1
|
Nishikiori N, Ohguro H, Watanabe M, Higashide M, Ogawa T, Furuhashi M, Sato T. High-Glucose-Induced Metabolic and Redox Alterations Are Distinctly Modulated by Various Antidiabetic Agents and Interventions Against FABP5/7, MITF and ANGPTL4 in Melanoma A375 Cells. Int J Mol Sci 2025; 26:1014. [PMID: 39940783 PMCID: PMC11817646 DOI: 10.3390/ijms26031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
Hyperglycemia-induced effects on cellular metabolic properties and reactive oxygen species (ROS) generation play pivotal roles in the pathogenesis of malignant melanoma (MM). This study assessed how metabolic states, ROS production, and related gene expression are modulated by antidiabetic agents. The anti-diabetic agents metformin (Met) and imeglimin (Ime), inhibitors of fatty acid-binding proteins 5/7 (MF6) and microphthalmia-associated transcription factor (MITF) (ML329), and siRNA-mediated knockdown of angiopoietin-like protein 4 (ANGPTL4), which affect mitochondrial respiration, ROS production, and related gene expression, were tested in A375 (MM cell line) cells cultured in low (5.5 mM) and high glucose (50 mM) conditions. Cellular metabolic functions were significantly and differently modulated by Met, Ime, MF6, or ML329 and knockdown of ANGPTL4. High glucose significantly enhanced ROS production, which was alleviated by Ime but not by Met. Both MF6 and ML329 reduced ROS levels under both low and high glucose conditions. Knockdown of ANGPTL4 enhanced the change in glucose-dependent ROS production. Gene expression related to mitochondrial respiration and the pathogenesis of MM was significantly modulated by different glucose conditions, antidiabetic agents, MF6, and ML329. These findings suggest that glucose-dependent changes in cellular metabolism and redox status are differently modulated by antidiabetic agents, inhibition of fatty acid-binding proteins or MITF, and ANGPTL4 knockdown in A375 cells.
Collapse
Affiliation(s)
- Nami Nishikiori
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Hiroshi Ohguro
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Megumi Watanabe
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Megumi Higashide
- Departments of Ophthalmology, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (N.N.); (M.W.); (M.H.)
| | - Toshifumi Ogawa
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| | - Masato Furuhashi
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
| | - Tatsuya Sato
- Departments of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan; (T.O.); (M.F.)
- Departments of Cellular Physiology and Signal Transduction, Sapporo Medical University, S1W17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
2
|
Tremmel R, Hübschmann D, Schaeffeler E, Pirmann S, Fröhling S, Schwab M. Innovation in cancer pharmacotherapy through integrative consideration of germline and tumor genomes. Pharmacol Rev 2025; 77:100014. [PMID: 39952686 DOI: 10.1124/pharmrev.124.001049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 01/22/2025] Open
Abstract
Precision cancer medicine is widely established, and numerous molecularly targeted drugs for various tumor entities are approved or are in development. Personalized pharmacotherapy in oncology has so far been based primarily on tumor characteristics, for example, somatic mutations. However, the response to drug treatment also depends on pharmacological processes summarized under the term ADME (absorption, distribution, metabolism, and excretion). Variations in ADME genes have been the subject of intensive research for >5 decades, considering individual patients' genetic makeup, referred to as pharmacogenomics (PGx). The combined impact of a patient's tumor and germline genome is only partially understood and often not adequately considered in cancer therapy. This may be attributed, in part, to the lack of methods for combined analysis of both data layers. Optimized personalized cancer therapies should, therefore, aim to integrate molecular information, which derives from both the tumor and the germline genome, and taking into account existing PGx guidelines for drug therapy. Moreover, such strategies should provide the opportunity to consider genetic variants of previously unknown functional significance. Bioinformatic analysis methods and corresponding algorithms for data interpretation need to be developed to integrate PGx data in cancer therapy with a special meaning for interdisciplinary molecular tumor boards, in which cancer patients are discussed to provide evidence-based recommendations for clinical management based on individual tumor profiles. SIGNIFICANCE STATEMENT: The era of personalized oncology has seen the emergence of drugs tailored to genetic variants associated with cancer biology. However, the full potential of targeted therapy remains untapped owing to the predominant focus on acquired tumor-specific alterations. Optimized cancer care must integrate tumor and patient genomes, guided by pharmacogenomic principles. An essential prerequisite for realizing truly personalized drug treatment of cancer patients is the development of bioinformatic tools for comprehensive analysis of all data layers generated in modern precision oncology programs.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Daniel Hübschmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany; German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Innovation and Service Unit for Bioinformatics and Precision Medicine, DKFZ, Heidelberg, Germany; Pattern Recognition and Digital Medicine Group, Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between the German Cancer Research Center (DKFZ) and Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan Fröhling
- German Cancer Consortium (DKTK), DKFZ, Core Center Heidelberg, Heidelberg, Germany; Division of Translational Medical Oncology, DKFZ, Heidelberg, Germany; NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany; Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany; Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany; DKTK, DKFZ, Partner Site Tuebingen, Tuebingen, Germany; NCT SouthWest, a partnership between DKFZ and University Hospital Tuebingen, Tuebingen, Germany.
| |
Collapse
|
3
|
Abdallah MM, de Oliveira BD, DuMontier C, Orkaby AR, Nussbaum L, Gaziano M, Djousse L, Gagnon D, Cho K, Preis SR, Driver JA. Risk of Incident Cancer in Veterans with Diabetes Who Use Metformin Versus Sulfonylureas. J Cancer Prev 2024; 29:140-147. [PMID: 39790228 PMCID: PMC11706726 DOI: 10.15430/jcp.24.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 01/12/2025] Open
Abstract
Prior research suggests metformin has anti-cancer effects, yet data are limited. We examined the association between diabetes treatment (metformin versus sulfonylurea) and risk of incident diabetes-related and non- diabetes-related cancers in US veterans. This retrospective cohort study included US veterans, without cancer, aged ≥ 55 years, who were new users of metformin or sulfonylureas for diabetes between 2001 to 2012. Cox proportional hazards models, with propensity score-matched inverse probability of treatment weighting (IPTW) were constructed. A total of 88,713 veterans (mean age 68.6 ± 7.8 years; 97.7% male; 84.1% White, 12.6% Black, 3.3% other race) were followed for 4.2 ± 3.0 years. Among metformin users (n = 60,476), there were 858 incident diabetes-related cancers (crude incidence rate [IR; per 1,000 person-years] = 3.4) and 3,533 non-diabetes-related cancers (IR = 14.1). Among sulfonylurea users (n = 28,237), there were 675 incident diabetes-related cancers (IR = 5.5) and 2,316 non-diabetes-related cancers (IR = 18.9). After IPTW adjustment, metformin use was associated with a lower risk of incident diabetes-related cancer (hazard ratio [HR] = 0.66, 95% CI 0.58-0.75) compared to sulfonylurea use. There was no association between treatment group (metformin versus sulfonylurea) and non-diabetes-related cancer (HR = 0.96, 95% CI 0.89-1.02). Of diabetes-related cancers, metformin users had lower incidence of liver (HR = 0.39, 95% CI 0.28-0.53), colorectal (HR = 0.75, 95% CI 0.62-0.92), and esophageal cancers (HR = 0.54, 95% CI 0.36-0.81). Among US veterans, metformin users had lower incidence of diabetes-related cancer, particularly liver, colorectal, and esophageal cancers, as compared to sulfonylurea users. Use of metformin was not associated with non-diabetes-related cancer. Further studies are needed to understand how metformin use impacts cancer incidence in different patient populations.
Collapse
Affiliation(s)
- Maya M. Abdallah
- Section of Hematology/Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | | | - Clark DuMontier
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Ariela R. Orkaby
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Lisa Nussbaum
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Michael Gaziano
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Luc Djousse
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - David Gagnon
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Kelly Cho
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| | - Sarah R. Preis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Jane A. Driver
- New England Geriatrics Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center (MAVERIC), VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
4
|
Kawakita E, Kanasaki K. Cancer biology in diabetes update: Focusing on antidiabetic drugs. J Diabetes Investig 2024; 15:525-540. [PMID: 38456597 PMCID: PMC11060166 DOI: 10.1111/jdi.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/25/2023] [Accepted: 01/08/2024] [Indexed: 03/09/2024] Open
Abstract
The association of type 2 diabetes with certain cancer risk has been of great interest for years. However, the effect of diabetic medications on cancer development is not fully understood. Prospective clinical trials have not elucidated the long-term influence of hypoglycemic drugs on cancer incidence and the safety for cancer-bearing patients with diabetes, whereas numerous preclinical studies have shown that antidiabetic drugs could have an impact on carcinogenesis processes beyond the glycemic control effect. Because there is no evidence of the safety profile of antidiabetic agents on cancer biology, careful consideration would be required when prescribing any medicines to patients with diabetes and existing tumor. In this review, we discuss the potential influence of each diabetes therapy in cancer 'initiation', 'promotion' and 'progression'.
Collapse
Affiliation(s)
- Emi Kawakita
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
| | - Keizo Kanasaki
- Department of Internal Medicine 1, Faculty of MedicineShimane UniversityIzumoJapan
- The Center for Integrated Kidney Research and Advance, Faculty of MedicineShimane UniversityIzumoJapan
| |
Collapse
|
5
|
Tang Z, Zhang Y, Yu Z, Luo Z. Metformin Suppresses Stemness of Non-Small-Cell Lung Cancer Induced by Paclitaxel through FOXO3a. Int J Mol Sci 2023; 24:16611. [PMID: 38068934 PMCID: PMC10705988 DOI: 10.3390/ijms242316611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Cancer stem cells (CSCs) play a pivotal role in drug resistance and metastasis. Among the key players, Forkhead box O3a (FOXO3a) acts as a tumor suppressor. This study aimed to unravel the role of FOXO3a in mediating the inhibitory effect of metformin on cancer stemness derived from paclitaxel (PTX)-resistant non-small-cell lung cancer (NSCLC) cells. We showed that CSC-like features were acquired by the chronic induction of resistance to PTX, concurrently with inactivation of FOXO3a. In line with this, knockdown of FOXO3a in PTX-sensitive cells led to changes toward stemness, while overexpression of FOXO3a in PTX-resistant cells mitigated stemness in vitro and remarkably curbed the tumorigenesis of NSCLC/PTX cells in vivo. Furthermore, metformin suppressed the self-renewal ability of PTX-resistant cells, reduced the expression of stemness-related markers (c-MYC, Oct4, Nanog and Notch), and upregulated FOXO3a, events concomitant with the activation of AMP-activated protein kinase (AMPK). All these changes were recapitulated by silencing FOXO3a in PTX-sensitive cells. Intriguingly, the introduction of the AMPK dominant negative mutant offset the inhibitory effect of metformin on the stemness of PTX-resistant cells. In addition, FOXO3a levels were elevated by the treatment of PTX-resistant cells with MK2206 (an Akt inhibitor) and U0126 (a MEK inhibitor). Collectively, our findings indicate that metformin exerts its effect on FOXO3a through the activation of AMPK and the inhibition of protein kinase B (Akt) and MAPK/extracellular signal-regulated kinase (MEK), culminating in the suppression of stemness in paclitaxel-resistant NSCLC cells.
Collapse
Affiliation(s)
- Zhimin Tang
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
| | - Yilan Zhang
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhengyi Yu
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| | - Zhijun Luo
- Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Department of Pathophysiology, School of Basic Medical Sciences, Nanchang University, Nanchang 330031, China;
- Nanchang Joint Program, Queen Mary School, Nanchang University, Nanchang 330031, China; (Y.Z.); (Z.Y.)
| |
Collapse
|
6
|
Kyriakidis F, Kogias D, Venou TM, Karlafti E, Paramythiotis D. Updated Perspectives on the Diagnosis and Management of Familial Adenomatous Polyposis. Appl Clin Genet 2023; 16:139-153. [PMID: 37600856 PMCID: PMC10439286 DOI: 10.2147/tacg.s372241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 07/31/2023] [Indexed: 08/22/2023] Open
Abstract
Familial adenomatous polyposis (FAP) is an autosomal dominant cancer predisposition syndrome marked by extensive colorectal polyposis and a high risk of colorectal cancer (CRC). Having access to screening and enrollment programs can improve survival for patients with FAP by enabling them to undergo surgery before the development of colorectal cancer. Provided that there are a variety of surgical options available to treat colorectal polyps in patients with adenomatous polyposis, the appropriate surgical option for each patient should be considered. The gold-standard treatment to reduce this risk is prophylactic colectomy, typically by the age of 40. However, colectomy is linked to morbidity and constitutes an ineffective way at preventing extra-colonic disease manifestations, such as desmoid disease, thyroid malignancy, duodenal polyposis, and cancer. Moreover, extensive studies have been conducted into the use of chemopreventive agents to prevent disease progression and delay the necessity for a colectomy as well as the onset of extracolonic disease. The ideal chemoprevention agent should demonstrate a biologically plausible mechanism of action and provide safety, easy tolerance over an extended period of time and a lasting and clinically meaningful effect. Although many pharmaceutical and non-pharmaceutical products have been tested through the years, there has not yet been a chemoprevention agent that meets these criteria. Thus, it is necessary to develop new FAP agents that target novel pathways, such as the mTOR pathway. The aim of this article is to review the prior literature on FAP in order to concentrate the current and future perspectives of diagnosis and treatment. In conclusion, we will provide an update on the diagnostic and therapeutic options, surgical or pharmaceutical, while focusing on the potential treatment strategies that could further reduce the risk of CRC.
Collapse
Affiliation(s)
- Filippos Kyriakidis
- Second Chemotherapy Department, Theagenio Cancer Hospital of Thessaloniki, Thessaloniki, Greece
| | - Dionysios Kogias
- First Department of Internal Medicine, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - Theodora Maria Venou
- Second Chemotherapy Department, Theagenio Cancer Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleni Karlafti
- Emergency Department, AHEPA General University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
- First Propaedeutic Department of Internal Medicine, University General Hospital of Thessaloniki AHEPA, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Daniel Paramythiotis
- First Propaedeutic Surgery Department, AHEPA University General Hospital of Thessaloniki, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
7
|
Kyriakidis F, Kogias D, Venou TM, Karlafti E, Paramythiotis D. Updated Perspectives on the Diagnosis and Management of Familial Adenomatous Polyposis. Appl Clin Genet 2023; Volume 16:139-153. [DOI: https:/doi.org/10.2147/tacg.s372241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
|
8
|
Pérez-Gómez N, Fernández-Ortega MD, Elizari-Roncal M, Santos-Mazo E, la Maza-Pereg LD, Calvo S, Alcaraz R, Sanz-Solas A, Vinuesa R, Saiz-Rodríguez M. Identification of clinical and pharmacogenetic factors influencing metformin response in Type 2 diabetes mellitus. Pharmacogenomics 2023; 24:651-663. [PMID: 37610884 DOI: 10.2217/pgs-2023-0109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Metformin, a hypoglycemic drug for Type 2 diabetes mellitus, shows variability in pharmacokinetics and response due to membrane transporters. This study followed 34 Type 2 diabetes mellitus patients on metformin treatment. Genetic variants in 11 metformin transport-related genes were analyzed, revealing associations. Specifically, SLC47A1 rs2289669 A/A and SLC22A4 rs1050152 T/T genotypes correlated with glycated hemoglobin values at 6 months. SLC47A1 rs2289669 G/A genotype influenced glucose levels at 6 months, while SLC29A4 rs3889348 A/A, SLC47A1 rs2289669 A/A, SLC22A4 rs1050152 C/T and SLC47A2 rs12943590 A/A genotypes were linked to glucose levels at 12 months. Additionally, ABCB1 rs2032582 C/A and ABCG2 rs2231137 C/T genotypes impacted cholesterol levels at 12 months. These findings shed light on metformin response determinants, offering insights for further research.
Collapse
Affiliation(s)
- Noelia Pérez-Gómez
- Department of Health Sciences, University of Burgos, Burgos, Spain
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| | | | - Miren Elizari-Roncal
- Health Center Jose Luis Santamaría, Burgos Primary Health Care Management, Burgos, Spain
| | | | | | - Sara Calvo
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| | - Antonio Sanz-Solas
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| | - Raquel Vinuesa
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| | - Miriam Saiz-Rodríguez
- Department of Health Sciences, University of Burgos, Burgos, Spain
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, Burgos, Spain
| |
Collapse
|
9
|
Hua Y, Zheng Y, Yao Y, Jia R, Ge S, Zhuang A. Metformin and cancer hallmarks: shedding new lights on therapeutic repurposing. J Transl Med 2023; 21:403. [PMID: 37344841 DOI: 10.1186/s12967-023-04263-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
Metformin is a well-known anti-diabetic drug that has been repurposed for several emerging applications, including as an anti-cancer agent. It boasts the distinct advantages of an excellent safety and tolerability profile and high cost-effectiveness at less than one US dollar per daily dose. Epidemiological evidence reveals that metformin reduces the risk of cancer and decreases cancer-related mortality in patients with diabetes; however, the exact mechanisms are not well understood. Energy metabolism may be central to the mechanism of action. Based on altering whole-body energy metabolism or cellular state, metformin's modes of action can be divided into two broad, non-mutually exclusive categories: "direct effects", which induce a direct effect on cancer cells, independent of blood glucose and insulin levels, and "indirect effects" that arise from systemic metabolic changes depending on blood glucose and insulin levels. In this review, we summarize an updated account of the current knowledge on metformin antitumor action, elaborate on the underlying mechanisms in terms of the hallmarks of cancer, and propose potential applications for repurposing metformin for cancer therapeutics.
Collapse
Affiliation(s)
- Yu Hua
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639 Zhizaoju Road, Shanghai, 200011, China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, No. 639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
10
|
Singh S, Shukla AK, Usman K, Banerjee M. Pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) in newly diagnosed Indian type 2 diabetes patients undergoing metformin monotherapy. Pharmacogenet Genomics 2023; 33:51-58. [PMID: 36853844 DOI: 10.1097/fpc.0000000000000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
OBJECTIVES Type 2 diabetes (T2D) imposes an enormous burden all over the world in both developed and developing countries. Inter-individual differences are attributed to polymorphisms in candidate genes resulting in altered absorption, transportation, distribution, and metabolism of oral antidiabetic drugs (OADs). Hence, the present study was undertaken to evaluate the pharmacogenetic impact of SLC22A1 gene variant rs628031 (G/A) on metformin monotherapy in newly diagnosed untreated T2D patients. METHODS Newly diagnosed T2D patients ( n = 500) were enrolled according to inclusion/exclusion criteria. Initially, enrolled subjects were prescribed metformin monotherapy and followed up for at least 12 weeks. Response to metformin was evaluated in 478 patients who revisited for follow-up by measuring HbA1c. RESULT Out of 478 patients, 373 were responders to metformin monotherapy while 105 were non-responders. The pharmacogenetic impact was evaluated by genotype, haplotype, and pharmacogenetic analyses. 'GG' genotype and 'G' allele of SLC22A1 rs628031 G/A were observed in 48.8% and 67.7% of Met responders, respectively, while 20.9% and 49.1 % were in non-responders. Therefore, there was a 2.18-fold increase in the success rate of Met therapeutics. CONCLUSION Individuals carrying the 'GG' genotype or 'G' allele for SLC22A1 gene variant rs628031 G/A are better responders for Metformin monotherapy.
Collapse
Affiliation(s)
- Shalini Singh
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| | - Ashwin Kumar Shukla
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| | - Kauser Usman
- Department of Medicine, King George's Medical University Lucknow, India
| | - Monisha Banerjee
- Molecular and Human Genetics Laboratory, Department of Zoology, University of Lucknow
| |
Collapse
|
11
|
Saiz-Rodríguez M, Ochoa D, Zubiaur P, Navares-Gómez M, Román M, Camargo-Mamani P, Luquero-Bueno S, Villapalos-García G, Alcaraz R, Mejía-Abril G, Santos-Mazo E, Abad-Santos F. Identification of Transporter Polymorphisms Influencing Metformin Pharmacokinetics in Healthy Volunteers. J Pers Med 2023; 13:jpm13030489. [PMID: 36983671 PMCID: PMC10053761 DOI: 10.3390/jpm13030489] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023] Open
Abstract
For patients with type 2 diabetes, metformin is the most often recommended drug. However, there are substantial individual differences in the pharmacological response to metformin. To investigate the effect of transporter polymorphisms on metformin pharmacokinetics in an environment free of confounding variables, we conducted our study on healthy participants. This is the first investigation to consider demographic characteristics alongside all transporters involved in metformin distribution. Pharmacokinetic parameters of metformin were found to be affected by age, sex, ethnicity, and several polymorphisms. Age and SLC22A4 and SLC47A2 polymorphisms affected the area under the concentration-time curve (AUC). However, after adjusting for dose-to-weight ratio (dW), sex, age, and ethnicity, along with SLC22A3 and SLC22A4, influenced AUC. The maximum concentration was affected by age and SLC22A1, but after adjusting for dW, it was affected by sex, age, ethnicity, ABCG2, and SLC22A4. The time to reach the maximum concentration was influenced by sex, like half-life, which was also affected by SLC22A3. The volume of distribution and clearance was affected by sex, age, ethnicity and SLC22A3. Alternatively, the pharmacokinetics of metformin was unaffected by polymorphisms in ABCB1, SLC2A2, SLC22A2, or SLC47A1. Therefore, our study demonstrates that a multifactorial approach to all patient characteristics is necessary for better individualization.
Collapse
Affiliation(s)
- Miriam Saiz-Rodríguez
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain;
- Department of Health Sciences, University of Burgos, 09001 Burgos, Spain
- Correspondence: (M.S.-R.); (D.O.)
| | - Dolores Ochoa
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
- Correspondence: (M.S.-R.); (D.O.)
| | - Pablo Zubiaur
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Marcos Navares-Gómez
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Manuel Román
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Paola Camargo-Mamani
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Sergio Luquero-Bueno
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Gonzalo Villapalos-García
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain;
| | - Gina Mejía-Abril
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
| | | | - Francisco Abad-Santos
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto Teófilo Hernando, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain; (P.Z.); (M.N.-G.); (M.R.); (P.C.-M.); (S.L.-B.); (G.V.-G.); (G.M.-A.); (F.A.-S.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
12
|
Kurelac I, Cavina B, Sollazzo M, Miglietta S, Fornasa A, De Luise M, Iorio M, Lama E, Traversa D, Nasiri HR, Ghelli A, Musiani F, Porcelli AM, Iommarini L, Gasparre G. NDUFS3 knockout cancer cells and molecular docking reveal specificity and mode of action of anti-cancer respiratory complex I inhibitors. Open Biol 2022; 12:220198. [PMID: 36349549 PMCID: PMC9653258 DOI: 10.1098/rsob.220198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Inhibition of respiratory complex I (CI) is becoming a promising anti-cancer strategy, encouraging the design and the use of inhibitors, whose mechanism of action, efficacy and specificity remain elusive. As CI is a central player of cellular bioenergetics, a finely tuned dosing of targeting drugs is required to avoid side effects. We compared the specificity and mode of action of CI inhibitors metformin, BAY 87-2243 and EVP 4593 using cancer cell models devoid of CI. Here we show that both BAY 87-2243 and EVP 4593 were selective, while the antiproliferative effects of metformin were considerably independent from CI inhibition. Molecular docking predictions indicated that the high efficiency of BAY 87-2243 and EVP 4593 may derive from the tight network of bonds in the quinone binding pocket, although in different sites. Most of the amino acids involved in such interactions are conserved across species and only rarely found mutated in human. Our data make a case for caution when referring to metformin as a CI-targeting compound, and highlight the need for dosage optimization and careful evaluation of molecular interactions between inhibitors and the holoenzyme.
Collapse
Affiliation(s)
- Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Beatrice Cavina
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Sollazzo
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Stefano Miglietta
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Agnese Fornasa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Monica De Luise
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| | - Maria Iorio
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Eleonora Lama
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Daniele Traversa
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Hamid Razi Nasiri
- Department of Cellular Microbiology, University Hohenheim, Stuttgart, Germany
| | - Anna Ghelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Francesco Musiani
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Anna Maria Porcelli
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy,Interdepartmental Centre for Industrial Research ‘Scienze della Vita e Tecnologie per la Salute’, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy,Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy,Centre for Applied Biomedical Research (CRBA), University of Bologna, Bologna, Italy
| |
Collapse
|
13
|
Kumar R, Mishra A, Gautam P, Feroz Z, Vijayaraghavalu S, Likos EM, Shukla GC, Kumar M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers (Basel) 2022; 14:5268. [PMID: 36358687 PMCID: PMC9656396 DOI: 10.3390/cancers14215268] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/09/2022] [Accepted: 10/19/2022] [Indexed: 07/30/2023] Open
Abstract
Metabolic reprogramming enables cancer cells to proliferate and produce tumor biomass under a nutrient-deficient microenvironment and the stress of metabolic waste. A cancer cell adeptly undergoes a variety of adaptations in metabolic pathways and differential expression of metabolic enzyme genes. Metabolic adaptation is mainly determined by the physiological demands of the cancer cell of origin and the host tissue. Numerous metabolic regulators that assist cancer cell proliferation include uncontrolled anabolism/catabolism of glucose metabolism, fatty acids, amino acids metabolism, nucleotide metabolism, tumor suppressor genes, microRNAs, and many regulatory enzymes and genes. Using this paradigm, we review the current understanding of metabolic reprogramming in tumors and discuss the new strategies of cancer metabolomics that can be tapped into for cancer therapeutics.
Collapse
Affiliation(s)
- Rishabh Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Anurag Mishra
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Priyanka Gautam
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | - Zainab Feroz
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| | | | - Eviania M. Likos
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Girish C. Shukla
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Munish Kumar
- Department of Biochemistry, Faculty of Science, University of Allahabad, Prayagraj 211002, UP, India
| |
Collapse
|
14
|
Mu X, Xiang Z, Xu Y, He J, Lu J, Chen Y, Wang X, Tu CR, Zhang Y, Zhang W, Yin Z, Leung WH, Lau YL, Liu Y, Tu W. Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 2022; 19:944-956. [PMID: 35821253 PMCID: PMC9338301 DOI: 10.1038/s41423-022-00894-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zheng Xiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yan Xu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jing He
- GuangDong 999 Brain Hospital, Guangzhou City, Guangdong Province, PR China
| | - Jianwen Lu
- Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xiwei Wang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanmei Zhang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wenyue Zhang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Wing-Hang Leung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yinping Liu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Wenwei Tu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
15
|
Jin P, Jiang J, Zhou L, Huang Z, Nice EC, Huang C, Fu L. Mitochondrial adaptation in cancer drug resistance: prevalence, mechanisms, and management. J Hematol Oncol 2022; 15:97. [PMID: 35851420 PMCID: PMC9290242 DOI: 10.1186/s13045-022-01313-4] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 06/29/2022] [Indexed: 02/08/2023] Open
Abstract
Drug resistance represents a major obstacle in cancer management, and the mechanisms underlying stress adaptation of cancer cells in response to therapy-induced hostile environment are largely unknown. As the central organelle for cellular energy supply, mitochondria can rapidly undergo dynamic changes and integrate cellular signaling pathways to provide bioenergetic and biosynthetic flexibility for cancer cells, which contributes to multiple aspects of tumor characteristics, including drug resistance. Therefore, targeting mitochondria for cancer therapy and overcoming drug resistance has attracted increasing attention for various types of cancer. Multiple mitochondrial adaptation processes, including mitochondrial dynamics, mitochondrial metabolism, and mitochondrial apoptotic regulatory machinery, have been demonstrated to be potential targets. However, recent increasing insights into mitochondria have revealed the complexity of mitochondrial structure and functions, the elusive functions of mitochondria in tumor biology, and the targeting inaccessibility of mitochondria, which have posed challenges for the clinical application of mitochondrial-based cancer therapeutic strategies. Therefore, discovery of both novel mitochondria-targeting agents and innovative mitochondria-targeting approaches is urgently required. Here, we review the most recent literature to summarize the molecular mechanisms underlying mitochondrial stress adaptation and their intricate connection with cancer drug resistance. In addition, an overview of the emerging strategies to target mitochondria for effectively overcoming chemoresistance is highlighted, with an emphasis on drug repositioning and mitochondrial drug delivery approaches, which may accelerate the application of mitochondria-targeting compounds for cancer therapy.
Collapse
Affiliation(s)
- Ping Jin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Jingwen Jiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Li Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Zhao Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China
| | - Edouard C Nice
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, 3800, Australia
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, 610041, People's Republic of China.
| | - Li Fu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pharmacology and International Cancer Center, Shenzhen University Health Science Center, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|
16
|
Kang J, Lee D, Lee KJ, Yoon JE, Kwon JH, Seo Y, Kim J, Chang SY, Park J, Kang EA, Park SJ, Park JJ, Cheon JH, Kim TI. Tumor-Suppressive Effect of Metformin via the Regulation of M2 Macrophages and Myeloid-Derived Suppressor Cells in the Tumor Microenvironment of Colorectal Cancer. Cancers (Basel) 2022; 14:2881. [PMID: 35740547 PMCID: PMC9220791 DOI: 10.3390/cancers14122881] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) and M2 macrophages in the tumor microenvironment contribute to tumor progression by inducing immune tolerance to tumor antigens and cancer cells. Metformin, one of the most common diabetes drugs, has shown anti-inflammatory and anti-tumor effects. However, the effects of metformin on inflammatory cells of the tumor microenvironment and its underlying mechanisms remain unclarified. In this study, we investigated the effect of metformin on M2 macrophages and MDSCs using monocyte THP-1 cells and a dextran sodium sulfate (DSS)-treated ApcMin/+ mouse model of colon cancer. Metformin decreased the fractions of MDSCs expressing CD33 and arginase, as well as M2 macrophages expressing CD206 and CD163. The inhibitory effect of metformin and rapamycin on MDSCs and M2 macrophages was reversed by the co-treatment of Compound C (an AMP-activated protein kinase (AMPK) inhibitor) or mevalonate. To examine the effect of protein prenylation and cholesterol synthesis (the final steps of the mevalonate pathway) on the MDSC and M2 macrophage populations, we used respective inhibitors (YM53601; SQLE inhibitor, FTI-277; farnesyl transferase inhibitor, GGTI-298; geranylgeranyl transferase inhibitor) and found that the MDSC and M2 populations were suppressed by the protein prenylation inhibitors. In the DSS-treated ApcMin/+ mouse colon cancer model, metformin reduced the number and volume of colorectal tumors with decreased populations of MDSCs and M2 macrophages in the tumor microenvironment. In conclusion, the inhibitory effect of metformin on MDSCs and M2 macrophages in the tumor microenvironment of colon cancers is mediated by AMPK activation and subsequent mTOR inhibition, leading to the downregulation of the mevalonate pathway.
Collapse
Affiliation(s)
- Joyeon Kang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Doyeon Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Kyoung Jin Lee
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Jaepil Eric Yoon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Ji-Hee Kwon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Yoojeong Seo
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Janghyun Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
| | - Shin Young Chang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jihye Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eun Ae Kang
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Soo Jung Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Jun Park
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jae Hee Cheon
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Il Kim
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul 03722, Korea; (J.K.); (D.L.); (K.J.L.); (J.E.Y.); (J.-H.K.); (Y.S.); (J.K.); (S.Y.C.); (J.P.); (E.A.K.); (S.J.P.); (J.J.P.); (J.H.C.)
- Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, Korea
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul 03722, Korea
- Cancer Prevention Center, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
17
|
Kawoosa F, Shah ZA, Masoodi SR, Amin A, Rasool R, Fazili KM, Dar AH, Lone A, Ul Bashir S. Role of human organic cation transporter-1 (OCT-1/SLC22A1) in modulating the response to metformin in patients with type 2 diabetes. BMC Endocr Disord 2022; 22:140. [PMID: 35619086 PMCID: PMC9137212 DOI: 10.1186/s12902-022-01033-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Organic cation transporter 1 primarily governs the action of metformin in the liver. There are considerable inter-individual variations in metformin response. In light of this, it is crucial to obtain a greater understanding of the influence of OCT1 expression or polymorphism in the context of variable responses elicited by metformin treatment. RESULTS We observed that the variable response to metformin in the responders and non-responders is independent of isoform variation and mRNA expression of OCT-1. We also observed an insignificant difference in the serum metformin levels of the patient groups. Further, molecular docking provided us with an insight into the hotspot regions of OCT-1 for metformin binding. Genotyping of these regions revealed SNPs 156T>C and 1222A>G in both the groups, while as 181C>T and 1201G>A were found only in non-responders. The 181T>C and 1222A>G changes were further found to alter OCT-1 structure in silico and affect metformin transport in vitro which was illustrated by their effect on the activation of AMPK, the marker for metformin activity. CONCLUSION Taken together, our results corroborate the role of OCT-1 in the transport of metformin and also point at OCT1 genetic variations possibly affecting the transport of metformin into the cells and hence its subsequent action in responders and non-responders.
Collapse
Affiliation(s)
- Fizalah Kawoosa
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, 190011, India
| | - Zafar A Shah
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, 190011, India.
| | - Shariq R Masoodi
- Department of Endocrinology, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, 190011, India
| | - Asif Amin
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Roohi Rasool
- Department of Immunology and Molecular Medicine, Sher-I-Kashmir Institute of Medical Sciences, Srinagar, Jammu and Kashmir, 190011, India
| | - Khalid M Fazili
- Department of Biotechnology, University of Kashmir, Srinagar, Jammu and Kashmir, 190006, India
| | - Abid Hamid Dar
- Department of Biotechnology, Central University of Kashmir, Ganderbal, Jammu and Kashmir, 191201, India
| | - Asif Lone
- Department of Biochemistry, Deshbandhu College, University of Delhi, Delhi, 110019, India
| | - Samir Ul Bashir
- Department of Chemistry, University of Northern British Columbia, Prince George, Canada
| |
Collapse
|
18
|
Zou W, Liu B, Wang Y, Shi F, Pang S. Metformin attenuates high glucose-induced injury in islet microvascular endothelial cells. Bioengineered 2022; 13:4385-4396. [PMID: 35139776 PMCID: PMC8973819 DOI: 10.1080/21655979.2022.2033411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
As one of the most frequently prescribed antidiabetic drugs, metformin can lower glucose levels, improve insulin resistance manage body weight. However, the effect of metformin on islet microcirculation remains unclear. In the present study, to explore the effect of metformin on islet endothelial cells and investigated the underlying mechanism, we assessed the effects of metformin on islet endothelial cell survival, proliferation, oxidative stress and apoptosis. Our results suggest that metformin stimulates the proliferation of pancreatic islet endothelial cells and inhibits the apoptosis and oxidative stress caused by high glucose levels. By activating farnesoid X receptor (FXR), metformin increases the expression of vascular endothelial growth factor-A (VEGF-A) and endothelial nitric oxide synthase (eNOS), improves the production of nitric oxide (NO) and decreases the production of ROS. After the inhibition of FXR or VEGF-A, all of the effects disappeared. Thus, metformin appears to regulate islet microvascular endothelial cell (IMEC) proliferation, apoptosis and oxidative stress by activating the FXR/VEGF-A/eNOS pathway. These findings provide a new mechanism underlying the islet-protective effect of metformin.
Collapse
Affiliation(s)
- Wenyu Zou
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bingkun Liu
- Department of Cardiology, Yidu Central Hospital of Weifang, Weifang, China
| | - Yulu Wang
- Department of Internal Medicine, Weifang Medical University, Weifang, China
| | - Fangbin Shi
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuguang Pang
- Department of endocrinologyEndocrinology, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
19
|
Barbieri F, Bosio AG, Pattarozzi A, Tonelli M, Bajetto A, Verduci I, Cianci F, Cannavale G, Palloni LMG, Francesconi V, Thellung S, Fiaschi P, Mazzetti S, Schenone S, Balboni B, Girotto S, Malatesta P, Daga A, Zona G, Mazzanti M, Florio T. Chloride intracellular channel 1 activity is not required for glioblastoma development but its inhibition dictates glioma stem cell responsivity to novel biguanide derivatives. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:53. [PMID: 35135603 PMCID: PMC8822754 DOI: 10.1186/s13046-021-02213-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022]
Abstract
Abstract
Background
Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings.
Methods
We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos).
Results
We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity.
Conclusions
These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.
Collapse
|
20
|
Chen P, Cao Y, Guo Y, Xu Q, Wang X, Zhang L, Liu Z, Chen D, Chen S, Chen S. Association of SLC22A1 rs622342 and ATM rs11212617 polymorphisms with metformin efficacy in patients with type 2 diabetes. Pharmacogenet Genomics 2022; 32:67-71. [PMID: 34545025 DOI: 10.1097/fpc.0000000000000454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Metformin is the first-choice oral anti-hyperglycemic drug for type 2 diabetes mellitus (T2DM) patients. There are controversies about the association of SLC22A1 rs622342, which was not reported in the Chinese population, and ataxia-telangiectasia mutated (ATM) rs11212617 polymorphisms with metformin efficacy in T2DM. Our study was to investigate the effects of the two single nucleotide polymorphisms on the efficacy of metformin in T2DM of Han nationality in Chaoshan China. After enrollment, 82 newly diagnosed T2DM patients went on 2-month metformin monotherapy. According to BMI before treatment, the patients were divided into a normal weight group (≥18.5 and <25 kg/m2) and an overweight group (BMI ≥ 25 and <30 kg/m2). T-test, Pearson χ2 test, and regression analysis, which adjusted for age, BMI, sex, the dose of metformin, education, tea drink, smoking, and sweet, were used to evaluate the effects of rs622342 and rs11212617 on several variables, such as fasting plasma glucose (FPG). Compared with the AA or CC genotype, patients with AC genotype of rs622342 achieved greater reduction in Δ60FPG and Δ(60-30)FPG (P = 0.00820, 0.00089, respectively). For 11212617, the reduction in Δ30FPG and Δ60FPG was significantly different among patients with the AC genotype (P = 0.00026, 0.00820, respectively). Our results indicated that common variants of SLC22A1 rs622342 and ATM rs11212617 were associated with the efficacy of metformin in T2DM of Han nationality in Chaoshan China.
Collapse
Affiliation(s)
- Peixian Chen
- Department of Endocrinology
- Department of Infection Control
| | - Yumin Cao
- Department of Neurology, Meizhou People's Hospital, Meizhou, Guangdong Province
| | - Yali Guo
- Department of Endocrinology, Central Hospital of Shenzhen Guangming New District, Shenzhen
| | - Qi Xu
- Department of Endocrinology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province
| | - Xiaozhu Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Liuwei Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Zhike Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Dafang Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, People's Republic of China
| | - Shiyi Chen
- Department of Endocrinology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province
| | - Shenren Chen
- Department of Endocrinology, the Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province
| |
Collapse
|
21
|
Liu S, Washio J, Sato S, Abiko Y, Shinohara Y, Kobayashi Y, Otani H, Sasaki S, Wang X, Takahashi N. Rewired Cellular Metabolic Profiles in Response to Metformin under Different Oxygen and Nutrient Conditions. Int J Mol Sci 2022; 23:ijms23020989. [PMID: 35055173 PMCID: PMC8781974 DOI: 10.3390/ijms23020989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 12/12/2022] Open
Abstract
Metformin is a metabolic disruptor, and its efficacy and effects on metabolic profiles under different oxygen and nutrient conditions remain unclear. Therefore, the present study examined the effects of metformin on cell growth, the metabolic activities and consumption of glucose, glutamine, and pyruvate, and the intracellular ratio of nicotinamide adenine dinucleotide (NAD+) and reduced nicotinamide adenine dinucleotide (NADH) under normoxic (21% O2) and hypoxic (1% O2) conditions. The efficacy of metformin with nutrient removal from culture media was also investigated. The results obtained show that the efficacy of metformin was closely associated with cell types and environmental factors. Acute exposure to metformin had no effect on lactate production from glucose, glutamine, or pyruvate, whereas long-term exposure to metformin increased the consumption of glucose and pyruvate and the production of lactate in the culture media of HeLa and HaCaT cells as well as the metabolic activity of glucose. The NAD+/NADH ratio decreased during growth with metformin regardless of its efficacy. Furthermore, the inhibitory effects of metformin were enhanced in all cell lines following the removal of glucose or pyruvate from culture media. Collectively, the present results reveal that metformin efficacy may be regulated by oxygen conditions and nutrient availability, and indicate the potential of the metabolic switch induced by metformin as combinational therapy.
Collapse
Affiliation(s)
- Shan Liu
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
- Correspondence: ; Tel.: +81-22-717-8295
| | - Satoko Sato
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuta Shinohara
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Yuri Kobayashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Haruki Otani
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Shiori Sasaki
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| | - Xiaoyi Wang
- Department of Head and Neck Oncology, Sichuan University West China School of Stomatology, Chengdu 610041, China;
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai 9808575, Japan; (S.L.); (S.S.); (Y.A.); (Y.S.); (Y.K.); (H.O.); (S.S.); (N.T.)
| |
Collapse
|
22
|
Biguanide Pharmaceutical Formulations and the Applications of Bile Acid-Based Nano Delivery in Chronic Medical Conditions. Int J Mol Sci 2022; 23:ijms23020836. [PMID: 35055022 PMCID: PMC8775521 DOI: 10.3390/ijms23020836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/11/2022] [Indexed: 12/21/2022] Open
Abstract
Biguanides, particularly the widely prescribed drug metformin, have been marketed for many decades and have well-established absorption profiles. They are commonly administered via the oral route and, despite variation in oral uptake, remain commonly prescribed for diabetes mellitus, typically type 2. Studies over the last decade have focused on the design and development of advanced oral delivery dosage forms using bio nano technologies and novel drug carrier systems. Such studies have demonstrated significantly enhanced delivery and safety of biguanides using nanocapsules. Enhanced delivery and safety have widened the potential applications of biguanides not only in diabetes but also in other disorders. Hence, this review aimed to explore biguanides’ pharmacokinetics, pharmacodynamics, and pharmaceutical applications in diabetes, as well as in other disorders.
Collapse
|
23
|
Metformin Increases Sensitivity of Melanoma Cells to Cisplatin by Blocking Exosomal-Mediated miR-34a Secretion. JOURNAL OF ONCOLOGY 2021; 2021:5525231. [PMID: 34880915 PMCID: PMC8648459 DOI: 10.1155/2021/5525231] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/12/2021] [Indexed: 01/07/2023]
Abstract
Melanoma, also known as malignant melanoma, is a type of cancer derived from the pigment-containing cells known as melanocytes. Cisplatin (CDDP) is widely used in the treatment of different types of tumors with high response rates, but it generally has low efficiency in melanoma. This study aimed to investigate whether metformin could sensitize the melanoma cell line A375 to cisplatin. Our results for the first time indicated that CDDP increased the miR-34a secretion by exosomes in melanoma A375 cells, which was, at least partially, related to the cisplatin resistance of melanoma cells. Moreover, metformin significantly sensitized A375 cells to cisplatin. Mechanistically, metformin significantly blocked the exosome-mediated miR-34a secretion induced by cisplatin. Our study not only reveals a novel mechanism that exosomal secretion of miR-34a is involved in the cisplatin resistance of melanoma cells but also provides a promising therapeutic strategy by synergistic addition of metformin.
Collapse
|
24
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
25
|
EZH2 presents a therapeutic target for neuroendocrine tumors of the small intestine. Sci Rep 2021; 11:22733. [PMID: 34815475 PMCID: PMC8611048 DOI: 10.1038/s41598-021-02181-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
Small intestinal neuroendocrine tumors (SI-NETs) are slow-growing tumors that seem genetically quite stable without highly recurrent mutations, but are epigenetically dysregulated. In contrast to the undetectable expression of the enhancer of zeste homolog 2 (EZH2) histone methyltransferase in the enterochromaffin cells of the small intestine, we found high and differential expression of EZH2 in primary SI-NETs and corresponding metastases. Silencing EZH2 in the SI-NET cell line CNDT2.5 reduced cell proliferation and induced apoptosis. Furthermore, EZH2 knockout inhibited tumor progression in a CNDT2.5 SI-NET xenograft mouse model, and treatment of SI-NET cell lines CNDT2.5 and GOT1 with the EZH2-specific inhibitor CPI-1205 decreased cell viability and promoted apoptosis. Moreover, CPI-1205 treatment reduced migration capacity of CNDT2.5 cells. The EZH2 inhibitor GSK126 also repressed proliferation of CNDT2.5 cells. Recently, metformin has received wide attention as a therapeutic option in diverse cancers. In CNDT2.5 and GOT1 cells, metformin suppressed EZH2 expression, and inhibited cell proliferation. Exposure of GOT1 three-dimensional cell spheroids to CPI-1205 or metformin arrested cell proliferation and decreased spheroid size. These novel findings support a possible role of EZH2 as a candidate oncogene in SI-NETs, and suggest that CPI-1205 and metformin should be further evaluated as therapeutic options for patients with SI-NETs.
Collapse
|
26
|
Tortelli TC, Tamura RE, de Souza Junqueira M, da Silva Mororó J, Bustos SO, Natalino RJM, Russell S, Désaubry L, Strauss BE, Chammas R. Metformin-induced chemosensitization to cisplatin depends on P53 status and is inhibited by Jarid1b overexpression in non-small cell lung cancer cells. Aging (Albany NY) 2021; 13:21914-21940. [PMID: 34528900 PMCID: PMC8507253 DOI: 10.18632/aging.203528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/25/2021] [Indexed: 12/24/2022]
Abstract
Metformin has been tested as an anti-cancer therapy with potential to improve conventional chemotherapy. However, in some cases, metformin fails to sensitize tumors to chemotherapy. Here we test if the presence of P53 could predict the activity of metformin as an adjuvant for cisplatin-based therapy in non-small cell lung cancer (NSCLC). A549, HCC 827 (TP53 WT), H1299, and H358 (TP53 null) cell lines were used in this study. A549 cells were pre-treated with a sub-lethal dose of cisplatin to induce chemoresistance. The effects of metformin were tested both in vitro and in vivo and related to the ability of cells to accumulate Jarid1b, a histone demethylase involved in cisplatin resistance in different cancers. Metformin sensitized A549 and HCC 827 cells (but not H1299 and H358 cells) to cisplatin in a P53-dependent manner, changing its subcellular localization to the mitochondria. Treatment with a sub-lethal dose of cisplatin increased Jarid1b expression, yet downregulated P53 levels, protecting A549Res cells from metformin-induced chemosensitization to cisplatin and favored a glycolytic phenotype. Treatment with FL3, a synthetic flavagline, sensitized A549Res cells to cisplatin. In conclusion, metformin could potentially be used as an adjuvant for cisplatin-based therapy in NSCLC cells if wild type P53 is present.
Collapse
Affiliation(s)
- Tharcisio Citrangulo Tortelli
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Rodrigo Esaki Tamura
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
- Laboratory of Cancer Molecular Biology, Federal University of São Paulo, São Paulo, SP 04039-002, Brazil
| | - Mara de Souza Junqueira
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Janio da Silva Mororó
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Silvina Odete Bustos
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Renato Jose Mendonça Natalino
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Shonagh Russell
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Laurent Désaubry
- Laboratory of Regenerative Nanomedicine (RNM), INSERM U 1260, University of Strasbourg, CRBS, Strasbourg 67000, France
| | - Bryan Eric Strauss
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| | - Roger Chammas
- Centro de Investigação Translacional em Oncologia (LIM24), Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo and Instituto do Câncer do Estado de São Paulo, São Paulo, SP 01246-000, Brazil
| |
Collapse
|
27
|
Rahman MS, Winsvold BS, Chavez Chavez SO, Børte S, Tsepilov YA, Sharapov SZ, Aulchenko YS, Hagen K, Fors EA, Hveem K, Zwart JA, van Meurs JB, Freidin MB, Williams FM. Genome-wide association study identifies RNF123 locus as associated with chronic widespread musculoskeletal pain. Ann Rheum Dis 2021; 80:1227-1235. [PMID: 33926923 PMCID: PMC8372387 DOI: 10.1136/annrheumdis-2020-219624] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND OBJECTIVES Chronic widespread musculoskeletal pain (CWP) is a symptom of fibromyalgia and a complex trait with poorly understood pathogenesis. CWP is heritable (48%-54%), but its genetic architecture is unknown and candidate gene studies have produced inconsistent results. We conducted a genome-wide association study to get insight into the genetic background of CWP. METHODS Northern Europeans from UK Biobank comprising 6914 cases reporting pain all over the body lasting >3 months and 242 929 controls were studied. Replication of three independent genome-wide significant single nucleotide polymorphisms was attempted in six independent European cohorts (n=43 080; cases=14 177). Genetic correlations with risk factors, tissue specificity and colocalisation were examined. RESULTS Three genome-wide significant loci were identified (rs1491985, rs10490825, rs165599) residing within the genes Ring Finger Protein 123 (RNF123), ATPase secretory pathway Ca2+transporting 1 (ATP2C1) and catechol-O-methyltransferase (COMT). The RNF123 locus was replicated (meta-analysis p=0.0002), the ATP2C1 locus showed suggestive association (p=0.0227) and the COMT locus was not replicated. Partial genetic correlation between CWP and depressive symptoms, body mass index, age of first birth and years of schooling were identified. Tissue specificity and colocalisation analysis highlight the relevance of skeletal muscle in CWP. CONCLUSIONS We report a novel association of RNF123 locus and a suggestive association of ATP2C1 locus with CWP. Both loci are consistent with a role of calcium regulation in CWP. The association with COMT, one of the most studied genes in chronic pain field, was not confirmed in the replication analysis.
Collapse
Affiliation(s)
- Md Shafiqur Rahman
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Bendik S Winsvold
- Department of Research, Innovation and Education,Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Department of Neurology, Oslo universitetssykehus Ullevål, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sergio O Chavez Chavez
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Sigrid Børte
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Research and Communication Unit for Musculoskeletal Health (FORMI), Department of Research, Innovation and Education, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- PolyOmica, 's-Hertogenbosch, PA, The Netherlands
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Sodbo Zh Sharapov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, 630090, Russia
| | - Yurii S Aulchenko
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, Novosibirsk, 630090, Novosibirskaâ, Russia
- PolyOmica, 's-Hertogenbosch, PA, The Netherlands
| | - Knut Hagen
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Clinical Research Unit Central Norway, St Olavs University Hospital, Trondheim, Norway
| | - Egil A Fors
- Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Center, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - John Anker Zwart
- Department of Research, Innovation and Education,Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Institute of Clinical Medicine,Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Joyce B van Meurs
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, Zuid-Holland, The Netherlands
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| | - Frances Mk Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, UK
| |
Collapse
|
28
|
Jang SK, Hong SE, Lee DH, Kim JY, Kim JY, Ye SK, Hong J, Park IC, Jin HO. Inhibition of mTORC1 through ATF4-induced REDD1 and Sestrin2 expression by Metformin. BMC Cancer 2021; 21:803. [PMID: 34253170 PMCID: PMC8273940 DOI: 10.1186/s12885-021-08346-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Background Although the major anticancer effect of metformin involves AMPK-dependent or AMPK-independent mTORC1 inhibition, the mechanisms of action are still not fully understood. Methods To investigate the molecular mechanisms underlying the effect of metformin on the mTORC1 inhibition, MTT assay, RT-PCR, and western blot analysis were performed. Results Metformin induced the expression of ATF4, REDD1, and Sestrin2 concomitant with its inhibition of mTORC1 activity. Treatment with REDD1 or Sestrin2 siRNA reversed the mTORC1 inhibition induced by metformin, indicating that REDD1 and Sestrin2 are important for the inhibition of mTORC1 triggered by metformin treatment. Moreover, REDD1- and Sestrin2-mediated mTORC1 inhibition in response to metformin was independent of AMPK activation. Additionally, lapatinib enhances cell sensitivity to metformin, and knockdown of REDD1 and Sestrin2 decreased cell sensitivity to metformin and lapatinib. Conclusions ATF4-induced REDD1 and Sestrin2 expression in response to metformin plays an important role in mTORC1 inhibition independent of AMPK activation, and this signalling pathway could have therapeutic value.
Collapse
Affiliation(s)
- Se-Kyeong Jang
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.,Department of Food and Microbial Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul, 01797, Republic of Korea
| | - Sung-Eun Hong
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Da-Hee Lee
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Ji-Young Kim
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Ji Yea Kim
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea
| | - Sang-Kyu Ye
- Department of Pharmacology, Seoul National University College of Medicine, 103 Daehak-ro, Jongno-gu, Seoul, 03080, Republic of Korea
| | - Jungil Hong
- Department of Food and Microbial Technology, Seoul Women's University, 621 Hwarangro, Nowon-gu, Seoul, 01797, Republic of Korea
| | - In-Chul Park
- Division of Fusion Radiology Research, Korea Institute of Radiological & Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| | - Hyeon-Ok Jin
- KIRAMS Radiation Biobank, Korea Institute of Radiological and Medical Sciences, 75 Nowon-ro, Nowon-gu, Seoul, 01812, Republic of Korea.
| |
Collapse
|
29
|
Wang JL, Lan YW, Tsai YT, Chen YC, Staniczek T, Tsou YA, Yen CC, Chen CM. Additive Antiproliferative and Antiangiogenic Effects of Metformin and Pemetrexed in a Non-Small-Cell Lung Cancer Xenograft Model. Front Cell Dev Biol 2021; 9:688062. [PMID: 34235153 PMCID: PMC8255984 DOI: 10.3389/fcell.2021.688062] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 12/16/2022] Open
Abstract
Lung cancer is heterogeneous and challenging to cope with once it has progressed. Chemotherapy is the first step once no active driver mutation has been discovered. Non-antitumor drugs have been found to be beneficial when used as adjuvants to chemotherapy. In this study, the additive effect and mechanism of metformin combined with pemetrexed in non-small-cell lung cancer (NSCLC) cells were elucidated. Three NSCLC cell lines, A549, H1975, and HCC827, were used to analyze tumor cell proliferation, colony formation and the cell cycle in vitro when exposed to metformin alone, pemetrexed alone or their combination. We found that combination treatment in three cell lines exerted antiproliferative effects through cell cycle arrest in the S phase. An ex vivo chicken chorioallantoic membrane (CAM) assay was used to examine the antiangiogenic effect of metformin combined with pemetrexed on vascular structure formation. We further created an A549 orthotopic xenograft model with an in vivo imaging system (IVIS) and explored the associated indicators involved in the tumorigenic process. The in vitro results showed that the combination of metformin and pemetrexed exhibited an antiproliferative effect in reducing cell viability and colony formation, the downregulation of cyclin D1 and A2 and the upregulation of CDKN1B, which are involved in the G1/S phase. For antiangiogenic effects, the combination therapy inhibited the vascular structure, as proven by the CAM assay. We elucidated that combination therapy could target VEGFA and Endoglin by RT-qPCR, ELISA and histopathological findings in an A549 orthotopic NSCLC xenograft model. Our research demonstrated the additive antiproliferative and antiangiogenic effects of the combination of metformin with pemetrexed in NSCLC and could be applied to clinical lung cancer therapy.
Collapse
Affiliation(s)
- Jiun-Long Wang
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Wei Lan
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Yi-Ting Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Ying-Cheng Chen
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Theresa Staniczek
- Department of Dermatology, Venereology and Allergology, Center of Excellence in Dermatology, University Medical Center and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yung-An Tsou
- Department of Otolaryngology-Head and Neck Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung, Taiwan
| | - Chuan-Mu Chen
- Ph.D. Program in Translational Medicine, Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.,The iEGG and Animal Biotechnology Center, Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
30
|
Kathuria D, Raul AD, Wanjari P, Bharatam PV. Biguanides: Species with versatile therapeutic applications. Eur J Med Chem 2021; 219:113378. [PMID: 33857729 DOI: 10.1016/j.ejmech.2021.113378] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 12/18/2022]
Abstract
Biguanides are compounds in which two guanidine moieties are fused to form a highly conjugated system. Biguanides are highly basic and hence they are available as salts mostly hydrochloride salts, these cationic species have been found to exhibit many therapeutic properties. This review covers the research and development carried out on biguanides and accounts the various therapeutic applications of drugs containing biguanide group-such as antimalarial, antidiabetic, antiviral, anticancer, antibacterial, antifungal, anti-tubercular, antifilarial, anti-HIV, as well as other biological activities. The aim of this review is to compile all the medicinal chemistry applications of this class of compounds so as to pave way for the accelerated efforts in finding the drug action mechanisms associated with this class of compounds. Importance has been given to the organic chemistry of these biguanide derivatives also.
Collapse
Affiliation(s)
- Deepika Kathuria
- University Center for Research and Development, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Akshay D Raul
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Pravin Wanjari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S. A. S. Nagar, 160 062, Punjab, India.
| |
Collapse
|
31
|
Alves ALV, Gomes INF, Carloni AC, Rosa MN, da Silva LS, Evangelista AF, Reis RM, Silva VAO. Role of glioblastoma stem cells in cancer therapeutic resistance: a perspective on antineoplastic agents from natural sources and chemical derivatives. Stem Cell Res Ther 2021; 12:206. [PMID: 33762015 PMCID: PMC7992331 DOI: 10.1186/s13287-021-02231-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/15/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GBM) is the highest-grade form of glioma, as well as one of the most aggressive types of cancer, exhibiting rapid cellular growth and highly invasive behavior. Despite significant advances in diagnosis and therapy in recent decades, the outcomes for high-grade gliomas (WHO grades III-IV) remain unfavorable, with a median overall survival time of 15–18 months. The concept of cancer stem cells (CSCs) has emerged and provided new insight into GBM resistance and management. CSCs can self-renew and initiate tumor growth and are also responsible for tumor cell heterogeneity and the induction of systemic immunosuppression. The idea that GBM resistance could be dependent on innate differences in the sensitivity of clonogenic glial stem cells (GSCs) to chemotherapeutic drugs/radiation prompted the scientific community to rethink the understanding of GBM growth and therapies directed at eliminating these cells or modulating their stemness. This review aims to describe major intrinsic and extrinsic mechanisms that mediate chemoradioresistant GSCs and therapies based on antineoplastic agents from natural sources, derivatives, and synthetics used alone or in synergistic combination with conventional treatment. We will also address ongoing clinical trials focused on these promising targets. Although the development of effective therapy for GBM remains a major challenge in molecular oncology, GSC knowledge can offer new directions for a promising future.
Collapse
Affiliation(s)
- Ana Laura V Alves
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Izabela N F Gomes
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriana C Carloni
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Marcela N Rosa
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Luciane S da Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Adriane F Evangelista
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.,Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.,ICVS/3B's PT Government Associate Laboratory, 4806-909, Braga, Portugal
| | - Viviane Aline O Silva
- Molecular Oncology Research Center, Barretos Cancer Hospital, Rua Antenor Duarte Villela, 1331, CEP 14784 400, Barretos, São Paulo, Brazil.
| |
Collapse
|
32
|
Mbara KC, Mofo Mato PE, Driver C, Nzuza S, Mkhombo NT, Gcwensa SK, Mcobothi EN, Owira PM. Metformin turns 62 in pharmacotherapy: Emergence of non-glycaemic effects and potential novel therapeutic applications. Eur J Pharmacol 2021; 898:173934. [PMID: 33609563 DOI: 10.1016/j.ejphar.2021.173934] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/24/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Metformin is the most commonly prescribed oral antidiabetic medication. Direct/indirect activation of Adenosine Monophosphate-activated protein kinase (AMPK) and non-AMPK pathways, amongst others, are deemed to explain the molecular mechanisms of action of metformin. Metformin is an established insulin receptor sensitising antihyperglycemic agent, is highly affordable, and has superior safety and efficacy profiles. Emerging experimental and clinical evidence suggests that metformin has pleiotropic non-glycemic effects. Metformin appears to have weight stabilising, renoprotective, neuroprotective, cardio-vascular protective, and antineoplastic effects and mitigates polycystic ovarian syndrome. Anti-inflammatory and antioxidant effects of metformin seem to qualify it as an adjunct therapy in treating infectious diseases such as tuberculosis, viral hepatitis, and the current novel Covid-19 infections. So far, metformin is the only prescription medicine relevant to the emerging field of senotherapeutics. Non-glycemic effects of metformin favourable to its repurposing in therapeutic use are hereby discussed.
Collapse
Affiliation(s)
- Kingsley C Mbara
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Pascale E Mofo Mato
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Christine Driver
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Sanelisiwe Nzuza
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Ntokozo T Mkhombo
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Senamile Kp Gcwensa
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Esethu N Mcobothi
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa
| | - Peter Mo Owira
- Molecular and Clinical Pharmacology Research Laboratory, Department of Pharmacology, Discipline of Pharmaceutical Sciences, University of Kwazulu-Natal, P.O. Box X5401, Durban, South Africa.
| |
Collapse
|
33
|
Park JJ, Kim BC, Hong SP, Seo Y, Lee HS, Park YS, Na SY, Park SC, Park J, Kim JH, Moon CM, Huh KC, Park SJ, Cheon JH, Kim WH, Kim TI. The Effect of Metformin in Treatment of Adenomas in Patients with Familial Adenomatous Polyposis. Cancer Prev Res (Phila) 2021; 14:563-572. [PMID: 33509804 DOI: 10.1158/1940-6207.capr-20-0580] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/20/2021] [Indexed: 11/16/2022]
Abstract
Familial adenomatous polyposis (FAP) is a hereditary disease characterized by the development of numerous colorectal adenomas in young adults. Metformin, an oral diabetic drug, has been shown to have antineoplastic effects and a favorable safety profile. We performed a randomized, double-blind, controlled trial to evaluate the efficacy of metformin on the regression of colorectal and duodenal adenoma in patients with FAP. Thirty-four FAP patients were randomly assigned in a 1:2:2 ratio to receive placebo, 500 mg metformin, or 1,500 mg metformin per day orally for 7 months. The number and size of polyps and the global polyp burden were evaluated before and after the intervention. This study was terminated early based on the results of the interim analysis. No significant differences were determined in the percentage change of colorectal and duodenal polyp number over the course of treatment among the three treatment arms (P = 0.627 and P = 1.000, respectively). We found no significant differences in the percentage change of colorectal or duodenal polyp size among the three groups (P = 0.214 and P = 0.803, respectively). The overall polyp burdens of the colorectum and duodenum were not significantly changed by metformin treatment at either dosage. Colon polyps removed from the metformin-treated patients showed significantly lower mTOR signal (p-S6) expression than those from patients in the placebo arm. In conclusion, 7 months of treatment with 500 mg or 1,500 mg metformin did not reduce the mean number or size of polyps in the colorectum or duodenum in FAP patients (ClinicalTrials.gov ID: NCT01725490). PREVENTION RELEVANCE: A 7-month metformin treatment (500 mg or 1,500 mg) did not reduce the number or size of polyps in the colorectum or duodenum of FAP patients as compared to placebo. These results do not support the use of metformin to promote regression of intestinal adenomas in FAP patients.
Collapse
Affiliation(s)
- Jae Jun Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Byung Chang Kim
- Center for Colorectal Cancer, Center for Cancer Prevention & Detection, Division of Cancer Epidemiology and Management, Research Institute and Hospital, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Sung Pil Hong
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Yoojeong Seo
- Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Sun Lee
- Biostatics Collaboration Unit, Yonsei University College of Medicine, Seoul, Korea
| | - Young Sook Park
- Department of Internal Medicine, Nowon Eulji University Hospital, Eulji University School of Medicine, Seoul, Korea
| | - Soo-Young Na
- Division of Gastroenterology, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon, Korea
| | - Sung Chul Park
- Department of Internal Medicine, Kangwon National University School of Medicine, Chuncheon, Korea
| | - Jongha Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Jae Hak Kim
- Division of Gastroenterology, Department of Internal Medicine, Dongguk University Ilsan Hospital, Goyang, Korea
| | - Chang Mo Moon
- Department of Internal Medicine, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Kyu Chan Huh
- Department of Internal Medicine, Konyang University College of Medicine, Konyang University Hospital, Daejeon, Korea
| | - Soo Jung Park
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jae Hee Cheon
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Won Ho Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Tae Il Kim
- Department of Internal Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea. .,Institute of Gastroenterology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Yonsei Cancer Prevention Center, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.,Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
34
|
Kubota S, Yoshida T, Kageyama S, Isono T, Yuasa T, Yonese J, Kushima R, Kawauchi A, Chano T. A risk stratification model based on four novel biomarkers predicts prognosis for patients with renal cell carcinoma. World J Surg Oncol 2020; 18:270. [PMID: 33092599 PMCID: PMC7584101 DOI: 10.1186/s12957-020-02046-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Accurate prediction of the prognosis of RCC using a single biomarker is challenging due to the genetic heterogeneity of the disease. However, it is essential to develop an accurate system to allow better patient selection for optimal treatment strategies. ARL4C, ECT2, SOD2, and STEAP3 are novel molecular biomarkers identified in earlier studies as survival-related genes by comprehensive analyses of 43 primary RCC tissues and RCC cell lines. METHODS To develop a prognostic model based on these multiple biomarkers, the expression of four biomarkers ARL4C, ECT2, SOD2, and STEAP3 in primary RCC tissue were semi-quantitatively investigated by immunohistochemical analysis in an independent cohort of 97 patients who underwent nephrectomy, and the clinical significance of these biomarkers were analyzed by survival analysis using Kaplan-Meier curves. The prognostic model was constructed by calculation of the contribution score to prognosis of each biomarker on Cox regression analysis, and its prognostic performance was validated. RESULTS Patients whose tumors had high expression of the individual biomarkers had shorter cancer-specific survival (CSS) from the time of primary nephrectomy. The prognostic model based on four biomarkers segregated the patients into a high- and low-risk scored group according to defined cut-off value. This approach was more robust in predicting CSS compared to each single biomarker alone in the total of 97 patients with RCC. Especially in the 36 metastatic RCC patients, our prognostic model could more accurately predict early events within 2 years of diagnosis of metastasis. In addition, high risk-scored patients with particular strong SOD2 expression had a much worse prognosis in 25 patients with metastatic RCC who were treated with molecular targeting agents. CONCLUSIONS Our findings indicate that a prognostic model based on four novel biomarkers provides valuable data for prediction of clinical prognosis and useful information for considering the follow-up conditions and therapeutic strategies for patients with primary and metastatic RCC.
Collapse
Affiliation(s)
- Shigehisa Kubota
- Department of Urology, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Tetsuya Yoshida
- Department of Urology, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Susumu Kageyama
- Department of Urology, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Takahiro Isono
- Central Research Laboratory, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Takeshi Yuasa
- Department of Urology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Koto, Tokyo, 135-8550 Japan
| | - Junji Yonese
- Department of Urology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Ariake, Koto, Tokyo, 135-8550 Japan
| | - Ryoji Kushima
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Akihiro Kawauchi
- Department of Urology, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
- Department of Medical Genetics, Shiga University of Medical Science, SetaTshukinowa-cho, Otsu, Shiga 520-2192 Japan
| |
Collapse
|
35
|
Yang T, Yu S, Liu L, Sun Y, Lan Y, Ma X, Zhu R, Li L, Hou Y, Liu Y. Dual polymeric prodrug co-assembled nanoparticles with precise ratiometric co-delivery of cisplatin and metformin for lung cancer chemoimmunotherapy. Biomater Sci 2020; 8:5698-5714. [PMID: 32930254 DOI: 10.1039/d0bm01191f] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The combination therapy of cisplatin (CDDP) and metformin (MET) is a clinical strategy to enhance therapeutic outcomes in lung cancer. However, the efficacy of this combination is limited due to the asynchronous pharmacokinetic behavior of CDDP and MET, used as free drugs. Therefore, in this work, hyaluronic acid-cisplatin/polystyrene-polymetformin (HA-CDDP/PMet) dual-prodrug co-assembled nanoparticles were developed, with precise ratiometric co-delivery of CDDP and MET for chemo-immunotherapy against lung cancer. The HA-CDDP/PMet NPs showed a spherical morphology with an average particle size of 166.5 nm and a zeta potential of -17.4 mV at an HA-CDDP and PMet mass ratio of 1/1. The content of CDDP and MET in HA-CDDP/PMet NPs was 3.7% and 15.2%, respectively. In vitro antitumor effects of CDDP and MET resulted in an improved synergistic action on proliferation inhibition and apoptosis induction on Lewis lung cancer cells. Moreover, in vivo by co-delivered HA-CDDP/PMet NPs into tumor cells, with an excellent intracellular CDDP and MET cleavage. These nanoparticles exhibited significantly increased tumor accumulation and tumor growth inhibition and prolonged animal overall survival in Lewis lung cancer bearing mice without nephrotoxicity, excess of free drugs and homo-prodrugs. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs resulted in up-regulation of the cleaved poly(ADP)-ribose polymerase (PARP) protein to induce tumor cell apoptosis, and down-regulation of the excision repair cross-complementation group 1 (ERCC1) protein level to decrease the resistance to CDDP. The synergistic effect of MET and CDDP in HA-CDDP/PMet NPs also resulted in induction of the adenosine monophosphate (AMP)-activated protein kinase-α (AMPK-α) pathway and inhibition of the mammalian target of rapamycin (mTOR), finally exerting a chemotherapeutic effect and modulating a potent immunotherapeutic function with an increase in CD4+ and CD8+ T cells, a concomitant decrease in regulatory T (Treg) cells, and an increased expression of the cytokines IFN-γ and TNF-α. Therefore, the immunochemotherapy using CDDP and MET mediated by this dual prodrug co-assembled nano-platform might provide a promising treatment strategy against lung cancer.
Collapse
Affiliation(s)
- Tong Yang
- Department of Pharmaceutics, School of Pharmacy, Ningxia Medical University, No. 1160, Shengli Street, Yinchuan, 750004, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Li L, Wang T, Hu M, Zhang Y, Chen H, Xu L. Metformin Overcomes Acquired Resistance to EGFR TKIs in EGFR-Mutant Lung Cancer via AMPK/ERK/NF-κB Signaling Pathway. Front Oncol 2020; 10:1605. [PMID: 33014814 PMCID: PMC7511631 DOI: 10.3389/fonc.2020.01605] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The major limitation of EGFR TKIs in EGFR-mutant lung cancer therapy is the development of acquired resistance. The underlying mechanisms remain unknown in about 30% of cases. NF-κB activation was encountered in the acquired resistance to EGFR TKIs. Unfortunately, none of NF-κB inhibitors has been clinically approved. The most commonly used antidiabetic drug metformin has demonstrated antitumor effects associated with NF-κB inhibition. Therefore, in this study, metformin was examined for its antitumor and antiresistance effects and underlying mechanisms. Methods:In vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to EGFR TKIs were used. Results: We found that NF-κB was activated in EGFR-mutant lung cancer cells with acquired resistance to EGFR TKIs. Metformin inhibited proliferation and promoted apoptosis of lung cancer cells, especially those with acquired EGFR TKI resistance. Moreover, metformin reversed and delayed acquired resistance to EGFR TKIs as well as suppressed cancer stemness in EGFR-mutant lung cancer. Mechanistically, those effects of metformin were associated with activation of AMPK, resulting in the inhibition of downstream ERK/NF-κB signaling. Conclusions: Our data provided novel and further molecular rationale and preclinical data to support combination of metformin with EGFR TKIs to treat EGFR-mutant lung cancer patients, especially those with acquired resistance.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Hu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Mitochondrial Metabolism as a Target for Cancer Therapy. Cell Metab 2020; 32:341-352. [PMID: 32668195 PMCID: PMC7483781 DOI: 10.1016/j.cmet.2020.06.019] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022]
Abstract
Recent evidence in humans and mice supports the notion that mitochondrial metabolism is active and necessary for tumor growth. Mitochondrial metabolism supports tumor anabolism by providing key metabolites for macromolecule synthesis and generating oncometabolites to maintain the cancer phenotype. Moreover, there are multiple clinical trials testing the efficacy of inhibiting mitochondrial metabolism as a new cancer therapeutic treatment. In this review, we discuss the rationale of using these anti-cancer agents in clinical trials and highlight how to effectively utilize them in different tumor contexts.
Collapse
|
38
|
Toxicities Associated With Metformin/Ritonavir Combination Treatment in Relapsed/Refractory Multiple Myeloma. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e667-e672. [PMID: 32631779 DOI: 10.1016/j.clml.2020.05.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 11/21/2022]
|
39
|
Wu K, Li X, Xu Y, Zhang X, Guan Z, Zhang S, Li Y. SLC22A1 rs622342 Polymorphism Predicts Insulin Resistance Improvement in Patients with Type 2 Diabetes Mellitus Treated with Metformin: A Cross-Sectional Study. Int J Endocrinol 2020; 2020:2975898. [PMID: 32454819 PMCID: PMC7231067 DOI: 10.1155/2020/2975898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/16/2020] [Accepted: 03/31/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Metformin is the most widely used oral antidiabetic agent and can reduce insulin resistance (IR) effectively. Organic cation transporter 1 (encoded by SLC22A1) is responsible for the transport of metformin, and ataxia-telangiectasia-mutated (ATM) is a gene relating to the DNA repair and cell cycle control. The aim of this study was to evaluate if the genetic variants in SLC22A1 rs622342 and ATM rs11212617 could be effective predictors of islet function improvement in patients with type 2 diabetes mellitus (T2DM) on metformin treatment. METHODS This cross-sectional study included 111 patients with T2DM treated with metformin. Genotyping was performed by the dideoxy chain-termination method. The homeostatic indexes of IR (HOMA-IR) and beta-cell function (HOMA-BCF) were determined according to the homeostasis model assessment. RESULTS Fasting plasma glucose (FPG) levels, HbA1c levels, and HOMA-IR were significantly higher in patients with the rs622342 AA genotype than in those with C allele (P < 0.05). However, these significant differences were not observed between rs11212617 genotype groups. Further data analysis revealed that the association between the rs622342 polymorphism and HOMA-IR was gender related, and so was rs11212617 polymorphism and HOMA-BCF. HOMA-IR was significantly higher in males with rs622342 AA genotype than in those with C allele (P=0.021), and HOMA-BCF value was significantly higher in females carrying rs11212617 CC genotype than in those with A allele (P=0.038). The common logarithm (Lg10) of HOMA-BCF was positively correlated with the reciprocal of HbA1c (r = 0.629, P < 0.001) and negatively associated with Lg10 FPG (r = -0.708, P < 0.001). CONCLUSIONS The variant of rs622342 could be a predictor of insulin sensitivity in patients with T2DM treated with metformin. The association between the rs622342 polymorphism and HOMA-IR and the association between the rs11212617 polymorphism and HOMA-BCF were both gender related.
Collapse
Affiliation(s)
- Kunrong Wu
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, China
| | - Xiaoli Li
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an 271000, China
| | - Yuedong Xu
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, China
| | - Xiaoqian Zhang
- Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, China
| | - Ziwan Guan
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, China
| | - Shufang Zhang
- School of Pharmaceutical Sciences, Shandong First Medical University, Tai'an 271000, China
| | - Yan Li
- Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University, Ji'nan 250014, China
| |
Collapse
|
40
|
Rezaei N, Neshasteh-Riz A, Mazaheri Z, Koosha F, Hoormand M. The Combination of Metformin and Disulfiram-Cu for Effective Radiosensitization on Glioblastoma Cells. CELL JOURNAL 2019; 22:263-272. [PMID: 31863651 PMCID: PMC6947006 DOI: 10.22074/cellj.2020.6798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023]
Abstract
Objective Glioblastoma (GBM) is one of the devastating types of primary brain tumors with a negligible response to
standard therapy. Repurposing drugs, such as disulfiram (DSF) and metformin (Met) have shown antitumor properties
in different cell lines, including GBM. In the present study, we focused on the combinatory effect of Met and DSF-Cu on
the induction of apoptosis in U87-MG cells exposed to 6-MV X-ray beams.
Materials and Methods In this experimental study, the MTT assay was performed to evaluate the cytotoxicity of
each drug, along with the combinatory use of both. After irradiation, the apoptotic cells were assessed using the flow
cytometry, western blot, and real-time polymerase chain reaction (RT-PCR) to analyze the expression of some cell
death markers such as BAX and BCL-2.
Results The synergistic application of both Met and DSF had cytotoxic impacts on the U87-MG cell line and made
them sensitized to irradiation. The combinatory usage of both drugs significantly decreased the cells growth, induced
apoptosis, and caused the upregulation of BAX, P53, CASPASE-3, and it also markedly downregulated the expression
of the anti-apoptotic protein BCL-2 at the gene and protein levels.
Conclusion It seems that the synergistic application of both Met and DSF with the support of irradiation can remarkably
restrict the growth of the U87-MG cell line. This may trigger apoptosis via the stimulation of the intrinsic pathway. The
combinatory use of Met and DSF in the presence of irradiation could be applied for patients afflicted with GBM.
Collapse
Affiliation(s)
- Narges Rezaei
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Neshasteh-Riz
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Radiation Sciences, School of Paramedicine, Iran University of Medical Sciences, Tehran, Iran. Electronic Address:
| | - Zohreh Mazaheri
- Department of Anatomical Sciences, Medical Sciences Faculty, Tarbiat Modares University, Tehran, Iran
| | - Fereshteh Koosha
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Medical Physics and Biomedical Engineering, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Hoormand
- Department of Pharmacology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Mathews Samuel S, Satheesh NJ, Ghosh S, Büsselberg D, Majeed Y, Ding H, Triggle CR. Treatment with a Combination of Metformin and 2-Deoxyglucose Upregulates Thrombospondin-1 in Microvascular Endothelial Cells: Implications in Anti-Angiogenic Cancer Therapy. Cancers (Basel) 2019; 11:E1737. [PMID: 31698699 PMCID: PMC6895998 DOI: 10.3390/cancers11111737] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/28/2019] [Accepted: 10/29/2019] [Indexed: 12/12/2022] Open
Abstract
Metformin, the most widely used anti-diabetic drug, also exhibits anti-cancer properties; however, the true potential of metformin as an anticancer drug remains largely unknown. In this study using mouse microvascular endothelial cells (MMECs), we investigated the effects of metformin alone or in combination with the glycolytic inhibitor, 2-deoxyglucose (2DG), on angiogenesis-a process known to be an integral part of tumor growth, cancer cell survival and metastasis. MMECs were exposed to 2DG (1-10 mM) for 48 h in the absence or presence of metformin (2 mM). The status of angiogenic and anti-angiogenic marker proteins, proteins of the mTOR pathway and cell-cycle-related proteins were quantified by Western blot analysis. Assays for cell proliferation, migration and tubulogenesis were also performed. We observed robust up-regulation of anti-angiogenic thrombospondin-1 (TSP1) and increased TSP1-CD36 co-localization with a marked decrease in the levels of phosphorylated vascular endothelial growth factor receptor-2 (pVEGFR2; Y1175) in 2DG (5 mM) exposed cells treated with metformin (2 mM). Additionally, treatment with metformin and 2DG (5 mM) inhibited the Akt/mTOR pathway and down-regulated the cell-cycle-related proteins such as p-cyclin B1 (S147) and cyclins D1 and D2 when compared to cells that were treated with either 2DG or metformin alone. Treatment with a combination of 2DG (5 mM) and metformin (2 mM) also significantly decreased cell proliferation, migration and tubulogenic capacity when compared to cells that were treated with either 2DG or metformin alone. The up-regulation of TSP1, inhibition of cell proliferation, migration and tubulogenesis provides support to the argument that the combination of metformin and 2DG may prove to be an appropriate anti-proliferative and anti-angiogenic therapeutic strategy for the treatment of some cancers.
Collapse
Affiliation(s)
- Samson Mathews Samuel
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Noothan Jyothi Satheesh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Suparna Ghosh
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Yasser Majeed
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
| | - Hong Ding
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| | - Chris R. Triggle
- Department of Pharmacology, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (N.J.S.); (S.G.); (Y.M.); (H.D.)
- Department of Medical Education, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
42
|
Martisova A, Sommerova L, Kuricova K, Podhorec J, Vojtesek B, Kankova K, Hrstka R. AGR2 silencing contributes to metformin-dependent sensitization of colorectal cancer cells to chemotherapy. Oncol Lett 2019; 18:4964-4973. [PMID: 31612008 DOI: 10.3892/ol.2019.10800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/19/2019] [Indexed: 02/06/2023] Open
Abstract
There is growing epidemiological evidence indicating an association between diabetes mellitus and the increased incidence of colorectal cancer (CRC). The preferred initial and most widely used pharmacological agent for the treatment of type 2 diabetes is metformin, which in parallel reduces the risk of CRC and improves patient prognosis. AMP-activated protein kinase (AMPK) appears to be tightly associated with the beneficial metabolic effects of metformin, serving as a cellular energy sensor activated in response to a variety of conditions that deplete cellular energy levels. Such conditions include nutrient starvation (particularly glucose), hypoxia and exposure to toxins that inhibit the mitochondrial respiratory chain complex. The aim of the present study was to determine the effect of metformin on CRC cell lines, with different levels of anterior gradient 2 (AGR2) expression, exposed to 5-fluorouracil (5-FU) and oxaliplatin, alone or in combination with metformin. AGR2 has recently emerged as a factor involved in colon carcinogenesis. In AGR2-knockout cells, markedly higher levels of phosphorylated-AMPK were observed in comparison with control cells transfected with GFP-scrambled guide RNA, which indicated that the presence of AGR2 may interfere with the metformin-dependent activation of AMPK. In addition, metformin in combination with 5-FU and oxaliplatin induced ROS production and attenuated autophagy. This effect was enhanced in AGR2-knockout cells.
Collapse
Affiliation(s)
- Andrea Martisova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Lucia Sommerova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katarina Kuricova
- Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Jan Podhorec
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Borivoj Vojtesek
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| | - Katerina Kankova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic.,Department of Pathophysiology, Faculty of Medicine, Masaryk University, 625 00 Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, 656 53 Brno, Czech Republic
| |
Collapse
|
43
|
Courtois S, Lehours P, Bessède E. The therapeutic potential of metformin in gastric cancer. Gastric Cancer 2019; 22:653-662. [PMID: 30900101 DOI: 10.1007/s10120-019-00952-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Metformin is a biguanide molecule used since 1957 to treat type 2 diabetes patients. In addition to its hypoglycemic effects, epidemiological studies have shown that metformin can be associated with a decrease in cancer development risk in diabetic populations. Thus, since 2005 this molecule is largely studied for its antitumoural properties in different types of cancer. The potential antitumoural effect of metformin in gastric cancer has been poorly studied. Here, we detailed the different described mechanisms implicated in the antitumoural effect of metformin in gastric cancer, from the signalling pathways to the functional effects on gastric cancer cell lines and gastric cancer stem cells.
Collapse
Affiliation(s)
- Sarah Courtois
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.
| | - Philippe Lehours
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| | - Emilie Bessède
- INSERM, Univ. Bordeaux, UMR1053 Bordeaux Research In Translational Oncology, BaRITOn, 33000, Bordeaux, France.,French National Reference Center for Campylobacters and Helicobacters in Bordeaux (CNRCH), University Hospital of Bordeaux, Bordeaux, France
| |
Collapse
|
44
|
Grace MR, Dotters-Katz SK, Zhou C, Manuck T, Boggess K, Bae-Jump V. Effect of a High-Fat Diet and Metformin on Placental mTOR Signaling in Mice. AJP Rep 2019; 9:e138-e143. [PMID: 30972229 PMCID: PMC6456331 DOI: 10.1055/s-0039-1683362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/11/2018] [Indexed: 01/06/2023] Open
Abstract
Objective This study was aimed to measure the effects of a high-fat diet and metformin on placental mechanistic target of rapamycin (mTOR) signaling in mice. Study Design Pregnant friend virus B (FVB)-strain mice were allocated on embryonic day (e) 0.5 to one of four groups; group 1: control diet (CD, 10% fat) + control treatment (CT), group 2: CD + metformin treatment (MT), group 3: high-fat diet (HFD, 60% fat) + CT, and group 4: HFD + MT. Metformin (2.5 mg/mL) was provided in water; CT mice received water. Fetuses and placentas were collected. Western blot measured placental p-Akt and p-S6 expression. Results 20 dams (five/group) and 192 fetuses were studied. Compared with CD-fed, HFD-fed dams had higher placental p-Akt protein expression ( p < 0.0001). Among HFD-dams, placental p-Akt was higher in metformin-treated compared with control-treated ( p < 0.001). Among CD-fed dams, there was no significant difference in placental p-S6 expression in MT versus CT groups. Among HFD-fed dams placental p-S6 expression was lower in those exposed to metformin-treated versus controls ( p = 0.001). Conclusion Increased placental mTOR signaling and metformin inhibition of placental mTOR signaling only occurred in the presence of an HFD exposure. These findings suggest that metformin may modulate placental mTOR signaling in the presence of metabolic exposures during pregnancy.
Collapse
Affiliation(s)
- Matthew R Grace
- Tennessee Maternal Fetal Medicine and the University of Tennessee, Division of Obstetrics and Gynecology, Department of Clinical Medicine Education, Nashville, Tennessee
| | - Sarah K Dotters-Katz
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina
| | - Chunxiao Zhou
- Division of Gynecologic Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Tracy Manuck
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina.,Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology and Carolina Institute for Environmental Health Solutions, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Kim Boggess
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Victoria Bae-Jump
- Division of Gynecologic Oncology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
45
|
Lee J, Yesilkanal AE, Wynne JP, Frankenberger C, Liu J, Yan J, Elbaz M, Rabe DC, Rustandy FD, Tiwari P, Grossman EA, Hart PC, Kang C, Sanderson SM, Andrade J, Nomura DK, Bonini MG, Locasale JW, Rosner MR. Effective breast cancer combination therapy targeting BACH1 and mitochondrial metabolism. Nature 2019; 568:254-258. [PMID: 30842661 PMCID: PMC6698916 DOI: 10.1038/s41586-019-1005-x] [Citation(s) in RCA: 237] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 02/06/2019] [Indexed: 12/20/2022]
Abstract
Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin5,6, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours7. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.
Collapse
Affiliation(s)
- Jiyoung Lee
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Ali E Yesilkanal
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Joseph P Wynne
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Casey Frankenberger
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jielin Yan
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Mohamad Elbaz
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Daniel C Rabe
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Felicia D Rustandy
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Payal Tiwari
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Elizabeth A Grossman
- Department of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Peter C Hart
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Christie Kang
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jorge Andrade
- Center for Research Informatics, University of Chicago, Chicago, IL, USA
| | - Daniel K Nomura
- Department of Chemistry, Molecular and Cell Biology, and Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA, USA.,Department of Nutritional Sciences and Toxicology, University of California at Berkeley, Berkeley, CA, USA
| | - Marcelo G Bonini
- Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Marsha Rich Rosner
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
46
|
Amano T, Chano T, Isono T, Kimura F, Kushima R, Murakami T. Abundance of mitochondrial superoxide dismutase is a negative predictive biomarker for endometriosis-associated ovarian cancers. World J Surg Oncol 2019; 17:24. [PMID: 30700285 PMCID: PMC6354361 DOI: 10.1186/s12957-019-1565-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 01/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Endometrioid ovarian carcinoma and clear cell ovarian carcinoma are both classified as endometriosis-associated ovarian cancers (EAOCs). Despite the high rates of recurrence and mortality of EAOC, only a few prognostic biomarkers have been reported. Mitochondrial superoxide dismutase (SOD2) plays an important role in maintaining mitochondrial function through oxidative stress tolerance and contributes to chemotherapeutic resistance. Methods To clarify the clinical significance of SOD2 in EAOC, SOD2 expression was semi-quantitatively investigated by immunohistochemical analysis in 61 primary EAOC cases, and the correlations between SOD2 expression and clinicopathological data and survival were analyzed. Results Forty-six (75%) cases expressed high levels of SOD2. High SOD2 expression was associated with a poor prognosis on both univariate and multivariate analyses after adjusting for variables such as age, International Federation of Gynecology and Obstetrics (FIGO) stage, blood markers, histological type, and completion of treatment. There were 14 fatalities from 15 recurrences among 46 cases with high SOD2 expression. In contrast, only one recurrence and no fatalities were seen among 15 cases with low SOD2 expression. Conclusion Increased SOD2 expression is a predictive biomarker for worse prognosis in EAOC. The therapeutic efficacy of the current standard therapeutic protocol for EAOC is limited; thus, mitochondrial SOD2 should be a therapeutic target for SOD2-abundant EAOC.
Collapse
Affiliation(s)
- Tsukuru Amano
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan.
| | - Takahiro Isono
- Central Research Laboratory, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Ryoji Kushima
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| | - Takashi Murakami
- Department of Obstetrics and Gynecology, Shiga University of Medical Science, SetaTsukinowa-cho, Otsu, Shiga, 520-2192, Japan
| |
Collapse
|
47
|
Herrera-Martínez AD, Pedraza-Arevalo S, L-López F, Gahete MD, Gálvez-Moreno MA, Castaño JP, Luque RM. Type 2 Diabetes in Neuroendocrine Tumors: Are Biguanides and Statins Part of the Solution? J Clin Endocrinol Metab 2019; 104:57-73. [PMID: 30265346 DOI: 10.1210/jc.2018-01455] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/24/2018] [Indexed: 12/13/2022]
Abstract
CONTEXT Biguanides and statins exert beneficial effects on various cancer types. Their precise effects and underlying molecular mechanisms are poorly understood. MATERIALS AND METHODS We analyzed the relationship between metabolic syndrome and histological, epidemiological, and prognosis variables in two cohorts of patients with neuroendocrine tumors (NETs): those with lung carcinoids (LCs; n = 81) and those with gastroenteropancreatic NET (GEP-NET; n = 100). Biguanide and statin antitumor effects were investigated by evaluating proliferation, migration, secretion, gene expression, and involved molecular pathways in BON1/QGP1 cell cultures. RESULTS Pleura invasion was higher (LCs group; P < 0.05) and tumor diameter tended to be increased (GEP-NET group) in patients with type 2 diabetes (T2DM) than in those without. Somatostatin and ghrelin systems mRNA levels differed in tumor tissue of patients with T2DM taking metformin or not. Biguanides decreased proliferation rate in BON1/QGP1 cells; the effects of statins on proliferation rate depended on the statin and cell types, and time. Specifically, only simvastatin and atorvastatin decreased proliferation in BON1 cells, whereas all statins decreased proliferation rate in QGP1 cells. Metformin and simvastatin decreased migration capacity in BON1 cells; biguanides decreased serotonin secretion in BON1 cells. Phenformin increased apoptosis in BON1/QGP1 cells; simvastatin increased apoptosis in QGP1 cells. These antitumor effects likely involved altered expression of key genes related to cancer aggressiveness. CONCLUSION A clear inhibitory effect of biguanides and statins was seen on NET-cell aggressiveness. Our results invite additional exploration of the potential therapeutic role of these drugs in treatment of patients with NETs.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Sergio Pedraza-Arevalo
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Fernando L-López
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Manuel D Gahete
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - María A Gálvez-Moreno
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Endocrinology and Nutrition Service, Reina Sofia University Hospital, Córdoba, Spain
| | - Justo P Castaño
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Córdoba, Spain
| |
Collapse
|
48
|
Patra JK, Das G, Lee S, Kang SS, Shin HS. Selected commercial plants: A review of extraction and isolation of bioactive compounds and their pharmacological market value. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
49
|
Schulten HJ. Pleiotropic Effects of Metformin on Cancer. Int J Mol Sci 2018; 19:2850. [PMID: 30241339 PMCID: PMC6213406 DOI: 10.3390/ijms19102850] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/07/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022] Open
Abstract
Metformin (MTF) is a natural compound derived from the legume Galega officinalis. It is the first line antidiabetic drug for type 2 diabetes (T2D) treatment. One of its main antidiabetic effects results from the reduction of hepatic glucose release. First scientific evidence for the anticancer effects of MTF was found in animal research, published in 2001, and some years later a retrospective observational study provided evidence that linked MTF to reduced cancer risk in T2D patients. Its pleiotropic anticancer effects were studied in numerous in vitro and in vivo studies at the molecular and cellular level. Although the majority of these studies demonstrated that MTF is associated with certain anticancer properties, clinical studies and trials provided a mixed view on its beneficial anticancer effects. This review emphasizes the pleiotropic effects of MTF and recent progress made in MTF applications in basic, preclinical, and clinical cancer research.
Collapse
Affiliation(s)
- Hans-Juergen Schulten
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, P.O. Box 80216, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
50
|
Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an Anticancer Agent. Trends Pharmacol Sci 2018; 39:867-878. [PMID: 30150001 DOI: 10.1016/j.tips.2018.07.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Metformin has been a frontline therapy for type 2 diabetes (T2D) for many years. Its effectiveness in T2D treatment is mostly attributed to its suppression of hepatic gluconeogenesis; however, the mechanistic aspects of metformin action remain elusive. In addition to its glucose-lowering effect, metformin possesses other pleiotropic health-promoting effects that include reduced cancer risk and tumorigenesis. Metformin inhibits the electron transport chain (ETC) and ATP synthesis; however, recent data reveal that metformin regulates AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) by multiple, mutually nonexclusive mechanisms that do not necessarily depend on the inhibition of ETC and the cellular ATP level. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in cancer treatment.
Collapse
Affiliation(s)
- Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| | - Pengli Bu
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Joey Zeng
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|