1
|
Ma H, Ge Y, Di C, Wang X, Qin B, Wang A, Hu W, Lai Z, Xiong X, Qi R. GQ262 Attenuates Pathological Cardiac Remodeling by Downregulating the Akt/mTOR Signaling Pathway. Int J Mol Sci 2024; 25:10297. [PMID: 39408627 PMCID: PMC11476524 DOI: 10.3390/ijms251910297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Cardiac remodeling, a critical process that can lead to heart failure, is primarily characterized by cardiac hypertrophy. Studies have shown that transgenic mice with Gαq receptor blockade exhibit reduced hypertrophy under induced pressure overload. GQ262, a novel Gαq/11 inhibitor, has demonstrated good biocompatibility and specific inhibitory effects on Gαq/11 compared to other inhibitors. However, its role in cardiac remodeling remains unclear. This study aims to explore the anti-cardiac remodeling effects and mechanisms of GQ262 both in vitro and in vivo, providing data and theoretical support for its potential use in treating cardiac remodeling diseases. Cardiac hypertrophy was induced in mice via transverse aortic constriction (TAC) for 4 weeks and in H9C2 cells through phenylephrine (PE) induction, confirmed with WGA and H&E staining. We found that GQ262 improved cardiac function, inhibited the protein and mRNA expression of hypertrophy markers, and reduced the levels of apoptosis and fibrosis. Furthermore, GQ262 inhibited the Akt/mTOR signaling pathway activation induced by TAC or PE, with its therapeutic effects disappearing upon the addition of the Akt inhibitor ARQ092. These findings reveal that GQ262 inhibits cardiomyocyte hypertrophy and apoptosis through the Akt/mTOR signaling pathway, thereby reducing fibrosis levels and mitigating cardiac remodeling.
Collapse
Affiliation(s)
- Haoyue Ma
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Yang Ge
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Chang Di
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Boyang Qin
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Anhui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Weipeng Hu
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Zirui Lai
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| | - Xiaofeng Xiong
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Rong Qi
- Department of Pharmacology, School of Basic Medical Sciences, Peking University Health Science Center, 38 Xueyuan Road, Haidian District, Beijing 100191, China; (H.M.)
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Peking University, Beijing 100191, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100191, China
| |
Collapse
|
2
|
Todd TD, Vithani N, Singh S, Bowman GR, Blumer KJ, Soranno A. Stabilization of interdomain closure by a G protein inhibitor. Proc Natl Acad Sci U S A 2024; 121:e2311711121. [PMID: 39196624 PMCID: PMC11388362 DOI: 10.1073/pnas.2311711121] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/29/2024] [Indexed: 08/29/2024] Open
Abstract
Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.
Collapse
Affiliation(s)
- Tyson D Todd
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Neha Vithani
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Sukrit Singh
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
| | - Gregory R Bowman
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA 19104-6059
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University in St. Louis, Saint Louis, MO 63110
| | - Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University in St. Louis, Saint Louis, MO 63110
- Department of Biochemistry and Biophysics, Center for Biomolecular Condensates, Washington University in St. Louis, Saint Louis, MO 63130
| |
Collapse
|
3
|
Rijal R, Gomer RH. Gallein potentiates isoniazid's ability to suppress Mycobacterium tuberculosis growth. Front Microbiol 2024; 15:1369763. [PMID: 38690363 PMCID: PMC11060752 DOI: 10.3389/fmicb.2024.1369763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug tolerance. Increased intracellular polyphosphate (polyP) in Mtb enhances tolerance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.
Collapse
Affiliation(s)
- Ramesh Rijal
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H. Gomer
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
4
|
Rijal R, Gomer RH. Gallein and isoniazid act synergistically to attenuate Mycobacterium tuberculosis growth in human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.10.574965. [PMID: 38260681 PMCID: PMC10802476 DOI: 10.1101/2024.01.10.574965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug resistance. Increased intracellular polyphosphate (polyP) in Mtb enhances resistance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.
Collapse
Affiliation(s)
- Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| | - Richard H. Gomer
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA
| |
Collapse
|
5
|
Lyu C, Bhimani AK, Draus WT, Weigel R, Chen S. Active Gα i/o Mutants Accelerate Breast Tumor Metastasis via the c-Src Pathway. Mol Cell Biol 2023; 43:650-663. [PMID: 38099640 PMCID: PMC10761066 DOI: 10.1080/10985549.2023.2285833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023] Open
Abstract
Constitutively active mutations in the Gαi2 and GαoA subunits of heterotrimeric G proteins have been found in various human cancers, including breast cancer, but their precise roles in tumor formation, progression, and metastasis remain poorly understood. This study focused on GαoAR243H and Gαi2R179C mutants in breast cancer. These mutants alone were insufficient to initiate mammary tumor formation in mice. However, when introduced into transgenic mouse models of breast cancer induced by Neu expression or PTEN loss, the Gαi2R179C mutant notably enhanced spontaneous lung metastasis, without affecting primary tumor initiation and growth. Ectopic expression of the GαoAR243H and Gαi2R179C mutants in tumor cells promoted cell migration in vitro and dissemination into multiple organs in vivo by activating the c-Src signaling pathway. These mutants activate c-Src through direct interaction, involving specific residues in the switch domains II of Gαi subunits, which only partially overlap with those involved in inhibiting adenylyl cyclases. This study uncovers a critical role of Gαi/o signaling in accelerating breast cancer metastasis through the c-Src pathway. These findings hold clinical significance as they may pave the way for personalized therapies targeting c-Src to inhibit breast cancer metastasis in patients with active Gαi/o mutations or elevated Gαi/o signaling.
Collapse
Affiliation(s)
- Cancan Lyu
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aarzoo K. Bhimani
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - William T. Draus
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Ronald Weigel
- The Department of Surgery, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Songhai Chen
- The Department of Neuroscience and Pharmacology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
- The Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
6
|
Zhu H, Liu X, Wang X, Li Y, Ma F, Tan B, Zhou P, Fu F, Su R. Gβγ subunit inhibitor decreases DOM-induced head twitch response via the PLCβ/IP3/Ca 2+/ERK and cAMP signaling pathways. Eur J Pharmacol 2023; 957:176038. [PMID: 37657742 DOI: 10.1016/j.ejphar.2023.176038] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 08/17/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
AIMS (-)-2,5-dimethoxy-4-methylamphetamine (DOM) induces the head-twitch response (HTR) primarily by activating the serotonin 5-hydroxytryptamine 2A receptor (5-HT2A receptor) in mice. However, the mechanisms underlying 5-HT2A receptor activation and the HTR remain elusive. Gβγ subunits are a potential treatment target in numerous diseases. The present study investigated the mechanism whereby Gβγ subunits influence DOM-induced HTR. MAIN METHODS The effects of the Gβγ inhibitor 3',4',5',6'-tetrahydroxyspiro[2-benzofuran-3,9'-xanthene]-1-one (gallein) and antagonistic peptide βARKct (β-adrenergic receptor kinase C-terminal fragment) on DOM-induced HTR were studied via an HTR test. The activation of the phospholipase C β (PLCβ)/inositol triphosphate (IP3)/calcium (Ca2+) signaling pathway and extracellular signal-regulated kinase (ERK) following Gβγ subunit inhibition was detected by western blotting, Homogeneous Time-Resolved Fluorescence (HTRF) inositol phosphate (IP1) assay and Fluorometric Imaging Plate Reader (FLIPR) calcium 6 assay. The Gβγ subunit-mediated regulation of cyclic adenosine monophosphate (cAMP) was assessed via a GloSensor™ cAMP assay. KEY FINDINGS The Gβγ subunit inhibitors gallein and βARKct reduced DOM-induced HTR in C57BL/6J mice. Like the 5-HT2A receptor-selective antagonist (R)-[2,3-di(methoxy)phenyl]-[1-[2-(4-fluorophenyl)ethyl]piperidin-4-yl]methanol (M100907), gallein inhibited PLCβ phosphorylation (pPLCβ), IP1 production, Ca2+ transients, ERK1/2 phosphorylation (pERK1/2) and cAMP accumulation induced by DOM in human embryonic kidney (HEK) 293T cells stably or transiently transfected with the human 5-HT2A receptor. Moreover, PLCβ protein inhibitor 1-[6-[[(8R,9S,13S,14S,17S)-3-methoxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-17-yl]amino]hexyl]pyrrole-2,5-dione (U73122) (10 nmol/mouse), intracellular Ca2+ blocker 6-[6-[6-[5-acetamido-4,6-dihydroxy-2-(sulfooxymethyl)oxan-3-yl]oxy-2-carboxy-4-hydroxy-5-sulfooxyoxan-3-yl]oxy-2-(hydroxymethyl)-5-(sulfoamino)-4-sulfooxyoxan-3-yl]oxy-3,4-dihydroxy-5-sulfooxyoxane-2-carboxylic acid (heparin) (5 nmol/mouse), L-type Ca2+ channel blocker 3-O-(2-methoxyethyl) 5-O-propan-2-yl 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate (nimodipine) (4 mg/kg), mitogen extracellular regulating kinase 1/2 (MEK1/2) inhibitor (Z)-3-amino-3-(4-aminophenyl)sulfanyl-2-[2-(trifluoromethyl)phenyl]prop-2-enenitrile (SL327) (30 mg/kg), and Gαs protein selective antagonist 4,4',4″,4‴-(Carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakisbenzene-1,3-disulfonic acid (NF449) (10 nmol/mouse) reduced DOM-induced HTR in C57BL/6J mice. SIGNIFICANCE The Gβγ subunits potentially mediate the HTR after 5-HT2A receptor activation via the PLCβ/IP3/Ca2+/ERK1/2 and cAMP signaling pathways. Inhibitors targeting the Gβγ subunits potentially inhibit the hallucinogenic effects of 5-HT2A receptor agonists.
Collapse
Affiliation(s)
- Huili Zhu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China; School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xiaoqian Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Xiaoxuan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Yulei Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Fang Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Bo Tan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China
| | - Peilan Zhou
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| | - Fenghua Fu
- School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Ruibin Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing Institute of Pharmacology and Toxicology, 27th Taiping Road, Beijing, 100850, China.
| |
Collapse
|
7
|
Pepanian A, Binbay FA, Roy S, Nubbemeyer B, Koley A, Rhodes CA, Ammer H, Pei D, Ghosh P, Imhof D. Bicyclic Peptide Library Screening for the Identification of Gαi Protein Modulators. J Med Chem 2023; 66:12396-12406. [PMID: 37587416 PMCID: PMC11000586 DOI: 10.1021/acs.jmedchem.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Noncanonical G protein activation and inactivation, particularly for the Gαi/s protein subfamilies, have long been a focus of chemical research. Combinatorial libraries were already effectively applied to identify modulators of the guanine-nucleotide exchange, as can be exemplified with peptides such as KB-752 and GPM-1c/d, the so-called guanine-nucleotide exchange modulators. In this study, we identified novel bicyclic peptides from a combinatorial library screening that show prominent properties as molecular switch-on/off modulators of Gαi signaling. Among the series of hits, the exceptional paradigm of GPM-3, a protein and state-specific bicyclic peptide, is the first chemically identified GAP (GTPase-activating protein) modulator with a high binding affinity for Gαi protein. Computational analyses identified and assessed the structure of the bicyclic peptides, novel ligand-protein interaction sites, and their subsequent impact on the nucleotide binding site. This approach can therefore lead the way for the development of efficient chemical biological probes targeting Gαi protein modulation within a cellular context.
Collapse
Affiliation(s)
- Anna Pepanian
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Furkan Ayberk Binbay
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Suchismita Roy
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| | - Amritendu Koley
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Curran A Rhodes
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Hermann Ammer
- Institute of Pharmacology Toxicology and Pharmacy, Veterinary Faculty, Ludwig Maximilian University of Munich, Königinstr. 16, Munich 80539, Germany
| | - Dehua Pei
- Department of Chemistry and Biochemistry, The Ohio State University, 578 Biological Sciences Building, 484 W 12th Avenue, Columbus, Ohio 43210, United States
| | - Pradipta Ghosh
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, California 92093, United States
- Department of Medicine, University of California San Diego, La Jolla, California 92093, United States
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenbeurg 4, Bonn 53121, Germany
| |
Collapse
|
8
|
Zhu Y, Liu S, Zigmond J, Kaltenbronn KM, Blumer KJ, Moeller KD. A Building Block Approach for the Total Synthesis of YM-385781. European J Org Chem 2023; 26:e202300365. [PMID: 38188369 PMCID: PMC10766104 DOI: 10.1002/ejoc.202300365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 01/09/2024]
Abstract
YM-254890 and FR900359 are potent and selective inhibitors of the Gq/11-signaling pathway. As such, they have been attractive targets for both synthesis and biological studies. Yet in spite of this effort, a versatile synthetic approach to the molecules that allows for the rapid construction of a variety of non-natural and labelled analogs and an increase in the amount of those analogs available remains elusive. We report here a convergent building block approach to the molecules that can solve this challenge.
Collapse
Affiliation(s)
- Yu Zhu
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Siyue Liu
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Johnny Zigmond
- Department of Chemistry, Washington University, St. Louis, MO 63130
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| | - Kevin D Moeller
- Department of Chemistry, Washington University, St. Louis, MO 63130
| |
Collapse
|
9
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
10
|
Xu X, Wu G. Non-canonical Golgi-compartmentalized Gβγ signaling: mechanisms, functions, and therapeutic targets. Trends Pharmacol Sci 2023; 44:98-111. [PMID: 36494204 PMCID: PMC9901158 DOI: 10.1016/j.tips.2022.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
G protein Gβγ subunits are key mediators of G protein-coupled receptor (GPCR) signaling under physiological and pathological conditions; their inhibitors have been tested for the treatment of human disease. Conventional wisdom is that the Gβγ complex is activated and subsequently exerts its functions at the plasma membrane (PM). Recent studies have revealed non-canonical activation of Gβγ at intracellular organelles, where the Golgi apparatus is a major locale, via translocation or local activation. Golgi-localized Gβγ activates specific signaling cascades and regulates fundamental cell processes such as membrane trafficking, proliferation, and migration. More recent studies have shown that inhibiting Golgi-compartmentalized Gβγ signaling attenuates cardiomyocyte hypertrophy and prostate tumorigenesis, indicating new therapeutic targets. We review novel activation mechanisms and non-canonical functions of Gβγ at the Golgi, and discuss potential therapeutic interventions by targeting Golgi-biased Gβγ-directed signaling.
Collapse
Affiliation(s)
- Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Lyu C, Bhimani AK, Draus WT, Weigel R, Chen S. Active Gαi/o mutants accelerate breast tumor metastasis via the c-Src pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.16.524334. [PMID: 36711612 PMCID: PMC9882124 DOI: 10.1101/2023.01.16.524334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Constitutively active mutations in the Gαi2 and GαoA subunits of heterotrimeric G proteins have been identified in several human cancers including breast cancer, but their functional significance in tumorigenesis and metastasis has not been well characterized. In this study, we show that expression of the constitutively active GαoAR243H and Gαi2R179C mutants alone was insufficient to induce mammary tumor formation in mice. However, in transgenic mouse models of breast cancer induced by Neu expression or PTEN loss, we found that the Gαi2R179C mutant enhanced spontaneous lung metastasis while having no effect on primary tumor initiation and growth. Additionally, we observed that ectopic expression of the GαoAR243H and Gαi2R179C mutants in tumor cells promote cell migration in vitro as well as dissemination into multiple organs in vivo by activating c-Src signaling. Thus, our study uncovers a critical function of Gαi/o signaling in accelerating breast cancer metastasis via the c-Src pathway. This work is clinically significant, as it can potentially pave the way to personalized therapies for patients who present with active Gαi/o mutations or elevated Gαi/o signaling by targeting c-Src to inhibit breast cancer metastasis.
Collapse
Affiliation(s)
- Cancan Lyu
- The Department of Neuroscience and Pharmacology, University of Iowa
| | - Aarzoo K Bhimani
- The Department of Neuroscience and Pharmacology, University of Iowa
| | - William T Draus
- The Department of Neuroscience and Pharmacology, University of Iowa
| | | | - Songhai Chen
- The Department of Neuroscience and Pharmacology, University of Iowa
- Holden Comprehensive Cancer Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa
| |
Collapse
|
12
|
Ge Y, Deng JJ, Zhu J, Liu L, Ouyang S, Song Z, Zhang X, Xiong XF. Discovery of small molecule Gαq/11 protein inhibitors against uveal melanoma. Acta Pharm Sin B 2022; 12:3326-3340. [PMID: 35967274 PMCID: PMC9366314 DOI: 10.1016/j.apsb.2022.04.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 02/08/2023] Open
Abstract
Constitutively activated G proteins caused by specific mutations mediate the development of multiple malignancies. The mutated Gαq/11 are perceived as oncogenic drivers in the vast majority of uveal melanoma (UM) cases, making directly targeting Gαq/11 to be a promising strategy for combating UM. Herein, we report the optimization of imidazopiperazine derivatives as Gαq/11 inhibitors, and identified GQ262 with improved Gαq/11 inhibitory activity and drug-like properties. GQ262 efficiently blocked UM cell proliferation and migration in vitro. Analysis of the apoptosis-related proteins, extracellular signal-regulated kinase (ERK), and yes-associated protein (YAP) demonstrated that GQ262 distinctly induced UM cells apoptosis and disrupted the downstream effectors by targeting Gαq/11 directly. Significantly, GQ262 showed outstanding antitumor efficacy in vivo with good safety at the testing dose. Collectively, our findings along with the favorable pharmacokinetics of GQ262 revealed that directly targeting Gαq/11 may be an efficient strategy against uveal melanoma.
Collapse
|
13
|
Blocking Gi/o-Coupled Signaling Eradicates Cancer Stem Cells and Sensitizes Breast Tumors to HER2-Targeted Therapies to Inhibit Tumor Relapse. Cancers (Basel) 2022; 14:cancers14071719. [PMID: 35406489 PMCID: PMC8997047 DOI: 10.3390/cancers14071719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Cancer stem cells (CSCs) are associated with therapeutic resistance and tumor relapse but effective approaches for eliminating CSCs are still lacking. The aim of this study was to assess the role of G protein-coupled receptors (GPCRs) in regulating CSCs in breast cancer. We showed that a subgroup of GPCRs that coupled to Gi/o proteins (Gi/o-GPCRs) was required for maintaining the tumor-forming capability of CSCs in HER2+ breast cancer. Targeting Gi/o-GPCRs or their downstream PI3K/AKT and Src pathways was able to enhance HER2-targeted elimination of CSCs and therapeutic efficacy. These findings suggest that targeting Gi/o-GPCR signaling is an effective strategy for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor recurrence. Abstract Cancer stem cells (CSCs) are a small subpopulation of cells within tumors that are resistant to anti-tumor therapies, making them a likely origin of tumor relapse after treatment. In many cancers including breast cancer, CSC function is regulated by G protein-coupled receptors (GPCRs), making GPCR signaling an attractive target for new therapies designed to eradicate CSCs. Yet, CSCs overexpress multiple GPCRs that are redundant in maintaining CSC function, so it is unclear how to target all the various GPCRs to prevent relapse. Here, in a model of HER2+ breast cancer (i.e., transgenic MMTV-Neu mice), we were able to block the tumorsphere- and tumor-forming capability of CSCs by targeting GPCRs coupled to Gi/o proteins (Gi/o-GPCRs). Similarly, in HER2+ breast cancer cells, blocking signaling downstream of Gi/o-GPCRs in the PI3K/AKT and Src pathways also enhanced HER2-targeted elimination of CSCs. In a proof-of-concept study, when CSCs were selectively ablated (via a suicide gene construct), loss of CSCs from HER2+ breast cancer cell populations mimicked the effect of targeting Gi/o-GPCR signaling, suppressing their capacity for tumor initiation and progression and enhancing HER2-targeted therapy. Thus, targeting Gi/o-GPCR signaling in HER2+ breast cancer is a promising approach for eradicating CSCs, enhancing HER2+ targeted therapy and blocking tumor reemergence.
Collapse
|
14
|
Roberge N, Neville N, Douchant K, Noordhof C, Boev N, Sjaarda C, Sheth PM, Jia Z. Broad-Spectrum Inhibitor of Bacterial Polyphosphate Homeostasis Attenuates Virulence Factors and Helps Reveal Novel Physiology of Klebsiella pneumoniae and Acinetobacter baumannii. Front Microbiol 2021; 12:764733. [PMID: 34764949 PMCID: PMC8576328 DOI: 10.3389/fmicb.2021.764733] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/04/2021] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii and Klebsiella pneumoniae currently rank amongst the most antibiotic-resistant pathogens, responsible for millions of infections each year. In the wake of this crisis, anti-virulence therapeutics targeting bacterial polyphosphate (polyP) homeostasis have been lauded as an attractive alternative to traditional antibiotics. In this work, we show that the small molecule gallein, a known G-protein βγ subunit modulator, also recently proven to have dual-specificity polyphosphate kinase (PPK) inhibition in Pseudomonas aeruginosa, in turn exhibits broad-spectrum PPK inhibition in other priority pathogens. Gallein treatment successfully attenuated virulence factors of K. pneumoniae and A. baumannii including biofilm formation, surface associated motility, and offered protection against A. baumannii challenge in a Caenorhabditis elegans model of infection. This was highlighted most importantly in the critically understudied A. baumannii, where gallein treatment phenocopied a ppk1 knockout strain of a previously uncharacterized PPK1. Subsequent analysis revealed a unique instance of two functionally and phenotypically distinct PPK1 isoforms encoded by a single bacterium. Finally, gallein was administered to a defined microbial community comprising over 30 commensal species of the human gut microbiome, demonstrating the non-disruptive properties characteristic of anti-virulence treatments as microbial biodiversity was not adversely influenced. Together, these results emphasize that gallein is a promising avenue for the development of broad-spectrum anti-virulence therapeutics.
Collapse
Affiliation(s)
- Nathan Roberge
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Nolan Neville
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Katya Douchant
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Curtis Noordhof
- Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada
| | - Nadejda Boev
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada
| | - Calvin Sjaarda
- Queen's Genomics Lab at Ongwanada (Q-GLO), Ongwanada Resource Center, Kingston, ON, Canada.,Department of Psychiatry, Queen's University, Kingston, ON, Canada
| | - Prameet M Sheth
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada.,Department of Pathology and Molecular Medicine, Queen's University, Kingston, ON, Canada.,Gastrointestinal Disease Research Unit (GIDRU), Department of Medicine, Queen's University, Kingston, ON, Canada.,Division of Microbiology, Kingston Health Science Center, Kingston, ON, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
15
|
Krieger NS, Bushinsky DA. Metabolic Acidosis Regulates RGS16 and G-protein Signaling in Osteoblasts. Am J Physiol Renal Physiol 2021; 321:F424-F430. [PMID: 34396788 DOI: 10.1152/ajprenal.00166.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chronic metabolic acidosis stimulates cell-mediated net calcium efflux from bone mediated by increased osteoblastic cyclooxygenase 2 (COX2), leading to prostaglandin E2-induced stimulation of RANKL-induced osteoclastic bone resorption. The osteoblastic H+-sensing G-protein coupled receptor (GPCR), OGR1, is activated by acidosis and leads to increased bne resorption. As regulators of G protein signaling (RGS) proteins limit GPCR signaling, we tested whether RGS proteins themselves are regulated by metabolic acidosis. Primary osteoblasts were isolated from neonatal mouse calvariae and incubated in physiological neutral (NTL) or acidic (MET) medium. Cells were collected and RNA extracted for real time PCR analysis with mRNA levels normalized to RPL13a. RGS1, RGS2, RGS3, RGS4, RGS10, RGS11 or RGS18mRNA did not differ between MET and NTL; however by 30' MET decreased RGS16 which persisted for 60' and 3h. Incubation of osteoblasts with the OGR1 inhibitor CuCl2 inhibited the MET induced increase in RGS16 mRNA. Gallein, a specific inhibitor of Gβγ signaling, was used to determine if downstream signaling by the βγ subunit was critical for the response to acidosis. Gallein decreased net Ca efflux from calvariae and COX2 and RANKL gene expression from isolated osteoblasts. These results indicate that regulation of RGS16 plays an important role in modulating the response of the osteoblastic GPCR, OGR1, to metabolic acidosis and subsequent stimulation of osteoclastic bone resorption.
Collapse
Affiliation(s)
- Nancy S Krieger
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - David A Bushinsky
- Division of Nephrology, Department of Medicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
16
|
Lyu C, Ye Y, Lensing MM, Wagner KU, Weigel RJ, Chen S. Targeting Gi/o protein-coupled receptor signaling blocks HER2-induced breast cancer development and enhances HER2-targeted therapy. JCI Insight 2021; 6:e150532. [PMID: 34343132 PMCID: PMC8492335 DOI: 10.1172/jci.insight.150532] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
GPCRs are highly desirable drug targets for human disease. Although GPCR dysfunction drives development and progression of many tumors, including breast cancer (BC), targeting individual GPCRs has limited efficacy as a cancer therapy because numerous GPCRs are activated. Here, we sought a new way of blocking GPCR activation in HER2+ BC by targeting a subgroup of GPCRs that couple to Gi/o proteins (Gi/o-GPCRs). In mammary epithelial cells of transgenic mouse models, and BC cell lines, HER2 hyperactivation altered GPCR expression, particularly, Gi/o-GPCR expression. Gi/o-GPCR stimulation transactivated EGFR and HER2 and activated the PI3K/AKT and Src pathways. If we uncoupled Gi/o-GPCRs from their cognate Gi/o proteins by pertussis toxin (PTx), then BC cell proliferation and migration was inhibited in vitro and HER2-driven tumor formation and metastasis were suppressed in vivo. Moreover, targeting Gi/o-GPCR signaling via PTx, PI3K, or Src inhibitors enhanced HER2-targeted therapy. These results indicate that, in BC cells, HER2 hyperactivation drives aberrant Gi/o-GPCR signaling and Gi/o-GPCR signals converge on the PI3K/AKT and Src signaling pathways to promote cancer progression and resistance to HER2-targeted therapy. Our findings point to a way to pharmacologically deactivate GPCR signaling to block tumor growth and enhance therapeutic efficacy.
Collapse
Affiliation(s)
- Cancan Lyu
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Yuanchao Ye
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Maddison M Lensing
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Kay-Uwe Wagner
- Department of Oncology, Wayne State University School of Medicine, Detroit, United States of America
| | - Ronald J Weigel
- Department of Surgery, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| | - Songhai Chen
- Department of Neuroscience and Pharmacology, The University of Iowa Carver College of Medicine, Iowa City, United States of America
| |
Collapse
|
17
|
Wan Mohd Tajuddin WNB, Abas F, Othman I, Naidu R. Molecular Mechanisms of Antiproliferative and Apoptosis Activity by 1,5-Bis(4-Hydroxy-3-Methoxyphenyl)1,4-Pentadiene-3-one (MS13) on Human Non-Small Cell Lung Cancer Cells. Int J Mol Sci 2021; 22:ijms22147424. [PMID: 34299042 PMCID: PMC8307969 DOI: 10.3390/ijms22147424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 01/12/2023] Open
Abstract
Diarylpentanoid (DAP), an analog that was structurally modified from a naturally occurring curcumin, has shown to enhance anticancer efficacy compared to its parent compound in various cancers. This study aims to determine the cytotoxicity, antiproliferative, and apoptotic activity of diarylpentanoid MS13 on two subtypes of non-small cell lung cancer (NSCLC) cells: squamous cell carcinoma (NCI-H520) and adenocarcinoma (NCI-H23). Gene expression analysis was performed using Nanostring PanCancer Pathways Panel to determine significant signaling pathways and targeted genes in these treated cells. Cytotoxicity screening revealed that MS13 exhibited greater inhibitory effect in NCI-H520 and NCI-H23 cells compared to curcumin. MS13 induced anti-proliferative activity in both cells in a dose- and time-dependent manner. Morphological analysis revealed that a significant number of MS13-treated cells exhibited apoptosis. A significant increase in caspase-3 activity and decrease in Bcl-2 protein concentration was noted in both MS13-treated cells in a time- and dose-dependent manner. A total of 77 and 47 differential expressed genes (DEGs) were regulated in MS13 treated-NCI-H520 and NCI-H23 cells, respectively. Among the DEGs, 22 were mutually expressed in both NCI-H520 and NCI-H23 cells in response to MS13 treatment. The top DEGs modulated by MS13 in NCI-H520—DUSP4, CDKN1A, GADD45G, NGFR, and EPHA2—and NCI-H23 cells—HGF, MET, COL5A2, MCM7, and GNG4—were highly associated with PI3K, cell cycle-apoptosis, and MAPK signaling pathways. In conclusion, MS13 may induce antiproliferation and apoptosis activity in squamous cell carcinoma and adenocarcinoma of NSCLC cells by modulating DEGs associated with PI3K-AKT, cell cycle-apoptosis, and MAPK pathways. Therefore, our present findings could provide an insight into the anticancer activity of MS13 and merits further investigation as a potential anticancer agent for NSCLC cancer therapy.
Collapse
Affiliation(s)
- Wan Nur Baitty Wan Mohd Tajuddin
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM, Serdang 43400, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
- Global Asia in the 21s Century Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; (W.N.B.W.M.T.); (I.O.)
- Global Asia in the 21s Century Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
- Correspondence: ; Tel.: +60-3-5514-63-45
| |
Collapse
|
18
|
A Dual-Specificity Inhibitor Targets Polyphosphate Kinase 1 and 2 Enzymes To Attenuate Virulence of Pseudomonas aeruginosa. mBio 2021; 12:e0059221. [PMID: 34126765 PMCID: PMC8262977 DOI: 10.1128/mbio.00592-21] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa is a leading cause of nosocomial infections, which are becoming increasingly difficult to treat due to antibiotic resistance. Polyphosphate (polyP) plays a key role in P. aeruginosa virulence, stress response, and antibiotic tolerance, suggesting an attractive drug target. Here, we show that the small molecule gallein disrupts polyphosphate homeostasis by inhibiting all members of both polyphosphate kinase (PPK) families (PPK1 and PPK2) encoded by P. aeruginosa, demonstrating dual-specificity PPK inhibition for the first time. Inhibitor treatment phenocopied ppk deletion to reduce cellular polyP accumulation and attenuate biofilm formation, motility, and pyoverdine and pyocyanin production. Most importantly, gallein attenuated P. aeruginosa virulence in a Caenorhabditis elegans infection model and synergized with antibiotics while exhibiting negligible toxicity toward the nematodes or HEK293T cells, suggesting our discovery of dual-specificity PPK inhibitors as a promising starting point for the development of new antivirulence therapeutics.
Collapse
|
19
|
Nubbemeyer B, Pepanian A, Paul George AA, Imhof D. Strategies towards Targeting Gαi/s Proteins: Scanning of Protein-Protein Interaction Sites To Overcome Inaccessibility. ChemMedChem 2021; 16:1696-1715. [PMID: 33615736 PMCID: PMC8252600 DOI: 10.1002/cmdc.202100039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Indexed: 12/16/2022]
Abstract
Heterotrimeric G proteins are classified into four subfamilies and play a key role in signal transduction. They transmit extracellular signals to intracellular effectors subsequent to the activation of G protein-coupled receptors (GPCRs), which are targeted by over 30 % of FDA-approved drugs. However, addressing G proteins as drug targets represents a compelling alternative, for example, when G proteins act independently of the corresponding GPCRs, or in cases of complex multifunctional diseases, when a large number of different GPCRs are involved. In contrast to Gαq, efforts to target Gαi/s by suitable chemical compounds has not been successful so far. Here, a comprehensive analysis was conducted examining the most important interface regions of Gαi/s with its upstream and downstream interaction partners. By assigning the existing compounds and the performed approaches to the respective interfaces, the druggability of the individual interfaces was ranked to provide perspectives for selective targeting of Gαi/s in the future.
Collapse
Affiliation(s)
- Britta Nubbemeyer
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | - Anna Pepanian
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| | | | - Diana Imhof
- Pharmaceutical Biochemistry and BioanalyticsPharmaceutical InstituteUniversity of BonnAn der Immenburg 453121BonnGermany
| |
Collapse
|
20
|
Unraveling the Molecular Nexus between GPCRs, ERS, and EMT. Mediators Inflamm 2021; 2021:6655417. [PMID: 33746610 PMCID: PMC7943314 DOI: 10.1155/2021/6655417] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
G protein-coupled receptors (GPCRs) represent a large family of transmembrane proteins that transduce an external stimulus into a variety of cellular responses. They play a critical role in various pathological conditions in humans, including cancer, by regulating a number of key processes involved in tumor formation and progression. The epithelial-mesenchymal transition (EMT) is a fundamental process in promoting cancer cell invasion and tumor dissemination leading to metastasis, an often intractable state of the disease. Uncontrolled proliferation and persistent metabolism of cancer cells also induce oxidative stress, hypoxia, and depletion of growth factors and nutrients. These disturbances lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER) and induce a cellular condition called ER stress (ERS) which is counteracted by activation of the unfolded protein response (UPR). Many GPCRs modulate ERS and UPR signaling via ERS sensors, IRE1α, PERK, and ATF6, to support cancer cell survival and inhibit cell death. By regulating downstream signaling pathways such as NF-κB, MAPK/ERK, PI3K/AKT, TGF-β, and Wnt/β-catenin, GPCRs also upregulate mesenchymal transcription factors including Snail, ZEB, and Twist superfamilies which regulate cell polarity, cytoskeleton remodeling, migration, and invasion. Likewise, ERS-induced UPR upregulates gene transcription and expression of proteins related to EMT enhancing tumor aggressiveness. Though GPCRs are attractive therapeutic targets in cancer biology, much less is known about their roles in regulating ERS and EMT. Here, we will discuss the interplay in GPCR-ERS linked to the EMT process of cancer cells, with a particular focus on oncogenes and molecular signaling pathways.
Collapse
|
21
|
Patt J, Alenfelder J, Pfeil EM, Voss JH, Merten N, Eryilmaz F, Heycke N, Rick U, Inoue A, Kehraus S, Deupi X, Müller CE, König GM, Crüsemann M, Kostenis E. An experimental strategy to probe Gq contribution to signal transduction in living cells. J Biol Chem 2021; 296:100472. [PMID: 33639168 PMCID: PMC8024710 DOI: 10.1016/j.jbc.2021.100472] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
Heterotrimeric G protein subunits Gαq and Gα11 are inhibited by two cyclic depsipeptides, FR900359 (FR) and YM-254890 (YM), both of which are being used widely to implicate Gq/11 proteins in the regulation of diverse biological processes. An emerging major research question therefore is whether the cellular effects of both inhibitors are on-target, that is, mediated via specific inhibition of Gq/11 proteins, or off-target, that is, the result of nonspecific interactions with other proteins. Here we introduce a versatile experimental strategy to discriminate between these possibilities. We developed a Gαq variant with preserved catalytic activity, but refractory to FR/YM inhibition. A minimum of two amino acid changes were required and sufficient to achieve complete inhibitor resistance. We characterized the novel mutant in HEK293 cells depleted by CRISPR–Cas9 of endogenous Gαq and Gα11 to ensure precise control over the Gα-dependent cellular signaling route. Using a battery of cellular outcomes with known and concealed Gq contribution, we found that FR/YM specifically inhibited cellular signals after Gαq introduction via transient transfection. Conversely, both inhibitors were inert across all assays in cells expressing the drug-resistant variant. These findings eliminate the possibility that inhibition of non-Gq proteins contributes to the cellular effects of the two depsipeptides. We conclude that combined application of FR or YM along with the drug-resistant Gαq variant is a powerful in vitro strategy to discern on-target Gq against off-target non-Gq action. Consequently, it should be of high value for uncovering Gq input to complex biological processes with high accuracy and the requisite specificity.
Collapse
Affiliation(s)
- Julian Patt
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Judith Alenfelder
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Eva Marie Pfeil
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Jan Hendrik Voss
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Nicole Merten
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Funda Eryilmaz
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Nina Heycke
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Uli Rick
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Asuka Inoue
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Stefan Kehraus
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Xavier Deupi
- Laboratory of Biomolecular Research and Condensed Matter Theory Group, Paul Scherrer Institute, Villigen, Switzerland
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany.
| |
Collapse
|
22
|
Khater M, Wei Z, Xu X, Huang W, Lokeshwar BL, Lambert NA, Wu G. G protein βγ translocation to the Golgi apparatus activates MAPK via p110γ-p101 heterodimers. J Biol Chem 2021; 296:100325. [PMID: 33493514 PMCID: PMC7949113 DOI: 10.1016/j.jbc.2021.100325] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/11/2021] [Accepted: 01/19/2021] [Indexed: 01/14/2023] Open
Abstract
The Golgi apparatus (GA) is a cellular organelle that plays a critical role in the processing of proteins for secretion. Activation of G protein-coupled receptors at the plasma membrane (PM) induces the translocation of G protein βγ dimers to the GA. However, the functional significance of this translocation is largely unknown. Here, we study PM-GA translocation of all 12 Gγ subunits in response to chemokine receptor CXCR4 activation and demonstrate that Gγ9 is a unique Golgi-translocating Gγ subunit. CRISPR-Cas9-mediated knockout of Gγ9 abolishes activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), two members of the mitogen-activated protein kinase family, by CXCR4. We show that chemically induced recruitment to the GA of Gβγ dimers containing different Gγ subunits activates ERK1/2, whereas recruitment to the PM is ineffective. We also demonstrate that pharmacological inhibition of phosphoinositide 3-kinase γ (PI3Kγ) and depletion of its subunits p110γ and p101 abrogate ERK1/2 activation by CXCR4 and Gβγ recruitment to the GA. Knockout of either Gγ9 or PI3Kγ significantly suppresses prostate cancer PC3 cell migration, invasion, and metastasis. Collectively, our data demonstrate a novel function for Gβγ translocation to the GA, via activating PI3Kγ heterodimers p110γ-p101, to spatiotemporally regulate mitogen-activated protein kinase activation by G protein-coupled receptors and ultimately control tumor progression.
Collapse
Affiliation(s)
- Mostafa Khater
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Zhe Wei
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Xin Xu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Wei Huang
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Bal L Lokeshwar
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA
| | - Guangyu Wu
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, Georgia, USA.
| |
Collapse
|
23
|
Lyons EL, Leone-Kabler S, Kovach AL, Thomas BF, Howlett AC. Cannabinoid receptor subtype influence on neuritogenesis in human SH-SY5Y cells. Mol Cell Neurosci 2020; 109:103566. [PMID: 33049367 DOI: 10.1016/j.mcn.2020.103566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/01/2020] [Accepted: 10/06/2020] [Indexed: 10/23/2022] Open
Abstract
Human SH-SY5Y neuroblastoma cells stably expressing exogenous CB1 (CB1XS) or CB2 (CB2XS) receptors were developed to investigate endocannabinoid signaling in the extension of neuronal projections. Expression of cannabinoid receptors did not alter proliferation rate, viability, or apoptosis relative to parental SH-SY5Y. Transcripts for endogenous cannabinoid system enzymes (diacylglycerol lipase, monoacylglycerol lipase, α/β-hydrolase domain containing proteins 6 and 12, N-acyl phosphatidylethanolamine-phospholipase D, and fatty acid amide hydrolase) were not altered by CB1 or CB2 expression. Endocannabinoid ligands 2-arachidonoylglycerol (2-AG) and anandamide were quantitated in SH-SY5Y cells, and diacylglycerol lipase inhibitor tetrahydrolipstatin decreased 2-AG abundance by 90% but did not alter anandamide abundance. M3 muscarinic agonist oxotremorine M, and inhibitors of monoacylglycerol lipase and α/β hydrolase domain containing proteins 6 &12 increased 2-AG abundance. CB1 receptor expression increased lengths of short (<30 μm) and long (>30 μm) projections, and this effect was significantly reduced by tetrahydrolipstatin, indicative of stimulation by endogenously produced 2-AG. Pertussis toxin, Gβγ inhibitor gallein, and β-arrestin inhibitor barbadin did not significantly alter long projection length in CB1XS, but significantly reduced short projections, with gallein having the greatest inhibition. The rho kinase inhibitor Y27632 increased CB1 receptor-mediated long projection extension, indicative of actin cytoskeleton involvement. CB1 receptor expression increased GAP43 and ST8SIA2 mRNA and decreased ITGA1 mRNA, whereas CB2 receptor expression increased NCAM and SYT mRNA. We propose that basal endogenous production of 2-AG provides autocrine stimulation of CB1 receptor signaling through Gi/o, Gβγ, and β-arrestin mechanisms to promote neuritogenesis, and rho kinase influences process extension.
Collapse
Affiliation(s)
- Erica L Lyons
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Sandra Leone-Kabler
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| | - Alexander L Kovach
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Brian F Thomas
- Discovery Sciences, RTI International, PO Box 12194, Research Triangle Park, NC 27709, USA.
| | - Allyn C Howlett
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, One Medical Center Blvd., Winston-Salem, NC 27157, USA.
| |
Collapse
|
24
|
Alarabi AB, Karim ZA, Hinojos V, Lozano PA, Hernandez KR, Montes Ramirez JE, Ali HEA, Khasawneh FT, Alshbool FZ. The G-protein βγ subunits regulate platelet function. Life Sci 2020; 262:118481. [PMID: 32971104 DOI: 10.1016/j.lfs.2020.118481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 10/23/2022]
Abstract
AIMS G-protein coupled receptors (GPCRs) tightly regulate platelet function by interacting with various physiological agonists. An essential mediator of GPCR signaling is the G protein αβγ heterotrimers, in which the βγ subunits are central players in downstream signaling. Herein, we investigated the role of Gβγ subunits in platelet function, hemostasis and thrombogenesis. METHODS To achieve this goal, platelets from both mice and humans were employed in the context of a small molecule inhibitor of Gβγ, namely gallein. We used an aggregometer to examine aggregation and dense granules secretion. We also used flow cytometry for P-selectin and PAC1 to determine the impact of inhibiting Gβγ on α -granule secretion and αIIbβ3 activation. Clot retraction and the platelet spreading assay were used to examine Gβγ role in outside-in platelet signaling, whereas Western blot was employed to examine its role in Akt activation. Finally, we used the bleeding time assay and the FeCl3-induced carotid-artery injury thrombosis model to determine Gβγ contribution to in vivo platelet function. RESULTS We observed that gallein inhibits platelet aggregation and secretion in response to agonist stimulation, in both mouse and human platelets. Furthermore, gallein also exerted inhibitory effects on integrin αIIbβ3 activation, clot retraction, platelet spreading and Akt activation/phosphorylation. Finally, gallein's inhibitory effects manifested in vivo, as documented by its ability to modulate physiological hemostasis and delay thrombus formation. CONCLUSION Our findings demonstrate, for the first time, that Gβγ subunits directly regulate GPCR-dependent platelet function, in vitro and in vivo. Moreover, these data highlight Gβγ as a novel therapeutic target for managing thrombotic disorders.
Collapse
Affiliation(s)
- Ahmed B Alarabi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Zubair A Karim
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Victoria Hinojos
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Patricia A Lozano
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Keziah R Hernandez
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Jean E Montes Ramirez
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Hamdy E A Ali
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Fadi T Khasawneh
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Fatima Z Alshbool
- Department of Pharmacy Practice, Irma Lerma Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA.
| |
Collapse
|
25
|
Kawamura T, Futamura Y, Shang E, Muroi M, Janning P, Ueno M, Wilke J, Takeda S, Kondoh Y, Ziegler S, Watanabe N, Waldmann H, Osada H. Discovery of small-molecule modulator of heterotrimeric G i-protein by integrated phenotypic profiling and chemical proteomics. Biosci Biotechnol Biochem 2020; 84:2484-2490. [PMID: 32867616 DOI: 10.1080/09168451.2020.1812375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Discovery of small-molecule inducers of unique phenotypic changes combined with subsequent target identification often provides new insights into cellular functions. Here, we applied integrated profiling based on cellular morphological and proteomic changes to compound screening. We identified an indane derivative, NPD9055, which is mechanistically distinct from reference compounds with known modes of action. Employing a chemical proteomics approach, we then showed that NPD9055 binds subunits of heterotrimeric G-protein Gi. An in vitro [35S]GTPγS-binding assay revealed that NPD9055 inhibited GDP/GTP exchange on a Gαi subunit induced by a G-protein-coupled receptor agonist, but not on another G-protein from the Gαs family. In intact HeLa cells, NPD9055 induced an increase in intracellular Ca2+ levels and ERK/MAPK phosphorylation, both of which are regulated by Gβγ, following its dissociation from Gαi. Our observations suggest that NPD9055 targets Gαi and thus regulates Gβγ-dependent cellular processes, most likely by causing the dissociation of Gβγ from Gαi.
Collapse
Affiliation(s)
- Tatsuro Kawamura
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Yushi Futamura
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Erchang Shang
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Makoto Muroi
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Petra Janning
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Masayoshi Ueno
- Faculty of Science and Technology, Division of Molecular Science, Gunma University , Kiryu, Gunma, Japan
| | - Julian Wilke
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund , Dortmund, Germany
| | - Shigeki Takeda
- Faculty of Science and Technology, Division of Molecular Science, Gunma University , Kiryu, Gunma, Japan
| | - Yasumitsu Kondoh
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Slava Ziegler
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany
| | - Nobumoto Watanabe
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| | - Herbert Waldmann
- Max Planck Institute of Molecular Physiology , Department of Chemical Biology, Dortmund, Germany.,Faculty of Chemistry and Chemical Biology, Technical University Dortmund , Dortmund, Germany
| | - Hiroyuki Osada
- RIKEN-Max Planck Joint Research Division for Systems Chemical Biology, RIKEN Center for Sustainable Resource Science , Saitama, Japan.,Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science , Saitama, Japan
| |
Collapse
|
26
|
Boesgaard MW, Harpsøe K, Malmberg M, Underwood CR, Inoue A, Mathiesen JM, König GM, Kostenis E, Gloriam DE, Bräuner-Osborne H. Delineation of molecular determinants for FR900359 inhibition of G q/11 unlocks inhibition of Gα s. J Biol Chem 2020; 295:13850-13861. [PMID: 32753482 DOI: 10.1074/jbc.ra120.013002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heterotrimeric G proteins are essential mediators of intracellular signaling of G protein-coupled receptors. The Gq/11 subfamily consists of Gq, G11, G14, and G16 proteins, of which all but G16 are inhibited by the structurally related natural products YM-254890 and FR900359. These inhibitors act by preventing the GDP/GTP exchange, which is necessary for activation of all G proteins. A homologous putative binding site for YM-254890/FR900359 can also be found in members of the other three G protein families, Gs, Gi/o, and G12/13, but none of the published analogs of YM-254890/FR900359 have shown any inhibitory activity for any of these. To explain why the YM-254890/FR900359 scaffold only inhibits Gq/11/14, the present study delineated the molecular selectivity determinants by exchanging amino acid residues in the YM-254890/FR900359-binding site in Gq and Gs We found that the activity of a Gs mutant with a Gq-like binding site for YM-254890/FR900359 can be inhibited by FR900359, and a minimum of three mutations are necessary to introduce inhibition in Gs In all, this suggests that although the YM-254890/FR900359 scaffold has proven unsuccessful to derive Gs, Gi/o, and G12/13 inhibitors, the mechanism of inhibition between families of G proteins is conserved, opening up the possibility of targeting by other, novel inhibitor scaffolds. In lack of a selective Gαs inhibitor, FR900359-sensitive Gαs mutants may prove useful in studies where delicate control over Gαs signaling would be of the essence.
Collapse
Affiliation(s)
- Michael W Boesgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Michelle Malmberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina R Underwood
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Asuka Inoue
- Laboratory of Molecular and Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jesper M Mathiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Gabriele M König
- Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute for Pharmaceutical Biology, University of Bonn, Bonn, Germany
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Hans Bräuner-Osborne
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Gao J, Yu T, Xuan Y, Zhu Z. High expression of GNB4 predicts poor prognosis in patients with Helicobacter pylori-positive advanced gastric cancer. Transl Cancer Res 2020; 9:4224-4238. [PMID: 35117790 PMCID: PMC8798254 DOI: 10.21037/tcr-19-2914] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 06/03/2020] [Indexed: 12/16/2022]
Abstract
Background Helicobacter pylori (H. pylori) is recognized as the most evident etiologic factor of infection-related gastric cancer (GC) and its involvement in GC initiation and progression has been well investigated. However, only a limited number of studies were performed to identify prognostic biomarkers and evaluate their clinical significance in GC patients infected with H. pylori. This study was conducted to investigate the clinical significance as well as its potential prognostic value of GNB4 in H. pylori-positive GC patients receiving standard treatment. Methods Retrospective statistical analysis was performed on 448 H. pylori-positive GC patients, with 137 early gastric cancer (EGC) patients undergoing radical gastrectomy alone and 311 advanced gastric cancer (AGC) patients receiving the same surgical procedure followed by fluorouracil-based chemotherapy. GNB4 expression was detected by immunohistochemistry staining on patient samples. H. pylori infection was routinely examined on endoscopic biopsy and/or surgical specimen of GC patients. Results High expression of GNB4 was 65.7% (90/137) in EGC and 62.7% (195/311) in AGC patients infected with H. pylori, respectively. In EGC patients, GNB4 expression was not associated with either clinicopathological parameters or 5-year overall survival (OS). In AGC patients however, high expression of GNB4 was significantly associated with patient’s pathological stage (P=0.047). Univariate analysis showed that tumor invasion depth (P=0.001), lymph node metastasis (P<0.001), pathological stage (P<0.001) as well as high expression of GNB4 (P=0.002) were significantly associated with 5-year OS. Multivariate analysis further identified lymph node metastasis (P=0.013) and GNB4 high expression (P=0.020) as independent prognostic factors for long-term outcome of H. pylori-positive AGC patients. Conclusions This study demonstrates that high expression of GNB4 is significantly associated with pathological stage of AGC patients with H. pylori infection. GNB4 expression independently predicts the 5-year OS of H. pylori-positive AGC patients undergoing radical gastrectomy and adjuvant chemotherapy.
Collapse
Affiliation(s)
- Jianpeng Gao
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Teng Yu
- Department of Pathology, Ruijin hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yi Xuan
- Department of Gastric Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenglun Zhu
- Department of Gastrointestinal Surgery, Ruijin hospital affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Abstract
Heterotrimeric G proteins are the core upstream elements that transduce and amplify the cellular signals from G protein-coupled receptors (GPCRs) to intracellular effectors. GPCRs are the largest family of membrane proteins encoded in the human genome and are the targets of about one-third of prescription medicines. However, to date, no single therapeutic agent exerts its effects via perturbing heterotrimeric G protein function, despite a plethora of evidence linking G protein malfunction to human disease. Several recent studies have brought to light that the Gq family-specific inhibitor FR900359 (FR) is unexpectedly efficacious in silencing the signaling of Gq oncoproteins, mutant Gq variants that mostly exist in the active state. These data not only raise the hope that researchers working in drug discovery may be able to potentially strike Gq oncoproteins from the list of undruggable targets, but also raise questions as to how FR achieves its therapeutic effect. Here, we place emphasis on these recent studies and explain why they expand our pharmacological armamentarium for targeting Gq protein oncogenes as well as broaden our mechanistic understanding of Gq protein oncogene function. We also highlight how this novel insight impacts the significance and utility of using G(q) proteins as targets in drug discovery efforts.
Collapse
Affiliation(s)
- Evi Kostenis
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany.
| | - Eva Marie Pfeil
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| | - Suvi Annala
- Section of Molecular, Cellular and Pharmacobiology, Institute of Pharmaceutical Biology, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
29
|
Li J, Ge Y, Huang JX, Strømgaard K, Zhang X, Xiong XF. Heterotrimeric G Proteins as Therapeutic Targets in Drug Discovery. J Med Chem 2019; 63:5013-5030. [PMID: 31841625 DOI: 10.1021/acs.jmedchem.9b01452] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heterotrimeric G proteins are molecular switches in GPCR signaling pathways and regulate a plethora of physiological and pathological processes. GPCRs are efficient drug targets, and more than 30% of the drugs in use target them. However, selectively targeting an individual GPCR may be undesirable in various multifactorial diseases in which multiple receptors are involved. In addition, abnormal activation or expression of G proteins is frequently associated with diseases. Furthermore, G proteins harboring mutations often result in malignant diseases. Thus, targeting G proteins instead of GPCRs might provide alternative approaches for combating these diseases. In this review, we discuss the biochemistry of heterotrimeric G proteins, describe the G protein-associated diseases, and summarize the currently known modulators that can regulate the activities of G proteins. The outlook for targeting G proteins to treat diverse diseases is also included in this manuscript.
Collapse
Affiliation(s)
- Jian Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Yang Ge
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Jun-Xiang Huang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Xiaolei Zhang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| | - Xiao-Feng Xiong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, 510006 Guangzhou, Guangdong, P. R. China
| |
Collapse
|
30
|
Küppers J, Benkel T, Annala S, Schnakenburg G, Kostenis E, Gütschow M. BIM-46174 fragments as potential ligands of G proteins. MEDCHEMCOMM 2019; 10:1838-1843. [PMID: 32180917 DOI: 10.1039/c9md00269c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/31/2022]
Abstract
The 5,6,7,8-tetrahydroimidazo[1,2-a]pyrazine derivative BIM-46174 has received attention as Gαq inhibitor. We conducted structural reductions to monocyclic and bicyclic substructures to explore the chemical space of BIM fragments and to gain insights into the pharmacophore of BIM-type Gαq inhibitors. Two piperazin-2-one-containing fragments and a small library of bicyclic lactams featuring fused pyrazine and diazepine rings were synthesized and evaluated. The results of a second messenger-based cellular assay indicate that the entire BIM structure is required for efficient Gαq inhibition.
Collapse
Affiliation(s)
- Jim Küppers
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany.,Research Training Group 1873 , University of Bonn , Bonn , Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry , University of Bonn , Gerhard-Domagk-Str. 1 , 53121 Bonn , Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section , Institute for Pharmaceutical Biology , University of Bonn , Nussallee 6 , 53115 Bonn , Germany
| | - Michael Gütschow
- Pharmaceutical Institute , Pharmaceutical Chemistry I , University of Bonn , An der Immenburg 4 , 53121 Bonn , Germany .
| |
Collapse
|
31
|
Zhang H, Nielsen AL, Strømgaard K. Recent achievements in developing selective Gqinhibitors. Med Res Rev 2019; 40:135-157. [DOI: 10.1002/med.21598] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/09/2019] [Accepted: 04/26/2019] [Indexed: 02/06/2023]
Affiliation(s)
- Hang Zhang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Co‐innovation Center of Henan Province for New Drug R&D and Preclinical Safety, and School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou Henan China
| | - Alexander L. Nielsen
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| | - Kristian Strømgaard
- Department of Drug Design and Pharmacology, Center for BiopharmaceuticalsUniversity of CopenhagenCopenhagen Denmark
| |
Collapse
|
32
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
33
|
Marivin A, Morozova V, Walawalkar I, Leyme A, Kretov DA, Cifuentes D, Dominguez I, Garcia-Marcos M. GPCR-independent activation of G proteins promotes apical cell constriction in vivo. J Cell Biol 2019; 218:1743-1763. [PMID: 30948426 PMCID: PMC6504902 DOI: 10.1083/jcb.201811174] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/19/2019] [Accepted: 03/12/2019] [Indexed: 01/21/2023] Open
Abstract
Heterotrimeric G proteins are signaling switches that control organismal morphogenesis across metazoans. In invertebrates, specific GPCRs instruct G proteins to promote collective apical cell constriction in the context of epithelial tissue morphogenesis. In contrast, tissue-specific factors that instruct G proteins during analogous processes in vertebrates are largely unknown. Here, we show that DAPLE, a non-GPCR protein linked to human neurodevelopmental disorders, is expressed specifically in the neural plate of Xenopus laevis embryos to trigger a G protein signaling pathway that promotes apical cell constriction during neurulation. DAPLE localizes to apical cell-cell junctions in the neuroepithelium, where it activates G protein signaling to drive actomyosin-dependent apical constriction and subsequent bending of the neural plate. This function is mediated by a Gα-binding-and-activating (GBA) motif that was acquired by DAPLE in vertebrates during evolution. These findings reveal that regulation of tissue remodeling during vertebrate development can be driven by an unconventional mechanism of heterotrimeric G protein activation that operates in lieu of GPCRs.
Collapse
Affiliation(s)
- Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Veronika Morozova
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isha Walawalkar
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Anthony Leyme
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Dmitry A Kretov
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Daniel Cifuentes
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| | - Isabel Dominguez
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, MA
| |
Collapse
|
34
|
Porcu A, Melis M, Turecek R, Ullrich C, Mocci I, Bettler B, Gessa GL, Castelli MP. Rimonabant, a potent CB1 cannabinoid receptor antagonist, is a Gα i/o protein inhibitor. Neuropharmacology 2018; 133:107-120. [PMID: 29407764 DOI: 10.1016/j.neuropharm.2018.01.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 12/25/2022]
Abstract
Rimonabant is a potent and selective cannabinoid CB1 receptor antagonist widely used in animal and clinical studies. Besides its antagonistic properties, numerous studies have shown that, at micromolar concentrations rimonabant behaves as an inverse agonist at CB1 receptors. The mechanism underpinning this activity is unclear. Here we show that micromolar concentrations of rimonabant inhibited Gαi/o-type G proteins, resulting in a receptor-independent block of G protein signaling. Accordingly, rimonabant decreased basal and agonist stimulated [35S]GTPγS binding to cortical membranes of CB1- and GABAB-receptor KO mice and Chinese Hamster Ovary (CHO) cell membranes stably transfected with GABAB or D2 dopamine receptors. The structural analog of rimonabant, AM251, decreased basal and baclofen-stimulated GTPγS binding to rat cortical and CHO cell membranes expressing GABAB receptors. Rimonabant prevented G protein-mediated GABAB and D2 dopamine receptor signaling to adenylyl cyclase in Human Embryonic Kidney 293 cells and to G protein-coupled inwardly rectifying K+ channels (GIRK) in midbrain dopamine neurons of CB1 KO mice. Rimonabant suppressed GIRK gating induced by GTPγS in CHO cells transfected with GIRK, consistent with a receptor-independent action. Bioluminescent resonance energy transfer (BRET) measurements in living CHO cells showed that, in presence or absence of co-expressed GABAB receptors, rimonabant stabilized the heterotrimeric Gαi/o-protein complex and prevented conformational rearrangements induced by GABAB receptor activation. Rimonabant failed to inhibit Gαs-mediated signaling, supporting its specificity for Gαi/o-type G proteins. The inhibition of Gαi/o protein provides a new site of rimonabant action that may help to understand its pharmacological and toxicological effects occurring at high concentrations.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Miriam Melis
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy
| | - Rostislav Turecek
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Celine Ullrich
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Ignazia Mocci
- Institute of Translational Pharmacology, National Research Council of Italy (CNR) U.O.S. of Cagliari, 09010, Pula, Italy
| | - Bernhard Bettler
- Department of Biomedicine, University of Basel, Klingelbergstrasse 50-70, CH-4056, Basel, Switzerland
| | - Gian Luigi Gessa
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Guy Everett Laboratory, University of Cagliari, 09042, Monserrato, Italy; Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy
| | - M Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, 09042, Monserrato, Italy; Center of Excellence "Neurobiology of Addiction", University of Cagliari, 09042, Monserrato, Italy.
| |
Collapse
|
35
|
Onken MD, Makepeace CM, Kaltenbronn KM, Kanai SM, Todd TD, Wang S, Broekelmann TJ, Rao PK, Cooper JA, Blumer KJ. Targeting nucleotide exchange to inhibit constitutively active G protein α subunits in cancer cells. Sci Signal 2018; 11:eaao6852. [PMID: 30181242 PMCID: PMC6279241 DOI: 10.1126/scisignal.aao6852] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Constitutively active G protein α subunits cause cancer, cholera, Sturge-Weber syndrome, and other disorders. Therapeutic intervention by targeted inhibition of constitutively active Gα subunits in these disorders has yet to be achieved. We found that constitutively active Gαq in uveal melanoma (UM) cells was inhibited by the cyclic depsipeptide FR900359 (FR). FR allosterically inhibited guanosine diphosphate-for-guanosine triphosphate (GDP/GTP) exchange to trap constitutively active Gαq in inactive, GDP-bound Gαβγ heterotrimers. Allosteric inhibition of other Gα subunits was achieved by the introduction of an FR-binding site. In UM cells driven by constitutively active Gαq, FR inhibited second messenger signaling, arrested cell proliferation, reinstated melanocytic differentiation, and stimulated apoptosis. In contrast, FR had no effect on BRAF-driven UM cells. FR promoted UM cell differentiation by reactivating polycomb repressive complex 2 (PRC2)-mediated gene silencing, a heretofore unrecognized effector system of constitutively active Gαq in UM. Constitutively active Gαq and PRC2 therefore provide therapeutic targets for UM. The development of FR analogs specific for other Gα subunit subtypes may provide novel therapeutic approaches for diseases driven by constitutively active Gα subunits or multiple G protein-coupled receptors (GPCRs) where targeting a single receptor is ineffective.
Collapse
Affiliation(s)
- Michael D Onken
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Carol M Makepeace
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kevin M Kaltenbronn
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Stanley M Kanai
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tyson D Todd
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Shiqi Wang
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Thomas J Broekelmann
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Prabakar Kumar Rao
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John A Cooper
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kendall J Blumer
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
36
|
Reher R, Kuschak M, Heycke N, Annala S, Kehraus S, Dai HF, Müller CE, Kostenis E, König GM, Crüsemann M. Applying Molecular Networking for the Detection of Natural Sources and Analogues of the Selective Gq Protein Inhibitor FR900359. JOURNAL OF NATURAL PRODUCTS 2018; 81:1628-1635. [PMID: 29943987 DOI: 10.1021/acs.jnatprod.8b00222] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The cyclic depsipeptide FR900359 (FR), isolated from the traditional Chinese medicine plant Ardisia crenata, is a potent Gq protein inhibitor and thus a valuable tool to study Gq-mediated signaling of G protein-coupled receptors. Two new FR analogues (3 and 4) were isolated from A. crenata together with the known analogues 1 and 2. The structures of compounds 3 and 4 were established by NMR spectroscopic data and MS-based molecular networking followed by in-depth LCMS2 analysis. The latter approach led to the annotation of further FR analogues 5-9. Comparative bioactivity tests of compounds 1-4 along with the parent molecule FR showed high-affinity binding to Gq proteins in the low nanomolar range (IC50 = 2.3-16.8 nM) for all analogues as well as equipotent inhibition of Gq signaling, which gives important SAR insights into this valuable natural product. Additionally, FR was detected from leaves of five other Ardisia species, among them the non-nodulated leaves of Ardisia lucida, implying a much broader distribution of FR than originally anticipated.
Collapse
Affiliation(s)
| | | | | | | | | | - Hao-Fu Dai
- Institute of Tropical Bioscience and Biotechnology , Chinese Academy of Tropical Agricultural Sciences , Haikou 571101 , Hainan , China
| | | | | | | | | |
Collapse
|
37
|
Reher R, Kühl T, Annala S, Benkel T, Kaufmann D, Nubbemeyer B, Odhiambo JP, Heimer P, Bäuml CA, Kehraus S, Crüsemann M, Kostenis E, Tietze D, König GM, Imhof D. Deciphering Specificity Determinants for FR900359-Derived Gqα Inhibitors Based on Computational and Structure-Activity Studies. ChemMedChem 2018; 13:1634-1643. [DOI: 10.1002/cmdc.201800304] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Indexed: 01/14/2023]
Affiliation(s)
- Raphael Reher
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Toni Kühl
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Suvi Annala
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Tobias Benkel
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Desireé Kaufmann
- Eduard Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Britta Nubbemeyer
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Justin Patrick Odhiambo
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Charlotte Anneke Bäuml
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| | - Stefan Kehraus
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Max Crüsemann
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Evi Kostenis
- Molecular, Cellular and Pharmacobiology Section; Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Daniel Tietze
- Eduard Zintl Institute for Inorganic and Physical Chemistry; Technische Universität Darmstadt; Alarich-Weiss-Str. 4 64287 Darmstadt Germany
| | - Gabriele M. König
- Institute of Pharmaceutical Biology; University of Bonn; Nussallee 6 53115 Bonn Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics; Pharmaceutical Institute; University of Bonn; An der Immenburg 4 53121 Bonn Germany
| |
Collapse
|
38
|
|
39
|
Specific inhibition of GPCR-independent G protein signaling by a rationally engineered protein. Proc Natl Acad Sci U S A 2017; 114:E10319-E10328. [PMID: 29133411 DOI: 10.1073/pnas.1707992114] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Activation of heterotrimeric G proteins by cytoplasmic nonreceptor proteins is an alternative to the classical mechanism via G protein-coupled receptors (GPCRs). A subset of nonreceptor G protein activators is characterized by a conserved sequence named the Gα-binding and activating (GBA) motif, which confers guanine nucleotide exchange factor (GEF) activity in vitro and promotes G protein-dependent signaling in cells. GBA proteins have important roles in physiology and disease but remain greatly understudied. This is due, in part, to the lack of efficient tools that specifically disrupt GBA motif function in the context of the large multifunctional proteins in which they are embedded. This hindrance to the study of alternative mechanisms of G protein activation contrasts with the wealth of convenient chemical and genetic tools to manipulate GPCR-dependent activation. Here, we describe the rational design and implementation of a genetically encoded protein that specifically inhibits GBA motifs: GBA inhibitor (GBAi). GBAi was engineered by introducing modifications in Gαi that preclude coupling to every known major binding partner [GPCRs, Gβγ, effectors, guanine nucleotide dissociation inhibitors (GDIs), GTPase-activating proteins (GAPs), or the chaperone/GEF Ric-8A], while favoring high-affinity binding to all known GBA motifs. We demonstrate that GBAi does not interfere with canonical GPCR-G protein signaling but blocks GBA-dependent signaling in cancer cells. Furthermore, by implementing GBAi in vivo, we show that GBA-dependent signaling modulates phenotypes during Xenopus laevis embryonic development. In summary, GBAi is a selective, efficient, and convenient tool to dissect the biological processes controlled by a GPCR-independent mechanism of G protein activation mediated by cytoplasmic factors.
Collapse
|
40
|
Grzelka K, Kurowski P, Gawlak M, Szulczyk P. Noradrenaline Modulates the Membrane Potential and Holding Current of Medial Prefrontal Cortex Pyramidal Neurons via β 1-Adrenergic Receptors and HCN Channels. Front Cell Neurosci 2017; 11:341. [PMID: 29209170 PMCID: PMC5701640 DOI: 10.3389/fncel.2017.00341] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2017] [Indexed: 12/27/2022] Open
Abstract
The medial prefrontal cortex (mPFC) receives dense noradrenergic projections from the locus coeruleus. Adrenergic innervation of mPFC pyramidal neurons plays an essential role in both physiology (control of memory formation, attention, working memory, and cognitive behavior) and pathophysiology (attention deficit hyperactivity disorder, posttraumatic stress disorder, cognitive deterioration after traumatic brain injury, behavioral changes related to addiction, Alzheimer's disease and depression). The aim of this study was to elucidate the mechanism responsible for adrenergic receptor-mediated control of the resting membrane potential in layer V mPFC pyramidal neurons. The membrane potential or holding current of synaptically isolated layer V mPFC pyramidal neurons was recorded in perforated-patch and classical whole-cell configurations in slices from young rats. Application of noradrenaline (NA), a neurotransmitter with affinity for all types of adrenergic receptors, evoked depolarization or inward current in the tested neurons irrespective of whether the recordings were performed in the perforated-patch or classical whole-cell configuration. The effect of noradrenaline depended on β1- and not α1- or α2-adrenergic receptor stimulation. Activation of β1-adrenergic receptors led to an increase in inward Na+ current through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, which carry a mixed Na+/K+ current. The protein kinase A- and C-, glycogen synthase kinase-3β- and tyrosine kinase-linked signaling pathways were not involved in the signal transduction between β1-adrenergic receptors and HCN channels. The transduction system operated in a membrane-delimited fashion and involved the βγ subunit of G-protein. Thus, noradrenaline controls the resting membrane potential and holding current in mPFC pyramidal neurons through β1-adrenergic receptors, which in turn activate HCN channels via a signaling pathway involving the βγ subunit.
Collapse
Affiliation(s)
- Katarzyna Grzelka
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| | | | | | - Paweł Szulczyk
- Laboratory of Physiology and Pathophysiology, Centre for Preclinical Research and Technology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
41
|
DiGiacomo V, de Opakua AI, Papakonstantinou MP, Nguyen LT, Merino N, Blanco-Canosa JB, Blanco FJ, Garcia-Marcos M. The Gαi-GIV binding interface is a druggable protein-protein interaction. Sci Rep 2017; 7:8575. [PMID: 28819150 PMCID: PMC5561080 DOI: 10.1038/s41598-017-08829-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/12/2017] [Indexed: 01/26/2023] Open
Abstract
Heterotrimeric G proteins are usually activated by the guanine-nucleotide exchange factor (GEF) activity of GPCRs. However, some non-receptor proteins are also GEFs. GIV (a.k.a Girdin) was the first non-receptor protein for which the GEF activity was ascribed to a well-defined protein sequence that directly binds Gαi. GIV expression promotes metastasis and disruption of its binding to Gαi blunts the pro-metastatic behavior of cancer cells. Although this suggests that inhibition of the Gαi-GIV interaction is a promising therapeutic strategy, protein-protein interactions (PPIs) are considered poorly "druggable" targets requiring case-by-case validation. Here, we set out to investigate whether Gαi-GIV is a druggable PPI. We tested a collection of >1,000 compounds on the Gαi-GIV PPI by in silico ligand screening and separately by a chemical high-throughput screening (HTS) assay. Two hits, ATA and NF023, obtained in both screens were confirmed in secondary HTS and low-throughput assays. The binding site of NF023, identified by NMR spectroscopy and biochemical assays, overlaps with the Gαi-GIV interface. Importantly, NF023 did not disrupt Gαi-Gβγ binding, indicating its specificity toward Gαi-GIV. This work establishes the Gαi-GIV PPI as a druggable target and sets the conceptual and technical framework for the discovery of novel inhibitors of this PPI.
Collapse
Affiliation(s)
- Vincent DiGiacomo
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | | | - Lien T Nguyen
- Department of Biochemistry, Boston University School of Medicine, Boston, USA
| | | | - Juan B Blanco-Canosa
- Department of Chemistry and Molecular Pharmacology, IRB Barcelona, Barcelona, Spain
| | - Francisco J Blanco
- CIC-BioGune, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, USA.
| |
Collapse
|
42
|
Besserer-Offroy É, Brouillette RL, Lavenus S, Froehlich U, Brumwell A, Murza A, Longpré JM, Marsault É, Grandbois M, Sarret P, Leduc R. The signaling signature of the neurotensin type 1 receptor with endogenous ligands. Eur J Pharmacol 2017; 805:1-13. [DOI: 10.1016/j.ejphar.2017.03.046] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 03/21/2017] [Indexed: 12/17/2022]
|
43
|
Vázquez-Prado J, Bracho-Valdés I, Cervantes-Villagrana RD, Reyes-Cruz G. Gβγ Pathways in Cell Polarity and Migration Linked to Oncogenic GPCR Signaling: Potential Relevance in Tumor Microenvironment. Mol Pharmacol 2016; 90:573-586. [PMID: 27638873 DOI: 10.1124/mol.116.105338] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/14/2016] [Indexed: 02/14/2025] Open
Abstract
Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gβγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, β and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gβγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gβγ In preclinical murine models of cancer, inhibition of Gβγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gβγ effectors and recently identified mutations in Gβ correlate with poor clinical outcome. Here we discuss emerging paradigms of Gβγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.
Collapse
Affiliation(s)
- José Vázquez-Prado
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Ismael Bracho-Valdés
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Rodolfo Daniel Cervantes-Villagrana
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| | - Guadalupe Reyes-Cruz
- Departments of Pharmacology (J.V.-P., R.D.C.-V.) and Cell Biology (G.R.-C.). CINVESTAV-IPN, Mexico City, and Department of Pharmacology (I.B.-V.), School of Medicine, UABC, Mexicali, B.C., Mexico
| |
Collapse
|
44
|
Charpentier TH, Waldo GL, Lowery-Gionta EG, Krajewski K, Strahl BD, Kash TL, Harden TK, Sondek J. Potent and Selective Peptide-based Inhibition of the G Protein Gαq. J Biol Chem 2016; 291:25608-25616. [PMID: 27742837 DOI: 10.1074/jbc.m116.740407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Indexed: 11/06/2022] Open
Abstract
In contrast to G protein-coupled receptors, for which chemical and peptidic inhibitors have been extensively explored, few compounds are available that directly modulate heterotrimeric G proteins. Active Gαq binds its two major classes of effectors, the phospholipase C (PLC)-β isozymes and Rho guanine nucleotide exchange factors (RhoGEFs) related to Trio, in a strikingly similar fashion: a continuous helix-turn-helix of the effectors engages Gαq within its canonical binding site consisting of a groove formed between switch II and helix α3. This information was exploited to synthesize peptides that bound active Gαq in vitro with affinities similar to full-length effectors and directly competed with effectors for engagement of Gαq A representative peptide was specific for active Gαq because it did not bind inactive Gαq or other classes of active Gα subunits and did not inhibit the activation of PLC-β3 by Gβ1γ2 In contrast, the peptide robustly prevented activation of PLC-β3 or p63RhoGEF by Gαq; it also prevented G protein-coupled receptor-promoted neuronal depolarization downstream of Gαq in the mouse prefrontal cortex. Moreover, a genetically encoded form of this peptide flanked by fluorescent proteins inhibited Gαq-dependent activation of PLC-β3 at least as effectively as a dominant-negative form of full-length PLC-β3. These attributes suggest that related, cell-penetrating peptides should effectively inhibit active Gαq in cells and that these and genetically encoded sequences may find application as molecular probes, drug leads, and biosensors to monitor the spatiotemporal activation of Gαq in cells.
Collapse
Affiliation(s)
- Thomas H Charpentier
- From the Departments of Pharmacology and.,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599
| | | | | | - Krzysztof Krajewski
- Biochemistry and Biophysics.,High-Throughput Peptide Synthesis and Array Facility, and
| | - Brian D Strahl
- Biochemistry and Biophysics.,High-Throughput Peptide Synthesis and Array Facility, and
| | | | | | - John Sondek
- From the Departments of Pharmacology and .,Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27599.,Biochemistry and Biophysics
| |
Collapse
|
45
|
Rezania S, Kammerer S, Li C, Steinecker-Frohnwieser B, Gorischek A, DeVaney TTJ, Verheyen S, Passegger CA, Tabrizi-Wizsy NG, Hackl H, Platzer D, Zarnani AH, Malle E, Jahn SW, Bauernhofer T, Schreibmayer W. Overexpression of KCNJ3 gene splice variants affects vital parameters of the malignant breast cancer cell line MCF-7 in an opposing manner. BMC Cancer 2016; 16:628. [PMID: 27519272 PMCID: PMC4983040 DOI: 10.1186/s12885-016-2664-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 08/03/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Overexpression the KCNJ3, a gene that encodes subunit 1 of G-protein activated inwardly rectifying K(+) channel (GIRK1) in the primary tumor has been found to be associated with reduced survival times and increased lymph node metastasis in breast cancer patients. METHODS In order to survey possible tumorigenic properties of GIRK1 overexpression, a range of malignant mammary epithelial cells, based on the MCF-7 cell line that permanently overexpress different splice variants of the KCNJ3 gene (GIRK1a, GIRK1c, GIRK1d and as a control, eYFP) were produced. Subsequently, selected cardinal neoplasia associated cellular parameters were assessed and compared. RESULTS Adhesion to fibronectin coated surface as well as cell proliferation remained unaffected. Other vital parameters intimately linked to malignancy, i.e. wound healing, chemoinvasion, cellular velocities / motilities and angiogenesis were massively affected by GIRK1 overexpression. Overexpression of different GIRK1 splice variants exerted differential actions. While GIRK1a and GIRK1c overexpression reinforced the affected parameters towards malignancy, overexpression of GIRK1d resulted in the opposite. Single channel recording using the patch clamp technique revealed functional GIRK channels in the plasma membrane of MCF-7 cells albeit at very low frequency. DISCUSSION We conclude that GIRK1d acts as a dominant negative constituent of functional GIRK complexes present in the plasma membrane of MCF-7 cells, while overexpression of GIRK1a and GIRK1c augmented their activity. The core component responsible for the cancerogenic action of GIRK1 is apparently presented by a segment comprising aminoacids 235-402, that is present exclusively in GIRK1a and GIRK1c, but not GIRK1d (positions according to GIRK1a primary structure). CONCLUSIONS The current study provides insight into the cellular and molecular consequences of KCNJ3 overexpression in breast cancer cells and the mechanism upon clinical outcome in patients suffering from breast cancer.
Collapse
Affiliation(s)
- S. Rezania
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - S. Kammerer
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - C. Li
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - B. Steinecker-Frohnwieser
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
- Present address: Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - A. Gorischek
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - T. T. J. DeVaney
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - S. Verheyen
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
- Present address: Institute of Human Genetics, Medical University of Graz, Graz, Austria
| | - C. A. Passegger
- Institute of Pathophysiology and Immunology, SFL Chicken CAM Laboratory, Medical University of Graz, Graz, Austria
| | - N. Ghaffari Tabrizi-Wizsy
- Institute of Pathophysiology and Immunology, SFL Chicken CAM Laboratory, Medical University of Graz, Graz, Austria
| | - H. Hackl
- Division of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - D. Platzer
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
| | - A. H. Zarnani
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - E. Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Graz, Austria
| | - S. W. Jahn
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - T. Bauernhofer
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| | - W. Schreibmayer
- Institute of Biophysics, Molecular Physiology Group, Medical University of Graz, Harrachgasse 21/4, Graz, Austria
- Research Unit on Ion Channels and Cancer Biology, Medical University of Graz, Graz, Austria
| |
Collapse
|
46
|
The experimental power of FR900359 to study Gq-regulated biological processes. Nat Commun 2015; 6:10156. [PMID: 26658454 PMCID: PMC4682109 DOI: 10.1038/ncomms10156] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 11/06/2015] [Indexed: 12/13/2022] Open
Abstract
Despite the discovery of heterotrimeric αβγ G proteins ∼25 years ago, their selective perturbation by cell-permeable inhibitors remains a fundamental challenge. Here we report that the plant-derived depsipeptide FR900359 (FR) is ideally suited to this task. Using a multifaceted approach we systematically characterize FR as a selective inhibitor of Gq/11/14 over all other mammalian Gα isoforms and elaborate its molecular mechanism of action. We also use FR to investigate whether inhibition of Gq proteins is an effective post-receptor strategy to target oncogenic signalling, using melanoma as a model system. FR suppresses many of the hallmark features that are central to the malignancy of melanoma cells, thereby providing new opportunities for therapeutic intervention. Just as pertussis toxin is used extensively to probe and inhibit the signalling of Gi/o proteins, we anticipate that FR will at least be its equivalent for investigating the biological relevance of Gq.
Collapse
|
47
|
Schmitz AL, Schrage R, Gaffal E, Charpentier TH, Wiest J, Hiltensperger G, Morschel J, Hennen S, Häußler D, Horn V, Wenzel D, Grundmann M, Büllesbach KM, Schröder R, Brewitz HH, Schmidt J, Gomeza J, Galés C, Fleischmann BK, Tüting T, Imhof D, Tietze D, Gütschow M, Holzgrabe U, Sondek J, Harden TK, Mohr K, Kostenis E. A cell-permeable inhibitor to trap Gαq proteins in the empty pocket conformation. ACTA ACUST UNITED AC 2015; 21:890-902. [PMID: 25036778 DOI: 10.1016/j.chembiol.2014.06.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/04/2014] [Accepted: 06/09/2014] [Indexed: 12/18/2022]
Abstract
In spite of the crucial role of heterotrimeric G proteins as molecular switches transmitting signals from G protein-coupled receptors, their selective manipulation with small molecule, cell-permeable inhibitors still remains an unmet challenge. Here, we report that the small molecule BIM-46187, previously classified as pan-G protein inhibitor, preferentially silences Gαq signaling in a cellular context-dependent manner. Investigations into its mode of action reveal that BIM traps Gαq in the empty pocket conformation by permitting GDP exit but interdicting GTP entry, a molecular mechanism not yet assigned to any other small molecule Gα inhibitor to date. Our data show that Gα proteins may be "frozen" pharmacologically in an intermediate conformation along their activation pathway and propose a pharmacological strategy to specifically silence Gα subclasses with cell-permeable inhibitors.
Collapse
Affiliation(s)
- Anna-Lena Schmitz
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ramona Schrage
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | - Evelyn Gaffal
- Department of Dermatology and Allergy, Laboratory of Experimental Dermatology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Thomas H Charpentier
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Johannes Wiest
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Georg Hiltensperger
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Julia Morschel
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Stephanie Hennen
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Daniela Häußler
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Velten Horn
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Daniela Wenzel
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Manuel Grundmann
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Katrin M Büllesbach
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Ralf Schröder
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - H Henning Brewitz
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, Brühler Straße 7, 53119 Bonn, Germany
| | - Johannes Schmidt
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Jesús Gomeza
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| | - Céline Galés
- Institut des Maladies Métaboliques et Cardiovasculaires, Institut Nataional de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, 31432 Toulouse, France
| | - Bernd K Fleischmann
- Institute of Physiology I, Life and Brain Center, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Thomas Tüting
- Department of Dermatology and Allergy, Laboratory of Experimental Dermatology, University of Bonn, Sigmund-Freud-Straße 25, 53105 Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, Brühler Straße 7, 53119 Bonn, Germany
| | - Daniel Tietze
- Eduard-Zintl-Institute of Inorganic and Physical Chemistry, Technische Universität Darmstadt, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Michael Gütschow
- Pharmaceutical Chemistry I, Institute of Pharmacy, University of Bonn, An der Immenburg 4, 53121 Bonn, Germany
| | - Ulrike Holzgrabe
- Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - John Sondek
- Department of Pharmacology and Department of Biochemistry and Biophysics and Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7365, United States
| | - T Kendall Harden
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC 27599-7365, USA
| | - Klaus Mohr
- Pharmacology and Toxicology Section, Institute of Pharmacy, University of Bonn, Gerhard-Domagk-Straße 3, 53121 Bonn, Germany
| | - Evi Kostenis
- Molecular, Cellular, and Pharmacobiology Section, Institute of Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany.
| |
Collapse
|
48
|
Aznar N, Midde KK, Dunkel Y, Lopez-Sanchez I, Pavlova Y, Marivin A, Barbazán J, Murray F, Nitsche U, Janssen KP, Willert K, Goel A, Abal M, Garcia-Marcos M, Ghosh P. Daple is a novel non-receptor GEF required for trimeric G protein activation in Wnt signaling. eLife 2015; 4:e07091. [PMID: 26126266 PMCID: PMC4484057 DOI: 10.7554/elife.07091] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/01/2015] [Indexed: 12/17/2022] Open
Abstract
Wnt signaling is essential for tissue homeostasis and its dysregulation causes cancer. Wnt ligands trigger signaling by activating Frizzled receptors (FZDRs), which belong to the G-protein coupled receptor superfamily. However, the mechanisms of G protein activation in Wnt signaling remain controversial. In this study, we demonstrate that FZDRs activate G proteins and trigger non-canonical Wnt signaling via the Dishevelled-binding protein, Daple. Daple contains a Gα-binding and activating (GBA) motif, which activates Gαi proteins and an adjacent domain that directly binds FZDRs, thereby linking Wnt stimulation to G protein activation. This triggers non-canonical Wnt responses, that is, suppresses the β-catenin/TCF/LEF pathway and tumorigenesis, but enhances PI3K-Akt and Rac1 signals and tumor cell invasiveness. In colorectal cancers, Daple is suppressed during adenoma-to-carcinoma transformation and expressed later in metastasized tumor cells. Thus, Daple activates Gαi and enhances non-canonical Wnt signaling by FZDRs, and its dysregulation can impact both tumor initiation and progression to metastasis.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Krishna K Midde
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, San Diego, United States
| | | | - Yelena Pavlova
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Arthur Marivin
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Jorge Barbazán
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Fiona Murray
- Department of Medicine, University of California, San Diego, San Diego, United States
| | - Ulrich Nitsche
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Karl Willert
- Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, California, United States
| | - Ajay Goel
- Division of Gastroenterology, Department of Internal Medicine and Charles A Sammons Cancer Center and Baylor Research Institute, Baylor University Medical Center, Dallas, Texas, United States
| | - Miguel Abal
- Translational Medical Oncology Laboratory, Health Research Institute of Santiago, Servizo Galego de Saúde, Santiago de Compostela, Spain
| | - Mikel Garcia-Marcos
- Department of Biochemistry, Boston University School of Medicine, Boston, United States
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, San Diego, United States
| |
Collapse
|
49
|
The Gβ5 protein regulates sensitivity to TRAIL-induced cell death in colon carcinoma. Oncogene 2014; 34:2753-63. [PMID: 25043307 DOI: 10.1038/onc.2014.213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 12/14/2022]
Abstract
Aberrant signaling via G protein-coupled receptors (GPCRs) is implicated in numerous diseases including colon cancer. The heterotrimeric G proteins transduce signals from GPCRs to various effectors. So far, the G protein subunit Gβ5 has not been studied in the context of cancer. Here we demonstrate that Gβ5 protects colon carcinoma cells from apoptosis induced by the death ligand TRAIL via different routes. The Gβ5 protein (i) causes a decrease in the cell surface expression of the TRAIL-R2 death receptor, (ii) induces the expression of the anti-apoptotic protein XIAP and (iii) activates the NF-κB signaling pathway. The intrinsic resistance to TRAIL-triggered apoptosis of colon cancer cells is overcome by antagonization of Gβ5. Based on these results, targeting of G proteins emerges as a novel therapeutic approach in the experimental treatment of colon cancer.
Collapse
|
50
|
Kim JD, Jin SW. A tale of two models: mouse and zebrafish as complementary models for lymphatic studies. Mol Cells 2014; 37:503-10. [PMID: 24854860 PMCID: PMC4132301 DOI: 10.14348/molcells.2014.0108] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 11/27/2022] Open
Abstract
Lymphatic vessels provide essential roles in maintaining fluid homeostasis and lipid absorption. Dysfunctions of the lymphatic vessels lead to debilitating pathological conditions, collectively known as lymphedema. In addition, lymphatic vessels are a critical moderator for the onset and progression of diverse human diseases including metastatic cancer and obesity. Despite their clinical importance, there is no currently effective pharmacological therapy to regulate functions of lymphatic vessels. Recent efforts to manipulate the Vascular Endothelial Growth Factor-C (VEGFC) pathway, which is arguably the most important signaling pathway regulating lymphatic endothelial cells, to alleviate lymphedema yielded largely mixed results, necessitating identification of new targetable signaling pathways for therapeutic intervention for lymphedema. Zebrafish, a relatively new model system to investigate lymphatic biology, appears to be an ideal model to identify novel therapeutic targets for lymphatic biology. In this review, we will provide an overview of our current understanding of the lymphatic vessels in vertebrates, and discuss zebrafish as a promising in vivo model to study lymphatic vessels.
Collapse
Affiliation(s)
- Jun-Dae Kim
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Suk-Won Jin
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|