1
|
Zhang C, Tian Z, Chen R, Rowan F, Qiu K, Sun Y, Guan JL, Diao J. Advanced imaging techniques for tracking drug dynamics at the subcellular level. Adv Drug Deliv Rev 2023; 199:114978. [PMID: 37385544 PMCID: PMC10527994 DOI: 10.1016/j.addr.2023.114978] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Optical microscopes are an important imaging tool that have effectively advanced the development of modern biomedicine. In recent years, super-resolution microscopy (SRM) has become one of the most popular techniques in the life sciences, especially in the field of living cell imaging. SRM has been used to solve many problems in basic biological research and has great potential in clinical application. In particular, the use of SRM to study drug delivery and kinetics at the subcellular level enables researchers to better study drugs' mechanisms of action and to assess the efficacy of their targets in vivo. The purpose of this paper is to review the recent advances in SRM and to highlight some of its applications in assessing subcellular drug dynamics.
Collapse
Affiliation(s)
- Chengying Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Zhiqi Tian
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rui Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Fiona Rowan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yujie Sun
- Department of Chemistry, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Liu J, Liu YY, Li CS, Cao A, Wang H. Exocytosis of Nanoparticles: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2215. [PMID: 37570533 PMCID: PMC10421347 DOI: 10.3390/nano13152215] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
Both biomedical applications and safety assessments of manufactured nanomaterials require a thorough understanding of the interaction between nanomaterials and cells, including how nanomaterials enter cells, transport within cells, and leave cells. However, compared to the extensively studied uptake and trafficking of nanoparticles (NPs) in cells, less attention has been paid to the exocytosis of NPs. Yet exocytosis is an indispensable process of regulating the content of NPs in cells, which in turn influences, even decides, the toxicity of NPs to cells. A comprehensive understanding of the mechanisms and influencing factors of the exocytosis of NPs is not only essential for the safety assessment of NPs but also helpful for guiding the design of safe and highly effective NP-based materials for various purposes. Herein, we review the current status and progress of studies on the exocytosis of NPs. Firstly, we introduce experimental procedures and considerations. Then, exocytosis mechanisms/pathways are summarized with a detailed introduction of the main pathways (lysosomal and endoplasmic reticulum/Golgi pathway) and the role of microtubules; the patterns of exocytosis kinetics are presented and discussed. Subsequently, the influencing factors (initial content and location of intracellular NPs, physiochemical properties of NPs, cell type, and extracellular conditions) are fully discussed. Although there are inconsistent results, some rules are obtained, like smaller and charged NPs are more easily excreted. Finally, the challenges and future directions in the field have been discussed.
Collapse
Affiliation(s)
| | | | | | | | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Khan AA, Allemailem KS, Almatroudi A, Almatroodi SA, Alsahli MA, Rahmani AH. Novel strategies of third level (Organelle-specific) drug targeting: An innovative approach of modern therapeutics. J Drug Deliv Sci Technol 2021; 61:102315. [DOI: 10.1016/j.jddst.2020.102315] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Xi J, Liu H. Recent Advances in the Design of Self‐Delivery Amphiphilic Drugs and Vaccines. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201900107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science Wayne State University Detroit MI 48202 USA
- Department of Oncology Wayne State University Detroit MI 48201 United States
- Tumor Biology and Microenvironment Program Barbara Ann Karmanos Cancer Institute Detroit MI 48201 United States
| |
Collapse
|
5
|
Louzoun‐Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target‐Harboring Organelles: Stretching Drug‐Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201906284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sivan Louzoun‐Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Qais Z. Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University Tel Aviv 6997801 Israel
| |
Collapse
|
6
|
Louzoun-Zada S, Jaber QZ, Fridman M. Guiding Drugs to Target-Harboring Organelles: Stretching Drug-Delivery to a Higher Level of Resolution. Angew Chem Int Ed Engl 2019; 58:15584-15594. [PMID: 31237741 DOI: 10.1002/anie.201906284] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Indexed: 01/04/2023]
Abstract
The ratio between the dose of drug required for optimal efficacy and the dose that causes toxicity is referred to as the therapeutic window. This ratio can be increased by directing the drug to the diseased tissue or pathogenic cell. For drugs targeting fungi and malignant cells, the therapeutic window can be further improved by increasing the resolution of drug delivery to the specific organelle that harbors the drug's target. Organelle targeting is challenging and is, therefore, an under-exploited strategy. Here we provide an overview of recent advances in control of the subcellular distribution of small molecules with the focus on chemical modifications. Highlighted are recent examples of active and passive organelle-specific targeting by incorporation of organelle-directing molecular determinants or by chemical modifications of the pharmacophore. The outstanding potential that lies in the development of organelle-specific drugs is becoming increasingly apparent.
Collapse
Affiliation(s)
- Sivan Louzoun-Zada
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Qais Z Jaber
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Micha Fridman
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
7
|
Biasutto L, Mattarei A, La Spina M, Azzolini M, Parrasia S, Szabò I, Zoratti M. Strategies to target bioactive molecules to subcellular compartments. Focus on natural compounds. Eur J Med Chem 2019; 181:111557. [PMID: 31374419 DOI: 10.1016/j.ejmech.2019.07.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/21/2019] [Indexed: 02/06/2023]
Abstract
Many potential pharmacological targets are present in multiple subcellular compartments and have different pathophysiological roles depending on location. In these cases, selective targeting of a drug to the relevant subcellular domain(s) may help to sharpen its impact by providing topological specificity, thus limiting side effects, and to concentrate the compound where needed, thus increasing its effectiveness. We review here the state of the art in precision subcellular delivery. The major approaches confer "homing" properties to the active principle via permanent or reversible (in pro-drug fashion) modifications, or through the use of special-design nanoparticles or liposomes to ferry a drug(s) cargo to its desired destination. An assortment of peptides, substituents with delocalized positive charges, custom-blended lipid mixtures, pH- or enzyme-sensitive groups provide the main tools of the trade. Mitochondria, lysosomes and the cell membrane may be mentioned as the fronts on which the most significant advances have been made. Most of the examples presented here have to do with targeting natural compounds - in particular polyphenols, known as pleiotropic agents - to one or the other subcellular compartment.
Collapse
Affiliation(s)
- Lucia Biasutto
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy.
| | - Andrea Mattarei
- Dept. Pharmaceutical and Pharmacological Sciences, University of Padova, Via Marzolo 5, 35131, Padova, Italy
| | - Martina La Spina
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Michele Azzolini
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Sofia Parrasia
- Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Ildikò Szabò
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biology, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| | - Mario Zoratti
- CNR Neuroscience Institute, Viale G. Colombo 3, 35121, Padova, Italy; Dept. Biomedical Sciences, University of Padova, Viale G. Colombo 3, 35121, Padova, Italy
| |
Collapse
|
8
|
Xi J, Li M, Jing B, An M, Yu C, Pinnock CB, Zhu Y, Lam MT, Liu H. Long-Circulating Amphiphilic Doxorubicin for Tumor Mitochondria-Specific Targeting. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43482-43492. [PMID: 30479120 PMCID: PMC6893847 DOI: 10.1021/acsami.8b17399] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The mitochondria have emerged as a novel target for cancer chemotherapy primarily due to their central roles in energy metabolism and apoptosis regulation. Here, we report a new molecular approach to achieve high levels of tumor- and mitochondria-selective deliveries of the anticancer drug doxorubicin. This is achieved by molecular engineering, which functionalizes doxorubicin with a hydrophobic lipid tail conjugated by a solubility-promoting poly(ethylene glycol) polymer (amphiphilic doxorubicin or amph-DOX). In vivo, the amphiphile conjugated to doxorubicin exhibits a dual function: (i) it binds avidly to serum albumin and hijacks albumin's circulating and transporting pathways, resulting in prolonged circulation in blood, increased accumulation in tumor, and reduced exposure to the heart; (ii) it also redirects doxorubicin to mitochondria by altering the drug molecule's intracellular sorting and transportation routes. Efficient mitochondrial targeting with amph-DOX causes a significant increase of reactive oxygen species levels in tumor cells, resulting in markedly improved antitumor efficacy than the unmodified doxorubicin. Amphiphilic modification provides a simple strategy to simultaneously increase the efficacy and safety of doxorubicin in cancer chemotherapy.
Collapse
Affiliation(s)
- Jingchao Xi
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Meng Li
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Benxin Jing
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Myunggi An
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Chunsong Yu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Cameron B. Pinnock
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Yingxi Zhu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
| | - Mai T. Lam
- Department of Biomedical Engineering, Wayne State University, Detroit, Michigan 48202, United States
| | - Haipeng Liu
- Department of Chemical Engineering and Materials Science, Wayne State University, Detroit, Michigan 48202, United States
- Department of Oncology, Wayne State University, Detroit, Michigan 48201, United States
- Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
9
|
Kowalczyk R, Harris PWR, Williams GM, Yang SH, Brimble MA. Peptide Lipidation - A Synthetic Strategy to Afford Peptide Based Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1030:185-227. [PMID: 29081055 PMCID: PMC7121180 DOI: 10.1007/978-3-319-66095-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Peptide and protein aberrant lipidation patterns are often involved in many diseases including cancer and neurological disorders. Peptide lipidation is also a promising strategy to improve pharmacokinetic and pharmacodynamic profiles of peptide-based drugs. Self-adjuvanting peptide-based vaccines commonly utilise the powerful TLR2 agonist PamnCys lipid to stimulate adjuvant activity. The chemical synthesis of lipidated peptides can be challenging hence efficient, flexible and straightforward synthetic routes to access homogeneous lipid-tagged peptides are in high demand. A new technique coined Cysteine Lipidation on a Peptide or Amino acid (CLipPA) uses a 'thiol-ene' reaction between a cysteine and a vinyl ester and offers great promise due to its simplicity, functional group compatibility and selectivity. Herein a brief review of various synthetic strategies to access lipidated peptides, focusing on synthetic methods to incorporate a PamnCys motif into peptides, is provided.
Collapse
Affiliation(s)
- Renata Kowalczyk
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand
| | - Paul W R Harris
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Geoffrey M Williams
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand
| | - Sung-Hyun Yang
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand.,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, 23 Symonds St, Auckland, New Zealand. .,School of Biological Sciences, The University of Auckland, 3A Symonds St, Auckland, New Zealand. .,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Private Bag 92019, Auckland, 1010, New Zealand.
| |
Collapse
|
10
|
Jensen DD, Lieu T, Halls ML, Veldhuis NA, Imlach WL, Mai QN, Poole DP, Quach T, Aurelio L, Conner J, Herenbrink CK, Barlow N, Simpson JS, Scanlon MJ, Graham B, McCluskey A, Robinson PJ, Escriou V, Nassini R, Materazzi S, Geppetti P, Hicks GA, Christie MJ, Porter CJH, Canals M, Bunnett NW. Neurokinin 1 receptor signaling in endosomes mediates sustained nociception and is a viable therapeutic target for prolonged pain relief. Sci Transl Med 2018; 9:9/392/eaal3447. [PMID: 28566424 DOI: 10.1126/scitranslmed.aal3447] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/17/2017] [Indexed: 12/25/2022]
Abstract
Typically considered to be cell surface sensors of extracellular signals, heterotrimeric GTP-binding protein (G protein)-coupled receptors (GPCRs) control many pathophysiological processes and are the target of 30% of therapeutic drugs. Activated receptors redistribute to endosomes, but researchers have yet to explore whether endosomal receptors generate signals that control complex processes in vivo and are viable therapeutic targets. We report that the substance P (SP) neurokinin 1 receptor (NK1R) signals from endosomes to induce sustained excitation of spinal neurons and pain transmission and that specific antagonism of the NK1R in endosomes with membrane-anchored drug conjugates provides more effective and sustained pain relief than conventional plasma membrane-targeted antagonists. Pharmacological and genetic disruption of clathrin, dynamin, and β-arrestin blocked SP-induced NK1R endocytosis and prevented SP-stimulated activation of cytosolic protein kinase C and nuclear extracellular signal-regulated kinase, as well as transcription. Endocytosis inhibitors prevented sustained SP-induced excitation of neurons in spinal cord slices in vitro and attenuated nociception in vivo. When conjugated to cholestanol to promote endosomal targeting, NK1R antagonists selectively inhibited endosomal signaling and sustained neuronal excitation. Cholestanol conjugation amplified and prolonged the antinociceptive actions of NK1R antagonists. These results reveal a critical role for endosomal signaling of the NK1R in the complex pathophysiology of pain and demonstrate the use of endosomally targeted GPCR antagonists.
Collapse
Affiliation(s)
- Dane D Jensen
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - TinaMarie Lieu
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Michelle L Halls
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas A Veldhuis
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Wendy L Imlach
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Quynh N Mai
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel P Poole
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Tim Quach
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Luigi Aurelio
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Joshua Conner
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Carmen Klein Herenbrink
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nicholas Barlow
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Jamie S Simpson
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Martin J Scanlon
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Bimbil Graham
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Adam McCluskey
- School of Environmental and Life Sciences, University of Newcastle, New South Wales 2308, Australia
| | - Phillip J Robinson
- Children's Medical Research Institute, University of Sydney, New South Wales 2145, Australia
| | - Virginie Escriou
- Unité de Technologies Chimiques et Biologiques pour la Sante, CNRS UMR8258, INSERM U1022, Université Paris Descartes, Chimie ParisTech, 75006 Paris, France
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, 6-50139 Florence, Italy
| | | | - Macdonald J Christie
- Discipline of Pharmacology, University of Sydney, New South Wales 2006, Australia
| | - Christopher J H Porter
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Meritxell Canals
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia
| | - Nigel W Bunnett
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. .,Australia Research Council Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash University, Parkville, Victoria 3052, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Victoria 3010, Australia.,Departments of Surgery and Pharmacology, Columbia University College of Physicians and Surgeons, Columbia University, 21 Audubon Avenue, Room 209, New York City, NY 10032, USA
| |
Collapse
|
11
|
Ng DYW, Vill R, Wu Y, Koynov K, Tokura Y, Liu W, Sihler S, Kreyes A, Ritz S, Barth H, Ziener U, Weil T. Directing intracellular supramolecular assembly with N-heteroaromatic quaterthiophene analogues. Nat Commun 2017; 8:1850. [PMID: 29185444 PMCID: PMC5707410 DOI: 10.1038/s41467-017-02020-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 11/01/2017] [Indexed: 01/23/2023] Open
Abstract
Self-assembly in situ, where synthetic molecules are programmed to organize in a specific and complex environment i.e., within living cells, can be a unique strategy to influence cellular functions. Here we present a small series of rationally designed oligothiophene analogues that specifically target, locate and dynamically self-report their supramolecular behavior within the confinement of a cell. Through the recognition of the terminal alkyl substituent and the amphiphilic pyridine motif, we show that the cell provides different complementary pathways for self-assembly that can be traced easily with fluorescence microscopy as their molecular organization emits in distinct fluorescent bands. Importantly, the control and induction of both forms are achieved by time, temperature and the use of the intracellular transport inhibitor, bafilomycin A1. We showcase the importance of both intrinsic (cell) and extrinsic (stimulus) factors for self-organization and the potential of such a platform toward developing synthetic functional components within living cells.
Collapse
Affiliation(s)
- David Y W Ng
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
| | - Roman Vill
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Yuzhou Wu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Yu Tokura
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Weina Liu
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Sihler
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Andreas Kreyes
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sandra Ritz
- Institute of Molecular Biology, Ackermannweg 4, 55128, Mainz, Germany
| | - Holger Barth
- Institute of Pharmacology and Toxicology, Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Ulrich Ziener
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tanja Weil
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany.
- Institute of Organic Chemistry III, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
12
|
Faizullin DA, Dzyurkevich MS, Valiullina YA, Islamov DR, Kataeva ON, Zuev YF, Plemenkov VV, Stoikov II. Novel type of isoprenoid membrane anchors: an investigation of binding properties with dipalmitoylphosphatidylcholine vesicles. J PHYS ORG CHEM 2017. [DOI: 10.1002/poc.3618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dzhigangir A. Faizullin
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Alexander Butlerov Institute of Chemistry; Kazan Federal University; Kazan Russia
| | | | - Yuliya A. Valiullina
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
| | - Daut R. Islamov
- Alexander Butlerov Institute of Chemistry; Kazan Federal University; Kazan Russia
| | - Olga N. Kataeva
- A.E. Arbuzov Institute of Organic and Physical Chemistry; Russian Academy of Sciences; Kazan Russia
| | - Yuriy F. Zuev
- Kazan Institute of Biochemistry and Biophysics; Russian Academy of Sciences; Kazan Russia
- Alexander Butlerov Institute of Chemistry; Kazan Federal University; Kazan Russia
| | - Vitaliy V. Plemenkov
- Institute of Biochemistry; Immanuel Kant Baltic Federal University; Kaliningrad Russia
| | - Ivan I. Stoikov
- Alexander Butlerov Institute of Chemistry; Kazan Federal University; Kazan Russia
| |
Collapse
|
13
|
Buggia-Prévot V, Thinakaran G. Significance of transcytosis in Alzheimer's disease: BACE1 takes the scenic route to axons. Bioessays 2015; 37:888-98. [PMID: 26126792 PMCID: PMC4512854 DOI: 10.1002/bies.201500019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neurons have developed elaborate mechanisms for sorting of proteins to their destination in dendrites and axons as well as dynamic local trafficking. Recent evidence suggests that polarized axonal sorting of β-site converting enzyme 1 (BACE1), a type I transmembrane aspartyl protease involved in Alzheimer's disease (AD) pathogenesis, entails an unusual journey. In hippocampal neurons, BACE1 internalized from dendrites is conveyed in recycling endosomes via unidirectional retrograde transport towards the soma and sorted to axons where BACE1 becomes enriched. In comparison to other transmembrane proteins that undergo transcytosis or elimination in somatodendritic compartment, vectorial transport of internalized BACE1 in dendrites is unique and intriguing. Dysfunction of protein transport contributes to pathogenesis of AD and other neurodegenerative diseases. Therefore, characterization of BACE1 transcytosis is an important addition to the multiple lines of evidence that highlight the crucial role played by endosomal trafficking pathway as well as axonal sorting mechanisms in AD pathogenesis.
Collapse
Affiliation(s)
- Virginie Buggia-Prévot
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL 60637
| | - Gopal Thinakaran
- Departments of Neurobiology, Neurology, and Pathology, The University of Chicago, Chicago, IL 60637
| |
Collapse
|
14
|
Abstract
Heat shock protein 90 (Hsp90) is an ATP-dependent molecular chaperone that is involved in the folding, activation, and stabilization of numerous oncogenic proteins. It has become an attractive therapeutic target, especially for eradicating malignant cancers and overcoming chemotherapy resistance. The Hsp90 family in mammalian cells is composed of four major homologs: Hsp90α, Hsp90β, 94-kDa glucose-regulated protein (Grp94), and TNF receptor-associated protein 1 (Trap1). Hsp90α and Hsp90β are mainly localized in the cytoplasm, while Grp94 and Trap1 reside in the endoplasmic reticulum and the mitochondria, respectively. Additionally, some Hsp90 s are secreted from the cytoplasm, commonly called extracellular Hsp90. Interestingly, each Hsp90 isoform is localized in a particular organelle, possesses a unique biological function, and participates in various physiological and pathological processes. To inhibit the organelle-specific Hsp90 chaperone function, there have been significant efforts to accumulate Hsp90 inhibitors in particular cellular compartments. This review introduces current studies regarding the delivery of Hsp90 inhibitors to subcellular organelles, particularly to the extracellular matrix and the mitochondria, and discusses their biological insights and therapeutic implications.
Collapse
Affiliation(s)
- Young Ho Seo
- College of Pharmacy, Keimyung University, Daegu, 704-701, Korea.
| |
Collapse
|
15
|
Cardo L, Thomas SG, Mazharian A, Pikramenou Z, Rappoport JZ, Hannon MJ, Watson SP. Accessible Synthetic Probes for Staining Actin inside Platelets and Megakaryocytes by Employing Lifeact Peptide. Chembiochem 2015; 16:1680-8. [PMID: 26062886 PMCID: PMC4524417 DOI: 10.1002/cbic.201500120] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 11/23/2022]
Abstract
Lifeact is a 17-residue peptide that can be employed in cell microscopy as a probe for F-actin when fused to fluorescent proteins, but therefore is not suitable for all cell types. We have conjugated fluorescently labelled Lifeact to three different cell-penetrating systems (a myristoylated carrier (myr), the pH low insertion peptide (pHLIP) and the cationic peptide TAT) as a strategy to deliver Lifeact into cells and developed new tools for actin staining with improved synthetic accessibility and low toxicity, focusing on their suitability in platelets and megakaryocytes. Using confocal microscopy, we characterised the cell distribution of the new hybrids in fixed cells, and found that both myr– and pHLIP–Lifeact conjugates provide efficient actin staining upon cleavage of Lifeact from the carriers, without affecting cell spreading. This new approach could facilitate the design of new tools for actin visualisation.
Collapse
Affiliation(s)
- Lucia Cardo
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK).,Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Steve G Thomas
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Alexandra Mazharian
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Zoe Pikramenou
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Joshua Z Rappoport
- School of Bioscience, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| | - Michael J Hannon
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK).
| | - Stephen P Watson
- Centre for Cardiovascular Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT (UK)
| |
Collapse
|
16
|
Tsuji M, Ueda S, Hirayama T, Okuda K, Sakaguchi Y, Isono A, Nagasawa H. FRET-based imaging of transbilayer movement of pepducin in living cells by novel intracellular bioreductively activatable fluorescent probes. Org Biomol Chem 2013; 11:3030-7. [PMID: 23532512 DOI: 10.1039/c3ob27445d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
To elucidate the mechanisms of direct transmembrane penetration of pepducins, which are artificial lipopeptide G protein-coupled receptor (GPCR) modulators, we developed two types of FRET-based probes, Pep13-FL-SS-Dab (13) targeting the inner leaflet of the lipid bilayer and Pep13-Dab-SS-FL (14) targeting the cytosol, respectively. They are composed of a pepducin moiety and a fluorescent switch component consisting of 5(6)-carboxyfluorescein (FAM) as a fluorophore and dabcyl as a quencher connected through disulfide bond linkage. When they are internalized into the cytosol, intracellular glutathione can cleave the disulfide bond to release the quencher, which results in a turn-on fluorescence signal. Using these probes, we performed live cell imaging of transbilayer movements of pepducins on MCF-7 cells for the first time. The results suggested that the lipid moiety of the probes facilitated pepducin flipping across and tethering to the membrane. The present study raises the possibility of applying the probe architecture for direct intracellular drug delivery.
Collapse
Affiliation(s)
- Mieko Tsuji
- Laboratory of Pharmaceutical and Medicinal Chemistry, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Lei EK, Pereira MP, Kelley SO. Tuning the intracellular bacterial targeting of peptidic vectors. Angew Chem Int Ed Engl 2013; 52:9660-3. [PMID: 23893882 DOI: 10.1002/anie.201302265] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/20/2013] [Indexed: 01/07/2023]
Affiliation(s)
- Eric K Lei
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
18
|
Lei EK, Pereira MP, Kelley SO. Tuning the Intracellular Bacterial Targeting of Peptidic Vectors. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302265] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
19
|
He B, Jia Z, Du W, Yu C, Fan Y, Dai W, Yuan L, Zhang H, Wang X, Wang J, Zhang X, Zhang Q. The transport pathways of polymer nanoparticles in MDCK epithelial cells. Biomaterials 2013; 34:4309-26. [DOI: 10.1016/j.biomaterials.2013.01.100] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 01/30/2013] [Indexed: 12/18/2022]
|
20
|
Satori CP, Henderson MM, Krautkramer EA, Kostal V, Distefano MM, Arriaga EA. Bioanalysis of eukaryotic organelles. Chem Rev 2013; 113:2733-811. [PMID: 23570618 PMCID: PMC3676536 DOI: 10.1021/cr300354g] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Chad P. Satori
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Michelle M. Henderson
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Elyse A. Krautkramer
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Vratislav Kostal
- Tescan, Libusina trida 21, Brno, 623 00, Czech Republic
- Institute of Analytical Chemistry ASCR, Veveri 97, Brno, 602 00, Czech Republic
| | - Mark M. Distefano
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| | - Edgar A. Arriaga
- Department of Chemistry, University of Minnesota, Twin Cities, Minneapolis, MN, USA, 55455
| |
Collapse
|