCCS, Genoa; Department of Clinical and Biological Sciences (M.D.G.), Haematopoietic Stem Cell Transplant Unit, University of Turin, San Luigi Gonzaga Hospital, Orbassano; Multiple Sclerosis Center (J.F.), Department of Medical Sciences and Public Health University of Cagliari; Binaghi Hospital (J.F.), Cagliari; Department of Neurology (G.B.Z.), Ospedale Generale Regionale "F. Miulli," Acquaviva delle Fonti, BA; and IRCCS Scientific Clinical Institutes Maugeri (G.M.), Pavia-Genoa Nervi, Italy
| |
Collapse
|
49
|
Yegla B, Boles J, Kumar A, Foster TC. Partial microglial depletion is associated with impaired hippocampal synaptic and cognitive function in young and aged rats. Glia 2021; 69:1494-1514. [PMID: 33586813 DOI: 10.1002/glia.23975] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022]
Abstract
The role of microglia in mediating age-related changes in cognition and hippocampal synaptic function was examined by microglial depletion and replenishment using PLX3397. We observed age-related differences in microglial number and morphology, as well as increased Iba-1 expression, indicating microglial activation. PLX3397 treatment decreased microglial number, with aged rats exhibiting the lowest density. Young rats exhibited increased expression of pro-inflammatory cytokines during depletion and repopulation and maintenance of Iba-1 levels despite reduced microglial number. For aged rats, several cytokines increased with depletion and recovered during repopulation; however, aged rats did not fully recover microglial cell number or Iba-1 expression during repopulation, with a recovery comparable to young control levels rather than aged controls. Hippocampal CA3-CA1 synaptic transmission was impaired with age, and microglial depletion was associated with decreased total synaptic transmission in young and aged rats. A robust decline in N-methyl-d-aspartate-receptor-mediated synaptic transmission arose in young depleted rats specifically. Microglial replenishment normalized depletion-induced synaptic function to control levels; however, recovery of aged animals did not mirror young. Microglial depletion was associated with decreased context-object discrimination memory in both age groups, which recovered with microglial repopulation. Aged rats displayed impaired contextual and cued fear memory, and microglial replenishment did not recover their memory to the level of young. The current study indicates that cognitive function and synaptic transmission benefit from the support of aged microglia and are hindered by removal of these cells. Replenishment of microglia in aging did not ameliorate age-related cognitive impairments or senescent synaptic function.
Collapse
Affiliation(s)
- Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Jake Boles
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida, USA.,Genetics and Genomics Program, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
50
|
Tadjalli A, Seven YB, Perim RR, Mitchell GS. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity. J Neuroinflammation 2021; 18:28. [PMID: 33468163 PMCID: PMC7816383 DOI: 10.1186/s12974-021-02074-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/05/2021] [Indexed: 01/05/2023] Open
Abstract
Background Inflammation undermines multiple forms of neuroplasticity. Although inflammation and its influence on plasticity in multiple neural systems has been extensively studied, its effects on plasticity of neural networks controlling vital life functions, such as breathing, are less understood. In this study, we investigated the signaling mechanisms whereby lipopolysaccharide (LPS)-induced systemic inflammation impairs plasticity within the phrenic motor system—a major spinal respiratory motor pool that drives contractions of the diaphragm muscle. Here, we tested the hypotheses that lipopolysaccharide-induced systemic inflammation (1) blocks phrenic motor plasticity by a mechanism that requires cervical spinal okadaic acid-sensitive serine/threonine protein phosphatase (PP) 1/2A activity and (2) prevents phosphorylation/activation of extracellular signal-regulated kinase 1/2 mitogen activated protein kinase (ERK1/2 MAPK)—a key enzyme necessary for the expression of phrenic motor plasticity. Methods To study phrenic motor plasticity, we utilized a well-characterized model for spinal respiratory plasticity called phrenic long-term facilitation (pLTF). pLTF is characterized by a long-lasting, progressive enhancement of inspiratory phrenic nerve motor drive following exposures to moderate acute intermittent hypoxia (mAIH). In anesthetized, vagotomized and mechanically ventilated adult Sprague Dawley rats, we examined the effect of inhibiting cervical spinal serine/threonine PP 1/2A activity on pLTF expression in sham-vehicle and LPS-treated rats. Using immunofluorescence optical density analysis, we compared mAIH-induced phosphorylation/activation of ERK 1/2 MAPK with and without LPS-induced inflammation in identified phrenic motor neurons. Results We confirmed that mAIH-induced pLTF is abolished 24 h following low-dose systemic LPS (100 μg/kg, i.p.). Cervical spinal delivery of the PP 1/2A inhibitor, okadaic acid, restored pLTF in LPS-treated rats. LPS also prevented mAIH-induced enhancement in phrenic motor neuron ERK1/2 MAPK phosphorylation. Thus, a likely target for the relevant okadaic acid-sensitive protein phosphatases is ERK1/2 MAPK or its upstream activators. Conclusions This study increases our understanding of fundamental mechanisms whereby inflammation disrupts neuroplasticity in a critical population of motor neurons necessary for breathing, and highlights key roles for serine/threonine protein phosphatases and ERK1/2 MAPK kinase in the plasticity of mammalian spinal respiratory motor circuits.
Collapse
Affiliation(s)
- Arash Tadjalli
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Yasin B Seven
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Raphael R Perim
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and The McKnight Brain Institute, College of Public Health & Health Professions, University of Florida, 1225 Center Drive, PO Box 100154, Gainesville, FL, 32610, USA.
| |
Collapse
|