1
|
Chen J, Li S, Zhang F, Chen J, Cai C, Guo Y, Lei Z, Zeng LH, Zi D, Shen Y, Tan J. The pathogenic APP N-terminal Val225Ala mutation alters tau protein liquid-liquid phase separation and exacerbates synaptic damage. Mol Psychiatry 2025; 30:2316-2334. [PMID: 39558004 DOI: 10.1038/s41380-024-02837-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/20/2024]
Abstract
Amyloid precursor protein (APP) is predominantly located in synapses of neurons and its mutations have been well recognized as the most important genetic causal factor for the familial Alzheimer's disease (AD). While most disease-causal mutations of APP occur within the Aβ-coding region or immediately proximal, the pathological impacts of mutations in the N-terminus of APP protein, which remote from the Aβ sequence, on neuron and synapse are still largely unknown. It was recently reported a pathogenic APP N-terminal Val225Ala mutation (APPV225A) with clinically featuring progressive dementia and typical AD pathologies in brain. In our present study, we further found that APPV225A mutation alters the N-terminal structure of APP, which enhances its binding affinity to tau protein and significantly increases APP-mediated endocytosis. Consequently, APPV225A promotes the uptake of extracellular tau into SH-SY5Y cells, further linking the structural change in APP to intracellular tau accumulation. In addition, APPV225A also notably alters the liquid-liquid phase separation (LLPS) of intracellular tau and intensified tau phosphorylation and aggregation in SH-SY5Y cells. Moreover, APPV225A promote AD-like tau pathology and synaptic damages in human induced pluripotent stem cells (hiPSCs)-derived neural progenitor cells and neurons, as well as in hiPSCs-derived human brain organoids and mouse brain, which can be ameliorated by tau knockdown. Proximity labeling identified several key APPV225A-interacting proteins, including HS3ST3A1, which was shown to directly regulate tau LLPS and phosphorylation. These findings nicely build on our previous work on roles for APP in tau-related pathological phenotypes and further highlight the involvement of N-terminal APP as the key region for both amyloidopathy and tauopathy, two aspects of AD pathogenesis and progression. Our study may also provide a theoretical breakthrough for AD therapy and highlight the important hub roles of APP and making previously neglected N-terminal APP as a potential target for the discovery of novel disease-modifying therapeutic agents against AD, holding significant scientific values and clinical promise.
Collapse
Affiliation(s)
- Jiang Chen
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Song Li
- Center for Clinical Research on Neurological Diseases, the First Affiliated Hospital of Dalian Medical University, Dalian, 116021, China
| | - Fengning Zhang
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Junsheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Chuanbin Cai
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Yi Guo
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Zhifeng Lei
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ling-Hui Zeng
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, China
| | - Yong Shen
- Department of Neurology, Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Neurodegenerative Disorder Research Center, Division of Biological and Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China; CAS Key Laboratory of Brain Function and Disease, Anhui Provincial Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei, 23006, China
| | - Jun Tan
- Institute of Translational Medicine; Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, China.
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Volynsky PE, Urban AS, Pavlov KV, Bershatsky YV, Bocharova OV, Kryuchkova AK, Zlobina VV, Gavrilenkova AA, Dolotova SM, Kamynina AV, Zangieva OT, Taldaev A, Batishchev OV, Okhrimenko IS, Rakitina TV, Efremov RG, Bocharov EV. Diverse Interactions of Sterols with Amyloid Precursor Protein Transmembrane Domain Can Shift Distribution Between Alternative Amyloid-β Production Cascades in Manner Dependent on Local Lipid Environment. Int J Mol Sci 2025; 26:553. [PMID: 39859269 PMCID: PMC11764862 DOI: 10.3390/ijms26020553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles). In bicelles, spin-labeled sterol interacted with the peptide near the amphiphilic juxtamembrane region and N-terminal part of APP transmembrane helix, as described earlier for cholesterol. Upon transition into micellar environment, another interaction site appeared where sterol polar head was buried in the hydrophobic core near the hinge region. In MD simulations, sterol moved between three interaction sites, sliding along the polar groove formed by glycine residues composing the dimerization interfaces and flexible hinge of the APP transmembrane domain. Because the lipid environment modulates interactions, the role of lipids in the AD pathogenesis is defined by the state of the entire lipid subsystem rather than the effects of individual lipid species. Cholesterol can interplay with other lipids (polyunsaturated, gangliosides, etc.), determining the outcome of amyloid-β production cascades.
Collapse
Affiliation(s)
- Pavel E. Volynsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anatoly S. Urban
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Konstantin V. Pavlov
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Yaroslav V. Bershatsky
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Olga V. Bocharova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Anastasia K. Kryuchkova
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Veronika V. Zlobina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Alina A. Gavrilenkova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Sofya M. Dolotova
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Anna V. Kamynina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Olga T. Zangieva
- Pirogov National Medical and Surgical Center, 105203 Moscow, Russia;
| | - Amir Taldaev
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry RAS, 119071 Moscow, Russia;
| | - Ivan S. Okhrimenko
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| | - Tatiana V. Rakitina
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
| | - Roman G. Efremov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Department of Applied Mathematics, National Research University Higher School of Economics, 101000 Moscow, Russia
| | - Eduard V. Bocharov
- Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia; (P.E.V.); (A.S.U.); (Y.V.B.); (O.V.B.); (V.V.Z.); (A.A.G.); (S.M.D.); (A.V.K.); (R.G.E.)
- Moscow Center of Advanced Studies, 123592 Moscow, Russia; (K.V.P.); (A.K.K.); (A.T.); (I.S.O.)
| |
Collapse
|
3
|
Chiu J, Krupa JM, Seah C, Pasternak SH. Small GTPases control macropinocytosis of amyloid precursor protein and cleavage to amyloid-β. Heliyon 2024; 10:e31077. [PMID: 38799759 PMCID: PMC11126852 DOI: 10.1016/j.heliyon.2024.e31077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/03/2024] [Accepted: 05/09/2024] [Indexed: 05/29/2024] Open
Abstract
The overproduction of the toxic peptide amyloid-beta (Aβ) generated from the cleavage of amyloid precursor protein (APP) is proposed to be a critical event in the development of Alzheimer's disease. Evidence suggests that the cleavage of APP occurs after its internalization from the cell surface. Previously, we identified a novel pathway for APP internalization, which trafficks cell surface APP directly to lysosomes by macropinocytosis, leading to its processing into Aβ. We also demonstrated that ADP-ribosylation factor 6 (Arf6) is required for the macropinocytosis of APP. Here, we characterized the roles of Arf6's downstream effectors Rac1, Cdc42 and RhoA. Both pharmacological inhibition and siRNA knockdown of these proteins reduced the amount of APP colocalized with LAMP1-labeled lysosomes without affecting APP transport to early endosomes. Decreases in the production of both Aβ40 and Aβ42 were also observed by ELISA in response to inhibitor treatment. These findings together demonstrate that Rac1, Cdc42 and RhoA are components of the mechanism regulating the macropinocytosis of APP and targeting these components can reduce the production of Aβ.
Collapse
Affiliation(s)
- Justin Chiu
- Department of Physiology and Pharmacology, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Jordan M. Krupa
- Neuroscience Program, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Claudia Seah
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Stephen H. Pasternak
- Department of Physiology and Pharmacology, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Neuroscience Program, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Robarts Research Institute, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Clinical Neurological Sciences, The Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| |
Collapse
|
4
|
Fan YG, Guo C, Zhao LX, Ge RL, Pang ZQ, He DL, Ren H, Wu TY, Zhang YH, Wang ZY. Astrocyte-derived lactoferrin reduces β-amyloid burden by promoting the interaction between p38 kinase and PP2A phosphatase in male APP/PS1 transgenic mice. Br J Pharmacol 2024; 181:896-913. [PMID: 37309219 DOI: 10.1111/bph.16161] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/23/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023] Open
Abstract
BACKGROUND AND PURPOSE Overexpression of astrocytic lactoferrin (Lf) was observed in the brain of Alzheimer's disease (AD) patients, whereas the role of astrocytic Lf in AD progression remains unexplored. In this study, we aimed to evaluate the effects of astrocytic Lf on AD progression. EXPERIMENTAL APPROACH Male APP/PS1 mice with astrocytes overexpressing human Lf were developed to evaluate the effects of astrocytic Lf on AD progression. N2a-sw cells also were employed to further uncover the mechanism of astrocytic Lf on β-amyloid (Aβ) production. KEY RESULTS Astrocytic Lf overexpression increased protein phosphatase 2A (PP2A) activity and reduced amyloid precursor protein (APP) phosphorylation, Aβ burden and tau hyperphosphorylation in APP/PS1 mice. Mechanistically, astrocytic Lf overexpression promoted the uptake of astrocytic Lf into neurons in APP/PS1 mice, and conditional medium from astrocytes overexpressing Lf inhibited p-APP (Thr668) expression in N2a-sw cells. Furthermore, recombinant human Lf (hLf) significantly enhanced PP2A activity and inhibited p-APP expression, whereas inhibition of p38 or PP2A activities abrogated the hLf-induced p-APP down-regulation in N2a-sw cells. Additionally, hLf promoted the interaction of p38 and PP2A via p38 activation, thereby enhancing PP2A activity, and low-density lipoprotein receptor-related protein 1 (LRP1) knockdown significantly reversed the hLf-induced p38 activation and p-APP down-regulation. CONCLUSIONS AND IMPLICATIONS Our data suggested that astrocytic Lf promoted neuronal p38 activation, via targeting to LRP1, subsequently promoting p38 binding to PP2A to enhance PP2A enzyme activity, which finally inhibited Aβ production via APP dephosphorylation. In conclusion, promoting astrocytic Lf expression may be a potential strategy against AD. LINKED ARTICLES This article is part of a themed issue From Alzheimer's Disease to Vascular Dementia: Different Roads Leading to Cognitive Decline. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.6/issuetoc.
Collapse
Affiliation(s)
- Yong-Gang Fan
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Chuang Guo
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Ling-Xiao Zhao
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ri-Le Ge
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhong-Qiu Pang
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Da-Long He
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Hang Ren
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Ting-Yao Wu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yan-Hui Zhang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| | - Zhan-You Wang
- Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, Health Sciences Institute of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Haut F, Argyrousi EK, Arancio O. Re-Arranging the Puzzle between the Amyloid-Beta and Tau Pathology: An APP-Centric Approach. Int J Mol Sci 2023; 25:259. [PMID: 38203429 PMCID: PMC10779219 DOI: 10.3390/ijms25010259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/04/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
After several years of research in the field of Alzheimer's disease (AD), it is still unclear how amyloid-beta (Aβ) and Tau, two key hallmarks of the disease, mediate the neuropathogenic events that lead to AD. Current data challenge the "Amyloid Cascade Hypothesis" that has prevailed in the field of AD, stating that Aβ precedes and triggers Tau pathology that will eventually become the toxic entity in the progression of the disease. This perspective also led the field of therapeutic approaches towards the development of strategies that target Aβ or Tau. In the present review, we discuss recent literature regarding the neurotoxic role of both Aβ and Tau in AD, as well as their physiological function in the healthy brain. Consequently, we present studies suggesting that Aβ and Tau act independently of each other in mediating neurotoxicity in AD, thereafter, re-evaluating the "Amyloid Cascade Hypothesis" that places Tau pathology downstream of Aβ. More recent studies have confirmed that both Aβ and Tau could propagate the disease and induce synaptic and memory impairments via the amyloid precursor protein (APP). This finding is not only interesting from a mechanistic point of view since it provides better insights into the AD pathogenesis but also from a therapeutic point of view since it renders APP a common downstream effector for both Aβ and Tau. Subsequently, therapeutic strategies that act on APP might provide a more viable and physiologically relevant approach for targeting AD.
Collapse
Affiliation(s)
- Florence Haut
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Elentina K. Argyrousi
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
| | - Ottavio Arancio
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, 630 West 168th Street, P&S, New York, NY 10032, USA; (F.H.); (E.K.A.)
- Department of Medicine, Columbia University, New York, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Albukhaty S, Sulaiman GM, Batiha GES. Evaluation and targeting of amyloid precursor protein (APP)/amyloid beta (Aβ) axis in amyloidogenic and non-amyloidogenic pathways: A time outside the tunnel. Ageing Res Rev 2023; 92:102119. [PMID: 37931848 DOI: 10.1016/j.arr.2023.102119] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
In Alzheimer disease (AD), amyloid precursor protein (APP) and production of amyloid beta (Aβ) which is generated by amyloidogenic pathway is implicated in neurotoxicity and neuronal cell deaths. However, physiological Aβ level is essential to improves neuronal survival, attenuates neuronal apoptosis and has neuroprotective effect. In addition, physiological APP level has neurotrophic effect on the central nervous system (CNS). APP has a critical role in the brain growth and development via activation of long-term potentiation (LTP) and acceleration of neurite outgrowth. Moreover, APP is cleaved by α secretase to form a neuroprotective soluble APP alpha (sAPPα) in non-amyloidogenic pathway. Consequently, this mini-review purposes to highlight the possible beneficial role of APP and Aβ. In addition, this mini-review discussed the modulation of APP processing and Aβ production.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied science, University of Technology, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Ali K Albuhadily
- Department of Clinical pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Salim Albukhaty
- Department of Chemistry, College of Science, University of Misan, Maysan 62001, Iraq
| | | | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira 22511, Egypt
| |
Collapse
|
7
|
Dan L, Zhang Z. Alzheimer's disease: an axonal injury disease? Front Aging Neurosci 2023; 15:1264448. [PMID: 37927337 PMCID: PMC10620718 DOI: 10.3389/fnagi.2023.1264448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/14/2023] [Indexed: 11/07/2023] Open
Abstract
Alzheimer's disease (AD) is the primary cause of dementia and is anticipated to impose a substantial economic burden in the future. Over a significant period, the widely accepted amyloid cascade hypothesis has guided research efforts, and the recent FDA approval of an anti- amyloid-beta (Aβ) protofibrils antibody, believed to decelerate AD progression, has further solidified its significance. However, the excessive emphasis placed on the amyloid cascade hypothesis has overshadowed the physiological nature of Aβ and tau proteins within axons. Axons, specialized neuronal structures, sustain damage during the early stages of AD, exerting a pivotal influence on disease progression. In this review, we present a comprehensive summary of the relationship between axonal damage and AD pathology, amalgamating the physiological roles of Aβ and tau proteins, along with the impact of AD risk genes such as APOE and TREM2. Furthermore, we underscore the exceptional significance of axonal damage in the context of AD.
Collapse
Affiliation(s)
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
8
|
Coronel R, López-Alonso V, Gallego MI, Liste I. Low Levels of Amyloid Precursor Protein (APP) Promote Neurogenesis and Decrease Gliogenesis in Human Neural Stem Cells. Int J Mol Sci 2023; 24:14635. [PMID: 37834082 PMCID: PMC10572469 DOI: 10.3390/ijms241914635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Amyloid precursor protein (APP) has been widely studied due to its association with Alzheimer's disease (AD). However, the physiological functions of APP are still largely unexplored. APP is a transmembrane glycoprotein whose expression in humans is abundant in the central nervous system. Specifically, several studies have revealed the high expression of APP during brain development. Previous studies in our laboratory revealed that a transient increase in APP expression induces early cell cycle exit of human neural stem cells (hNSCs) and directs their differentiation towards glial cells (gliogenesis) while decreasing their differentiation towards neurons (neurogenesis). In the present study, we have evaluated the intrinsic cellular effects of APP down-expression (using siRNA) on cell death, cell proliferation, and cell fate specification of hNSCs. Our data indicate that APP silencing causes cellular effects opposite to those obtained in previous APP overexpression assays, inducing cell proliferation in hNS1 cells (a model line of hNSCs) and favoring neurogenesis instead of gliogenesis in these cells. In addition, we have analyzed the gene and protein expression levels of β-Catenin as a possible molecule involved in these cellular effects. These data could help to understand the biological role of APP, which is necessary to deepen the knowledge of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, 28871 Alcalá de Henares, Madrid, Spain
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain;
| | - Marta I. Gallego
- Unidad de Histología y Patología Mamaria, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, 28220 Majadahonda, Madrid, Spain
| |
Collapse
|
9
|
Coronel R, Bernabeu-Zornoza A, Palmer C, González-Sastre R, Rosca A, Mateos-Martínez P, López-Alonso V, Liste I. Amyloid Precursor Protein (APP) Regulates Gliogenesis and Neurogenesis of Human Neural Stem Cells by Several Signaling Pathways. Int J Mol Sci 2023; 24:12964. [PMID: 37629148 PMCID: PMC10455174 DOI: 10.3390/ijms241612964] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Numerous studies have focused on the pathophysiological role of amyloid precursor protein (APP) because the proteolytic processing of APP to β-amyloid (Aβ) peptide is a central event in Alzheimer's disease (AD). However, many authors consider that alterations in the physiological functions of APP are likely to play a key role in AD. Previous studies in our laboratory revealed that APP plays an important role in the differentiation of human neural stem cells (hNSCs), favoring glial differentiation (gliogenesis) and preventing their differentiation toward a neuronal phenotype (neurogenesis). In the present study, we have evaluated the effects of APP overexpression in hNSCs at a global gene level by a transcriptomic analysis using the massive RNA sequencing (RNA-seq) technology. Specifically, we have focused on differentially expressed genes that are related to neuronal and glial differentiation processes, as well as on groups of differentially expressed genes associated with different signaling pathways, in order to find a possible interaction between them and APP. Our data indicate a differential expression in genes related to Notch, Wnt, PI3K-AKT, and JAK-STAT signaling, among others. Knowledge of APP biological functions, as well as the possible signaling pathways that could be related to this protein, are essential to advance our understanding of AD.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Rosa González-Sastre
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Patricia Mateos-Martínez
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| | - Victoria López-Alonso
- Unidad de Biología Computacional, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain; (A.B.-Z.); (C.P.); (R.G.-S.); (A.R.); (P.M.-M.)
| |
Collapse
|
10
|
Schilling S, August A, Meleux M, Conradt C, Tremmel LM, Teigler S, Adam V, Müller UC, Koo EH, Kins S, Eggert S. APP family member dimeric complexes are formed predominantly in synaptic compartments. Cell Biosci 2023; 13:141. [PMID: 37533067 PMCID: PMC10398996 DOI: 10.1186/s13578-023-01092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND The amyloid precursor protein (APP), a key player in Alzheimer's disease (AD), is part of a larger gene family, including the APP like proteins APLP1 and APLP2. They share similar structures, form homo- and heterotypic dimers and exhibit overlapping functions. RESULTS We investigated complex formation of the APP family members via two inducible dimerization systems, the FKBP-rapamycin based dimerization as well as cysteine induced dimerization, combined with co-immunoprecipitations and Blue Native (BN) gel analyses. Within the APP family, APLP1 shows the highest degree of dimerization and high molecular weight (HMW) complex formation. Interestingly, only about 20% of APP is dimerized in cultured cells whereas up to 50% of APP is dimerized in mouse brains, independent of age and splice forms. Furthermore, we could show that dimerized APP originates mostly from neurons and is enriched in synaptosomes. Finally, BN gel analysis of human cortex samples shows a significant decrease of APP dimers in AD patients compared to controls. CONCLUSIONS Together, we suggest that loss of full-length APP dimers might correlate with loss of synapses in the process of AD.
Collapse
Affiliation(s)
- Sandra Schilling
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Alexander August
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Mathieu Meleux
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Carolin Conradt
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Luisa M Tremmel
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
- Medical, Biochemistry & Molecular Biology, Center for Molecular Signaling (PZMS), Saarland University, 66421, Homburg, Germany
| | - Sandra Teigler
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Virginie Adam
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ulrike C Müller
- Institute for Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Edward H Koo
- Department of Neuroscience, University of California, San Diego (UCSD), La Jolla, CA, 92093-0662, USA
| | - Stefan Kins
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Simone Eggert
- Department of Human Biology and Human Genetics, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
- Department of Neurogenetics, Max-Planck-Institute for Multidisciplinary Sciences, City-Campus, Hermann-Rein-Str. 3, 37075, Göttingen, Germany.
| |
Collapse
|
11
|
Lista S, González-Domínguez R, López-Ortiz S, González-Domínguez Á, Menéndez H, Martín-Hernández J, Lucia A, Emanuele E, Centonze D, Imbimbo BP, Triaca V, Lionetto L, Simmaco M, Cuperlovic-Culf M, Mill J, Li L, Mapstone M, Santos-Lozano A, Nisticò R. Integrative metabolomics science in Alzheimer's disease: Relevance and future perspectives. Ageing Res Rev 2023; 89:101987. [PMID: 37343679 DOI: 10.1016/j.arr.2023.101987] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/23/2023]
Abstract
Alzheimer's disease (AD) is determined by various pathophysiological mechanisms starting 10-25 years before the onset of clinical symptoms. As multiple functionally interconnected molecular/cellular pathways appear disrupted in AD, the exploitation of high-throughput unbiased omics sciences is critical to elucidating the precise pathogenesis of AD. Among different omics, metabolomics is a fast-growing discipline allowing for the simultaneous detection and quantification of hundreds/thousands of perturbed metabolites in tissues or biofluids, reproducing the fluctuations of multiple networks affected by a disease. Here, we seek to critically depict the main metabolomics methodologies with the aim of identifying new potential AD biomarkers and further elucidating AD pathophysiological mechanisms. From a systems biology perspective, as metabolic alterations can occur before the development of clinical signs, metabolomics - coupled with existing accessible biomarkers used for AD screening and diagnosis - can support early disease diagnosis and help develop individualized treatment plans. Presently, the majority of metabolomic analyses emphasized that lipid metabolism is the most consistently altered pathway in AD pathogenesis. The possibility that metabolomics may reveal crucial steps in AD pathogenesis is undermined by the difficulty in discriminating between the causal or epiphenomenal or compensatory nature of metabolic findings.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain.
| | - Raúl González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Álvaro González-Domínguez
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Universidad de Cádiz, Cádiz, Spain
| | - Héctor Menéndez
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain
| | - Alejandro Lucia
- Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain; Faculty of Sport Sciences, European University of Madrid, Villaviciosa de Odón, Madrid, Spain; CIBER of Frailty and Healthy Ageing (CIBERFES), Madrid, Spain
| | | | - Diego Centonze
- Department of Systems Medicine, Tor Vergata University, Rome, Italy; Unit of Neurology, IRCCS Neuromed, Pozzilli, IS, Italy
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma, Italy
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome, Italy
| | - Luana Lionetto
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Maurizio Simmaco
- Clinical Biochemistry, Mass Spectrometry Section, Sant'Andrea University Hospital, Rome, Italy; Department of Neuroscience, Mental Health and Sensory Organs, Faculty of Medicine and Psychology, Sapienza University of Rome, Rome, Italy
| | - Miroslava Cuperlovic-Culf
- Digital Technologies Research Center, National Research Council, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jericha Mill
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA; School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid, Spain; Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid, Spain
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome, Italy
| |
Collapse
|
12
|
Chen J, Fan A, Li S, Xiao Y, Fu Y, Chen JS, Zi D, Zeng LH, Tan J. APP mediates tau uptake and its overexpression leads to the exacerbated tau pathology. Cell Mol Life Sci 2023; 80:123. [PMID: 37071198 PMCID: PMC11071805 DOI: 10.1007/s00018-023-04774-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 03/11/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Abstract
Alzheimer's disease (AD), as the most common type of dementia, has two pathological hallmarks, extracellular senile plaques composed of β-amyloid peptides and intracellular neurofibrillary tangles containing phosphorylated-tau protein. Amyloid precursor protein (APP) and tau each play central roles in AD, although how APP and tau interact and synergize in the disease process is largely unknown. Here, we showed that soluble tau interacts with the N-terminal of APP in vitro in cell-free and cell culture systems, which can be further confirmed in vivo in the brain of 3XTg-AD mouse. In addition, APP is involved in the cellular uptake of tau through endocytosis. APP knockdown or N-terminal APP-specific antagonist 6KApoEp can prevent tau uptake in vitro, resulting in an extracellular tau accumulation in cultured neuronal cells. Interestingly, in APP/PS1 transgenic mouse brain, the overexpression of APP exacerbated tau propagation. Moreover, in the human tau transgenic mouse brain, overexpression of APP promotes tau phosphorylation, which is significantly remediated by 6KapoEp. All these results demonstrate the important role of APP in the tauopathy of AD. Targeting the pathological interaction of N-terminal APP with tau may provide an important therapeutic strategy for AD.
Collapse
Affiliation(s)
- Jiang Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Anran Fan
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Song Li
- First Affiliated Hospital of Dalian Medical University, Dalian, 116021, Liaoning, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Yanlin Fu
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Jun-Sheng Chen
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China
| | - Dan Zi
- Department of Gynecology, Guizhou Provincial People's Hospital, Guiyang, 550025, Guizhou, China
| | - Ling-Hui Zeng
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China
| | - Jun Tan
- Key Laboratory of Endemic and Ethnic Diseases, Laboratory of Molecular Biology, Ministry of Education, Guizhou Medical University, Guiyang, 550025, Guizhou, China.
- Key Laboratory of Novel Targets and Drug Study for Neural Repair of Zhejiang Province, School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
13
|
Cencelli G, Pacini L, De Luca A, Messia I, Gentile A, Kang Y, Nobile V, Tabolacci E, Jin P, Farace MG, Bagni C. Age-Dependent Dysregulation of APP in Neuronal and Skin Cells from Fragile X Individuals. Cells 2023; 12:758. [PMID: 36899894 PMCID: PMC10000963 DOI: 10.3390/cells12050758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 03/04/2023] Open
Abstract
Fragile X syndrome (FXS) is the most common form of monogenic intellectual disability and autism, caused by the absence of the functional fragile X messenger ribonucleoprotein 1 (FMRP). FXS features include increased and dysregulated protein synthesis, observed in both murine and human cells. Altered processing of the amyloid precursor protein (APP), consisting of an excess of soluble APPα (sAPPα), may contribute to this molecular phenotype in mice and human fibroblasts. Here we show an age-dependent dysregulation of APP processing in fibroblasts from FXS individuals, human neural precursor cells derived from induced pluripotent stem cells (iPSCs), and forebrain organoids. Moreover, FXS fibroblasts treated with a cell-permeable peptide that decreases the generation of sAPPα show restored levels of protein synthesis. Our findings suggest the possibility of using cell-based permeable peptides as a future therapeutic approach for FXS during a defined developmental window.
Collapse
Affiliation(s)
- Giulia Cencelli
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Institute of Neurosurgery, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Laura Pacini
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Faculty of Medicine, UniCamillus, Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy
| | - Anastasia De Luca
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Ilenia Messia
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Antonietta Gentile
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, 00166 Rome, Italy
| | - Yunhee Kang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Veronica Nobile
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Elisabetta Tabolacci
- Institute of Genomic Medicine, Fondazione Policlinico Universitario A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Catholic University, 00168 Rome, Italy
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Maria Giulia Farace
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Claudia Bagni
- Department of Biomedicine and Prevention, Faculty of Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
- Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, 1005 Lausanne, Switzerland
| |
Collapse
|
14
|
Liu Y, Liang R, Zhu D, Wang Q, Li Z, Cheng L, Ren J, Guo Y, Chai H, Wang M, Niu Q, Yang S, Bai J, Yu H, Zhang H, Qin X. Effect of the Reelin-Dab1 signaling pathway on the abnormal metabolism of Aβ protein induced by aluminum. Toxicol Ind Health 2023; 39:104-114. [PMID: 36617730 DOI: 10.1177/07482337221150859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aluminum (Al) is a common neurotoxic element that can exacerbate intracellular β-amyloid (Aβ) deposition. Reelin is a highly conserved extracellular glycoprotein that is involved in intracellular Aβ deposition. However, the action of Reelin on aluminum-induced Aβ deposition is not fully understood. Here, we investigated the effects of the Reelin-Dab1 signaling pathway on Aβ deposition in aluminum maltol (Al(mal)3) exposure in rat pheochromocytoma-derived cells (PC12). Our results showed that Al(mal)3 exposure decreased activity of PC12, increased expression of Aβ42, and decreased expression of Aβ40. Moreover, Al(mal)3 exposure in PC12 induced Reelin-Dab1 signaling pathway-associated proteins changed, decreased expression of Reelin and Dab1, and increased expression of pdab1. Moreover, the expression of Reelin, Dab1, and Aβ40 was found to be elevated in PC12 exposed to Al(mal)3 and corticosterone compared to those exposed to Al(mal)3. Also, the expression of Reelin, Dab1, and Aβ40 was found to be depressed in PC12 exposed to Al(mal)3 and streptozotocin compared with cells exposed to Al(mal)3 alone. These results suggested that Al(mal)3 inhibits the expression of the Reelin-Dab1 signaling pathway, promoting Aβ deposition. Thus, our findings provided important evidence to better understand how the Reelin-Dab1 signaling pathway may be a potential mechanism of Aβ deposition induced by aluminum.
Collapse
Affiliation(s)
- Yi Liu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Ruifeng Liang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Doudou Zhu
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qiong Wang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Zhuang Li
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Liting Cheng
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jingjuan Ren
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Yuyan Guo
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Huilin Chai
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Mengqin Wang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Shoulin Yang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Jianying Bai
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongmei Yu
- Department of Health Statistics, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Hongmei Zhang
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| | - Xiaojiang Qin
- Department of Environmental Health, School of Public Health, 74648Shanxi Medical University, Taiyuan, People's Republic of China
| |
Collapse
|
15
|
Emerging Roles of Extracellular Vesicles in Alzheimer's Disease: Focus on Synaptic Dysfunction and Vesicle-Neuron Interaction. Cells 2022; 12:cells12010063. [PMID: 36611856 PMCID: PMC9818402 DOI: 10.3390/cells12010063] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Alzheimer's disease (AD) is considered by many to be a synaptic failure. Synaptic function is in fact deeply affected in the very early disease phases and recognized as the main cause of AD-related cognitive impairment. While the reciprocal involvement of amyloid beta (Aβ) and tau peptides in these processes is under intense investigation, the crucial role of extracellular vesicles (EVs) released by different brain cells as vehicles for these molecules and as mediators of early synaptic alterations is gaining more and more ground in the field. In this review, we will summarize the current literature on the contribution of EVs derived from distinct brain cells to neuronal alterations and build a working model for EV-mediated propagation of synaptic dysfunction in early AD. A deeper understanding of EV-neuron interaction will provide useful targets for the development of novel therapeutic approaches aimed at hampering AD progression.
Collapse
|
16
|
Hodges SL, Bouza AA, Isom LL. Therapeutic Potential of Targeting Regulated Intramembrane Proteolysis Mechanisms of Voltage-Gated Ion Channel Subunits and Cell Adhesion Molecules. Pharmacol Rev 2022; 74:1028-1048. [PMID: 36113879 PMCID: PMC9553118 DOI: 10.1124/pharmrev.121.000340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 05/13/2022] [Indexed: 10/03/2023] Open
Abstract
Several integral membrane proteins undergo regulated intramembrane proteolysis (RIP), a tightly controlled process through which cells transmit information across and between intracellular compartments. RIP generates biologically active peptides by a series of proteolytic cleavage events carried out by two primary groups of enzymes: sheddases and intramembrane-cleaving proteases (iCLiPs). Following RIP, fragments of both pore-forming and non-pore-forming ion channel subunits, as well as immunoglobulin super family (IgSF) members, have been shown to translocate to the nucleus to function in transcriptional regulation. As an example, the voltage-gated sodium channel β1 subunit, which is also an IgSF-cell adhesion molecule (CAM), is a substrate for RIP. β1 RIP results in generation of a soluble intracellular domain, which can regulate gene expression in the nucleus. In this review, we discuss the proposed RIP mechanisms of voltage-gated sodium, potassium, and calcium channel subunits as well as the roles of their generated proteolytic products in the nucleus. We also discuss other RIP substrates that are cleaved by similar sheddases and iCLiPs, such as IgSF macromolecules, including CAMs, whose proteolytically generated fragments function in the nucleus. Importantly, dysfunctional RIP mechanisms are linked to human disease. Thus, we will also review how understanding RIP events and subsequent signaling processes involving ion channel subunits and IgSF proteins may lead to the discovery of novel therapeutic targets. SIGNIFICANCE STATEMENT: Several ion channel subunits and immunoglobulin superfamily molecules have been identified as substrates of regulated intramembrane proteolysis (RIP). This signal transduction mechanism, which generates polypeptide fragments that translocate to the nucleus, is an important regulator of gene transcription. RIP may impact diseases of excitability, including epilepsy, cardiac arrhythmia, and sudden death syndromes. A thorough understanding of the role of RIP in gene regulation is critical as it may reveal novel therapeutic strategies for the treatment of previously intractable diseases.
Collapse
Affiliation(s)
- Samantha L Hodges
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Alexandra A Bouza
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| | - Lori L Isom
- Departments of Pharmacology (S.L.H., A.A.B., L.L.I.), Neurology (L.L.I.), and Molecular & Integrative Physiology (L.L.I.), University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
17
|
Kim J, Wulschner LEG, Oh WC, Ko J. Trans
‐synaptic mechanisms orchestrated by mammalian synaptic cell adhesion molecules. Bioessays 2022; 44:e2200134. [DOI: 10.1002/bies.202200134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Jinhu Kim
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| | | | - Won Chan Oh
- Department of Pharmacology University of Colorado School of Medicine Aurora Colorado USA
| | - Jaewon Ko
- Department of Brain Sciences Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu Korea
- Center for Synapse Diversity and Specificity DGIST Daegu Korea
| |
Collapse
|
18
|
Bai N, Li N, Cheng R, Guan Y, Zhao X, Song Z, Xu H, Yi F, Jiang B, Li X, Wu X, Jiang C, Zhou T, Guo Q, Guo W, Feng Y, Wang Z, Ma M, Yu Y, Wang Z, Zhang S, Wang C, Zhao W, Liu S, Song X, Liu H, Cao L. Inhibition of SIRT2 promotes APP acetylation and ameliorates cognitive impairment in APP/PS1 transgenic mice. Cell Rep 2022; 40:111062. [PMID: 35830807 DOI: 10.1016/j.celrep.2022.111062] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/18/2022] [Accepted: 06/15/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a primary risk factor for neurodegenerative diseases, such as Alzheimer's disease (AD). SIRT2, an NAD+(nicotinamide adenine dinucleotide)-dependent deacetylase, accumulates in the aging brain. Here, we report that, in the amyloid precursor protein (APP)/PS1 transgenic mouse model of AD, genetic deletion of SIRT2 or pharmacological inhibition of SIRT2 ameliorates cognitive impairment. We find that suppression of SIRT2 enhances acetylation of APP, which promotes non-amyloidogenic processing of APP at the cell surface, leading to increased soluble APP-α (sAPPα). We discover that lysines 132 and 134 of the major pathogenic protein β-amyloid (Aβ) precursor are acetylated and that these residues are deacetylated by SIRT2. Strikingly, exogenous expression of wild-type or an acetylation-mimic APP mutant protects cultured primary neurons from Aβ42 challenge. Our study identifies SIRT2-mediated deacetylation of APP on K132 and K134 as a regulated post-translational modification (PTM) and suggests inhibition of SIRT2 as a potential therapeutic strategy for AD.
Collapse
Affiliation(s)
- Ning Bai
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China.
| | - Na Li
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Rong Cheng
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yi Guan
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiong Zhao
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhijie Song
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China
| | - Hongde Xu
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Fei Yi
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Bo Jiang
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Xiaoman Li
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Xuan Wu
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Cui Jiang
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning 110042, China
| | - Tingting Zhou
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Qiqiang Guo
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Wendong Guo
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yanling Feng
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhuo Wang
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Mengtao Ma
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Yang Yu
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhanyou Wang
- Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Shengping Zhang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Chuangui Wang
- Institute of Translational Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Weidong Zhao
- Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Key Laboratory of Cell Biology, Ministry of Public Health, Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Shihui Liu
- Aging Institute, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Xiaoyu Song
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China
| | - Hua Liu
- Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| | - Liu Cao
- College of Basic Medical Science, Key Laboratory and Collaborative Innovation Center of Liaoning Province, China Medical University, Shenyang, Liaoning 110122, China; Health Sciences Institute, Key Laboratory of Medical Cell Biology of Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Innovation Center of Aging-Related Disease Diagnosis and Treatment and Prevention, Jinzhou Medical University, Jinzhou, Liaoning 121001, China.
| |
Collapse
|
19
|
Bocharov EV, Gremer L, Urban AS, Okhrimenko IS, Volynsky PE, Nadezhdin KD, Bocharova OV, Kornilov DA, Zagryadskaya YA, Kamynina AV, Kuzmichev PK, Kutzsche J, Bolakhrif N, Müller-Schiffmann A, Dencher NA, Arseniev AS, Efremov RG, Gordeliy VI, Willbold D. All -d -Enantiomeric Peptide D3 Designed for Alzheimer's Disease Treatment Dynamically Interacts with Membrane-Bound Amyloid-β Precursors. J Med Chem 2021; 64:16464-16479. [PMID: 34739758 DOI: 10.1021/acs.jmedchem.1c00632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative pathology with no effective treatment known. Toxic amyloid-β peptide (Aβ) oligomers play a crucial role in AD pathogenesis. All-d-Enantiomeric peptide D3 and its derivatives were developed to disassemble and destroy cytotoxic Aβ aggregates. One of the D3-like compounds is approaching phase II clinical trials; however, high-resolution details of its disease-preventing or pharmacological actions are not completely clear. We demonstrate that peptide D3 stabilizing Aβ monomer dynamically interacts with the extracellular juxtamembrane region of a membrane-bound fragment of an amyloid precursor protein containing the Aβ sequence. MD simulations based on NMR measurement results suggest that D3 targets the amyloidogenic region, not compromising its α-helicity and preventing intermolecular hydrogen bonding, thus creating prerequisites for inhibition of early steps of Aβ conversion into β-conformation and its toxic oligomerization. An enhanced understanding of the D3 action molecular mechanism facilitates development of effective AD treatment and prevention strategies.
Collapse
Affiliation(s)
- Eduard V Bocharov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Lothar Gremer
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Anatoly S Urban
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Ivan S Okhrimenko
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Pavel E Volynsky
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Kirill D Nadezhdin
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Olga V Bocharova
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Daniil A Kornilov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Yuliya A Zagryadskaya
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Anna V Kamynina
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Molecular Neurobiology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Pavel K Kuzmichev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia
| | - Janine Kutzsche
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | - Najoua Bolakhrif
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| | | | - Norbert A Dencher
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Physical Biochemistry, Chemistry department, Technical University of Darmstadt, 64287 Darmstadt, Germany
| | - Alexander S Arseniev
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia
| | - Roman G Efremov
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Department of Structural Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.,School of Applied Mathematics, Higher School of Economics, 109028 Moscow, Russia
| | - Valentin I Gordeliy
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,IRIG, Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38000 Grenoble, France
| | - Dieter Willbold
- Research Center for Molecular Mechanisms of Aging and Age-related Diseases, Moscow Institute of Physics and Technology (State University), 141701 Dolgoprudny, Russia.,Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, 52425 Jülich, Germany.,JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.,Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Hermans SJ, Nero TL, Morton CJ, Gooi JH, Crespi GAN, Hancock NC, Gao C, Ishii K, Markulić J, Parker MW. Structural biology of cell surface receptors implicated in Alzheimer’s disease. Biophys Rev 2021; 14:233-255. [DOI: 10.1007/s12551-021-00903-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/02/2021] [Indexed: 02/06/2023] Open
|
21
|
Chebli J, Rahmati M, Lashley T, Edeman B, Oldfors A, Zetterberg H, Abramsson A. The localization of amyloid precursor protein to ependymal cilia in vertebrates and its role in ciliogenesis and brain development in zebrafish. Sci Rep 2021; 11:19115. [PMID: 34580355 PMCID: PMC8476544 DOI: 10.1038/s41598-021-98487-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/09/2021] [Indexed: 11/17/2022] Open
Abstract
Amyloid precursor protein (APP) is expressed in many tissues in human, mice and in zebrafish. In zebrafish, there are two orthologues, Appa and Appb. Interestingly, some cellular processes associated with APP overlap with cilia-mediated functions. Whereas the localization of APP to primary cilia of in vitro-cultured cells has been reported, we addressed the presence of APP in motile and in non-motile sensory cilia and its potential implication for ciliogenesis using zebrafish, mouse, and human samples. We report that Appa and Appb are expressed by ciliated cells and become localized at the membrane of cilia in the olfactory epithelium, otic vesicle and in the brain ventricles of zebrafish embryos. App in ependymal cilia persisted in adult zebrafish and was also detected in mouse and human brain. Finally, we found morphologically abnormal ependymal cilia and smaller brain ventricles in appa−/−appb−/− mutant zebrafish. Our findings demonstrate an evolutionary conserved localisation of APP to cilia and suggest a role of App in ciliogenesis and cilia-related functions.
Collapse
Affiliation(s)
- Jasmine Chebli
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Maryam Rahmati
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden
| | - Tammaryn Lashley
- Department of Clinical and Movement Neurosciences, Queen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College London, London, UK.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
| | - Brigitta Edeman
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Anders Oldfors
- Department of Laboratory Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,UK Dementia Research Institute, London, UK
| | - Alexandra Abramsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 41345, Gothenburg, Sweden.
| |
Collapse
|
22
|
Chen J, Luo B, Zhong BR, Li KY, Wen QX, Song L, Xiang XJ, Zhou GF, Hu LT, Deng XJ, Ma YL, Chen GJ. Sulfuretin exerts diversified functions in the processing of amyloid precursor protein. Genes Dis 2021; 8:867-881. [PMID: 34522714 PMCID: PMC8427253 DOI: 10.1016/j.gendis.2020.11.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 01/03/2023] Open
Abstract
Sulfuretin is a flavonoid that protects cell from damage induced by reactive oxygen species and inflammation. In this study, we investigated the role of sulfuretin in the processing of amyloid precursor protein (APP), in association with the two catalytic enzymes the α-secretase a disintegrin and metalloproteinase (ADAM10), and the beta-site APP cleaving enzyme 1 (BACE1) that play important roles in the generation of β amyloid protein (Aβ) in Alzheimer's disease (AD). We found that sulfuretin increased the levels of the immature but not the mature form of ADAM10 protein. The enhanced ADAM10 transcription by sulfuretin was mediated by the nucleotides −444 to −300 in the promoter region, and was attenuated by silencing or mutation of transcription factor retinoid X receptor (RXR) and by GW6471, a specific inhibitor of peroxisome proliferator-activated receptor α (PPAR-α). We further found that sulfuretin preferentially increased protein levels of the immature form of APP (im-APP) but significantly reduced those of BACE1, sAPPβ and β-CTF, whereas Aβ1-42 levels were slightly increased. Finally, the effect of sulfuretin on BACE1 and im-APP was selectively attenuated by the translation inhibitor cycloheximide and by lysosomal inhibitor chloroquine, respectively. Taken together, (1) RXR/PPAR-α signaling was involved in sulfuretin-mediated ADAM10 transcription. (2) Alteration of Aβ protein level by sulfuretin was not consistent with that of ADAM10 and BACE1 protein levels, but was consistent with the elevated level of im-APP protein, suggesting that im-APP, an isoform mainly localized to trans-Golgi network, plays an important role in Aβ generation.
Collapse
Affiliation(s)
- Jian Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Biao Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Bi-Rou Zhong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Kun-Yi Li
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Qi-Xin Wen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li Song
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Xiao-Jiao Xiang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Gui-Feng Zhou
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Li-Tian Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China.,Department of Neurology, Nanchong Central Hospital, The Second Clinical College of North Sichuan Medical College, Nanchong, Sichuan Province, 637000, PR China
| | - Xiao-Juan Deng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Yuan-Lin Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing, 400016, PR China
| |
Collapse
|
23
|
Liu T, Zhang T, Nicolas M, Boussicault L, Rice H, Soldano A, Claeys A, Petrova I, Fradkin L, De Strooper B, Potier MC, Hassan BA. The amyloid precursor protein is a conserved Wnt receptor. eLife 2021; 10:69199. [PMID: 34515635 PMCID: PMC8437438 DOI: 10.7554/elife.69199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/01/2021] [Indexed: 12/31/2022] Open
Abstract
The Amyloid Precursor Protein (APP) and its homologues are transmembrane proteins required for various aspects of neuronal development and activity, whose molecular function is unknown. Specifically, it is unclear whether APP acts as a receptor, and if so what its ligand(s) may be. We show that APP binds the Wnt ligands Wnt3a and Wnt5a and that this binding regulates APP protein levels. Wnt3a binding promotes full-length APP (flAPP) recycling and stability. In contrast, Wnt5a promotes APP targeting to lysosomal compartments and reduces flAPP levels. A conserved Cysteine-Rich Domain (CRD) in the extracellular portion of APP is required for Wnt binding, and deletion of the CRD abrogates the effects of Wnts on flAPP levels and trafficking. Finally, loss of APP results in increased axonal and reduced dendritic growth of mouse embryonic primary cortical neurons. This phenotype can be cell-autonomously rescued by full length, but not CRD-deleted, APP and regulated by Wnt ligands in a CRD-dependent manner.
Collapse
Affiliation(s)
- Tengyuan Liu
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Tingting Zhang
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France.,Doctoral School of Biomedical Sciences, Leuven, Belgium
| | - Maya Nicolas
- Doctoral School of Biomedical Sciences, Leuven, Belgium.,Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Lydie Boussicault
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Heather Rice
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Alessia Soldano
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Annelies Claeys
- Center for Brain and Disease, Leuven, Belgium.,Center for Human Genetics, University of Leuven School of Medicine, Leuven, Belgium
| | - Iveta Petrova
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Lee Fradkin
- Laboratory of Developmental Neurobiology, Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Bart De Strooper
- Center for Brain and Disease, Leuven, Belgium.,UK Dementia Research institute at University College London, London, United Kingdom
| | - Marie-Claude Potier
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| | - Bassem A Hassan
- Paris Brain Institute - Institut du Cerveau, Sorbonne Université, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
24
|
Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer's disease-like pathology. Prog Neurobiol 2021; 206:102154. [PMID: 34453977 DOI: 10.1016/j.pneurobio.2021.102154] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 05/29/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
The accumulation of amyloid-beta peptide (Aβ) and the failure of cholinergic transmission are key players in Alzheimer's disease (AD). However, in the healthy brain, Aβ contributes to synaptic plasticity and memory acting through α7 subtype nicotinic acetylcholine receptors (α7nAChRs). Here, we hypothesized that the α7nAChR deletion blocks Aβ physiological function and promotes a compensatory increase in Aβ levels that, in turn, triggers an AD-like pathology. To validate this hypothesis, we studied the age-dependent phenotype of α7 knock out mice. We found that α7nAChR deletion caused an impairment of hippocampal synaptic plasticity and memory at 12 months of age, paralleled by an increase of Amyloid Precursor Protein expression and Aβ levels. This was accompanied by other classical AD features such as a hyperphosphorylation of tau at residues Ser 199, Ser 396, Thr 205, a decrease of GSK-3β at Ser 9, the presence of paired helical filaments and neurofibrillary tangles, neuronal loss and an increase of GFAP-positive astrocytes. Our findings suggest that α7nAChR malfunction might precede Aβ and tau pathology, offering a different perspective to interpret the failure of anti-Aβ therapies against AD and to find novel therapeutical approaches aimed at restoring α7nAChRs-mediated Aβ function at the synapse.
Collapse
|
25
|
Yamamoto K, Yamamoto R, Kato N. Amyloid β and Amyloid Precursor Protein Synergistically Suppress Large-Conductance Calcium-Activated Potassium Channel in Cortical Neurons. Front Aging Neurosci 2021; 13:660319. [PMID: 34149396 PMCID: PMC8211014 DOI: 10.3389/fnagi.2021.660319] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Intracellular amyloid β (Aβ) injection suppresses the large-conductance calcium-dependent potassium (BK) channel in cortical pyramidal cells from wild-type (WT) mice. In 3xTg Alzheimer’s disease (AD) model mice, intraneuronal Aβ is genetically programed to accumulate, which suppresses the BK channel. However, the mode of BK channel suppression remained unclarified. The present report revealed that only one (11A1) of the three anti-Aβ-oligomer antibodies that we examined, but not anti-monomer-Aβ-antibodies, was effective in recovering BK channel activity in 3xTg neurons. Antibodies against amyloid precursor protein (APP) were also found to be effective, suggesting that APP plays an essential part in this Aβ-oligomer-induced BK channel suppression in 3xTg neurons. In WT neurons, by contrast, APP suppressed BK channels by itself, which suggests that either APP or Aβ is sufficient to block BK channels, thus pointing to a different co-operativity of Aβ and APP in WT and 3xTg neurons. To clarify this difference, we relied on our previous finding that the scaffold protein Homer1a reverses the BK channel blockade in both WT and 3xTg neurons. In cortical neurons from 3xTg mice that bear Homer1a knockout (4xTg mice), neither anti-APP antibodies nor 11A1, but only the 6E10 antibody that binds both APP and Aβ, rescued the BK channel suppression. Given that Homer1a expression is activity dependent and 3xTg neurons are hyperexcitable, Homer1a is likely to be expressed sufficiently in 3xTg neurons, thereby alleviating the suppressive influence of APP and Aβ on BK channel. A unique way that APP modifies Aβ toxicity is thus proposed.
Collapse
Affiliation(s)
- Kenji Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan.,Department of Neurology and Clinical Research Center, National Hospital Organization Utano National Hospital, Kyoto, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, Japan
| |
Collapse
|
26
|
Structural Studies Providing Insights into Production and Conformational Behavior of Amyloid-β Peptide Associated with Alzheimer's Disease Development. MOLECULES (BASEL, SWITZERLAND) 2021; 26:molecules26102897. [PMID: 34068293 PMCID: PMC8153327 DOI: 10.3390/molecules26102897] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease is the most common type of neurodegenerative disease in the world. Genetic evidence strongly suggests that aberrant generation, aggregation, and/or clearance of neurotoxic amyloid-β peptides (Aβ) triggers the disease. Aβ accumulates at the points of contact of neurons in ordered cords and fibrils, forming the so-called senile plaques. Aβ isoforms of different lengths are found in healthy human brains regardless of age and appear to play a role in signaling pathways in the brain and to have neuroprotective properties at low concentrations. In recent years, different substances have been developed targeting Aβ production, aggregation, interaction with other molecules, and clearance, including peptide-based drugs. Aβ is a product of sequential cleavage of the membrane glycoprotein APP (amyloid precursor protein) by β- and γ-secretases. A number of familial mutations causing an early onset of the disease have been identified in the APP, especially in its transmembrane domain. The mutations are reported to influence the production, oligomerization, and conformational behavior of Aβ peptides. This review highlights the results of structural studies of the main proteins involved in Alzheimer's disease pathogenesis and the molecular mechanisms by which perspective therapeutic substances can affect Aβ production and nucleation.
Collapse
|
27
|
Pyun JM, Kang MJ, Ryoo N, Suh J, Youn YC, Park YH, Kim S. Amyloid Metabolism and Amyloid-Targeting Blood-Based Biomarkers of Alzheimer's Disease. J Alzheimers Dis 2021; 75:685-696. [PMID: 32390633 DOI: 10.3233/jad-200104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Amyloid-β (Aβ) is a key protein in Alzheimer's disease (AD) in that its accumulation induces complex pathological changes. Although there has been extensive research on the metabolism of Aβ in AD, new compelling results have recently emerged. Historically, the production and clearance of Aβ have been thought to originate in the central nervous system (CNS). However, recent evidence suggests that the production and clearance of Aβ can also occur in the peripheral system, and that the peripherally driven Aβ migrates to the CNS and induces amyloidopathy with subsequent AD pathologic changes in the brain. This concept implies that AD is not restricted to the CNS but is a systemic disease instead. As such, the development of blood-based biomarkers targeting Aβ is of great interest. Central and peripheral Aβ are both active contributors to the pathology of AD and interact bidirectionally. Measuring peripheral Aβ is not just observing the reflection of the residual Aβ removed from the CNS but also tracking the ongoing process of AD pathology. Additionally, blood-based biomarkers could be a more accessible tool in clinical and research settings. Through arduous research, several blood-based biomarker assays have demonstrated notable results. In this review, we describe the metabolism of Aβ and the amyloid-targeting blood-based biomarkers of AD.
Collapse
Affiliation(s)
- Jung-Min Pyun
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Min Ju Kang
- Department of Neurology, Veterans Medical Research Institute, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Nayoung Ryoo
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Jeewon Suh
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Young Chul Youn
- Department of Neurology, Chung-Ang University Hospital, Seoul, Republic of Korea
| | - Young Ho Park
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University College of Medicine and Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| |
Collapse
|
28
|
Li Z, Rasmussen LJ. TIP60 in aging and neurodegeneration. Ageing Res Rev 2020; 64:101195. [PMID: 33091598 DOI: 10.1016/j.arr.2020.101195] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/29/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic modification of chromatin, including histone methylation and acetylation, plays critical roles in eukaryotic cells and has a significant impact on chromatin structure/accessibility, gene regulation and, susceptibility to aging, neurodegenerative disease, cancer, and other age-related diseases. This article reviews the current advances on TIP60/KAT5, a major histone acetyltransferase with diverse functions in eukaryotes, with emphasis on its regulation of autophagy, proteasome-dependent protein turnover, RNA transcription, DNA repair, circadian rhythms, learning and memory, and other neurological functions implicated in aging and neurodegeneration. Moreover, the promising therapeutic potential of TIP60 is discussed to target Alzheimer's disease and other neurological diseases.
Collapse
|
29
|
Smart treatment strategies for alleviating tauopathy and neuroinflammation to improve clinical outcome in Alzheimer's disease. Drug Discov Today 2020; 25:2110-2129. [PMID: 33011341 DOI: 10.1016/j.drudis.2020.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/04/2020] [Accepted: 09/23/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disease leading to progressive loss of memory that mainly affects people above 60 years of age. It is one of the leading causes of deaths in the USA. Given its inherent heterogeneity and a still-incomplete understanding of its pathology, biomarkers, and targets available for therapy, it is a challenge to design an effective therapeutic strategy. Several hypotheses have been proposed to understand the disease and to identify reliable markers and targets for treatments. However, none have resulted in strong support from clinical trials. In this review, we objectively discuss the various therapeutic strategies and mechanistic approaches to improve the current clinical outcome of AD therapy.
Collapse
|
30
|
Ristori E, Donnini S, Ziche M. New Insights Into Blood-Brain Barrier Maintenance: The Homeostatic Role of β-Amyloid Precursor Protein in Cerebral Vasculature. Front Physiol 2020; 11:1056. [PMID: 32973564 PMCID: PMC7481479 DOI: 10.3389/fphys.2020.01056] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Cerebrovascular homeostasis is maintained by the blood-brain barrier (BBB), a highly selective structure that separates the peripheral blood circulation from the brain and protects the central nervous system (CNS). Dysregulation of BBB function is the precursor of several neurodegenerative diseases including Alzheimer’s disease (AD) and cerebral amyloid angiopathy (CAA), both related to β-amyloid (Aβ) accumulation and deposition. The origin of BBB dysfunction before and/or during CAA and AD onset is not known. Several studies raise the possibility that vascular dysfunction could be an early step in these diseases and could even precede significant Aβ deposition. Though accumulation of neuron-derived Aβ peptides is considered the primary influence driving AD and CAA pathogenesis, recent studies highlighted the importance of the physiological role of the β-amyloid precursor protein (APP) in endothelial cell homeostasis, suggesting a potential role of this protein in maintaining vascular stability. In this review, we will discuss the physiological function of APP and its cleavage products in the vascular endothelium. We further suggest how loss of APP homeostatic regulation in the brain vasculature could lead toward pathological outcomes in neurodegenerative disorders.
Collapse
Affiliation(s)
- Emma Ristori
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Sandra Donnini
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marina Ziche
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
31
|
Proteotoxicity and Neurodegenerative Diseases. Int J Mol Sci 2020; 21:ijms21165646. [PMID: 32781742 PMCID: PMC7460676 DOI: 10.3390/ijms21165646] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/01/2020] [Accepted: 08/04/2020] [Indexed: 02/07/2023] Open
Abstract
Neurodegenerative diseases are a major burden for our society, affecting millions of people worldwide. A main goal of past and current research is to enhance our understanding of the mechanisms underlying proteotoxicity, a common theme among these incurable and debilitating conditions. Cell proteome alteration is considered to be one of the main driving forces that triggers neurodegeneration, and unraveling the biological complexity behind the affected molecular pathways constitutes a daunting challenge. This review summarizes the current state on key processes that lead to cellular proteotoxicity in Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, providing a comprehensive landscape of recent literature. A foundational understanding of how proteotoxicity affects disease etiology and progression may provide essential insight towards potential targets amenable of therapeutic intervention.
Collapse
|
32
|
Traffic signaling: new functions of huntingtin and axonal transport in neurological disease. Curr Opin Neurobiol 2020; 63:122-130. [DOI: 10.1016/j.conb.2020.04.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/06/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
|
33
|
Deyts C, Clutter M, Pierce N, Chakrabarty P, Ladd TB, Goddi A, Rosario AM, Cruz P, Vetrivel K, Wagner SL, Thinakaran G, Golde TE, Parent AT. APP-Mediated Signaling Prevents Memory Decline in Alzheimer's Disease Mouse Model. Cell Rep 2020; 27:1345-1355.e6. [PMID: 31042463 DOI: 10.1016/j.celrep.2019.03.087] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 02/11/2019] [Accepted: 03/22/2019] [Indexed: 01/04/2023] Open
Abstract
Amyloid precursor protein (APP) and its metabolites play key roles in Alzheimer's disease (AD) pathophysiology. Whereas short amyloid-β (Aβ) peptides derived from APP are pathogenic, the APP holoprotein serves multiple purposes in the nervous system through its cell adhesion and receptor-like properties. Our studies focused on the signaling mediated by the APP cytoplasmic tail. We investigated whether sustained APP signaling during brain development might favor neuronal plasticity and memory process through a direct interaction with the heterotrimeric G-protein subunit GαS (stimulatory G-protein alpha subunit). Our results reveal that APP possesses autonomous regulatory capacity within its intracellular domain that promotes APP cell surface residence, precludes Aβ production, facilitates axodendritic development, and preserves cellular substrates of memory. Altogether, these events contribute to strengthening cognitive functions and are sufficient to modify the course of AD pathology.
Collapse
Affiliation(s)
- Carole Deyts
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Mary Clutter
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Nicholas Pierce
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Thomas B Ladd
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Anna Goddi
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Awilda M Rosario
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Pedro Cruz
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Kulandaivelu Vetrivel
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA; Veterans Affairs San Diego Healthcare System, La Jolla, CA 92161, USA
| | - Gopal Thinakaran
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA
| | - Todd E Golde
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Angèle T Parent
- Department of Neurobiology, The University of Chicago, 924 East 57th Street, Chicago, IL 60637, USA.
| |
Collapse
|
34
|
Chatzistavraki M, Papazafiri P, Efthimiopoulos S. Amyloid-β Protein Precursor Regulates Depolarization-Induced Calcium-Mediated Synaptic Signaling in Brain Slices. J Alzheimers Dis 2020; 76:1121-1133. [PMID: 32597808 DOI: 10.3233/jad-200290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Coordinated calcium influx upon neuronal depolarization activates pathways that phosphorylate CaMKII, ERKs, and the transcription factor CREB and, therefore, expression of pro-survival and neuroprotective genes. Recent evidence indicates that amyloid-β protein precursor (AβPP) is trafficked to synapses and promotes their formation. At the synapse, AβPP interacts with synaptic proteins involved in vesicle exocytosis and affects calcium channel function. OBJECTIVE Herein, we examined the role of AβPP in depolarization-induced calcium-mediated signaling using acute cerebral slices from wild-type C57bl/6 mice and AβPP-/- C57bl/6 mice. METHODS Depolarization of acute cerebral slices from wild-type C57bl/6 and AβPP-/- C57bl/6 mice was used to induce synaptic signaling. Protein levels were examined by western blot and calcium dynamics were assessed using primary neuronal cultures. RESULTS In the absence of AβPP, decreased pCaMKII and pERKs levels were observed. This decrease was sensitive to the inhibition of N- and P/Q-type Voltage Gated Calcium Channels (N- and P/Q-VGCCs) by ω-conotoxin GVIA and ω-conotoxin MVIIC, respectively, but not to inhibition of L-type VGCCs by nifedipine. However, the absence of AβPP did not result in a statistically significant decrease of pCREB, which is a known substrate of pERKs. Finally, using calcium imaging, we found that down regulation of AβPP in cortical neurons results in a decreased response to depolarization and altered kinetics of calcium response. CONCLUSION AβPP regulates synaptic activity-mediated neuronal signaling by affecting N- and P/Q-VGCCs.
Collapse
Affiliation(s)
- Maria Chatzistavraki
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Panagiota Papazafiri
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Spiros Efthimiopoulos
- Department of Biology, Division of Animal and Human Physiology, National and Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| |
Collapse
|
35
|
Banote RK, Chebli J, Şatır TM, Varshney GK, Camacho R, Ledin J, Burgess SM, Abramsson A, Zetterberg H. Amyloid precursor protein-b facilitates cell adhesion during early development in zebrafish. Sci Rep 2020; 10:10127. [PMID: 32576936 PMCID: PMC7311384 DOI: 10.1038/s41598-020-66584-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/21/2020] [Indexed: 01/05/2023] Open
Abstract
Understanding the biological function of amyloid beta (Aβ) precursor protein (APP) beyond its role in Alzheimer's disease is emerging. Yet, its function during embryonic development is poorly understood. The zebrafish APP orthologue, Appb, is strongly expressed during early development but thus far has only been studied via morpholino-mediated knockdown. Zebrafish enables analysis of cellular processes in an ontogenic context, which is limited in many other vertebrates. We characterized zebrafish carrying a homozygous mutation that introduces a premature stop in exon 2 of the appb gene. We report that appb mutants are significantly smaller until 2 dpf and display perturbed enveloping layer (EVL) integrity and cell protrusions at the blastula stage. Moreover, appb mutants surviving beyond 48 hpf exhibited no behavioral defects at 6 dpf and developed into healthy and fertile adults. The expression of the app family member, appa, was also found to be altered in appb mutants. Taken together, we show that appb is involved in the initial development of zebrafish by supporting the integrity of the EVL, likely by mediating cell adhesion properties. The loss of Appb might then be compensated for by other app family members to maintain normal development.
Collapse
Affiliation(s)
- Rakesh Kumar Banote
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Cellectricon AB, Neongatan 4B, SE-431 53, Mölndal, Sweden
| | - Jasmine Chebli
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Tuğçe Munise Şatır
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden
| | - Gaurav K Varshney
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafael Camacho
- Centre for Cellular Imaging, Core Facilities, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johan Ledin
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA.,Department of Organismal Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Alexandra Abramsson
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy, University of Gothenburg, S-41345, Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N3BG, United Kingdom.,UK Dementia Research Institute, London, WC1N3BG, United Kingdom
| |
Collapse
|
36
|
Amyloid Precursor Protein (APP) Controls the Expression of the Transcriptional Activator Neuronal PAS Domain Protein 4 (NPAS4) and Synaptic GABA Release. eNeuro 2020; 7:ENEURO.0322-19.2020. [PMID: 32327470 PMCID: PMC7262005 DOI: 10.1523/eneuro.0322-19.2020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/13/2020] [Accepted: 03/17/2020] [Indexed: 12/11/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied as the precursor of the β-amyloid (Aβ) peptide, the major component of the senile plaques found in the brain of Alzheimer’s disease (AD) patients. However, the function of APP per se in neuronal physiology remains to be fully elucidated. APP is expressed at high levels in the brain. It resembles a cell adhesion molecule or a membrane receptor, suggesting that its function relies on cell-cell interaction and/or activation of intracellular signaling pathways. In this respect, the APP intracellular domain (AICD) was reported to act as a transcriptional regulator. Here, we used a transcriptome-based approach to identify the genes transcriptionally regulated by APP in the rodent embryonic cortex and on maturation of primary cortical neurons. Surprisingly, the overall transcriptional changes were subtle, but a more detailed analysis pointed to genes clustered in neuronal-activity dependent pathways. In particular, we observed a decreased transcription of neuronal PAS domain protein 4 (NPAS4) in APP−/− neurons. NPAS4 is an inducible transcription factor (ITF) regulated by neuronal depolarization. The downregulation of NPAS4 co-occurs with an increased production of the inhibitory neurotransmitter GABA and a reduced expression of the GABAA receptors α1. CRISPR-Cas-mediated silencing of NPAS4 in neurons led to similar observations. Patch-clamp investigation did not reveal any functional decrease of GABAA receptors activity, but long-term potentiation (LTP) measurement supported an increased GABA component in synaptic transmission of APP−/− mice. Together, NPAS4 appears to be a downstream target involved in APP-dependent regulation of inhibitory synaptic transmission.
Collapse
|
37
|
Corsetti V, Borreca A, Latina V, Giacovazzo G, Pignataro A, Krashia P, Natale F, Cocco S, Rinaudo M, Malerba F, Florio R, Ciarapica R, Coccurello R, D’Amelio M, Ammassari-Teule M, Grassi C, Calissano P, Amadoro G. Passive immunotherapy for N-truncated tau ameliorates the cognitive deficits in two mouse Alzheimer's disease models. Brain Commun 2020; 2:fcaa039. [PMID: 32954296 PMCID: PMC7425324 DOI: 10.1093/braincomms/fcaa039] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 02/05/2020] [Accepted: 02/12/2020] [Indexed: 12/12/2022] Open
Abstract
Clinical and neuropathological studies have shown that tau pathology better correlates with the severity of dementia than amyloid plaque burden, making tau an attractive target for the cure of Alzheimer's disease. We have explored whether passive immunization with the 12A12 monoclonal antibody (26-36aa of tau protein) could improve the Alzheimer's disease phenotype of two well-established mouse models, Tg2576 and 3xTg mice. 12A12 is a cleavage-specific monoclonal antibody which selectively binds the pathologically relevant neurotoxic NH226-230 fragment (i.e. NH2htau) of tau protein without cross-reacting with its full-length physiological form(s). We found out that intravenous administration of 12A12 monoclonal antibody into symptomatic (6 months old) animals: (i) reaches the hippocampus in its biologically active (antigen-binding competent) form and successfully neutralizes its target; (ii) reduces both pathological tau and amyloid precursor protein/amyloidβ metabolisms involved in early disease-associated synaptic deterioration; (iii) improves episodic-like type of learning/memory skills in hippocampal-based novel object recognition and object place recognition behavioural tasks; (iv) restores the specific up-regulation of the activity-regulated cytoskeleton-associated protein involved in consolidation of experience-dependent synaptic plasticity; (v) relieves the loss of dendritic spine connectivity in pyramidal hippocampal CA1 neurons; (vi) rescues the Alzheimer's disease-related electrophysiological deficits in hippocampal long-term potentiation at the CA3-CA1 synapses; and (vii) mitigates the neuroinflammatory response (reactive gliosis). These findings indicate that the 20-22 kDa NH2-terminal tau fragment is crucial target for Alzheimer's disease therapy and prospect immunotherapy with 12A12 monoclonal antibody as safe (normal tau-preserving), beneficial approach in contrasting the early Amyloidβ-dependent and independent neuropathological and cognitive alterations in affected subjects.
Collapse
Affiliation(s)
| | - Antonella Borreca
- Humanitas University Laboratory of Pharmacology and Brain Pathology, Neuro Center, 20089 Milan, Italy
- Institute of Neuroscience, 20129 Milan, Italy
| | | | | | | | - Paraskevi Krashia
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | - Francesca Natale
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Sara Cocco
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Rinaudo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Rita Florio
- European Brain Research Institute (EBRI), 00161 Rome, Italy
| | | | - Roberto Coccurello
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Institute for Complex Systems (ISC), CNR, 00185 Rome, Italy
| | - Marcello D’Amelio
- IRCSS Santa Lucia Foundation, 00143 Rome, Italy
- Department of Medicine, University Campus Bio-Medico, 00128 Rome, Italy
- Department of Science and Technology for Humans and Environment, University Campus Bio-medico, 00128 Rome, Italy
| | | | - Claudio Grassi
- Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Institute of Human Physiology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Giuseppina Amadoro
- European Brain Research Institute (EBRI), 00161 Rome, Italy
- Institute of Translational Pharmacology (IFT)–National Research Council (CNR), 00133 Rome, Italy
| |
Collapse
|
38
|
Penke B, Szűcs M, Bogár F. Oligomerization and Conformational Change Turn Monomeric β-Amyloid and Tau Proteins Toxic: Their Role in Alzheimer's Pathogenesis. Molecules 2020; 25:molecules25071659. [PMID: 32260279 PMCID: PMC7180792 DOI: 10.3390/molecules25071659] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/29/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The structural polymorphism and the physiological and pathophysiological roles of two important proteins, β-amyloid (Aβ) and tau, that play a key role in Alzheimer's disease (AD) are reviewed. Recent results demonstrate that monomeric Aβ has important physiological functions. Toxic oligomeric Aβ assemblies (AβOs) may play a decisive role in AD pathogenesis. The polymorph fibrillar Aβ (fAβ) form has a very ordered cross-β structure and is assumed to be non-toxic. Tau monomers also have several important physiological actions; however, their oligomerization leads to toxic oligomers (TauOs). Further polymerization results in probably non-toxic fibrillar structures, among others neurofibrillary tangles (NFTs). Their structure was determined by cryo-electron microscopy at atomic level. Both AβOs and TauOs may initiate neurodegenerative processes, and their interactions and crosstalk determine the pathophysiological changes in AD. TauOs (perhaps also AβO) have prionoid character, and they may be responsible for cell-to-cell spreading of the disease. Both extra- and intracellular AβOs and TauOs (and not the previously hypothesized amyloid plaques and NFTs) may represent the novel targets of AD drug research.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- Correspondence:
| | - Mária Szűcs
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
| | - Ferenc Bogár
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (M.S.); (F.B.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| |
Collapse
|
39
|
APP Osaka Mutation in Familial Alzheimer's Disease-Its Discovery, Phenotypes, and Mechanism of Recessive Inheritance. Int J Mol Sci 2020; 21:ijms21041413. [PMID: 32093100 PMCID: PMC7073033 DOI: 10.3390/ijms21041413] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease is believed to begin with synaptic dysfunction caused by soluble Aβ oligomers. When this oligomer hypothesis was proposed in 2002, there was no direct evidence that Aβ oligomers actually disrupt synaptic function to cause cognitive impairment in humans. In patient brains, both soluble and insoluble Aβ species always coexist, and therefore it is difficult to determine which pathologies are caused by Aβ oligomers and which are caused by amyloid fibrils. Thus, no validity of the oligomer hypothesis was available until the Osaka mutation was discovered. This mutation, which was found in a Japanese pedigree of familial Alzheimer’s disease, is the deletion of codon 693 of APP gene, resulting in mutant Aβ lacking the 22nd glutamate. Only homozygous carriers suffer from dementia. In vitro studies revealed that this mutation has a very unique character that accelerates Aβ oligomerization but does not form amyloid fibrils. Model mice expressing this mutation demonstrated that all pathologies of Alzheimer’s disease can be induced by Aβ oligomers alone. In this review, we describe the story behind the discovery of the Osaka mutation, summarize the mutant’s phenotypes, and propose a mechanism of its recessive inheritance.
Collapse
|
40
|
Huichalaf CH, Al-Ramahi I, Park KW, Grunke SD, Lu N, de Haro M, El-Zein K, Gallego-Flores T, Perez AM, Jung SY, Botas J, Zoghbi HY, Jankowsky JL. Cross-species genetic screens to identify kinase targets for APP reduction in Alzheimer's disease. Hum Mol Genet 2020; 28:2014-2029. [PMID: 30753434 DOI: 10.1093/hmg/ddz034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 01/07/2019] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
An early hallmark of Alzheimer's disease is the accumulation of amyloid-β (Aβ), inspiring numerous therapeutic strategies targeting this peptide. An alternative approach is to destabilize the amyloid beta precursor protein (APP) from which Aβ is derived. We interrogated innate pathways governing APP stability using a siRNA screen for modifiers whose own reduction diminished APP in human cell lines and transgenic Drosophila. As proof of principle, we validated PKCβ-a known modifier identified by the screen-in an APP transgenic mouse model. PKCβ was genetically targeted using a novel adeno-associated virus shuttle vector to deliver microRNA-adapted shRNA via intracranial injection. In vivo reduction of PKCβ initially diminished APP and delayed plaque formation. Despite persistent PKCβ suppression, the effect on APP and amyloid diminished over time. Our study advances this approach for mining druggable modifiers of disease-associated proteins, while cautioning that prolonged in vivo validation may be needed to reveal emergent limitations on efficacy.
Collapse
Affiliation(s)
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | | | - Nan Lu
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Maria de Haro
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Karla El-Zein
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Tatiana Gallego-Flores
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | | | - Juan Botas
- Department of Molecular and Human Genetics.,Department of Molecular and Cellular Biology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Neuroscience.,Department of Molecular and Human Genetics.,Department of Pediatrics.,Department of Neurology.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Joanna L Jankowsky
- Department of Neuroscience.,Department of Molecular and Cellular Biology.,Department of Neurology.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
41
|
Hu Y, Ren R, Zhang Y, Huang Y, Cui H, Ma C, Qiu W, Wang H, Cui P, Chen H, Wang G. Rho-associated coiled-coil kinase 1 activation mediates amyloid precursor protein site-specific Ser655 phosphorylation and triggers amyloid pathology. Aging Cell 2019; 18:e13001. [PMID: 31287605 PMCID: PMC6718535 DOI: 10.1111/acel.13001] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/29/2019] [Accepted: 06/16/2019] [Indexed: 01/08/2023] Open
Abstract
Rho‐associated coiled‐coil kinase 1 (ROCK1) is proposed to be implicated in Aβ suppression; however, the role for ROCK1 in amyloidogenic metabolism of amyloid precursor protein (APP) to produce Aβ was unknown. In the present study, we showed that ROCK1 kinase activity and its APP binding were enhanced in AD brain, resulting in increased β‐secretase cleavage of APP. Furthermore, we firstly confirmed that APP served as a substrate for ROCK1 and its major phosphorylation site was located at Ser655. The increased level of APP Ser655 phosphorylation was observed in the brain of APP/PS1 mice and AD patients compared to controls. Moreover, blockade of APP Ser655 phosphorylation, or inhibition of ROCK1 activity with either shRNA knockdown or Y‐27632, ameliorated amyloid pathology and improved learning and memory in APP/PS1 mice. These findings suggest that activated ROCK1 targets APP Ser655 phosphorylation, which promotes amyloid processing and pathology. Inhibition of ROCK1 could be a potential therapeutic approach for AD.
Collapse
Affiliation(s)
- Yong‐Bo Hu
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Ru‐Jing Ren
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yong‐Fang Zhang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yue Huang
- National Clinical Research Centre for Neurological Diseases Beijing Tiantan Hospital Affiliated to Capital Medical University Beijing China
- Faculty of Medicine, Neuroscience Research Australia UNSW Australia Sydney New South Wales Australia
| | - Hai‐Lun Cui
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Chao Ma
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College Beijing China
| | - Wen‐Ying Qiu
- Department of Human Anatomy, Histology and Embryology, Institute of Basic Medical Sciences, Neuroscience Center, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College Beijing China
| | - Hao Wang
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Pei‐Jing Cui
- Department of Geriatrics Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Hong‐Zhuan Chen
- Department of Pharmacology and Chemical Biology Shanghai Jiao Tong University School of Medicine Shanghai China
- Institute of Interdisciplinary Science, Shuguang Hospital Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Gang Wang
- Department of Neurology Neuroscience Institute Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
42
|
Penke B, Bogár F, Paragi G, Gera J, Fülöp L. Key Peptides and Proteins in Alzheimer's Disease. Curr Protein Pept Sci 2019; 20:577-599. [PMID: 30605056 DOI: 10.2174/1389203720666190103123434] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 12/03/2018] [Accepted: 12/27/2018] [Indexed: 02/02/2023]
Abstract
Alzheimer's Disease (AD) is a form of progressive dementia involving cognitive impairment, loss of learning and memory. Different proteins (such as amyloid precursor protein (APP), β- amyloid (Aβ) and tau protein) play a key role in the initiation and progression of AD. We review the role of the most important proteins and peptides in AD pathogenesis. The structure, biosynthesis and physiological role of APP are shortly summarized. The details of trafficking and processing of APP to Aβ, the cytosolic intracellular Aβ domain (AICD) and small soluble proteins are shown, together with other amyloid-forming proteins such as tau and α-synuclein (α-syn). Hypothetic physiological functions of Aβ are summarized. The mechanism of conformational change, the formation and the role of neurotoxic amyloid oligomeric (oAβ) are shown. The fibril formation process and the co-existence of different steric structures (U-shaped and S-shaped) of Aβ monomers in mature fibrils are demonstrated. We summarize the known pathogenic and non-pathogenic mutations and show the toxic interactions of Aβ species after binding to cellular receptors. Tau phosphorylation, fibrillation, the molecular structure of tau filaments and their toxic effect on microtubules are shown. Development of Aβ and tau imaging in AD brain and CSF as well as blood biomarkers is shortly summarized. The most probable pathomechanisms of AD including the toxic effects of oAβ and tau; the three (biochemical, cellular and clinical) phases of AD are shown. Finally, the last section summarizes the present state of Aβ- and tau-directed therapies and future directions of AD research and drug development.
Collapse
Affiliation(s)
- Botond Penke
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Ferenc Bogár
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary.,MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary
| | - Gábor Paragi
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Dom square 8, Hungary.,Institute of Physics, University of Pécs, H-7624 Pecs, Ifjusag utja 6, Hungary
| | - János Gera
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, Interdisciplinary Excellence Centre, University of Szeged, Dom square 8, Szeged, H-6720, Hungary
| |
Collapse
|
43
|
A Novel Apolipoprotein E Antagonist Functionally Blocks Apolipoprotein E Interaction With N-terminal Amyloid Precursor Protein, Reduces β-Amyloid-Associated Pathology, and Improves Cognition. Biol Psychiatry 2019; 86:208-220. [PMID: 31208706 PMCID: PMC6642011 DOI: 10.1016/j.biopsych.2019.04.026] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/21/2019] [Accepted: 04/15/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND The ɛ4 isoform of apolipoprotein E (apoE4) is a major genetic risk factor for the development of sporadic Alzheimer's disease (AD), and its modification has been an intense focus for treatment of AD during recent years. METHODS We investigated the binding of apoE, a peptide corresponding to its low-density lipoprotein receptor binding domain (amino acids 133-152; ApoEp), and modified ApoEp to amyloid precursor protein (APP) and their effects on amyloid-β (Aβ) production in cultured cells. Having discovered a peptide (6KApoEp) that blocks the interaction of apoE with N-terminal APP, we investigated the effects of this peptide and ApoEp on AD-like pathology and behavioral impairment in 3XTg-AD and 5XFAD transgenic mice. RESULTS ApoE and ApoEp, but not truncated apoE lacking the low-density lipoprotein receptor binding domain, physically interacted with N-terminal APP and thereby mediated Aβ production. Interestingly, the addition of 6 lysine residues to the N-terminus of ApoEp (6KApoEp) directly inhibited apoE binding to N-terminal APP and markedly limited apoE- and ApoEp-mediated Aβ generation, presumably through decreasing APP cellular membrane trafficking and p44/42 mitogen-activated protein kinase phosphorylation. Moreover, while promoting apoE interaction with APP by ApoEp exacerbated Aβ and tau brain pathologies in 3XTg-AD mice, disrupting this interaction by 6KApoEp ameliorated cerebral Aβ and tau pathologies, neuronal apoptosis, synaptic loss, and hippocampal-dependent learning and memory impairment in 5XFAD mice without altering cholesterol, low-density lipoprotein receptor, and apoE expression levels. CONCLUSIONS These data suggest that disrupting apoE interaction with N-terminal APP may be a novel disease-modifying therapeutic strategy for AD.
Collapse
|
44
|
Bocharov EV, Nadezhdin KD, Urban AS, Volynsky PE, Pavlov KV, Efremov RG, Arseniev AS, Bocharova OV. Familial L723P Mutation Can Shift the Distribution between the Alternative APP Transmembrane Domain Cleavage Cascades by Local Unfolding of the Ε-Cleavage Site Suggesting a Straightforward Mechanism of Alzheimer's Disease Pathogenesis. ACS Chem Biol 2019; 14:1573-1582. [PMID: 31180641 DOI: 10.1021/acschembio.9b00309] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease is an age-related pathology associated with accumulation of amyloid-β peptides, products of enzymatic cleavage of amyloid-β precursor protein (APP) by secretases. Several familial mutations causing early onset of the disease have been identified in the APP transmembrane (TM) domain. The mutations influence production of amyloid-β, but the molecular mechanisms of this effect are unclear. The "Australian" (L723P) mutation located in the C-termini of APP TM domain is associated with autosomal-dominant, early onset Alzheimer's disease. Herein, we describe the impact of familial L723P mutation on the structural-dynamic behavior of APP TM domain studied by high-resolution NMR in membrane-mimicking micelles and augmented by molecular dynamics simulations in explicit lipid bilayer. We found L723P mutation to cause local unfolding of the C-terminal turn of the APP TM domain helix and increase its accessibility to water required for cleavage of the protein backbone by γ-secretase in the ε-site, thus switching between alternative ("pathogenic" and "non-pathogenic") cleavage cascades. These findings suggest a straightforward mechanism of the pathogenesis associated with this mutation, and are of generic import for understanding the molecular-level events associated with APP sequential proteolysis resulting in accumulation of the pathogenic forms of amyloid-β. Moreover, age-related onset of Alzheimer's disease can be explained by a similar mechanism, where the effect of mutation is emulated by the impact of local environmental factors, such as oxidative stress and/or membrane lipid composition. Knowledge of the mechanisms regulating generation of amyloidogenic peptides of different lengths is essential for development of novel treatment strategies of the Alzheimer's disease.
Collapse
Affiliation(s)
- Eduard V. Bocharov
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
| | - Kirill D. Nadezhdin
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
| | - Anatoly S. Urban
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
| | - Pavel E. Volynsky
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
| | - Konstantin V. Pavlov
- Federal Clinical Center of Physical-Chemical Medicine of FMBA, Moscow, 119435, Russian Federation
| | - Roman G. Efremov
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
- National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| | - Alexander S. Arseniev
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
| | - Olga V. Bocharova
- Shemyakin−Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, 117198, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudnyi, 141701, Russian Federation
| |
Collapse
|
45
|
Tao PF, Huang HC. Regulation of AβPP Glycosylation Modification and Roles of Glycosylation on AβPP Cleavage in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:2115-2124. [PMID: 30802027 DOI: 10.1021/acschemneuro.8b00574] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of senile plaques in the gray matter of the brain is one of the major pathologic features of Alzheimer's disease (AD), and amyloid-β (Aβ) is the main component of extracellular deposits of the senile plaques. Aβ derives from amyloid-β precursor protein (AβPP) cleaved by β-secretase (BACE1) and γ-secretase, and the abnormal cleavage of AβPP is an important event leading to overproduction and aggregation of Aβ species. After translation, AβPP undergoes post-translational modifications (PTMs) including glycosylation and phosphorylation in the endoplasmic reticulum (ER) and Golgi apparatus, and these modifications play an important role in regulating the cleavage of this protein. In this Review, we summarize research progress on the modification of glycosylation, especially O-GlcNAcylation and mucin-type O-linked glycosylation (also known as O-GalNAcylation), on the regulation of AβPP cleavage and on the influence of AβPP's glycosylation in the pathogenesis of AD.
Collapse
Affiliation(s)
- Peng-Fei Tao
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| | - Han-Chang Huang
- Beijing Key Laboratory of Bioactive Substances and Functional Foods, Beijing Union University, Beijing, 100191, China
| |
Collapse
|
46
|
Moir RD, Tanzi RE. Low Evolutionary Selection Pressure in Senescence Does Not Explain the Persistence of Aβ in the Vertebrate Genome. Front Aging Neurosci 2019; 11:70. [PMID: 30983989 PMCID: PMC6447958 DOI: 10.3389/fnagi.2019.00070] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 03/12/2019] [Indexed: 01/08/2023] Open
Abstract
The argument is frequently made that the amyloid-β protein (Aβ) persists in the human genome because Alzheimer's disease (AD) primarily afflicts individuals over reproductive age and, therefore, there is low selective pressure for the peptide's elimination or modification. This argument is an important premise for AD amyloidosis models and therapeutic strategies that characterize Aβ as a functionless and intrinsically pathological protein. Here, we review if evolutionary theory and data on the genetics and biology of Aβ are consistent with low selective pressure for the peptide's expression in senescence. Aβ is an ancient neuropeptide expressed across vertebrates. Consistent with unusually high evolutionary selection constraint, the human Aβ sequence is shared by a majority of vertebrate species and has been conserved across at least 400 million years. Unlike humans, the overwhelming majority of vertebrate species do not cease reproduction in senescence and selection pressure is maintained into old age. Hence, low selective pressure in senescence does not explain the persistence of Aβ across the vertebrate genome. The "Grandmother hypothesis" (GMH) is the prevailing model explaining the unusual extended postfertile period of humans. In the GMH, high risk associated with birthing in old age has lead to early cessation of reproduction and a shift to intergenerational care of descendants. The rechanneling of resources to grandchildren by postreproductive individuals increases reproductive success of descendants. In the GMH model, selection pressure does not end following menopause. Thus, evolutionary models and phylogenetic data are not consistent with the absence of reproductive selection pressure for Aβ among aged vertebrates, including humans. Our analysis suggests an alternative evolutionary model for the persistence of Aβ in the vertebrate genome. Aβ has recently been identified as an antimicrobial effector molecule of innate immunity. High conservation across the Chordata phylum is consistent with strong positive selection pressure driving human Aβ's remarkable evolutionary longevity. Ancient origins and widespread conservation suggest the human Aβ sequence is highly optimized for its immune role. We detail our analysis and discuss how the emerging "Antimicrobial Protection Hypothesis" of AD may provide insights into possible evolutionary roles for Aβ in infection, aging, and disease etiology.
Collapse
Affiliation(s)
- Robert D. Moir
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Harvard Medical School – Massachusetts General Hospital, Boston, MA, United States
| | | |
Collapse
|
47
|
Hitzenberger M, Zacharias M. γ-Secretase Studied by Atomistic Molecular Dynamics Simulations: Global Dynamics, Enzyme Activation, Water Distribution and Lipid Binding. Front Chem 2019; 6:640. [PMID: 30662893 PMCID: PMC6328467 DOI: 10.3389/fchem.2018.00640] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/07/2018] [Indexed: 11/14/2022] Open
Abstract
γ-secretase, an intramembrane-cleaving aspartyl protease is involved in the cleavage of a large number of intramembrane proteins. The most prominent substrate is the amyloid precursor protein, whose proteolytic processing leads to the production of different amyloid Aβ peptides. These peptides are known to form toxic aggregates and may play a key role in Alzheimer's disease (AD). Recently, the three-dimensional structure of γ-secretase has been determined via Cryo-EM, elucidating the spatial geometry of this enzyme complex in different functional states. We have used molecular dynamics (MD) simulations to study the global dynamics and conformational transitions of γ-secretase, as well as the water and lipid distributions in and around the transmembrane domains in atomic detail. Simulations were performed on the full enzyme complex and on the membrane embedded parts alone. The simulations revealed global motions compatible with the experimental enzyme structures and indicated little dependence of the dynamics of the transmembrane domains on the soluble extracellular subunits. During the simulation on the membrane spanning part a transition between an inactive conformation (with catalytic residues far apart) toward a putatively active form (with catalytic residues in close proximity) has been observed. This conformational change is associated with a distinct rearrangement of transmembrane helices, a global compaction of the catalytically active presenilin subunit a change in the water structure near the active site and a rigidification of the protein fold. The observed conformational rearrangement allows the interpretation of the effect of several mutations on the activity of γ-secretase. A number of long-lived lipid binding sites could be identified on the membrane spanning surface of γ-secretase which may coincide with association regions of hydrophobic membrane helices to form putative substrate binding exosites.
Collapse
Affiliation(s)
| | - Martin Zacharias
- Physics Department T38, Technical University of Munich, Garching, Germany
| |
Collapse
|
48
|
Sun J, Carlson-Stevermer J, Das U, Shen M, Delenclos M, Snead AM, Koo SY, Wang L, Qiao D, Loi J, Petersen AJ, Stockton M, Bhattacharyya A, Jones MV, Zhao X, McLean PJ, Sproul AA, Saha K, Roy S. CRISPR/Cas9 editing of APP C-terminus attenuates β-cleavage and promotes α-cleavage. Nat Commun 2019; 10:53. [PMID: 30604771 PMCID: PMC6318289 DOI: 10.1038/s41467-018-07971-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022] Open
Abstract
CRISPR/Cas9 guided gene-editing is a potential therapeutic tool, however application to neurodegenerative disease models has been limited. Moreover, conventional mutation correction by gene-editing would only be relevant for the small fraction of neurodegenerative cases that are inherited. Here we introduce a CRISPR/Cas9-based strategy in cell and animal models to edit endogenous amyloid precursor protein (APP) at the extreme C-terminus and reciprocally manipulate the amyloid pathway, attenuating APP-β-cleavage and Aβ production, while up-regulating neuroprotective APP-α-cleavage. APP N-terminus and compensatory APP-homologues remain intact, with no apparent effects on neurophysiology in vitro. Robust APP-editing is seen in human iPSC-derived neurons and mouse brains with no detectable off-target effects. Our strategy likely works by limiting APP and BACE-1 approximation, and we also delineate mechanistic events that abrogates APP/BACE-1 convergence in this setting. Our work offers conceptual proof for a selective APP silencing strategy. Gene editing strategies are typically designed to correct mutant genes, but most neurodegenerative diseases are sporadic. Here the authors describe a strategy to selectively edit the C-terminus of APP and attenuate amyloid-β production, while upregulating neuroprotective α-cleavage.
Collapse
Affiliation(s)
- Jichao Sun
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jared Carlson-Stevermer
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard, Madison, WI, 53715, USA
| | - Utpal Das
- Department of Neuroscience, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Minjie Shen
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Marion Delenclos
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Amanda M Snead
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - So Yeon Koo
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - Lina Wang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Dianhua Qiao
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jonathan Loi
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Andrew J Petersen
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Michael Stockton
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA
| | - Mathew V Jones
- Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Xinyu Zhao
- Waisman Center, University of Wisconsin-Madison, 1500 Highland Ave, Madison, WI, 53705, USA.,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Pamela J McLean
- Department of Neuroscience, Mayo Clinic Jacksonville, 4500 San Pablo Rd, Jacksonville, FL, 32224, USA
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's and the Aging Brain, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA.,Department of Pathology and Cell Biology, Columbia University Medical Center, 630W 168th St, New York, NY, 10032, USA
| | - Krishanu Saha
- Department of Biomedical Engineering, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI, 53706, USA.,Wisconsin Institute for Discovery, University of Wisconsin-Madison, 330 N. Orchard, Madison, WI, 53715, USA
| | - Subhojit Roy
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA. .,Department of Neuroscience, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
49
|
Coronel R, Palmer C, Bernabeu-Zornoza A, Monteagudo M, Rosca A, Zambrano A, Liste I. Physiological effects of amyloid precursor protein and its derivatives on neural stem cell biology and signaling pathways involved. Neural Regen Res 2019; 14:1661-1671. [PMID: 31169172 PMCID: PMC6585543 DOI: 10.4103/1673-5374.257511] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The pathological implication of amyloid precursor protein (APP) in Alzheimer's disease has been widely documented due to its involvement in the generation of amyloid-β peptide. However, the physiological functions of APP are still poorly understood. APP is considered a multimodal protein due to its role in a wide variety of processes, both in the embryo and in the adult brain. Specifically, APP seems to play a key role in the proliferation, differentiation and maturation of neural stem cells. In addition, APP can be processed through two canonical processing pathways, generating different functionally active fragments: soluble APP-α, soluble APP-β, amyloid-β peptide and the APP intracellular C-terminal domain. These fragments also appear to modulate various functions in neural stem cells, including the processes of proliferation, neurogenesis, gliogenesis or cell death. However, the molecular mechanisms involved in these effects are still unclear. In this review, we summarize the physiological functions of APP and its main proteolytic derivatives in neural stem cells, as well as the possible signaling pathways that could be implicated in these effects. The knowledge of these functions and signaling pathways involved in the onset or during the development of Alzheimer's disease is essential to advance the understanding of the pathogenesis of Alzheimer's disease, and in the search for potential therapeutic targets.
Collapse
Affiliation(s)
- Raquel Coronel
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Charlotte Palmer
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Adela Bernabeu-Zornoza
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - María Monteagudo
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Andreea Rosca
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Alberto Zambrano
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Isabel Liste
- Unidad de Regeneración Neural, Unidad Funcional de Investigación de Enfermedades Crónicas, Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| |
Collapse
|
50
|
Alzheimer’s disease (AD) therapeutics – 1: Repeated clinical failures continue to question the amyloid hypothesis of AD and the current understanding of AD causality. Biochem Pharmacol 2018; 158:359-375. [DOI: 10.1016/j.bcp.2018.09.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/24/2018] [Indexed: 12/17/2022]
|