1
|
Jia Q, Wang H, Bi B, Han X, Jia Y, Zhang L, Fang L, Thakur A, Cheng JC. Amphiregulin Downregulates E-cadherin Expression by Activating YAP/Egr-1/Slug Signaling in SKOV3 Human Ovarian Cancer Cells. Reprod Sci 2025; 32:404-416. [PMID: 39138796 DOI: 10.1007/s43032-024-01673-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Amphiregulin (AREG) stimulates human epithelial ovarian cancer (EOC) cell invasion by downregulating E-cadherin expression. YAP is a transcriptional cofactor that has been shown to regulate tumorigenesis. This study aimed to examine whether AREG activates YAP in EOC cells and explore the roles of YAP in AREG-induced downregulation of E-cadherin and cell invasion. Analysis of the Cancer Genome Atlas (TCGA) showed that upregulation of AREG and EGFR were associated with poor survival in human EOC. Treatment of SKOV3 human EOC cells with AREG induced the activation of YAP. In addition, AREG downregulated E-cadherin, upregulated Egr-1 and Slug, and stimulated cell invasion. Using gain- and loss-of-function approaches, we showed that YAP was required for the AREG-upregulated Egr-1 and Slug expression. Furthermore, YAP was also involved in AREG-induced downregulation of E-cadherin and cell invasion. This study provides evidence that AREG stimulates human EOC cell invasion by downregulating E-cadherin expression through the YAP/Egr-1/Slug signaling.
Collapse
Affiliation(s)
- Qiongqiong Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Hailong Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Bi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Han
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuanyuan Jia
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lingling Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Avinash Thakur
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Peters XQ, Poonan P, Salifu EY, Alahmdi MI, Abo-Dya NE, Soliman MES. Exploring the Effects of Chirality of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2- yl)phenyl]imidazolidine-2,4-dione and its Derivatives on the Oncological Target Tankyrase 2. Atomistic Insights. Curr Pharm Biotechnol 2025; 26:222-234. [PMID: 37005548 DOI: 10.2174/1389201024666230330084017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/25/2023] [Accepted: 01/25/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Tankyrases (TNKS) are homomultimers existing in two forms, viz. TNKS1 and TNKS2. TNKS2 plays a pivotal role in carcinogenesis by activating the Wnt//β- catenin pathway. TNKS2 has been identified as a suitable target in oncology due to its crucial role in mediating tumour progression. The discovery of 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl) phenyl]imidazolidine-2,4-dione, a hydantoin phenylquinazolinone derivative which exists as a racemic mixture and in its pure enantiomer forms, has reportedly exhibited inhibitory potency towards TNKS2. However, the molecular events surrounding its chirality towards TNKS2 remain unresolved. METHODS Herein, we employed in silico methods such as molecular dynamics simulation coupled with binding free energy estimations to explore the mechanistic activity of the racemic inhibitor and its enantiomer forms on TNKS2 at a molecular level. RESULTS Favourable binding free energies were noted for all three ligands propelled by electrostatic and van der Waals forces. The positive enantiomer demonstrated the highest total binding free energy (-38.15 kcal/mol), exhibiting a more potent binding affinity to TNKS2. Amino acids PHE1035, ALA1038, and HIS1048; PHE1035, HIS1048 and ILE1039; and TYR1060, SER1033 and ILE1059 were identified as key drivers of TNKS2 inhibition for all three inhibitors, characterized by the contribution of highest residual energies and the formation of crucial high-affinity interactions with the bound inhibitors. Further assessment of chirality by the inhibitors revealed a stabilizing effect of the complex systems of all three inhibitors on the TNKS2 structure. Concerning flexibility and mobility, the racemic inhibitor and negative enantiomer revealed a more rigid structure when bound to TNKS2, which could potentiate biological activity interference. The positive enantiomer, however, displayed much more elasticity and flexibility when bound to TNKS2. CONCLUSION Overall, 5-methyl-5-[4-(4-oxo-3H-quinazolin-2-yl)phenyl]imidazolidine-2,4-dione and its derivatives showed their inhibitory prowess when bound to the TNKS2 target via in silico assessment. Thus, results from this study offer insight into chirality and the possibility of adjustments of the enantiomer ratio to promote greater inhibitory results. These results could also offer insight into lead optimization to enhance inhibitory effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Preantha Poonan
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Elliasu Y Salifu
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed I Alahmdi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabuk University, Tabuk, 71491, Saudi Arabia
| | - Mahmoud E S Soliman
- Molecular Bio-computation and Drug Design Laboratory, School of Health Sciences, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
3
|
Rubí-Sans G, Nyga A, Mateos-Timoneda MA, Engel E. Substrate stiffness-dependent activation of Hippo pathway in cancer associated fibroblasts. BIOMATERIALS ADVANCES 2025; 166:214061. [PMID: 39406156 DOI: 10.1016/j.bioadv.2024.214061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/20/2024] [Accepted: 10/06/2024] [Indexed: 11/13/2024]
Abstract
The tumor microenvironment (TME) comprises a heterogenous cell population within a complex three-dimensional (3D) extracellular matrix (ECM). Stromal cells within this TME are altered by signaling cues from cancer cells to support uncontrolled tumor growth and invasion events. Moreover, the ECM also plays a fundamental role in tumor development through pathological remodeling, stiffening and interaction with TME cells. In healthy tissues, Hippo signaling pathway actively contributes to tissue growth, cell proliferation and apoptosis. However, in cancer, the Hippo signaling pathway is highly dysregulated, leading to nuclear translocation of the YAP/TAZ complex, which directly contributes to uncontrolled cell proliferation and tissue growth, and ECM remodeling and stiffening processes. Here, we compare the effect of increasing cell culture substrate stiffness, derived from tumor progression, upon the dysregulation of the Hippo signaling pathway in colorectal cancer-associated fibroblasts (CAFs) and normal colorectal fibroblasts (NFs). We correlate the dysregulation of Hippo pathway with the magnitude of the traction forces exerted by healthy and malignant stromal cells. We found that ECM stiffening is crucial in Hippo pathway dysregulation in CAFs, but not in normal fibroblasts.
Collapse
Affiliation(s)
- Gerard Rubí-Sans
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Agata Nyga
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain.
| | - Miguel A Mateos-Timoneda
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Elisabeth Engel
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; CIBER en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; IMEM-BRT group, Department of Materials Science, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain.
| |
Collapse
|
4
|
Cai J, Han X, Li M, Liu X, Zhang F, Wu X. Association of low angiomotin-p130 and high YAP1 nuclear expression with adverse prognosis in epithelial ovarian cancer. Histol Histopathol 2025; 40:57-65. [PMID: 38785315 DOI: 10.14670/hh-18-758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
OBJECTIVES The aim of our study was to examine the association of Angiomotin (Amot-p130) and Yes-associated protein 1 (YAP1) expressions and their prognostic significance in epithelial ovarian cancer (EOC). METHODS A total of 100 primary EOC samples were obtained for immunohistochemical analysis of Amot-p130 and YAP1 expressions. Correlation analysis was performed between Amot-p130 or YAP1 and clinical factors. The overall survival time was calculated. RESULTS Low Amot-p130 and high YAP1 nuclear expression were identified in 34 and 56 of 100 EOC tissues, respectively. Both low Amot-p130 and high YAP1 nuclear expression were associated with advanced tumor stage, high-grade carcinoma, and non-response to chemotherapy (p<0.05). They were also associated with shorter overall survival time (p<0.05) by log-rank test. A marker of low Amot-p130 and high YAP1 expression was associated with high-grade ovarian carcinoma, late-stage disease, non-response to chemotherapy, and shorter overall survival time (p<0.05). CONCLUSIONS Low Amot-p130 and high YAP1 nuclear expression can provide additional prognostic information for patients with EOC. A marker of low Amot-p130 and high YAP1 expression may be a potent predictor of poor prognosis in patients with epithelial ovarian cancer.
Collapse
Affiliation(s)
- Junna Cai
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, PR China
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaorui Han
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Meng Li
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaoli Liu
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Fengying Zhang
- Department of Obstetrics and Gynecology, Xingtai People's Hospital, Xingtai, Hebei, PR China
| | - Xiaohua Wu
- Department of Obstetrics and Gynecology, Hebei Medical University, Shijiazhuang, PR China
- Department of Obstetrics and Gynecology, The Fourth Hospital of Shijiazhuang, Shijiazhuang, PR China.
| |
Collapse
|
5
|
Li N, Liu YH, Wu J, Liu QG, Niu JB, Zhang Y, Fu XJ, Song J, Zhang SY. Strategies that regulate Hippo signaling pathway for novel anticancer therapeutics. Eur J Med Chem 2024; 276:116694. [PMID: 39047607 DOI: 10.1016/j.ejmech.2024.116694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/29/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
As a highly conserved signaling network across different species, the Hippo pathway is involved in various biological processes. Dysregulation of the Hippo pathway could lead to a wide range of diseases, particularly cancers. Extensive researches have demonstrated the close association between dysregulated Hippo signaling and tumorigenesis as well as tumor progression. Consequently, targeting the Hippo pathway has emerged as a promising strategy for cancer treatment. In fact, there has been an increasing number of reports on small molecules that target the Hippo pathway, exhibiting therapeutic potential as anticancer agents. Importantly, some of Hippo signaling pathway inhibitors have been approved for the clinical trials. In this work, we try to provide an overview of the core components and signal transduction mechanisms of the Hippo signaling pathway. Furthermore, we also analyze the relationship between Hippo signaling pathway and cancers, as well as summarize the small molecules with proven anti-tumor effects in clinical trials or reported in literatures. Additionally, we discuss the anti-tumor potency and structure-activity relationship of the small molecule compounds, providing a valuable insight for further development of anticancer agents against this pathway.
Collapse
Affiliation(s)
- Na Li
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Yun-He Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Ji Wu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China
| | - Qiu-Ge Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yan Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiang-Jing Fu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, 450001, China.
| | - Jian Song
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Sai-Yang Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Esophageal Cancer Prevention &Treatment, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Cao Z, Hou Y, Zhao Z, Zhang H, Tian L, Zhang Y, Dong C, Guo F, Tan L, Han Y, Wang W, Jiao S, Tang Y, An L, Zhou Z. Reactivating Hippo by drug compounds to suppress gastric cancer and enhance chemotherapy sensitivity. J Biol Chem 2024; 300:107311. [PMID: 38657866 PMCID: PMC11126936 DOI: 10.1016/j.jbc.2024.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/26/2024] Open
Abstract
The Hippo signaling pathway plays an essential role in organ size control and tumorigenesis. Loss of Hippo signal and hyper-activation of the downstream oncogenic YAP signaling are commonly observed in various types of cancers. We previously identified STRN3-containing PP2A phosphatase as a negative regulator of MST1/2 kinases (i.e., Hippo) in gastric cancer (GC), opening the possibility of selectively targeting the PP2Aa-STRN3-MST1/2 axis to recover Hippo signaling against cancer. Here, we further discovered 1) disulfiram (DSF), an FDA-approved drug, which can similarly block the binding of STRN3 to PP2A core enzyme and 2) CX-6258 (CX), a chemical inhibitor, that can disrupt the interaction between STRN3 and MST1/2, both allowing reactivation of Hippo activity to inhibit GC. More importantly, we found these two compounds, via an MST1/2 kinase-dependent manner, inhibit DNA repair to sensitize GC towards chemotherapy. In addition, we identified thiram, a structural analog of DSF, can function similarly to inhibit cancer cell proliferation or enhance chemotherapy sensitivity. Interestingly, inclusion of copper ion enhanced such effects of DSF and thiram on GC treatment. Overall, this work demonstrated that pharmacological targeting of the PP2Aa-STRN3-MST1/2 axis by drug compounds can potently recover Hippo signal for tumor treatment.
Collapse
Affiliation(s)
- Zhifa Cao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Yu Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhangting Zhao
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Luyang Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiming Zhang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Chao Dong
- Department of Medical Oncology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Fenghua Guo
- Department of General Surgery, Hua'shan Hospital, Fudan University Shanghai Medical College, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yi Han
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shi Jiao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Tang
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Liwei An
- Department of Stomatology, Department of Medical Ultrasound, Shanghai Tenth People's Hospital, Tongji University Cancer Center, School of Medicine, Tongji University, Shanghai, China.
| | - Zhaocai Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China; Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
7
|
Peters XQ, Elamin G, Aljoundi A, Alahmdi MI, Abo-Dya NE, Sidhom PA, Tawfeek AM, Ibrahim MAA, Soremekun O, Soliman MES. Therapeutic Path to Triple Knockout: Investigating the Pan-inhibitory Mechanisms of AKT, CDK9, and TNKS2 by a Novel 2-phenylquinazolinone Derivative in Cancer Therapy- An In-silico Investigation Therapy. Curr Pharm Biotechnol 2024; 25:1288-1303. [PMID: 37581526 DOI: 10.2174/1389201024666230815145001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/18/2023] [Accepted: 06/26/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND Blocking the oncogenic Wnt//β-catenin pathway has of late been investigated as a viable therapeutic approach in the treatment of cancer. This involves the multi-targeting of certain members of the tankyrase-kinase family; Tankyrase 2 (TNKS2), Protein Kinase B (AKT), and Cyclin- Dependent Kinase 9 (CDK9), which propagate the oncogenic Wnt/β-catenin signalling pathway. METHODS During a recent investigation, the pharmacological activity of 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one was repurposed to serve as a 'triple-target' inhibitor of TNKS2, AKT and CDK9. Yet, the molecular mechanism that surrounds its multi-targeting activity remains unanswered. As such, this study aims to explore the pan-inhibitory mechanism of 2-(4-aminophenyl)-7-chloro-3H-quinazolin- 4-one towards AKT, CDK9, and TNKS2, using in silico techniques. RESULTS Results revealed favourable binding affinities of -34.17 kcal/mol, -28.74 kcal/mol, and -27.30 kcal/mol for 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one towards TNKS2, CDK9, and AKT, respectively. Pan-inhibitory binding of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one is illustrated by close interaction with specific residues on tankyrase-kinase. Structurally, 2-(4-aminophenyl)-7-chloro- 3H-quinazolin-4-one had an impact on the flexibility, solvent-accessible surface area, and stability of all three proteins, which was illustrated by numerous modifications observed in the unbound as well as the bound states of the structures, which evidenced the disruption of their biological function. Prediction of the pharmacokinetics and physicochemical properties of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4- one further established its inhibitory potential, evidenced by the favourable absorption, metabolism, excretion, and minimal toxicity properties. CONCLUSION The following structural insights provide a starting point for understanding the paninhibitory activity of 2-(4-aminophenyl)-7-chloro-3H-quinazolin-4-one. Determining the criticality of the interactions that exist between the pyrimidine ring and catalytic residues could offer insight into the structure-based design of innovative tankyrase-kinase inhibitors with enhanced therapeutic effects.
Collapse
Affiliation(s)
- Xylia Q Peters
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Ghazi Elamin
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Aimen Aljoundi
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| | - Mohamed Issa Alahmdi
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
| | - Nader E Abo-Dya
- Department of Pharmaceutical Science, University of Tabuk, Tabuk, 7149, Saudi Arabia
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Peter A Sidhom
- Department of Pharmacy, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Tawfeek
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mahmoud A A Ibrahim
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
- Chemistry Department, Computational Chemistry Laboratory, Faculty of Science, Minia University, Minia, 61519, Egypt
| | - Opeyemi Soremekun
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mahmoud E S Soliman
- Department of Pharmaceutical Science, University of KwaZulu-Natal, Westville Campus, Durban, 4001, South Africa
| |
Collapse
|
8
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
9
|
Molecular insights of Hippo signaling in the chick developing lung. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194904. [PMID: 36572276 DOI: 10.1016/j.bbagrm.2022.194904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Hippo signaling pathway and its effector YAP have been recognized as an essential growth regulator during embryonic development. Hippo has been studied in different contexts; nevertheless, its role during chick lung branching morphogenesis remains unknown. Therefore, this work aims to determine Hippo role during early pulmonary organogenesis in the avian animal model. The current study describes the spatial distribution of Hippo signaling members in the embryonic chick lung by in situ hybridization. Overall, their expression is comparable to their mammalian counterparts. Moreover, the expression levels of phosphorylated-YAP (pYAP) and total YAP revealed that Hippo signaling is active in the embryonic chick lung. Furthermore, the presence of pYAP in the cytoplasm demonstrated that the Hippo machinery distribution is maintained in this tissue. In vitro studies were performed to assess the role of the Hippo signaling pathway in lung branching. Lung explants treated with a YAP/TEAD complex inhibitor (verteporfin) displayed a significant reduction in lung size and branching and decreased expression of ctgf (Hippo target gene) compared to the control. This approach also revealed that Hippo seems to modulate the expression of key molecular players involved in lung branching morphogenesis (sox2, sox9, axin2, and gli1). Conversely, when treated with dobutamine, an upstream regulator that promotes YAP phosphorylation, explant morphology was not severely affected. Overall, our data indicate that Hippo machinery is present and active in the early stages of avian pulmonary branching and that YAP is likely involved in the regulation of lung growth.
Collapse
|
10
|
Otkur W, Liu X, Chen H, Li S, Ling T, Lin H, Yang R, Xia T, Qi H, Piao HL. GPR35 antagonist CID-2745687 attenuates anchorage-independent cell growth by inhibiting YAP/TAZ activity in colorectal cancer cells. Front Pharmacol 2023; 14:1126119. [PMID: 37113762 PMCID: PMC10126512 DOI: 10.3389/fphar.2023.1126119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Background and purpose: GPR35, a member of the orphan G-protein-coupled receptor, was recently implicated in colorectal cancer (CRC). However, whether targeting GPR35 by antagonists can inhibit its pro-cancer role has yet to be answered. Experimental approach: We applied antagonist CID-2745687 (CID) in established GPR35 overexpressing and knock-down CRC cell lines to understand its anti-cell proliferation property and the underlying mechanism. Key results: Although GPR35 did not promote cell proliferation in 2D conditions, it promoted anchorage-independent growth in soft-agar, which was reduced by GPR35 knock-down and CID treatment. Furthermore, YAP/TAZ target genes were expressed relatively higher in GPR35 overexpressed cells and lower in GPR35 knock-down cells. YAP/TAZ activity is required for anchorage-independent growth of CRC cells. By detecting YAP/TAZ target genes, performing TEAD4 luciferase reporter assay, and examining YAP phosphorylation and TAZ protein expression level, we found YAP/TAZ activity is positively correlated to GPR35 expression level, which CID disrupted in GPR35 overexpressed cells, but not in GPR35 knock-down cells. Intriguingly, GPR35 agonists did not promote YAP/TAZ activity but ameliorated CID's inhibitory effect; GPR35-promoted YAP/TAZ activity was only partly attenuated by ROCK1/2 inhibitor. Conclusion and implications: GPR35 promoted YAP/TAZ activity partly through Rho-GTPase with its agonist-independent constitutive activity, and CID exhibited its inhibitory effect. GPR35 antagonists are promising anti-cancer agents that target hyperactivation and overexpression of YAP/TAZ in CRC.
Collapse
|
11
|
Li F, Negi V, Yang P, Lee J, Ma K, Moulik M, Yechoor V. TEAD1 regulates cell proliferation through a pocket-independent transcription repression mechanism. Nucleic Acids Res 2022; 50:12723-12738. [PMID: 36484096 PMCID: PMC9825168 DOI: 10.1093/nar/gkac1063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/13/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
The Hippo-TEAD pathway regulates cellular proliferation and function. The existing paradigm is that TEAD co-activators, YAP and TAZ, and co-repressor, VGLL4, bind to the pocket region of TEAD1 to enable transcriptional activation or repressive function. Here we demonstrate a pocket-independent transcription repression mechanism whereby TEAD1 controls cell proliferation in both non-malignant mature differentiated cells and in malignant cell models. TEAD1 overexpression can repress tumor cell proliferation in distinct cancer cell lines. In pancreatic β cells, conditional knockout of TEAD1 led to a cell-autonomous increase in proliferation. Genome-wide analysis of TEAD1 functional targets via transcriptomic profiling and cistromic analysis revealed distinct modes of target genes, with one class of targets directly repressed by TEAD1. We further demonstrate that TEAD1 controls target gene transcription in a motif-dependent and orientation-independent manner. Mechanistically, we show that TEAD1 has a pocket region-independent, direct repressive function via interfering with RNA polymerase II (POLII) binding to target promoters. Our study reveals that TEAD1 target genes constitute a mutually restricted regulatory loop to control cell proliferation and uncovers a novel direct repression mechanism involved in its transcriptional control that could be leveraged in future studies to modulate cell proliferation in tumors and potentially enhance the proliferation of normal mature cells.
Collapse
Affiliation(s)
- Feng Li
- Correspondence may also be addressed to Feng Li.
| | - Vinny Negi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Yang
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeongkyung Lee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ke Ma
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, City of Hope, Duarte, CA, USA
| | - Mousumi Moulik
- Division of Pediatric Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K Yechoor
- To whom correspondence should be addressed. Tel: +1 412 383 4251; Fax: +1 412 648 3290;
| |
Collapse
|
12
|
Roodnat AW, Callaghan B, Doyle C, Henry M, Goljanek-Whysall K, Simpson DA, Sheridan C, Atkinson SD, Willoughby CE. Genome-Wide RNA Sequencing of Human Trabecular Meshwork Cells Treated with TGF-β1: Relevance to Pseudoexfoliation Glaucoma. Biomolecules 2022; 12:1693. [PMID: 36421707 PMCID: PMC9687758 DOI: 10.3390/biom12111693] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/15/2022] [Accepted: 11/10/2022] [Indexed: 08/11/2023] Open
Abstract
Pseudoexfoliation glaucoma (XFG) is an aggressive form of secondary open angle glaucoma, characterised by the production of exfoliation material and is estimated to affect 30 million people worldwide. Activation of the TGF-β pathway by TGF-β1 has been implicated in the pathogenesis of pseudoexfoliation glaucoma. To further investigate the role of TGF-β1 in glaucomatous changes in the trabecular meshwork (TM), we used RNA-Seq to determine TGF-β1 induced changes in the transcriptome of normal human trabecular meshwork (HTM) cells. The main purpose of this study was to perform a hypothesis-independent RNA sequencing analysis to investigate genome-wide alterations in the transcriptome of normal HTMs stimulated with TGF-β1 and investigate possible pathophysiological mechanisms driving XFG. Our results identified multiple differentially expressed genes including several genes known to be present in exfoliation material. Significantly altered pathways, biological processes and molecular functions included extracellular matrix remodelling, Hippo and Wnt pathways, the unfolded protein response, oxidative stress, and the antioxidant system. This cellular model of pseudoexfoliation glaucoma can provide insight into disease pathogenesis and support the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Anton W. Roodnat
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Breedge Callaghan
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Chelsey Doyle
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Megan Henry
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
| | - Katarzyna Goljanek-Whysall
- School of Medicine, Physiology, National University of Ireland Galway, H91 W5P7 Galway, Ireland
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - David A. Simpson
- The Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University, Belfast BT9 7BL, Northern Ireland, UK
| | - Carl Sheridan
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| | - Sarah D. Atkinson
- Personalised Medicine Centre, Ulster University, Londonderry BT47 6SB, Northern Ireland, UK
| | - Colin E. Willoughby
- Genomic Medicine, Biomedical Sciences Research Institute, Ulster University, Coleraine Campus, Coleraine BT52 1SA, Northern Ireland, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, England, UK
| |
Collapse
|
13
|
O-GlcNAcylation: An Emerging Protein Modification Regulating the Hippo Pathway. Cancers (Basel) 2022; 14:cancers14123013. [PMID: 35740678 PMCID: PMC9221189 DOI: 10.3390/cancers14123013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The contact point between the Hippo pathway, which serves as a central hub for various external environments, and O-GlcNAcylation, which is a non-canonical glycosylation process acting as a dynamic regulator in various signal transduction pathways, has recently been identified. This review aims to summarize the function of O-GlcNAcylation as an intrinsic and extrinsic regulator of the Hippo pathway. Abstract The balance between cellular proliferation and apoptosis and the regulation of cell differentiation must be established to maintain tissue homeostasis. These cellular responses involve the kinase cascade-mediated Hippo pathway as a crucial regulator. Hence, Hippo pathway dysregulation is implicated in diverse diseases, including cancer. O-GlcNAcylation is a non-canonical glycosylation that affects multiple signaling pathways through its interplay with phosphorylation in the nucleus and cytoplasm. An abnormal increase in the O-GlcNAcylation levels in various cancer cells is a potent factor in Hippo pathway dysregulation. Intriguingly, Hippo pathway dysregulation also disrupts O-GlcNAc homeostasis, leading to a persistent elevation of O-GlcNAcylation levels, which is potentially pathogenic in several diseases. Therefore, O-GlcNAcylation is gaining attention as a protein modification that regulates the Hippo pathway. This review presents a framework on how O-GlcNAcylation regulates the Hippo pathway and forms a self-perpetuating cycle with it. The pathological significance of this self-perpetuating cycle and clinical strategies for targeting O-GlcNAcylation that causes Hippo pathway dysregulation are also discussed.
Collapse
|
14
|
Xia N, Yang N, Shan Q, Wang Z, Liu X, Chen Y, Lu J, Huang W, Wang Z. HNRNPC regulates RhoA to induce DNA damage repair and cancer-associated fibroblast activation causing radiation resistance in pancreatic cancer. J Cell Mol Med 2022; 26:2322-2336. [PMID: 35277915 PMCID: PMC8995438 DOI: 10.1111/jcmm.17254] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/29/2022] [Accepted: 02/17/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal types of cancer due to its asymptomatic nature in the early stages and consequent late diagnosis. Its mortality rate remains high despite advances in treatment strategies, which include a combination of surgical resection and adjuvant therapy. Although these approaches may have a positive effect on prognosis, the development of chemo- and radioresistance still poses a significant challenge for successful PC treatment. Heterogeneous nuclear ribonucleoprotein C1/C2 (HNRNPC) and RhoA have been implicated in the regulation of tumour cell proliferation and chemo- and radioresistance. Our study aims to investigate the mechanism for HNRNPC regulation of PC radiation resistance via the RhoA pathway. We found that HNRNPC and RhoA mRNA and protein expression levels were significantly higher in PC tissues compared to adjacent non-tumour tissue. Furthermore, high HNRNPC expression was associated with poor patient prognosis. Using HNRNPC overexpression and siRNA interference, we demonstrated that HNRNPC overexpression promoted radiation resistance in PC cells, while HNRNPC knockdown increased radiosensitivity. However, silencing of RhoA expression was shown to attenuate radiation resistance caused by HNRNPC overexpression. Next, we identified RhoA as a downstream target of HNRNPC and showed that inhibition of the RhoA/ROCK2-YAP/TAZ pathway led to a reduction in DNA damage repair and radiation resistance. Finally, using both in vitro assays and an in vivo subcutaneous tumour xenograft model, we demonstrated that RhoA inhibition can hinder the activity of cancer-related fibroblasts and weaken PC radiation resistance. Our study describes a role for HNRNPC and the RhoA/ROCK2-YAP/TAZ signalling pathways in mediating radiation resistance and provides a potential therapeutic target for improving the treatment of PC.
Collapse
Affiliation(s)
- Ning Xia
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Nannan Yang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qungang Shan
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ziyin Wang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaoyu Liu
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yingjie Chen
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Jian Lu
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Huang
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Zhongmin Wang
- Department of RadiologyRuijin Hospital Luwan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
- Department of Interventional RadiologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
15
|
Correlation between Tumor Microenvironment and Immune Subtypes Based on CD8 T Cells Enhancing Personalized Therapy of Gastric Cancer. JOURNAL OF ONCOLOGY 2022; 2022:8933167. [PMID: 35265130 PMCID: PMC8901316 DOI: 10.1155/2022/8933167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022]
Abstract
Background Immunotherapy is a promising therapy for metastatic gastric cancer (GC) patients. However, the component of tumor microenvironment (TME) is a pivotal factor hindering immunotherapy outcome. CD8 T cells suppress tumor progression. This study developed an immune subtyping system and a prognostic model for guiding personalized therapy of GC patients. Methods Marker genes related to CD8 T cells were identified by weighted correlation network analysis (WGCNA). Consensus clustering was used to develop immune subtypes. Univariate Cox regression analysis was performed to screen prognostic genes. Functional analysis (KEGG and GO annotation) and gene set enrichment analysis were applied. Results Based on marker genes related to CD8 T cells, we identified three immune subtypes (IC1, IC2, and IC3) with distinct prognosis and differential TME. In IC3, CD8 T cell function was impaired by high activation of CXCR4/CXCL12 axis, and impaired T cell function predicted high response to immune checkpoint blockade. IC1 was sensitive to chemotherapeutic drugs but showed low response to immunotherapy. We also developed an 8-gene prognostic signature with robust performance to stratify GC patients into high-risk and low-risk groups. Conclusions This study identified three immune subtypes and a prognostic signature, and both were effective in direct personalized therapy for GC patients. The correlation between TME and immunotherapy was further characterized from a new perspective.
Collapse
|
16
|
Wang M, Dong Y, Gao S, Zhong Z, Cheng C, Qiang R, Zhang Y, Shi X, Qian X, Gao X, Guan B, Yu C, Yu Y, Chai R. Hippo/YAP signaling pathway protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Mol Life Sci 2022; 79:79. [PMID: 35044530 PMCID: PMC8770373 DOI: 10.1007/s00018-021-04029-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
AbstractThe Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.
Collapse
Affiliation(s)
- Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-Sen University, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Song Gao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Zhenhua Zhong
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Cheng Cheng
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuhua Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinyi Shi
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiaoyun Qian
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Xia Gao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Chenjie Yu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Youjun Yu
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-Sen University, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
17
|
Niu JB, Hua CQ, Liu Y, Yu GX, Yang JJ, Li YR, Zhang YB, Qi YQ, Song J, Jin CY, Zhang SY. Discovery of N-aryl sulphonamide-quinazoline derivatives as anti-gastric cancer agents in vitro and in vivo via activating the Hippo signalling pathway. J Enzyme Inhib Med Chem 2021; 36:1715-1731. [PMID: 34425716 PMCID: PMC8386742 DOI: 10.1080/14756366.2021.1958211] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/17/2021] [Accepted: 07/16/2021] [Indexed: 01/07/2023] Open
Abstract
Hippo signalling pathway plays a crucial role in tumorigenesis and cancer progression. In this work, we identified an N-aryl sulphonamide-quinazoline derivative, compound 9i as an anti-gastric cancer agent, which exhibited potent antiproliferative ability with IC50 values of 0.36 μM (MGC-803 cells), 0.70 μM (HCT-116 cells), 1.04 μM (PC-3 cells), and 0.81 μM (MCF-7 cells), respectively and inhibited YAP activity by the activation of p-LATS. Compound 9i was effective in suppressing MGC-803 xenograft tumour growth in nude mice without obvious toxicity and significantly down-regulated the expression of YAP in vivo. Compound 9i arrested cells in the G2/M phase, induced intrinsic apoptosis, and inhibited cell colony formation in MGC-803 and SGC-7901 cells. Therefore, compound 9i is to be reported as an anti-gastric cancer agent via activating the Hippo signalling pathway and might help foster a new strategy for the cancer treatment by activating the Hippo signalling pathway regulatory function to inhibit the activity of YAP.
Collapse
Affiliation(s)
- Jin-Bo Niu
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chun-Quan Hua
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Yuan Liu
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Guang-Xi Yu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jia-Jia Yang
- Department of Pharmacy, Zhengzhou People's Hospital, Zhengzhou, China
| | - Yin-Ru Li
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yan-Bing Zhang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Ying-Qiu Qi
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Jian Song
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Cheng-Yun Jin
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Pharmaceutical Sciences, Institute of Drug Discovery & Development, Key Laboratory of Advanced Drug Preparation Technologies (Ministry of Education), Zhengzhou University, Zhengzhou, China
| | - Sai-Yang Zhang
- The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
An Insight into GPCR and G-Proteins as Cancer Drivers. Cells 2021; 10:cells10123288. [PMID: 34943797 PMCID: PMC8699078 DOI: 10.3390/cells10123288] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/14/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of cell surface signaling receptors known to play a crucial role in various physiological functions, including tumor growth and metastasis. Various molecules such as hormones, lipids, peptides, and neurotransmitters activate GPCRs that enable the coupling of these receptors to highly specialized transducer proteins, called G-proteins, and initiate multiple signaling pathways. Integration of these intricate networks of signaling cascades leads to numerous biochemical responses involved in diverse pathophysiological activities, including cancer development. While several studies indicate the role of GPCRs in controlling various aspects of cancer progression such as tumor growth, invasion, migration, survival, and metastasis through its aberrant overexpression, mutations, or increased release of agonists, the explicit mechanisms of the involvement of GPCRs in cancer progression is still puzzling. This review provides an insight into the various responses mediated by GPCRs in the development of cancers, the molecular mechanisms involved and the novel pharmacological approaches currently preferred for the treatment of cancer. Thus, these findings extend the knowledge of GPCRs in cancer cells and help in the identification of therapeutics for cancer patients.
Collapse
|
19
|
Gupta S, Ozimek-Kulik JE, Phillips JK. Nephronophthisis-Pathobiology and Molecular Pathogenesis of a Rare Kidney Genetic Disease. Genes (Basel) 2021; 12:genes12111762. [PMID: 34828368 PMCID: PMC8623546 DOI: 10.3390/genes12111762] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
The exponential rise in our understanding of the aetiology and pathophysiology of genetic cystic kidney diseases can be attributed to the identification of cystogenic genes over the last three decades. The foundation of this was laid by positional cloning strategies which gradually shifted towards next-generation sequencing (NGS) based screenings. This shift has enabled the discovery of novel cystogenic genes at an accelerated pace unlike ever before and, most notably, the past decade has seen the largest increase in identification of the genes which cause nephronophthisis (NPHP). NPHP is a monogenic autosomal recessive cystic kidney disease caused by mutations in a diverse clade of over 26 identified genes and is the most common genetic cause of renal failure in children. NPHP gene types present with some common pathophysiological features alongside a diverse range of extra-renal phenotypes associated with specific syndromic presentations. This review provides a timely update on our knowledge of this disease, including epidemiology, pathophysiology, anatomical and molecular features. We delve into the diversity of the NPHP causing genes and discuss known molecular mechanisms and biochemical pathways that may have possible points of intersection with polycystic kidney disease (the most studied renal cystic pathology). We delineate the pathologies arising from extra-renal complications and co-morbidities and their impact on quality of life. Finally, we discuss the current diagnostic and therapeutic modalities available for disease management, outlining possible avenues of research to improve the prognosis for NPHP patients.
Collapse
Affiliation(s)
- Shabarni Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- Correspondence:
| | - Justyna E. Ozimek-Kulik
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
- School of Women’s and Children’s Health, University of New South Wales, Sydney, NSW 2031, Australia
- Department of Paediatric Nephrology, Sydney Children’s Hospital Network, Children’s Hospital at Westmead, Sydney, NSW 2145, Australia
| | - Jacqueline Kathleen Phillips
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia; (J.E.O.-K.); (J.K.P.)
| |
Collapse
|
20
|
EGFR Regulates the Hippo pathway by promoting the tyrosine phosphorylation of MOB1. Commun Biol 2021; 4:1237. [PMID: 34725466 PMCID: PMC8560880 DOI: 10.1038/s42003-021-02744-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/01/2021] [Indexed: 12/14/2022] Open
Abstract
The Hippo pathway is frequently dysregulated in cancer, leading to the unrestrained activity of its downstream targets, YAP/TAZ, and aberrant tumor growth. However, the precise mechanisms leading to YAP/TAZ activation in most cancers is still poorly understood. Analysis of large tissue collections revealed YAP activation in most head and neck squamous cell carcinoma (HNSCC), but only 29.8% of HNSCC cases present genetic alterations in the FAT1 tumor suppressor gene that may underlie persistent YAP signaling. EGFR is overexpressed in HNSCC and many other cancers, but whether EGFR controls YAP activation is still poorly understood. Here, we discover that EGFR activates YAP/TAZ in HNSCC cells, but independently of its typical signaling targets, including PI3K. Mechanistically, we find that EGFR promotes the phosphorylation of MOB1, a core Hippo pathway component, and the inactivation of LATS1/2 independently of MST1/2. Transcriptomic analysis reveals that erlotinib, a clinical EGFR inhibitor, inactivates YAP/TAZ. Remarkably, loss of LATS1/2, resulting in aberrant YAP/TAZ activity, confers erlotinib resistance on HNSCC and lung cancer cells. Our findings suggest that EGFR-YAP/TAZ signaling plays a growth-promoting role in cancers harboring EGFR alterations, and that inhibition of YAP/TAZ in combination with EGFR might be beneficial to prevent treatment resistance and cancer recurrence. Ando et al show in head and neck squamous cell carcinoma cells that EGFR activation leads to the phosphorylation of the Hippo pathway component, MOB1 to inhibit LATS1/2 function resulting in YAP/TAZ activation. Further, EGFR-targeting therapies suppress YAP/TAZ, and loss of LATS1/2-mediated YAP/TAZ activation confers therapy resistance, thus offering insights into potential drug resistance mechanisms in cancers with activated EGFR.
Collapse
|
21
|
Liu W, Wang R, Zhang Y, Wang H, Huang Z, Jin T, Yang Y, Sun Y, Cao S, Niu X. Whole-exome sequencing in osteosarcoma with distinct prognosis reveals disparate genetic heterogeneity. Cancer Genet 2021; 256-257:149-157. [PMID: 34153775 DOI: 10.1016/j.cancergen.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 12/13/2022]
Abstract
The genomic profiles of osteosarcoma (OS) patients have been extensively investigated; however, the genetic prognostic biomarkers still remain unclear. In the present study, we analyzed the mutational profiles of pre-treatment primary tumor samples from 33 OS patients using whole exome sequencing (WES). These 33 OS patients were divided into two groups according to clinical outcomes: a good prognosis group involving 21 patients with tumor free survival, and a poor prognosis group involving the remaining12 patients who had lung metastases at initial diagnosis. Overall we found that the MAPK signaling pathway may play an important role in determining a good prognosis, while the PI3K-Akt signaling pathway may be an important factor leading to a poor prognosis. Significant differences were observed in the number of somatic copy number alterations, including del (3p), amp (4q), del (7p) and amp (8q), between the two groups. Moreover, significant differences were observed in mutation sites and frequencies between these two groups. The good prognosis group exhibited a significantly higher mutation frequency in somatic JAK-STAT and germline base excision repair pathways than the poor prognosis group. Furthermore, significant difference was also observed in the frequency of potentially actionable alterations between the two groups, suggesting that patients with a poor prognosis potentially have access to a larger number of treatment options. These findings highlight the importance of evaluating genomic disparities in OS, and provide a novel insight into the potential prognostic biomarkers.
Collapse
Affiliation(s)
- Weifeng Liu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China; Fourth Medical College of Peking University, Beijing 100035, China.
| | - Renxian Wang
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yanrui Zhang
- Acornmed Biotechnology Co. Ltd., Beijing 100176, China
| | - Huina Wang
- Acornmed Biotechnology Co. Ltd., Beijing 100176, China
| | - Zhen Huang
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China
| | - Tao Jin
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China
| | - Yongkun Yang
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China
| | - Yang Sun
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China
| | - Shanbo Cao
- Acornmed Biotechnology Co. Ltd., Beijing 100176, China
| | - Xiaohui Niu
- Deptartment of Orthopaedic Oncology Surgery, Beijing Jishuitan Hospital, Peking University, Beijing 100035, China.
| |
Collapse
|
22
|
Shi W, Wang Q, Wang J, Yan X, Feng W, Zhang Q, Zhai C, Chai L, Li S, Xie X, Li M. Activation of yes-associated protein mediates sphingosine-1-phosphate-induced proliferation and migration of pulmonary artery smooth muscle cells and its potential mechanisms. J Cell Physiol 2021; 236:4694-4708. [PMID: 33283886 DOI: 10.1002/jcp.30193] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/30/2020] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
The aims of the present study were to examine the molecular mechanisms underlying sphingosine-1-phosphate (S1P)-induced rat pulmonary artery smooth muscle cells (PASMCs) proliferation/migration and to determine the effect of yes-associated protein (YAP) activation on S1P-induced PASMCs proliferation/migration and its potential mechanisms. S1P induced YAP dephosphorylation and nuclear translocation, upregulated microRNA-130a/b (miR-130a/b) expression, reduced bone morphogenetic protein receptor 2 (BMPR2), and inhibitor of DNA binding 1(Id1) expression, and promoted PASMCs proliferation and migration. Pretreatment of cells with Rho-associated protein kinase (ROCK) inhibitor Y27632 suppressed S1P-induced YAP activation, miR-130a/b upregulation, BMPR2/Id1 downregulation, and PASMCs proliferation/migration. Knockdown of YAP using small interfering RNA also suppressed S1P-induced alterations of miR-130a/b, BMPR2, Id1, and PASMCs behavior. In addition, luciferase reporter assay indicated that miR-130a/b directly regulated BMPR2 expression in PASMCs. Inhibition of miR-130a/b functions by anti-miRNA oligonucleotides attenuated S1P-induced BMPR2/Id1 downregulation and the proliferation and migration of PASMCs. Taken together, our study indicates that S1P induces activation of YAP through ROCK signaling and subsequently increases miR-130a/b expression, which, in turn, downregulates BMPR2 and Id1 leading to PASMCs proliferation and migration.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Bone Morphogenetic Protein Receptors, Type II/genetics
- Bone Morphogenetic Protein Receptors, Type II/metabolism
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Inhibitor of Differentiation Protein 1/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Lysophospholipids/pharmacology
- Male
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation
- Pulmonary Artery/drug effects
- Pulmonary Artery/metabolism
- Rats, Sprague-Dawley
- Signal Transduction
- Sphingosine/analogs & derivatives
- Sphingosine/pharmacology
- YAP-Signaling Proteins
- rho-Associated Kinases/metabolism
- Rats
Collapse
Affiliation(s)
- Wenhua Shi
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qingting Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xin Yan
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Wei Feng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Qianqian Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Cui Zhai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Limin Chai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Shaojun Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Xinming Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| | - Manxiang Li
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, P. R. China
| |
Collapse
|
23
|
Brücher VC, Egbring C, Plagemann T, Nedvetsky PI, Höffken V, Pavenstädt H, Eter N, Kremerskothen J, Heiduschka P. Lack of WWC2 Protein Leads to Aberrant Angiogenesis in Postnatal Mice. Int J Mol Sci 2021; 22:5321. [PMID: 34070186 PMCID: PMC8158494 DOI: 10.3390/ijms22105321] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/03/2023] Open
Abstract
The WWC protein family is an upstream regulator of the Hippo signalling pathway that is involved in many cellular processes. We examined the effect of an endothelium-specific WWC1 and/or WWC2 knock-out on ocular angiogenesis. Knock-outs were induced in C57BL/6 mice at the age of one day (P1) and evaluated at P6 (postnatal mice) or induced at the age of five weeks and evaluated at three months of age (adult mice). We analysed morphology of retinal vasculature in retinal flat mounts. In addition, in vivo imaging and functional testing by electroretinography were performed in adult mice. Adult WWC1/2 double knock-out mice differed neither functionally nor morphologically from the control group. In contrast, the retinas of the postnatal WWC knock-out mice showed a hyperproliferative phenotype with significantly enlarged areas of sprouting angiogenesis and a higher number of tip cells. The branching and end points in the peripheral plexus were significantly increased compared to the control group. The deletion of the WWC2 gene was decisive for these effects; while knocking out WWC1 showed no significant differences. The results hint strongly that WWC2 is an essential regulator of ocular angiogenesis in mice. As an activator of the Hippo signalling pathway, it prevents excessive proliferation during physiological angiogenesis. In adult animals, WWC proteins do not seem to be important for the maintenance of the mature vascular plexus.
Collapse
Affiliation(s)
- Viktoria Constanze Brücher
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Charlotte Egbring
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Tanja Plagemann
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Pavel I. Nedvetsky
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Verena Höffken
- Medical Cell Biology, Medical Clinic D, University of Münster Medical School, 48149 Münster, Germany;
| | - Hermann Pavenstädt
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Nicole Eter
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| | - Joachim Kremerskothen
- Department of Nephrology, Internal Medicine D, Hypertension and Rheumatology, University of Münster Medical School, 48149 Münster, Germany; (P.I.N.); (H.P.); (J.K.)
| | - Peter Heiduschka
- Department of Ophthalmology, University of Münster Medical School, 48149 Münster, Germany; (V.C.B.); (C.E.); (T.P.); (N.E.)
| |
Collapse
|
24
|
Ma X. Context-dependent interplay between Hippo and JNK pathway in Drosophila. AIMS GENETICS 2021. [DOI: 10.3934/genet.2014.1.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
AbstractBoth Hippo and JNK signaling have well-established roles in regulating many physiological processes, including cell proliferation, growth, survival, and migration. An increasing body of evidence shows that dysregulation of either Hippo or JNK pathway would lead to tumorigenesis. Recently, studies in Drosophila has coupled Hippo with JNK pathway in numerous ways ranging from tissue regeneration to growth control. In this review, I provide an overview of the current understanding of crosstalk between Hippo and JNK pathway in Drosophila, and discuss their context-dependent interactions in gut homeostasis, regeneration, cell competition and migration.
Collapse
Affiliation(s)
- Xianjue Ma
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
25
|
Yes-Associated Protein 1 Is a Novel Calcium Sensing Receptor Target in Human Parathyroid Tumors. Int J Mol Sci 2021; 22:ijms22042016. [PMID: 33670622 PMCID: PMC7922006 DOI: 10.3390/ijms22042016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/23/2022] Open
Abstract
The Hippo pathway is involved in human tumorigenesis and tissue repair. Here, we investigated the Hippo coactivator Yes-associated protein 1 (YAP1) and the kinase large tumor suppressor 1/2 (LATS1/2) in tumors of the parathyroid glands, which are almost invariably associated with primary hyperparathyroidism. Compared with normal parathyroid glands, parathyroid adenomas (PAds) and carcinomas show variably but reduced nuclear YAP1 expression. The kinase LATS1/2, which phosphorylates YAP1 thus promoting its degradation, was also variably reduced in PAds. Further, YAP1 silencing reduces the expression of the key parathyroid oncosuppressor multiple endocrine neoplasia type 1(MEN1), while MEN1 silencing increases YAP1 expression. Treatment of patient-derived PAds-primary cell cultures and Human embryonic kidney 293A (HEK293A) cells expressing the calcium-sensing receptor (CASR) with the CASR agonist R568 induces YAP1 nuclear accumulation. This effect was prevented by the incubation of the cells with RhoA/Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitors Y27632 and H1152. Lastly, CASR activation increased the expression of the YAP1 gene targets CYR61, CTGF, and WNT5A, and this effect was blunted by YAP1 silencing. Concluding, here we provide preliminary evidence of the involvement of the Hippo pathway in human tumor parathyroid cells and of the existence of a CASR-ROCK-YAP1 axis. We propose a tumor suppressor role for YAP1 and LATS1/2 in parathyroid tumors.
Collapse
|
26
|
Choi J, Lee H, Kwon E, Kong H, Kwon O, Cha H. TGFβ promotes YAP-dependent AXL induction in mesenchymal-type lung cancer cells. Mol Oncol 2021; 15:679-696. [PMID: 33207077 PMCID: PMC7858114 DOI: 10.1002/1878-0261.12857] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/26/2020] [Accepted: 11/16/2020] [Indexed: 01/17/2023] Open
Abstract
The acquisition of chemoresistance remains a major cause of cancer mortality due to the limited accessibility of targeted or immune therapies. However, given that severe alterations of molecular features during epithelial-to-mesenchymal transition (EMT) lead to acquired chemoresistance, emerging studies have focused on identifying targetable drivers associated with acquired chemoresistance. Particularly, AXL, a key receptor tyrosine kinase that confers resistance against targets and chemotherapeutics, is highly expressed in mesenchymal cancer cells. However, the underlying mechanism of AXL induction in mesenchymal cancer cells is poorly understood. Our study revealed that the YAP signature, which was highly enriched in mesenchymal-type lung cancer, was closely correlated to AXL expression in 181 lung cancer cell lines. Moreover, using isogenic lung cancer cell pairs, we also found that doxorubicin treatment induced YAP nuclear translocation in mesenchymal-type lung cancer cells to induce AXL expression. Additionally, the concurrent activation of TGFβ signaling coordinated YAP-dependent AXL expression through SMAD4. These data suggest that crosstalk between YAP and the TGFβ/SMAD axis upon treatment with chemotherapeutics might be a promising target to improve chemosensitivity in mesenchymal-type lung cancer.
Collapse
Affiliation(s)
| | - Haeseung Lee
- Intellectual Information TeamFuture Medicine DivisionKorea Institute of Oriental MedicineDaejeonKorea
| | - Eun‐Ji Kwon
- College of PharmacySeoul National UniversityKorea
| | | | - Ok‐Seon Kwon
- Stem Cell Research CenterKorea Research Institute of Bioscience and BiotechnologyDaejeonKorea
| | - Hyuk‐Jin Cha
- College of PharmacySeoul National UniversityKorea
- Research Institute of Pharmaceutical SciencesSeoul National UniversityKorea
| |
Collapse
|
27
|
YAP and endothelin-1 signaling: an emerging alliance in cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:27. [PMID: 33422090 PMCID: PMC7797087 DOI: 10.1186/s13046-021-01827-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/03/2021] [Indexed: 12/14/2022]
Abstract
The rational making the G protein-coupled receptors (GPCR) the centerpiece of targeted therapies is fueled by the awareness that GPCR-initiated signaling acts as pivotal driver of the early stages of progression in a broad landscape of human malignancies. The endothelin-1 (ET-1) receptors (ET-1R), known as ETA receptor (ETAR) and ETB receptor (ETBR) that belong to the GPCR superfamily, affect both cancer initiation and progression in a variety of cancer types. By the cross-talking with multiple signaling pathways mainly through the scaffold protein β-arrestin1 (β-arr1), ET-1R axis cooperates with an array of molecular determinants, including transcription factors and co-factors, strongly affecting tumor cell fate and behavior. In this scenario, recent findings shed light on the interplay between ET-1 and the Hippo pathway. In ETAR highly expressing tumors ET-1 axis induces the de-phosphorylation and nuclear accumulation of the Hippo pathway downstream effectors, the paralogous transcriptional cofactors Yes-associated protein (YAP) and Transcriptional coactivator with PDZ-binding motif (TAZ). Recent evidence have discovered that ET-1R/β-arr1 axis instigates a transcriptional interplay involving YAP and mutant p53 proteins, which share a common gene signature and cooperate in a oncogenic signaling network. Mechanistically, YAP and mutp53 are enrolled in nuclear complexes that turn on a highly selective YAP/mutp53-dependent transcriptional response. Notably, ET-1R blockade by the FDA approved dual ET-1 receptor antagonist macitentan interferes with ET-1R/YAP/mutp53 signaling interplay, through the simultaneous suppression of YAP and mutp53 functions, hampering metastasis and therapy resistance. Based on these evidences, we aim to review the recent findings linking the GPCR signaling, as for ET-1R, to YAP/TAZ signaling, underlining the clinical relevance of the blockade of such signaling network in the tumor and microenvironmental contexts. In particular, we debate the clinical implications regarding the use of dual ET-1R antagonists to blunt gain of function activity of mutant p53 proteins and thereby considering them as a potential therapeutic option for mutant p53 cancers. The identification of ET-1R/β-arr1-intertwined and bi-directional signaling pathways as targetable vulnerabilities, may open new therapeutic approaches able to disable the ET-1R-orchestrated YAP/mutp53 signaling network in both tumor and stromal cells and concurrently sensitizes to high-efficacy combined therapeutics.
Collapse
|
28
|
Haak AJ, Kostallari E, Sicard D, Ligresti G, Choi KM, Caporarello N, Jones DL, Tan Q, Meridew J, Diaz Espinosa AM, Aravamudhan A, Maiers JL, Britt RD, Roden AC, Pabelick CM, Prakash YS, Nouraie SM, Li X, Zhang Y, Kass DJ, Lagares D, Tager AM, Varelas X, Shah VH, Tschumperlin DJ. Selective YAP/TAZ inhibition in fibroblasts via dopamine receptor D1 agonism reverses fibrosis. Sci Transl Med 2020; 11:11/516/eaau6296. [PMID: 31666402 DOI: 10.1126/scitranslmed.aau6296] [Citation(s) in RCA: 160] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 03/01/2019] [Accepted: 09/04/2019] [Indexed: 01/18/2023]
Abstract
Tissue fibrosis is characterized by uncontrolled deposition and diminished clearance of fibrous connective tissue proteins, ultimately leading to organ scarring. Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) have recently emerged as pivotal drivers of mesenchymal cell activation in human fibrosis. Therapeutic strategies inhibiting YAP and TAZ have been hindered by the critical role that these proteins play in regeneration and homeostasis in different cell types. Here, we find that the Gαs-coupled dopamine receptor D1 (DRD1) is preferentially expressed in lung and liver mesenchymal cells relative to other resident cells of these organs. Agonism of DRD1 selectively inhibits YAP/TAZ function in mesenchymal cells and shifts their phenotype from profibrotic to fibrosis resolving, reversing in vitro extracellular matrix stiffening and in vivo tissue fibrosis in mouse models. Aromatic l-amino acid decarboxylase [DOPA decarboxylase (DDC)], the enzyme responsible for the final step in biosynthesis of dopamine, is decreased in the lungs of subjects with idiopathic pulmonary fibrosis, and its expression inversely correlates with disease severity, consistent with an endogenous protective role for dopamine signaling that is lost in pulmonary fibrosis. Together, these findings establish a pharmacologically tractable and cell-selective approach to targeting YAP/TAZ via DRD1 that reverses fibrosis in mice.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Giovanni Ligresti
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Kyoung Moo Choi
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Dakota L Jones
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Qi Tan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jeffrey Meridew
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Jessica L Maiers
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Rodney D Britt
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA.,Abigail Wexner Research Institute at Nationwide Children's Hospital and Department of Pediatrics, Ohio State University, Columbus, OH 43215, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester MN 55905, USA
| | - Christina M Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Y S Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.,Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester MN 55905, USA
| | - Seyed Mehdi Nouraie
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiaoyun Li
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Yingze Zhang
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel J Kass
- Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease and Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - David Lagares
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Andrew M Tager
- Division of Pulmonary and Critical Care Medicine, Fibrosis Research Center, and Center for Immunology and Inflammatory Diseases, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Xaralabos Varelas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Ammazzalorso A, Carradori S, Amoroso R, Fernández IF. 2-substituted benzothiazoles as antiproliferative agents: Novel insights on structure-activity relationships. Eur J Med Chem 2020; 207:112762. [PMID: 32898763 DOI: 10.1016/j.ejmech.2020.112762] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/05/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Given the wide spectrum of biological activities, benzothiazoles represent privileged scaffolds in medicinal chemistry, useful in drug discovery programs to modulate biological activities of lead compounds. A large body of knowledge about benzothiazoles has been reported in scientific literature, describing their antimicrobial, anticonvulsant, neuroprotective, anti-inflammatory, and antiproliferative effects. This review summarizes the results obtained in the structure-activity relationship studies on antiproliferative benzothiazoles, focusing on 2-substituted derivatives and on mechanism of action responsible for the antitumor effects of this class of compounds.
Collapse
Affiliation(s)
- Alessandra Ammazzalorso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy.
| | - Simone Carradori
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Rosa Amoroso
- Department of Pharmacy, "G. D'Annunzio" University of Chieti-Pescara, Via Dei Vestini 31, 66100, Chieti, Italy
| | - Inmaculada Fernández Fernández
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, C/Profesor García González, 2, 41012, Sevilla, Spain
| |
Collapse
|
30
|
Ben C, Wu X, Takahashi-Kanemitsu A, Knight CT, Hayashi T, Hatakeyama M. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J Biol Chem 2020; 295:13965-13980. [PMID: 32763976 DOI: 10.1074/jbc.ra120.013820] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to acting as a transcriptional co-activator, YAP1 directly mediates translocalization of the pro-oncogenic phosphatase SHP2 from the cytoplasm to nucleus. In the cytoplasm, SHP2 potentiates RAS-ERK signaling, which promotes cell proliferation and cell motility, whereas in the nucleus, it mediates gene regulation. As a result, elucidating the details of SHP2 trafficking is important for understanding its biological roles, including in cancer. YAP1 comprises multiple splicing isoforms defined in part by the presence (as in YAP1-2γ) or absence (as in YAP1-2α) of a γ-segment encoded by exon 6 that disrupts a critical leucine zipper. Although the disruptive segment is known to reduce co-activator function, it is unclear how this element impacts the physical and functional relationships between YAP1 and SHP2. To explore this question, we first demonstrated that YAP1-2γ cannot bind SHP2. Nevertheless, YAP1-2γ exhibits stronger mitogenic and motogenic activities than does YAP1-2α because the YAP1-2α-mediated delivery of SHP2 to the nucleus weakens cytoplasmic RAS-ERK signaling. However, YAP1-2γ confers less in vivo tumorigenicity than does YA1-2α by recruiting tumor-inhibitory macrophages. Mechanistically, YAP1-2γ transactivates and the YAP1-2α-SHP2 complex transrepresses the monocyte/macrophage chemoattractant CCL2 Thus, cell-intrinsic and cell-extrinsic pro-oncogenic YAP1 activities are inversely regulated by alternative splicing of exon 6. Notably, oncogenic KRAS down-regulates the SRSF3 splicing factor that prevents exon 6 skipping, thereby creating a YAP1-2α-dominant situation that supports a "cold" immune microenvironment.
Collapse
Affiliation(s)
- Chi Ben
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xiaojing Wu
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
31
|
Labibi B, Bashkurov M, Wrana JL, Attisano L. Modeling the Control of TGF-β/Smad Nuclear Accumulation by the Hippo Pathway Effectors, Taz/Yap. iScience 2020; 23:101416. [PMID: 32798968 PMCID: PMC7452192 DOI: 10.1016/j.isci.2020.101416] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/25/2020] [Accepted: 07/27/2020] [Indexed: 01/29/2023] Open
Abstract
Integration of transforming growth factor β (TGF-β) signals with those of other pathways allows for precise temporal and spatial control of gene expression patterns that drive development and homeostasis. The Hippo pathway nuclear effectors, Taz/Yap, interact with the TGF-β transcriptional mediators, Smads, to control Smad activity. Key to TGF-β signaling is the nuclear localization of Smads. Thus, to investigate the role of Taz/Yap in Smad nuclear accumulation, we developed mathematical models of Hippo and TGF-β cross talk. The models were based on experimental measurements of TGF-β-induced changes in Taz/Yap and Smad subcellular localization obtained using high-throughput immunofluorescence (IF) imaging in the mouse mammary epithelial cell line, EpH4. Bayesian MCMC DREAM parameter estimation was used to quantify the uncertainty in estimates of the kinetic parameters. Variation of the model parameters and statistical analysis show that our modeling predicts that Taz/Yap can alter TGF-β receptor activity and directly or indirectly act as nuclear retention factors. Taz/Yap modulate TGF-β-induced nuclear accumulation of Smad2/3 and Smad4 TGF-β does not affect Taz/Yap localization when Hippo activity is constant Taz/Yap loss may alter activity of both Receptor and Smad nuclear retention factors The mediator complex regulates Smad nuclear accumulation
Collapse
Affiliation(s)
- Bita Labibi
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada
| | - Mikhail Bashkurov
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Jeffrey L Wrana
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Liliana Attisano
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada; Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1, Canada.
| |
Collapse
|
32
|
Rothzerg E, Ingley E, Mullin B, Xue W, Wood D, Xu J. The Hippo in the room: Targeting the Hippo signalling pathway for osteosarcoma therapies. J Cell Physiol 2020; 236:1606-1615. [PMID: 32697358 DOI: 10.1002/jcp.29967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/13/2022]
Abstract
Osteosarcoma (OS) is a primary malignant bone tumour which usually occurs in children and adolescents. OS is primarily a result of chromosomal aberrations, a combination of acquired genetic changes and, hereditary, resulting in the dysregulation of cellular functions. The Hippo signalling pathway regulates cell and tissue growth by modulating cell proliferation, differentiation, and migration in developing organs. Mammalian STE20-like 1/2 (MST1/2) protein kinases are activated by neurofibromatosis type 2, Ras association domain family member 2, kidney and brain protein, or other factors. Interactions between MST1/2 and salvador family WW domain-containing protein 1 activate large tumour suppressor kinase 1/2 proteins, which in turn phosphorylate the downstream Yes-associated protein 1/transcriptional coactivator with PDZ-binding motif (YAP/TAZ). Moreover, dysregulation of this pathway can lead to aberrant cell growth, resulting in tumorigenesis. Interestingly, small molecules targeting the Hippo signalling pathways, through affecting YAP/TAZ cellular localisation and their interaction with members of the TEA/ATTS domain family of transcriptional enhancers are being developed and hold promise for the treatment of OS. This review discusses the existing knowledge about the involvement of the Hippo signalling cascade in OS and highlights several small molecule inhibitors as potential novel therapeutics.
Collapse
Affiliation(s)
- Emel Rothzerg
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, QEII Medical Centre, Nedlands, Western Australia, Australia
| | - Evan Ingley
- Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, Western Australia, Australia.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Benjamin Mullin
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia.,Department of Endocrinology and Diabetes, Sir Charles Gairdner Hospital, Nedlands, Western Australia, Australia
| | - Wei Xue
- Department of Biomedical Engineering, Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Jinan University, Guangzhou, Guangdong, China
| | - David Wood
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Jiake Xu
- School of Biomedical Sciences, The University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
33
|
Discovery of tertiary amide derivatives incorporating benzothiazole moiety as anti-gastric cancer agents in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway. Eur J Med Chem 2020; 203:112618. [PMID: 32682200 DOI: 10.1016/j.ejmech.2020.112618] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/23/2020] [Accepted: 06/23/2020] [Indexed: 12/29/2022]
Abstract
On the basis and continuation of our previous studies on anti-tubulin and anti-gastric cancer agents, novel tertiary amide derivatives incorporating benzothiazole moiety were synthesized and the antiproliferative activity was studied in vitro. Preliminary structure activity relationships (SARs) were explored according to the in vitro antiproliferative activity results. Some of compounds could significantly inhibit the proliferation of three cancer cells (HCT-116, MGC-803 and PC-3 cells) and compound F10 exhibited excellent antiproliferative activity against HCT-116 cells (IC50 = 0.182 μM), MGC-803 cells (IC50 = 0.035 μM), PC-3 cells(IC50 = 2.11 μM) and SGC-7901 cells (IC50 = 0.049 μM). Compound F10 effectively inhibited tubulin polymerization (IC50 = 1.9 μM) and bound to colchicine binding site of tubulin. Molecular docking results suggested compound F10 could bind tightly into the colchicine binding site of β-tubulin. Moreover, compound F10 could regulate the Hippo/YAP signaling pathway. Compound F10 activated Hippo signaling pathway from its very beginning MST1/2, as the result of Hippo cascade activation YAP were inhibited. And then it led to a decrease of c-Myc and Bcl-2 expression. Further molecular experiments showed that compound F10 arrested at G2/M phase, inhibited cell colony formatting and induced extrinsic and intrinsic apoptosis in MGC-803 and SGC-7901 cells. Collectively, compound F10 was the first to be reported as a new anticancer agent in vitro via inhibiting tubulin polymerization and activating the Hippo signaling pathway.
Collapse
|
34
|
Abstract
The Hippo pathway plays a crucial role in maintaining tissue homeostasis. Generally, activated Hippo pathway effectors, YAP/TAZ, induce the transcription of their negative regulators, NF2 and LATS2, and this negative feedback loop maintains homeostasis of the Hippo pathway. However, YAP and TAZ are consistently hyperactivated in various cancer cells, enhancing tumor growth. Our study found that LATS2, a direct-inhibiting kinase of YAP/TAZ and a core component of the negative feedback loop in the Hippo pathway, is modified with O-GlcNAc. LATS2 O-GlcNAcylation inhibited its activity by interrupting the interaction with the MOB1 adaptor protein, thereby activating YAP and TAZ to promote cell proliferation. Thus, our study suggests that LATS2 O-GlcNAcylation is deeply involved in Hippo pathway dysregulation in cancer cells. The Hippo pathway controls organ size and tissue homeostasis by regulating cell proliferation and apoptosis. The LATS-mediated negative feedback loop prevents excessive activation of the effectors YAP/TAZ, maintaining homeostasis of the Hippo pathway. YAP and TAZ are hyperactivated in various cancer cells which lead to tumor growth. Aberrantly increased O-GlcNAcylation has recently emerged as a cause of hyperactivation of YAP in cancer cells. However, the mechanism, which induces hyperactivation of TAZ and blocks LATS-mediated negative feedback, remains to be elucidated in cancer cells. This study found that in breast cancer cells, abnormally increased O-GlcNAcylation hyperactivates YAP/TAZ and inhibits LATS2, a direct negative regulator of YAP/TAZ. LATS2 is one of the newly identified O-GlcNAcylated components in the MST-LATS kinase cascade. Here, we found that O-GlcNAcylation at LATS2 Thr436 interrupted its interaction with the MOB1 adaptor protein, which connects MST to LATS2, leading to activation of YAP/TAZ by suppressing LATS2 kinase activity. LATS2 is a core component in the LATS-mediated negative feedback loop. Thus, this study suggests that LATS2 O-GlcNAcylation is deeply involved in tumor growth by playing a critical role in dysregulation of the Hippo pathway in cancer cells.
Collapse
|
35
|
Ooki T, Hatakeyama M. Hyaluronan Degradation Promotes Cancer via Hippo-YAP Signaling: An Intervention Point for Cancer Therapy. Bioessays 2020; 42:e2000005. [PMID: 32449813 DOI: 10.1002/bies.202000005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/16/2020] [Indexed: 12/14/2022]
Abstract
High-molecular-weight hyaluronan acts as a ligand of the tumor-suppressive Hippo signal, whereas degradation of hyaluronan from a high-molecular-weight form to a low-molecular-weight forms by hyaluronidase 2 inhibits Hippo signal activation and thereby activates the pro-oncogenic transcriptional coactivator yes-associated protein (YAP), which creates a cancer-predisposing microenvironment and drives neoplastic transformation of cells through both cell-autonomous and non-cell-autonomous mechanisms. In fact, accumulation of low-molecular-weight hyaluronan in tissue stroma is observed in many types of cancers. Since inhibition of YAP activity suppresses tumor growth in vivo, pharmacological intervention of the Hippo-YAP signal is an attractive approach for future drug development. In this review, pharmacological intervention of excessive hyaluronan degradation as a novel approach for inhibition of the Hippo-YAP signal is also discussed. Development of hyaluronidase inhibitors may provide novel therapeutic strategies for human malignant tumors.
Collapse
Affiliation(s)
- Takuya Ooki
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, the University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
36
|
Kyriazoglou A, Liontos M, Zakopoulou R, Kaparelou M, Tsiara A, Papatheodoridi AM, Georgakopoulou R, Zagouri F. The Role of the Hippo Pathway in Breast Cancer Carcinogenesis, Prognosis, and Treatment: A Systematic Review. Breast Care (Basel) 2020; 16:6-15. [PMID: 33716627 DOI: 10.1159/000507538] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/27/2020] [Indexed: 12/13/2022] Open
Abstract
Background The Hippo pathway is a developmental pathway recently discovered in Drosophila melanogaster; in mammals it normally controls organ development and wound healing. Hippo signaling is deregulated in breast cancer (BC). MST1/2 and LATS1/2 kinases are the upstream molecular elements of Hippo signaling which phosphorylate and regulate the two effectors of Hippo signaling, YAP1 and TAZ cotranscriptional activators. The two molecular effectors of the Hippo pathway facilitate their activity through TEAD transcription factors. Several molecular pathways with known oncogenic functions cross-talk with the Hippo pathway. Methods A systematic review studying the correlation of the Hippo pathway with BC tumorigenesis, prognosis, and treatment was performed. Results Recent literature highlights the critical role of Hippo signaling in a wide spectrum of biological mechanisms in BC. Discussion The Hippo pathway has a crucial position in BC molecular biology, cellular behavior, and response to treatment. Targeting the Hippo pathway could potentially improve the prognosis and outcome of BC patients.
Collapse
Affiliation(s)
| | - Michalis Liontos
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Roubini Zakopoulou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Maria Kaparelou
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | - Anna Tsiara
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| | | | | | - Flora Zagouri
- Department of Clinical Therapeutics, General Hospital Alexandra, Athens, Greece
| |
Collapse
|
37
|
Dokla EME, Fang CS, Chu PC, Chang CS, Abouzid KAM, Chen CS. Targeting YAP Degradation by a Novel 1,2,4-Oxadiazole Derivative via Restoration of the Function of the Hippo Pathway. ACS Med Chem Lett 2020; 11:426-432. [PMID: 32292545 DOI: 10.1021/acsmedchemlett.9b00501] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
Recent evidence has linked the dysregulation of the Hippo pathway to tumorigenesis and cancer progression due to its pivotal role in regulating the stability of the oncoprotein YAP. Based on an unexpected finding from the SAR study of a recently reported oxadiazole-based EGFR/c-Met dual inhibitor (compound 1), we identified a closely related derivative, compound 2, which exhibited cogent antitumor activities while devoid of compound 1's ability to promote EGFR/c-Met degradation. Compound 2 acted, in part, by facilitating YAP degradation through activation of its upstream kinase LATS1. However, it did not alter the phosphorylation status of MST1/2, a LATS1 kinase, suggesting an alternative mechanism for LATS1 activation. Orally administered compound 2 was effective in suppressing MDA-MB-231 xenograft tumor growth while exhibiting a satisfactory safety profile. From a therapeutic perspective, compound 2 might help foster new therapeutic strategies for cancer treatment by restoring the Hippo pathway regulatory function to facilitate YAP degradation.
Collapse
Affiliation(s)
- Eman M. E. Dokla
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Chun-Sheng Fang
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Po-Chen Chu
- Department of Cosmeceutics and Graduate Institute of Cosmeceutics, China Medical University, Taichung 40402, Taiwan
| | - Chih-Shiang Chang
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 40402, Taiwan
| | - Khaled A. M. Abouzid
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt
- Department of Organic and Medicinal Chemistry, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Ching S. Chen
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
| |
Collapse
|
38
|
Pobbati AV, Hong W. A combat with the YAP/TAZ-TEAD oncoproteins for cancer therapy. Theranostics 2020; 10:3622-3635. [PMID: 32206112 PMCID: PMC7069086 DOI: 10.7150/thno.40889] [Citation(s) in RCA: 161] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/20/2019] [Indexed: 12/20/2022] Open
Abstract
The transcriptional co-regulators YAP and TAZ pair primarily with the TEAD family of transcription factors to elicit a gene expression signature that plays a prominent role in cancer development, progression and metastasis. YAP and TAZ endow cells with various oncogenic traits such that they sustain proliferation, inhibit apoptosis, maintain stemness, respond to mechanical stimuli, engineer metabolism, promote angiogenesis, suppress immune response and develop resistance to therapies. Therefore, inhibiting YAP/TAZ- TEAD is an attractive and viable option for novel cancer therapy. It is exciting to know that many drugs already in the clinic restrict YAP/TAZ activities and several novel YAP/TAZ inhibitors are currently under development. We have classified YAP/TAZ-inhibiting drugs into three groups. Group I drugs act on the upstream regulators that are stimulators of YAP/TAZ activities. Many of the Group I drugs have the potential to be repurposed as YAP/TAZ indirect inhibitors to treat various solid cancers. Group II modalities act directly on YAP/TAZ or TEADs and disrupt their interaction; targeting TEADs has emerged as a novel option to inhibit YAP/TAZ, as TEADs are major mediators of their oncogenic programs. TEADs can also be leveraged on using small molecules to activate YAP/TAZ-dependent gene expression for use in regenerative medicine. Group III drugs focus on targeting one of the oncogenic downstream YAP/TAZ transcriptional target genes. With the right strategy and impetus, it is not far-fetched to expect a repurposed group I drug or a novel group II drug to combat YAP and TAZ in cancers in the near future.
Collapse
|
39
|
Su L, Wang S, Yuan T, Xie X, Fu X, Ji P, Zhong L, Liu W. Anti-oral Squamous Cell Carcinoma Effects of a Potent TAZ Inhibitor AR-42. J Cancer 2020; 11:364-373. [PMID: 31897232 PMCID: PMC6930442 DOI: 10.7150/jca.32436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 08/30/2019] [Indexed: 01/15/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common malignancies worldwide. Although great progress has been made in diagnosis and treatment strategies in recent years, the 5-year survival rate of OSCC patients is still disappointingly low. Hence, there is still an unmet medical need for sufferers with OSCC. As a downstream effector of Hippo pathway, TAZ was up-regulated in multiple cancers including OSCC, and considered as an effective therapeutic target. In this study, we constructed a stable transfected cell line HEK293-TAZ to screen TAZ inhibitor using dual-luciferase reporter assay, and found a potential TAZ inhibitor AR-42. The results showed that AR-42 effectively suppressed the viability and proliferation of OSCC cells, and induced cellular apoptosis and cell cycle arrest in G2/M phase. Moreover, AR-42 potently inhibited cell invasion and the capacity of sphere-forming, as well as the expression of EMT and cancer stem cell related proteins in OSCC cells, exhibiting potential efficacy against OSCC metastasis and self-renewal of oral cancer stem cell. Further mechanism studies showed that AR-42 inhibited the total amount of TAZ and its paralog YAP mainly through blockade of TAZ/YAP transcription and promotion of TAZ/YAP protein degradation. Additionally, the inhibitory effect of AR-42 against TAZ, as well as its anti-OSCC activity could be also observed in SCC9 xenograft model. Taken together, AR-42 deserves to be further studied as a TAZ inhibitor, and is worthy to be further assessed as a potential drug candidate for OSCC treatment.
Collapse
Affiliation(s)
- Lingyu Su
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Si Wang
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Xudong Xie
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiaoming Fu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Ping Ji
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Wenzhao Liu
- College of Stomatology, Chongqing Medical University, Chongqing, China.,Chongqing Research Center for Oral Diseases and Biomedical Science, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
40
|
Miao J, Kyoyama H, Liu L, Chan G, Wang Y, Urisman A, Yang Y, Liu S, Xu Z, Bin H, Li H, Jablons DM, You L. Inhibition of cyclin-dependent kinase 7 down-regulates yes-associated protein expression in mesothelioma cells. J Cell Mol Med 2020; 24:1087-1098. [PMID: 31755214 PMCID: PMC6933402 DOI: 10.1111/jcmm.14841] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/30/2019] [Accepted: 10/20/2019] [Indexed: 01/23/2023] Open
Abstract
Cyclin-dependent kinase 7 (CDK7) is a protein kinase that plays a major role in transcription initiation. Yes-associated protein (YAP) is a main effector of the Hippo/YAP signalling pathway. Here, we investigated the role of CDK7 on YAP regulation in human malignant pleural mesothelioma (MPM). We found that in microarray samples of human MPM tissue, immunohistochemistry staining showed correlation between the expression level of CDK7 and YAP (n = 70, r = .513). In MPM cells, CDK7 expression level was significantly correlated with GTIIC reporter activity (r = .886, P = .019). Inhibition of CDK7 by siRNA decreased the YAP protein level and the GTIIC reporter activity in the MPM cell lines 211H, H290 and H2052. Degradation of the YAP protein was accelerated after CDK7 knockdown in 211H, H290 and H2052 cells. Inhibition of CDK7 reduced tumour cell migration and invasion, as well as tumorsphere formation ability. Restoration of the CDK7 gene rescued the YAP protein level and GTIIC reporter activity after siRNA knockdown in 211H and H2052 cells. Finally, we performed a co-immunoprecipitation analysis using an anti-YAP antibody and captured the CDK7 protein in 211H cells. Our results suggest that CDK7 inhibition reduces the YAP protein level by promoting its degradation and suppresses the migration and invasion of MPM cells. Cyclin-dependent kinase 7 may be a promising therapeutic target for MPM.
Collapse
Affiliation(s)
- Jinbai Miao
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Hiroyuki Kyoyama
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Luwei Liu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Class of 2018Stony Brook UniversityStony BrookNYUSA
| | - Geraldine Chan
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
- Class of 2020Medical College of WisconsinMilwaukeeWIUSA
| | - Yucheng Wang
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Anatoly Urisman
- Department of PathologyUniversity of CaliforniaSan FranciscoCAUSA
| | - Yi‐Lin Yang
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Shu Liu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Zhidong Xu
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Hu Bin
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - Hui Li
- Department of Thoracic SurgeryBeijing Chao‐Yang HospitalAffiliated with Capital Medical UniversityBeijingChina
| | - David M. Jablons
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| | - Liang You
- Department of SurgeryThoracic Oncology LaboratoryComprehensive Cancer CenterUniversity of CaliforniaSan FranciscoCAUSA
| |
Collapse
|
41
|
Abstract
As basic research into GPCR signaling and its association with disease has come into fruition, greater clarity has emerged with regards to how these receptors may be amenable to therapeutic intervention. As a diverse group of receptor proteins, which regulate a variety of intracellular signaling pathways, research in this area has been slow to yield tangible therapeutic agents for the treatment of a number of diseases including cancer. However, recently such research has gained momentum based on a series of studies that have sought to define GPCR proteins dynamics through the elucidation of their crystal structures. In this chapter, we define the approaches that have been adopted in developing better therapeutics directed against the specific parts of the receptor proteins, such as the extracellular and the intracellular domains, including the ligands and auxiliary proteins that bind them. Finally, we also briefly outline how GPCR-derived signaling transduction pathways hold great potential as additional targets.
Collapse
Affiliation(s)
- Surinder M Soond
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation.
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russian Federation; Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation.
| |
Collapse
|
42
|
Zinatizadeh MR, Miri SR, Zarandi PK, Chalbatani GM, Rapôso C, Mirzaei HR, Akbari ME, Mahmoodzadeh H. The Hippo Tumor Suppressor Pathway (YAP/TAZ/TEAD/MST/LATS) and EGFR-RAS-RAF-MEK in cancer metastasis. Genes Dis 2019; 8:48-60. [PMID: 33569513 PMCID: PMC7859453 DOI: 10.1016/j.gendis.2019.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/24/2019] [Accepted: 11/27/2019] [Indexed: 02/07/2023] Open
Abstract
Hippo Tumor Suppressor Pathway is the main pathway for cell growth that regulates tissue enlargement and organ size by limiting cell growth. This pathway is activated in response to cell cycle arrest signals (cell polarity, transduction, and DNA damage) and limited by growth factors or mitogens associated with EGF and LPA. The major pathway consists of the central kinase of Ste20 MAPK (Saccharomyces cerevisiae), Hpo (Drosophila melanogaster) or MST kinases (mammalian) that activates the mammalian AGC kinase dmWts or LATS effector (MST and LATS). YAP in the nucleus work as a cofactor for a wide range of transcription factors involved in proliferation (TEA domain family, TEAD1-4), stem cells (Oct4 mononuclear factor and SMAD-related TGFβ effector), differentiation (RUNX1), and Cell cycle/apoptosis control (p53, p63, and p73 family members). This is due to the diverse roles of YAP and may limit tumor progression and establishment. TEAD also coordinates various signal transduction pathways such as Hippo, WNT, TGFβ and EGFR, and effects on lack of regulation of TEAD cancerous genes, such as KRAS, BRAF, LKB1, NF2 and MYC, which play essential roles in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. However, RAS signaling is a pivotal factor in the inactivation of Hippo, which controls EGFR-RAS-RAF-MEK-ERK-mediated interaction of Hippo signaling. Thus, the loss of the Hippo pathway may have significant consequences on the targets of RAS-RAF mutations in cancer.
Collapse
Affiliation(s)
- Mohammad Reza Zinatizadeh
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Rouhollah Miri
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Peyman Kheirandish Zarandi
- Cancer Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
| | - Ghanbar Mahmoodi Chalbatani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Medical School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Catarina Rapôso
- Faculty of Pharmaceutical Sciences State University of Campinas – UNICAMP Campinas, SP, Brazil
| | - Hamid Reza Mirzaei
- Cancer Research Center, Shohadae Tajrish Hospital, Department of Radiation Oncology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Habibollah Mahmoodzadeh
- Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran
- Corresponding author. Cancer Research Center, Cancer Institute of Iran, Tehran University of Medical Science, Tehran, Iran.
| |
Collapse
|
43
|
Kyriazoglou A, Ntanasis-Stathopoulos I, Terpos E, Fotiou D, Kastritis E, Dimopoulos MA, Gavriatopoulou M. Emerging Insights Into the Role of the Hippo Pathway in Multiple Myeloma and Associated Bone Disease. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2019; 20:57-62. [PMID: 31734019 DOI: 10.1016/j.clml.2019.09.620] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 08/11/2019] [Accepted: 09/29/2019] [Indexed: 02/06/2023]
Abstract
Multiple myeloma (MM) is an incurable plasma-cell dyscrasia with numerous treatment options currently available; however, drug resistance is usually inevitable, so there is a constant need for novel treatment approaches. The Hippo pathway has emerged as an important mediator of oncogenesis in solid tumors. More recently, its key role in regulating apoptosis and mediating resistance in MM and other hematologic malignancies has been demonstrated in preclinical studies, which provides a strong basis for further clinical investigation. The Hippo pathway is also implicated in the pathogenesis of MM-induced bone disease, as it regulates both osteoblast and osteoclast function. We provide an overview of the available data regarding the role of the Hippo signaling components in the pathophysiology of MM. A better understanding of the underlying interactions at the molecular and cellular levels will lead to novel and promising treatment approaches.
Collapse
Affiliation(s)
- Anastasios Kyriazoglou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Despina Fotiou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Meletios A Dimopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece
| | - Maria Gavriatopoulou
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, School of Medicine, Alexandra General Hospital, Athens, Greece.
| |
Collapse
|
44
|
Clinical and biological implications of Hippo pathway dysregulation in sarcomas. FORUM OF CLINICAL ONCOLOGY 2019. [DOI: 10.2478/fco-2018-0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Abstract
Sarcomas are mesenchymal malignant tumors with poor prognosis and limited treatment options. Hippo pathway is a recently discovered pathway normally involved in organ development and wound healing. Hippo signaling is often altered in solid tumors. The molecular elements of Hippo signaling include MST1/2 and LATS1/2 kinases which phosphorylate and regulate the activity of YAP and TAZ co-transcriptional activators. Hippo pathway cross-talks with several molecular pathways with known oncogenic function. In sarcomas Hippo signaling plays a pivotal role in tumorigenesis, evolution and resistance in chemotherapy regimens. Targeting Hippo pathway could potentially improve prognosis and outcome of sarcoma patients.
Collapse
|
45
|
Kim SC, Shin R, Seo HY, Kim M, Park JW, Jeong SY, Ku JL. Identification of a Novel Fusion Gene, FAM174A-WWC1, in Early-Onset Colorectal Cancer: Establishment and Characterization of Four Human Cancer Cell Lines from Early-Onset Colorectal Cancers. Transl Oncol 2019; 12:1185-1195. [PMID: 31228769 PMCID: PMC6600802 DOI: 10.1016/j.tranon.2019.05.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/20/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer diagnosed worldwide and represents the second most common cause of all cancer-related deaths in Korea. Although epidemiological data indicate a sharp increase in the incidence of CRC among individuals older than 50 years, more than 10% of CRCs occur before reaching 50. These are known as early-onset CRCs (EOCRCs) and are likely to be suggestive of hereditary predisposition. However, known familial CRC syndromes account for only 20% of genetic aberrations of EOCRC, and the remaining 80% are still in question. Therefore, we aimed to establish reproducible biological resources and contribute to expand the mutation database of EOCRC. Four cell lines derived from the original tumor mass of CRC patients diagnosed under age 30 years were established, and next-generation sequencing technique was used to identify the genetic features of EOCRC. We have identified one novel fusion gene, FAM174A-WWC1, and analyzed its functional role. The induction of FAM174A-WWC1 to normal fibroblast caused alternations in cellular morphology as well as intercellular expression of E-cadherin and N-cadherin. Moreover, WWC1 carrying the fused FAM174A domain not only abrogated the membrane expression of YAP1 but also significantly increased the levels of nucleic YAP1. As a result, the FAM174A-WWC1 expression increased the oncogenic capacity and invasiveness of normal fibroblasts, which suggests its role as a potential driver mutation of EOCRC.
Collapse
Affiliation(s)
- Soon-Chan Kim
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Rumi Shin
- Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul 07061
| | - Ha-Young Seo
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Minjung Kim
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Ji Won Park
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea
| | - Seung-Yong Jeong
- Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Surgery, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Division of Colorectal Surgery, Department of Surgery, Seoul National University Hospital, Seoul 03080, Republic of Korea.
| | - Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea; Cancer Research Institute, Seoul National University College of Medicine, Seoul 03080, Republic of Korea.
| |
Collapse
|
46
|
Huh HD, Kim DH, Jeong HS, Park HW. Regulation of TEAD Transcription Factors in Cancer Biology. Cells 2019; 8:E600. [PMID: 31212916 PMCID: PMC6628201 DOI: 10.3390/cells8060600] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022] Open
Abstract
Transcriptional enhanced associate domain (TEAD) transcription factors play important roles during development, cell proliferation, regeneration, and tissue homeostasis. TEAD integrates with and coordinates various signal transduction pathways including Hippo, Wnt, transforming growth factor beta (TGFβ), and epidermal growth factor receptor (EGFR) pathways. TEAD deregulation affects well-established cancer genes such as KRAS, BRAF, LKB1, NF2, and MYC, and its transcriptional output plays an important role in tumor progression, metastasis, cancer metabolism, immunity, and drug resistance. To date, TEADs have been recognized to be key transcription factors of the Hippo pathway. Therefore, most studies are focused on the Hippo kinases and YAP/TAZ, whereas the Hippo-dependent and Hippo-independent regulators and regulations governing TEAD only emerged recently. Deregulation of the TEAD transcriptional output plays important roles in tumor progression and serves as a prognostic biomarker due to high correlation with clinicopathological parameters in human malignancies. In addition, discovering the molecular mechanisms of TEAD, such as post-translational modifications and nucleocytoplasmic shuttling, represents an important means of modulating TEAD transcriptional activity. Collectively, this review highlights the role of TEAD in multistep-tumorigenesis by interacting with upstream oncogenic signaling pathways and controlling downstream target genes, which provides unprecedented insight and rationale into developing TEAD-targeted anticancer therapeutics.
Collapse
Affiliation(s)
- Hyunbin D Huh
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Dong Hyeon Kim
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan, Gyeongnam 50612, Korea.
| | - Hyun Woo Park
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea.
| |
Collapse
|
47
|
Galani V, Varouktsi A, Papadatos SS, Mitselou A, Sainis I, Constantopoulos S, Dalavanga Y. The role of apoptosis defects in malignant mesothelioma pathogenesis with an impact on prognosis and treatment. Cancer Chemother Pharmacol 2019; 84:241-253. [DOI: 10.1007/s00280-019-03878-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/18/2019] [Indexed: 01/09/2023]
|
48
|
Abstract
The Hippo signaling pathway is involved in tissue size regulation and tumorigenesis. Genetic deletion or aberrant expression of some Hippo pathway genes lead to enhanced cell proliferation, tumorigenesis, and cancer metastasis. Recently, multiple studies have identified a wide range of upstream regulators of the Hippo pathway, including mechanical cues and ligands of G protein-coupled receptors (GPCRs). Through the activation related G proteins and possibly rearrangements of actin cytoskeleton, GPCR signaling can potently modulate the phosphorylation states and activity of YAP and TAZ, two homologous oncogenic transcriptional co-activators, and major effectors of the Hippo pathway. Herein, we summarize the network, regulation, and functions of GPCR-Hippo signaling, and we will also discuss potential anti-cancer therapies targeting GPCR-YAP signaling.
Collapse
|
49
|
Boopathy GTK, Hong W. Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis. Front Cell Dev Biol 2019; 7:49. [PMID: 31024911 PMCID: PMC6468149 DOI: 10.3389/fcell.2019.00049] [Citation(s) in RCA: 250] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
Angiogenesis is a highly coordinated process of formation of new blood vessels from pre-existing blood vessels. The process of development of the proper vascular network is a complex process that is crucial for the vertebrate development. Several studies have defined essential roles of Hippo pathway-YAP/TAZ in organ size control, tissue regeneration, and self-renewal. Thus Hippo pathway is one of the central components in tissue homeostasis. There are mounting evidences on the eminence of Hippo pathway-YAP/TAZ in angiogenesis in multiple model organisms. Hippo pathway-YAP/TAZ is now demonstrated to regulate endothelial cell proliferation, migration and survival; subsequently regulating vascular sprouting, vascular barrier formation, and vascular remodeling. Major intracellular signaling programs that regulate angiogenesis concomitantly activate YAP/TAZ to regulate key events in angiogenesis. In this review, we provide a brief overview of the recent findings in the Hippo pathway and YAP/TAZ signaling in angiogenesis.
Collapse
Affiliation(s)
- Gandhi T K Boopathy
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| |
Collapse
|
50
|
Mechanotransduction and Cytoskeleton Remodeling Shaping YAP1 in Gastric Tumorigenesis. Int J Mol Sci 2019; 20:ijms20071576. [PMID: 30934860 PMCID: PMC6480114 DOI: 10.3390/ijms20071576] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/14/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
The essential role of Hippo signaling pathway in cancer development has been elucidated by recent studies. In the gastrointestinal tissues, deregulation of the Hippo pathway is one of the most important driving events for tumorigenesis. It is widely known that Yes-associated protein 1 (YAP1) and WW domain that contain transcription regulator 1 (TAZ), two transcriptional co-activators with a PDZ-binding motif, function as critical effectors negatively regulated by the Hippo pathway. Previous studies indicate the involvement of YAP1/TAZ in mechanotransduction by crosstalking with the extracellular matrix (ECM) and the F-actin cytoskeleton associated signaling network. In gastric cancer (GC), YAP1/TAZ functions as an oncogene and transcriptionally promotes tumor formation by cooperating with TEAD transcription factors. Apart from the classic role of Hippo-YAP1 cascade, in this review, we summarize the current investigations to highlight the prominent role of YAP1/TAZ as a mechanical sensor and responder under mechanical stress and address its potential prognostic and therapeutic value in GC.
Collapse
|