1
|
Nadora D, Ezzati S, Bol B, Aboud O. Serendipity in Neuro-Oncology: The Evolution of Chemotherapeutic Agents. Int J Mol Sci 2025; 26:2955. [PMID: 40243541 PMCID: PMC11988343 DOI: 10.3390/ijms26072955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/01/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
The development of novel therapeutics in neuro-oncology faces significant challenges, often marked by high costs and low success rates. Despite advances in molecular biology and genomics, targeted therapies have had limited impact on improving patient outcomes in brain tumors, particularly gliomas, due to the complex, multigenic nature of these malignancies. While significant efforts have been made to design drugs that target specific signaling pathways and genetic mutations, the clinical success of these rational approaches remains sparse. This review critically examines the landscape of neuro-oncology drug discovery, highlighting instances where serendipity has led to significant breakthroughs, such as the unexpected efficacy of repurposed drugs and off-target effects that proved beneficial. By exploring historical and contemporary cases, we underscore the role of chance in the discovery of impactful therapies, arguing that embracing serendipity alongside rational drug design may enhance future success in neuro-oncology drug development.
Collapse
Affiliation(s)
- Denise Nadora
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Shawyon Ezzati
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Brandon Bol
- College of Medicine, California Northstate University, Elk Grove, CA 95757, USA; (S.E.); (B.B.)
| | - Orwa Aboud
- Department of Neurology, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA;
- Department of Neurological Surgery, Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
2
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
3
|
Dai Y, Li H, Fan S, Wang K, Cui Z, Zhao X, Sun X, Lin M, Li J, Gao Y, Tian Z, Yang H, Zha B, Lv L, Xu Y. Dimethyl fumarate promotes the degradation of HNF1B and suppresses the progression of clear cell renal cell carcinoma. Cell Death Dis 2025; 16:71. [PMID: 39915461 PMCID: PMC11802756 DOI: 10.1038/s41419-025-07412-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 12/19/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most lethal subtype of renal cancer, and its treatment options remain limited. Therefore, there is an urgent need to discover therapeutic agents for ccRCC treatment. Here, we demonstrate that dimethyl fumarate (DMF), an approved medication for multiple sclerosis [1] and psoriasis, can inhibit the proliferation of ccRCC cells. Mechanistically, hepatocyte nuclear factor 1β (HNF1B), a transcription factor highly expressed in ccRCC, is succinated by DMF at cysteine residues, leading to its proteasomal degradation. Furthermore, HNF1B interacts with and stabilizes Yes-associated protein (YAP), thus DMF-mediated HNF1B degradation decreases YAP protein level and the expression of its target genes, resulting in the suppression of ccRCC cell proliferation. Importantly, oral administration of DMF sensitizes ccRCC to sunitinib treatment and enhances its efficacy in mice. In summary, we provide evidences supporting DMF as a potential drug for clinical treatment of ccRCC by targeting HNF1B and reveal a previously unrecognized role of HNF1B in regulating YAP in ccRCC.
Collapse
Affiliation(s)
- Yue Dai
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hongchen Li
- Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shiyin Fan
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Kai Wang
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Ziyi Cui
- Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyu Zhao
- Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xue Sun
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mingen Lin
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaxi Li
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi Gao
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ziyin Tian
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Institute for Translational Brain Research, MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Bingbing Zha
- Department of Endocrinology, Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China.
| | - Lei Lv
- Fifth People's Hospital of Shanghai, MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Yanping Xu
- Tongji Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Dwivedi AR, Jaiswal S, Kukkar D, Kumar R, Singh TG, Singh MP, Gaidhane AM, Lakhanpal S, Prasad KN, Kumar B. A decade of pyridine-containing heterocycles in US FDA approved drugs: a medicinal chemistry-based analysis. RSC Med Chem 2024; 16:d4md00632a. [PMID: 39493227 PMCID: PMC11528346 DOI: 10.1039/d4md00632a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024] Open
Abstract
Heterocyclic scaffolds, particularly, pyridine-containing azaheterocycles, constitute a major part of the drugs approved in the past decade. In the present review, we explored the pyridine ring part of US FDA-approved small molecules (2014-2023). The analysis of the approved drugs bearing a pyridine ring revealed that a total of 54 drugs were approved. Among them, the significant number comprised the anticancer category (18 drugs, 33%), followed by drugs affecting the CNS system (11 drugs, 20%), which include drugs to treat migraines, Parkinsonism disorders, chemotherapeutic-induced nausea, insomnia, and ADHD or as CNS-acting analgesics or sedatives. Next, six drugs (11%) were also approved to treat rare conditions, followed by five drugs that affect the hematopoietic system. The analysis also revealed that drug approval was granted for antibiotics, antivirals, and antifungals, including drugs for the treatment of tropical and sub-tropical diseases. Primary drug targets explored were kinases, and the major metabolizing enzyme was CYP3A4. Further analysis of formulation types revealed that 50% of the approved drugs were tablets, followed by 17% capsules and 15% injections. Elemental analysis showed that most approved drugs contained sulfur, while fluorine was noted in 32 compounds. Therefore, the present review is a concerted effort to cover drugs bearing pyridine rings approved in the last decade and provide thorough discussion and commentary on their pharmacokinetics and pharmacodynamics aspects. Furthermore, in-depth structural and elemental analyses were explored, thus providing comprehensive guidance for medicinal chemists and scientists working in allied science domains.
Collapse
Affiliation(s)
| | - Shivani Jaiswal
- Institute of Pharmaceutical Research, GLA University Mathura, 17, Km Stone, National Highway #2, Delhi-Mathura Road India
| | - Deepak Kukkar
- University Centre for Research and Development, Chandigarh University Gharuan 140413 Punjab India
| | - Roshan Kumar
- Graphic Era (Deemed to be University) Clement Town Dehradun 248002 India
- Department Of Microbiology, Central University of Punjab VPO-Ghudda Punjab-151401 India
| | - Thakur Gurjeet Singh
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University Rajpura 140401 Punjab India
| | - Mahendra Pratap Singh
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Abhay M Gaidhane
- Jawaharlal Nehru Medical College, and Global Health Academy, School of Epidemiology and Public Health, Datta Meghe Institute of Higher Education Wardha India
| | - Sorabh Lakhanpal
- Division of Research and Development, Lovely Professional University Phagwara-144411 India
| | | | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Chauras Campus, HNB Garhwal University (A Central University) Srinagar Uttarakhand 246174 India
| |
Collapse
|
5
|
Geissler AS, Gorodkin J, Seemann SE. Patent data-driven analysis of literature associations with changing innovation trends. Front Res Metr Anal 2024; 9:1432673. [PMID: 39149511 PMCID: PMC11324476 DOI: 10.3389/frma.2024.1432673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
Patents are essential for transferring scientific discoveries to meaningful products that benefit societies. While the academic community focuses on the number of citations to rank scholarly works according to their "scientific merit," the number of citations is unrelated to the relevance for patentable innovation. To explore associations between patents and scholarly works in publicly available patent data, we propose to utilize statistical methods that are commonly used in biology to determine gene-disease associations. We illustrate their usage on patents related to biotechnological trends of high relevance for food safety and ecology, namely the CRISPR-based gene editing technology (>60,000 patents) and cyanobacterial biotechnology (>33,000 patents). Innovation trends are found through their unexpected large changes of patent numbers in a time-series analysis. From the total set of scholarly works referenced by all investigated patents (~254,000 publications), we identified ~1,000 scholarly works that are statistical significantly over-represented in the references of patents from changing innovation trends that concern immunology, agricultural plant genomics, and biotechnological engineering methods. The detected associations are consistent with the technical requirements of the respective innovations. In summary, the presented data-driven analysis workflow can identify scholarly works that were required for changes in innovation trends, and, therefore, is of interest for researches that would like to evaluate the relevance of publications beyond the number of citations.
Collapse
Affiliation(s)
- Adrian Sven Geissler
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jan Gorodkin
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Stefan Ernst Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
6
|
Shao W, Yang Y, Shen W, Ren L, WenwenWang, Zhu P. Hyaluronic acid-conjugated methotrexate and 5-fluorouracil for targeted drug delivery. Int J Biol Macromol 2024; 273:132671. [PMID: 38823747 DOI: 10.1016/j.ijbiomac.2024.132671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024]
Abstract
The delivery of chemotherapeutical drugs via nanomaterials has become a focus of pharmaceutical research over several decades due to improved drug delivery to cancer cells, decreased side effects on normal tissues, and increased therapeutic efficacy. Herein, a novel hyaluronic acid-conjugated methotrexate and 5-fluorouracil nanodrug system has been developed to address the critical limitations associated with the high toxicity and side effects of methotrexate and 5-fluorouracil. Furthermore, this nanodrug system enhances the targeting capacity of drug molecules and facilitates the potential integration of multimodal drug therapies. Concomitantly, the synergistic effects of MTX with 5-fluorouracil have been shown to improve the therapeutic index of MTX while attenuating the associated toxicities of MTX. The structure and micromorphology of the novel nanodrug can be confirmed by 1HNMR, FT-IR, UV-Vis, DLS, TEM, and AFM. Due to the ability of HA to bind to CD44 receptors activated on the surface of cancer cells and its enhanced permeability and retention (EPR) effect, the novel nanodrug we designed and synthesized can effectively target cancer cells. Cell counting Kit-8 (CCK8), flow cytometry, and live-dead staining assays in vitro showed that this nanodrug system had high targeting and antitumor activity against CD44 receptors. By using drugs to act on patient-derived colorectal, liver, and breast cancer organoids, the anticancer effect of the nanodrug was identified and verified. These results showed that the nanodrug system developed in this study may have great potential as a targeted therapy for cancer.
Collapse
Affiliation(s)
- Wanfei Shao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China
| | - Yanfang Yang
- Guangxi Zhuoqiang Technology Co. LTD, Nanning, Guangxi 530000, China
| | - Weidong Shen
- Department of Gastroenterology, Jiangyin People's Hospital Affiliated to Nantong University, Jiangyin, China.
| | - Lei Ren
- Nanjing University of Chinese Medicine Affiliated Jiangyin Traditional Chinese Medicine Hospital, Jiangyin 214400, Jiangsu, China
| | - WenwenWang
- Nanjing University of Chinese Medicine Affiliated Jiangyin Traditional Chinese Medicine Hospital, Jiangyin 214400, Jiangsu, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, PR China.
| |
Collapse
|
7
|
Gach-Janczak K, Drogosz-Stachowicz J, Janecka A, Wtorek K, Mirowski M. Historical Perspective and Current Trends in Anticancer Drug Development. Cancers (Basel) 2024; 16:1878. [PMID: 38791957 PMCID: PMC11120596 DOI: 10.3390/cancers16101878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Cancer is considered one of the leading causes of death in the 21st century. The intensive search for new anticancer drugs has been actively pursued by chemists and pharmacologists for decades, focusing either on the isolation of compounds with cytotoxic properties from plants or on screening thousands of synthetic molecules. Compounds that could potentially become candidates for new anticancer drugs must have the ability to inhibit proliferation and/or induce apoptosis in cancer cells without causing too much damage to normal cells. Some anticancer compounds were discovered by accident, others as a result of long-term research. In this review, we have presented a brief history of the development of the most important groups of anticancer drugs, pointing to the fact that they all have many side effects.
Collapse
Affiliation(s)
- Katarzyna Gach-Janczak
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | | | - Anna Janecka
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | - Karol Wtorek
- Department of Biomolecular Chemistry, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland; (K.G.-J.); (A.J.); (K.W.)
| | - Marek Mirowski
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
8
|
Mansour A, Fytory M, Ahmed OM, Rahman FEZSA, El-Sherbiny IM. In-vitro and in-vivo assessment of pH-responsive core-shell nanocarrier system for sequential delivery of methotrexate and 5-fluorouracil for the treatment of breast cancer. Int J Pharm 2023; 648:123608. [PMID: 37972670 DOI: 10.1016/j.ijpharm.2023.123608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/31/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer (BC) is one of the leading fatal diseases affecting females worldwide. Despite the presence of tremendous chemotherapeutic agents, the resistance emergence directs the recent research towards synergistic drugs' combination along with encapsulation inside biocompatible smart nanocarriers. Methotrexate (MTX) and 5-fluorouracil (Fu) are effective against BC and have sequential synergistic activity. In this study, a core-shell nanocarrier composed of mesoporous silica nanoparticles (MSN) as the core and zeolitic imidazolate framework-8 nano metal organic frameworks (ZIF-8 NMOF) as the shell was developed and loaded with Fu and MTX, respectively. The developed nanostructure; Fu-MSN@MTX-NMOF was validated by several characterization techniques and conferred high drugs' entrapment efficiency (EE%). In-vitro assessment revealed a pH-responsive drug release pattern in the acidic pH where MTX was released followed by Fu. The cytotoxicity evaluation indicated enhanced anticancer effect of the Fu-MSN@MTX-NMOF relative to the free drugs in addition to time-dependent fortified cytotoxic effect due to the sequential drugs' release. The in-vivo anticancer efficiency was examined using Ehrlich ascites carcinoma (EAC) animal model where the anticancer effect of the developed Fu-MSN@MTX-NMOF was compared to the sequentially administrated free drugs. The results revealed enhanced anti-tumor effect while maintaining the normal functions of the vital organs as the heart, kidney and liver.
Collapse
Affiliation(s)
- Amira Mansour
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt
| | - Mostafa Fytory
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt; Material Science and Nanotechnology Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, 62511, Beni-suef, Egypt
| | - Osama M Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef 62521, Egypt
| | | | - Ibrahim M El-Sherbiny
- Nanomedicine Research Labs, Center for Materials Science (CMS), Zewail City of Science and Technology, 6(th) October City, 12578, Giza, Egypt.
| |
Collapse
|
9
|
Qayoom H, Alshehri B, Ul Haq B, Almilaibary A, Alkhanani M, Ahmad Mir M. Decoding the molecular mechanism of stypoldione against breast cancer through network pharmacology and experimental validation. Saudi J Biol Sci 2023; 30:103848. [PMID: 37964781 PMCID: PMC10641555 DOI: 10.1016/j.sjbs.2023.103848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/11/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Breast cancer is the primary factor contributing to female mortality worldwide. The incidence has overtaken lung cancer. It is the most difficult illness due to its heterogeneity and is made up of several subtypes, including Luminal A and B, basal-like, Her-2 overexpressed and TNBC. Amongst different breast carcinoma subtypes, TNBC is the most deadly breast cancer subtype. The hostile nature of TNBC is mainly attributed to its lack of three hormonal receptors and hence lack of targeted therapy. Furthermore, the current diagnostic options like radiotherapy, surgery and chemotherapy render unsuccessful due to recurrence, treatment side effects and drug resistance. The majority of anticancer drugs come from natural sources or is developed from them, making nature a significant source of many medicines. Marine-based constituents such as nucleotides, proteins, peptides, and amides are receiving a lot of interest in the field of cancer treatment due to their bioactive properties. The role of stypoldione in this study as a prospective treatment for breast carcinoma was examined, and we sought to comprehend the molecular means/pathways this chemical employs in breast carcinoma. The most promising possibility for an anti-cancer treatment is stypoldione, a marine chemical produced from the brown alga Stypopodium zonale. We investigated stypoldione's mode of action in breast cancer using the network pharmacology method, and we confirmed our research by using a number of computational tools, including UALCAN, cBioportal, TIMER, docking, and simulation. The findings revealed 92 common targets between the chemical and breast cancer target network. Additionally, we found that stypoldione targets a number of unregulated genes in breast cancer, including: ESR1, HSP90AA1, CXCL8, PTGS2, APP, MDM2, JAK2, KDR, LCK, GRM5, MAPK14, KIT, and several signaling pathways such as FOXO signaling pathway, VEGF pathway, calcium signaling pathway, MAPK/ERK pathway and Neuroactive ligand-receptor interaction. The examined medication demonstrated a strong affinity for the major targets, according to a docking analysis. The best hit compound produced a stable protein-ligand pair, as predicted by molecular dynamics simulations. Our results are supported by the fact that when in-vitro assays were done on melanoma using stypoldione compound it was found that its mechanisms of action involved the PI3K/mTOR/Akt and NF-kB pathways. This study was set out to inspect the possible value of stypoldione as a breast cancer cure and to get a deeper understanding of the molecular mechanisms by which this drug acts on breast cancer.
Collapse
Affiliation(s)
- Hina Qayoom
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Bader Alshehri
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Almajmaah 11952, Saudi Arabia
| | - Burhan Ul Haq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| | - Abdullah Almilaibary
- Department of Family & Community Medicine, Faculty of Medicine, Al Baha University, Albaha 65511, Saudi Arabia
| | - Mustfa Alkhanani
- Department of Biology, College of Science, Hafr Al Batin University of Hafr Al-Batin, 31991, Saudi Arabia
| | - Manzoor Ahmad Mir
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar 190006, India
| |
Collapse
|
10
|
Temple NJ. Research strategies in nutrition in health and disease: The failure of mechanistic research. Front Nutr 2023; 10:1082182. [PMID: 36742421 PMCID: PMC9893282 DOI: 10.3389/fnut.2023.1082182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
This paper critically evaluates different research methods in order to assess their value for establishing which dietary changes are most effective for protecting health and preventing disease. The evidence demonstrates that the combined use of observational studies (mainly cohort studies) and randomized controlled trials (RCTs) is the most successful strategy. Studies of the details of body mechanisms in health and disease (mechanistic research) is another commonly used research strategy. However, much evidence demonstrates that it is a far less successful strategy. In order to support the above conclusions research studies from the following areas are discussed: obesity and dietary fat; heart disease and saturated fat; the Mediterranean diet and cardiovascular disease; type 2 diabetes and dietary fiber; and cancer and micronutrients. While mechanistic research has a poor track record in nutrition, it has achieved some success in other areas of biomedical science. This is shown by examining the role of mechanistic research in the discovery of new drugs.
Collapse
|
11
|
Mu X, Xiang Z, Xu Y, He J, Lu J, Chen Y, Wang X, Tu CR, Zhang Y, Zhang W, Yin Z, Leung WH, Lau YL, Liu Y, Tu W. Glucose metabolism controls human γδ T-cell-mediated tumor immunosurveillance in diabetes. Cell Mol Immunol 2022; 19:944-956. [PMID: 35821253 PMCID: PMC9338301 DOI: 10.1038/s41423-022-00894-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/11/2022] [Indexed: 11/09/2022] Open
Abstract
Patients with type 2 diabetes mellitus (T2DM) have an increased risk of cancer. The effect of glucose metabolism on γδ T cells and their impact on tumor surveillance remain unknown. Here, we showed that high glucose induced Warburg effect type of bioenergetic profile in Vγ9Vδ2 T cells, leading to excessive lactate accumulation, which further inhibited lytic granule secretion by impairing the trafficking of cytolytic machinery to the Vγ9Vδ2 T-cell-tumor synapse by suppressing AMPK activation and resulted in the loss of antitumor activity in vitro, in vivo and in patients. Strikingly, activating the AMPK pathway through glucose control or metformin treatment reversed the metabolic abnormalities and restored the antitumor activity of Vγ9Vδ2 T cells. These results suggest that the impaired antitumor activity of Vγ9Vδ2 T cells induced by dysregulated glucose metabolism may contribute to the increased cancer risk in T2DM patients and that metabolic reprogramming by targeting the AMPK pathway with metformin may improve tumor immunosurveillance.
Collapse
Affiliation(s)
- Xiaofeng Mu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zheng Xiang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yan Xu
- The First Affiliated Hospital, Faculty of Medical Science, Jinan University, Guangzhou, 510632, Guangdong, PR China
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jing He
- GuangDong 999 Brain Hospital, Guangzhou City, Guangdong Province, PR China
| | - Jianwen Lu
- Department of Endocrinology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, PR China
| | - Yuyuan Chen
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xiwei Wang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Chloe Ran Tu
- Computational and Systems Biology Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Yanmei Zhang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Wenyue Zhang
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Zhinan Yin
- Zhuhai Precision Medical Center, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, Zhuhai, 519000, Guangdong, PR China
- The Biomedical Translational Research Institute, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Wing-Hang Leung
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yu-Lung Lau
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China
| | - Yinping Liu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Wenwei Tu
- Department of Pediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
12
|
Araj H, Tseng H, Yeung DT. Supporting discovery and development of medical countermeasures for chemical injury to eye and skin. Exp Eye Res 2022; 221:109156. [PMID: 35716762 DOI: 10.1016/j.exer.2022.109156] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 12/01/2022]
Abstract
Vesicants, from vesica (Latin for blister), can cause local and systemic toxicity. They include the chemotherapy drug nitrogen mustard and chemical warfare agents sulfur mustard, Lewisite, and phosgene oxime. These agents are commonly released in vapor form and consequently, eyes and skin are the most vulnerable. The ocular and cutaneous injuries can be acute, subacute, or chronic, and can predispose casualties to secondary deleterious effects. Underlying these broad organ responses are shared and tissue-specific cellular and molecular biological cascades that attempt to counteract such chemical injuries. Depending on the severity of the chemical insult, biological responses often lead to inadequate wound healing and result in long-term pathology instead. Exposure to other toxic industrial chemicals such as acrolein, chloropicrin, and hydrogen fluoride, can also cause prominent eye and skin damage. There are currently no FDA-approved drugs to counteract these injuries. Hence, the possibility of a mass casualty emergency involving these chemicals is a major public health concern. Recognizing this critical challenge, the United States Department of Health and Human Services (HHS) is committed to the development of medical countermeasures to advance national health and medical preparedness against these highly toxic chemicals. Here, we provide an overview of various HHS funding and scientific opportunities available in this space, emphasizing parallels between eye and skin response to chemical injury. We also discuss a main limitation of existing data and suggest ways to overcome it.
Collapse
Affiliation(s)
- Houmam Araj
- Department of Health and Human Services, National Eye Institute/National Institutes of Health (NEI/NIH), 6700B Rockledge Drive, Bethesda, MD, 20817, United States.
| | - Hung Tseng
- Department of Health and Human Services, National Institute of Arthritis & Musculoskeletal & Skin Diseases/National Institutes of Health (NIAMS/NIH), 6701 Democracy Boulevard, Bethesda, MD, 20892, United States.
| | - David T Yeung
- Department of Health and Human Services, National Institute of Allergy and Infectious Diseases/National Institutes of Health (NIAID/NIH), 5601 Fishers Lane, Bethesda, MD, 20892, United States.
| |
Collapse
|
13
|
Amariucai-Mantu D, Antoci V, Sardaru MC, Al Matarneh CM, Mangalagiu I, Danac R. Fused pyrrolo-pyridines and pyrrolo-(iso)quinoline as anticancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This work emphasizes the synthesis strategies and antiproliferative related properties of fused pyrrolo-pyridine (including indolizine and azaindoles) and pyrrolo-(iso)quinoline derivatives recently reported in literature.
Collapse
Affiliation(s)
| | - Vasilichia Antoci
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | | | | | - Ionel Mangalagiu
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| | - Ramona Danac
- Chemistry Department , Alexandru Ioan Cuza University of Iasi , Iasi , Romania
| |
Collapse
|
14
|
Malik JA, Ahmed S, Jan B, Bender O, Al Hagbani T, Alqarni A, Anwar S. Drugs repurposed: An advanced step towards the treatment of breast cancer and associated challenges. Biomed Pharmacother 2021; 145:112375. [PMID: 34863612 DOI: 10.1016/j.biopha.2021.112375] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 02/09/2023] Open
Abstract
Breast cancer (BC) is mostly observed in women and is responsible for huge mortality in women subjects globally. Due to the continued development of drug resistance and other contributing factors, the scientific community needs to look for new alternatives, and drug repurposing is one of the best opportunities. Here we light upon the drug repurposing with a major focus on breast cancer. BC is a division of cancer known as the leading cause of death of 2.3 million women globally, with 685,000 fatalities. This number is steadily rising, necessitating the development of a treatment that can extend survival time. All available treatments for BC are very costly as well as show side effects. This unfulfilled requirement of the anti-cancer drugs ignited an enthusiasm for drug repositioning, which means finding out the anti-cancer use of already marketed drugs for other complications. With the advancement in proteomics, genomics, and computational approaches, the drug repurposing process hastens. So many drugs are repurposed for the BC, including alkylating agents, antimetabolite, anthracyclines, an aromatase inhibitor, mTOR, and many more. The drug resistance in breast cancer is rising, so reviewing how the challenges in breast cancer can be combated with drug repurposing. This paper provides the updated information on all the repurposed drugs candidates for breast cancer with the molecular mechanism responsible for their anti-tumor activity. Additionally, all the challenges that occur during the repurposing of the drugs are discussed.
Collapse
Affiliation(s)
- Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Guwahati, India; Department of Biomedical engineering, Indian Institute of Technology (IIT), Ropar, Punjab, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Mohali, India
| | - Bisma Jan
- Department of Pharmaceutical Sciences, University of Kashmir, Srinagar, India
| | - Onur Bender
- Biotechnology Institute, Ankara University, Ankara, Turkey
| | - Turki Al Hagbani
- Department of Pharmaceutics, College of Pharmacy, University of Hail, Hail, Saudi Arabia
| | - Aali Alqarni
- Pharmaceutical Chemistry Department, Pharmacology unit, College of Clinical Pharmacy, Al Baha University, Saudi Arabia
| | - Sirajudheen Anwar
- Pharmacology and Toxicology Department, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
15
|
López-Urrutia E, Padilla-Benavides T, Pérez-Plasencia C, Campos-Parra AD. Editorial: Repurposed Drugs Targeting Cancer Signaling Pathways: Dissecting New Mechanism of Action Through In Vitro and In Vivo Analyses. Front Oncol 2021; 11:773429. [PMID: 34671566 PMCID: PMC8521020 DOI: 10.3389/fonc.2021.773429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Eduardo López-Urrutia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico
| | | | - Carlos Pérez-Plasencia
- Laboratorio de Genómica Funcional, Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla, Mexico.,Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Alma D Campos-Parra
- Laboratorio de Genómica, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| |
Collapse
|
16
|
Chang Z, Qin W, Zheng H, Schegg K, Han L, Liu X, Wang Y, Wang Z, McSwiggin H, Peng H, Yuan S, Wu J, Wang Y, Zhu S, Jiang Y, Nie H, Tang Y, Zhou Y, Hitchcock MJM, Tang Y, Yan W. Triptonide is a reversible non-hormonal male contraceptive agent in mice and non-human primates. Nat Commun 2021; 12:1253. [PMID: 33623031 PMCID: PMC7902613 DOI: 10.1038/s41467-021-21517-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023] Open
Abstract
There are no non-hormonal male contraceptives currently on the market despite decades of efforts toward the development of "male pills". Here, we report that triptonide, a natural compound purified from the Chinese herb Tripterygium Wilfordii Hook F displays reversible male contraceptive effects in both mice and monkeys. Single daily oral doses of triptonide induces deformed sperm with minimal or no forward motility (close to 100% penetrance) and consequently male infertility in 3-4 and 5-6 weeks in mice and cynomolgus monkeys, respectively. Male fertility is regained in ~4-6 weeks after cessation of triptonide intake in both species. Either short- or long-term triptonide treatment causes no discernable systematic toxic side effects based on histological examination of vital organs in mice and hematological and serum biochemical analyses in monkeys. Triptonide appears to target junction plakoglobin and disrupts its interactions with SPEM1 during spermiogenesis. Our data further prove that targeting late spermiogenesis represents an effective strategy for developing non-hormonal male contraceptives.
Collapse
Affiliation(s)
- Zongliang Chang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Weibing Qin
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Kathleen Schegg
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Lu Han
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Xiaohua Liu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Yue Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Zhuqing Wang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Hayden McSwiggin
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Hongying Peng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Shuiqiao Yuan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Jiabao Wu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Yongxia Wang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Shenghui Zhu
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Yanjia Jiang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Hua Nie
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Yuan Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Yu Zhou
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China
| | - Michael J M Hitchcock
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, USA
| | - Yunge Tang
- NHC Key Laboratory of Male Reproduction and Genetics, Guangzhou, People's Republic of China.
- Family Planning Research Institute of Guangdong Province, Guangzhou, People's Republic of China.
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, NV, USA.
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA.
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
17
|
Liu B, Yu J. Anti-NLRP3 Inflammasome Natural Compounds: An Update. Biomedicines 2021; 9:136. [PMID: 33535473 PMCID: PMC7912743 DOI: 10.3390/biomedicines9020136] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/08/2021] [Accepted: 01/23/2021] [Indexed: 01/14/2023] Open
Abstract
The nucleotide-binding domain and leucine-rich repeat related (NLR) family, pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex that recognizes various danger or stress signals from pathogens, the host, and the environment, leading to activation of caspase-1 and inducing inflammatory responses. This pro-inflammatory protein complex plays critical roles in pathogenesis of a wide range of diseases including neurodegenerative diseases, autoinflammatory diseases, and metabolic disorders. Therefore, intensive efforts have been devoted to understanding its activation mechanisms and to searching for its specific inhibitors. Approximately forty natural compounds with anti-NLRP3 inflammasome properties have been identified. Here, we provide an update about new natural compounds that have been identified within the last three years to inhibit the NLRP3 inflammasome and offer an overview of the underlying molecular mechanisms of their anti-NLRP3 inflammasome activities.
Collapse
Affiliation(s)
| | - Jiujiu Yu
- Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, Lincoln, NE 68583, USA;
| |
Collapse
|
18
|
Kaushik I, Ramachandran S, Prasad S, Srivastava SK. Drug rechanneling: A novel paradigm for cancer treatment. Semin Cancer Biol 2021; 68:279-290. [PMID: 32437876 PMCID: PMC7786449 DOI: 10.1016/j.semcancer.2020.03.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/15/2020] [Accepted: 03/18/2020] [Indexed: 12/13/2022]
Abstract
Cancer continues to be one of the leading contributors towards global disease burden. According to NIH, cancer incidence rate per year will increase to 23.6 million by 2030. Even though cancer continues to be a major proportion of the disease burden worldwide, it has the lowest clinical trial success rate amongst other diseases. Hence, there is an unmet need for novel, affordable and effective anti-neoplastic medications. As a result, a growing interest has sparkled amongst researchers towards drug repurposing. Drug repurposing follows the principle of polypharmacology, which states, "any drug with multiple targets or off targets can present several modes of action". Drug repurposing also known as drug rechanneling, or drug repositioning is an economic and reliable approach that identifies new disease treatment of already approved drugs. Repurposing guarantees expedited access of drugs to the patients as these drugs are already FDA approved and their safety and toxicity profile is completely established. Epidemiological studies have identified the decreased occurrence of oncological or non-oncological conditions in patients undergoing treatment with FDA approved drugs. Data from multiple experimental studies and clinical observations have depicted that several non-neoplastic drugs have potential anticancer activity. In this review, we have summarized the potential anti-cancer effects of anti-psychotic, anti-malarial, anti-viral and anti-emetic drugs with a brief overview on their mechanism and pathways in different cancer types. This review highlights promising evidences for the repurposing of drugs in oncology.
Collapse
Affiliation(s)
- Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
19
|
Li L, Wang T, Hu M, Zhang Y, Chen H, Xu L. Metformin Overcomes Acquired Resistance to EGFR TKIs in EGFR-Mutant Lung Cancer via AMPK/ERK/NF-κB Signaling Pathway. Front Oncol 2020; 10:1605. [PMID: 33014814 PMCID: PMC7511631 DOI: 10.3389/fonc.2020.01605] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/24/2020] [Indexed: 01/15/2023] Open
Abstract
Background: The major limitation of EGFR TKIs in EGFR-mutant lung cancer therapy is the development of acquired resistance. The underlying mechanisms remain unknown in about 30% of cases. NF-κB activation was encountered in the acquired resistance to EGFR TKIs. Unfortunately, none of NF-κB inhibitors has been clinically approved. The most commonly used antidiabetic drug metformin has demonstrated antitumor effects associated with NF-κB inhibition. Therefore, in this study, metformin was examined for its antitumor and antiresistance effects and underlying mechanisms. Methods:In vitro and in vivo EGFR-mutant lung cancer models with acquired resistance to EGFR TKIs were used. Results: We found that NF-κB was activated in EGFR-mutant lung cancer cells with acquired resistance to EGFR TKIs. Metformin inhibited proliferation and promoted apoptosis of lung cancer cells, especially those with acquired EGFR TKI resistance. Moreover, metformin reversed and delayed acquired resistance to EGFR TKIs as well as suppressed cancer stemness in EGFR-mutant lung cancer. Mechanistically, those effects of metformin were associated with activation of AMPK, resulting in the inhibition of downstream ERK/NF-κB signaling. Conclusions: Our data provided novel and further molecular rationale and preclinical data to support combination of metformin with EGFR TKIs to treat EGFR-mutant lung cancer patients, especially those with acquired resistance.
Collapse
Affiliation(s)
- Ling Li
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengdi Hu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yali Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
20
|
Siponen M, Klaavuniemi T. Why is the hypothetico-deductive (H-D) method in information systems not an H-D method? INFORMATION AND ORGANIZATION 2020. [DOI: 10.1016/j.infoandorg.2020.100287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
21
|
Santos FRS, Nunes DAF, Lima WG, Davyt D, Santos LL, Taranto AG, M. S. Ferreira J. Identification of Zika Virus NS2B-NS3 Protease Inhibitors by Structure-Based Virtual Screening and Drug Repurposing Approaches. J Chem Inf Model 2019; 60:731-737. [DOI: 10.1021/acs.jcim.9b00933] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Felipe R. S. Santos
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
- Laboratório de Química Farmacêutica Medicinal, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Damiana A. F. Nunes
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - William G. Lima
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brasil
| | - Danilo Davyt
- Departamento de Química Orgánica, Facultad de Química, Universidad de la República, Montevideo 11800, Uruguay
| | - Luciana L. Santos
- Laboratório de Biologia Molecular, Campus Centro-Oeste Dona Lindu, Universidade Federal de São, João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Alex G. Taranto
- Laboratório de Química Farmacêutica Medicinal, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| | - Jaqueline M. S. Ferreira
- Laboratório de Microbiologia Médica, Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei (UFSJ), Divinópolis 35501-296, Minas Gerais, Brasil
| |
Collapse
|
22
|
van Rixel VHS, Ramu V, Auyeung AB, Beztsinna N, Leger DY, Lameijer LN, Hilt ST, Le Dévédec SE, Yildiz T, Betancourt T, Gildner MB, Hudnall TW, Sol V, Liagre B, Kornienko A, Bonnet S. Photo-Uncaging of a Microtubule-Targeted Rigidin Analogue in Hypoxic Cancer Cells and in a Xenograft Mouse Model. J Am Chem Soc 2019; 141:18444-18454. [PMID: 31625740 PMCID: PMC11774275 DOI: 10.1021/jacs.9b07225] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Marine alkaloid rigidins are cytotoxic compounds known to kill cancer cells at nanomolar concentrations by targeting the microtubule network. Here, a rigidin analogue containing a thioether group was "caged" by coordination of its thioether group to a photosensitive ruthenium complex. In the dark, the coordinated ruthenium fragment prevented the rigidin analogue from inhibiting tubulin polymerization and reduced its toxicity in 2D cancer cell line monolayers, 3D lung cancer tumor spheroids (A549), and a lung cancer tumor xenograft (A549) in nude mice. Photochemical activation of the prodrug upon green light irradiation led to the photosubstitution of the thioether ligand by water, thereby releasing the free rigidin analogue capable of inhibiting the polymerization of tubulin. In cancer cells, such photorelease was accompanied by a drastic reduction of cell growth, not only when the cells were grown in normoxia (21% O2) but also remarkably in hypoxic conditions (1% O2). In vivo, low toxicity was observed at a dose of 1 mg·kg-1 when the compound was injected intraperitoneally, and light activation of the compound in the tumor led to 30% tumor volume reduction, which represents the first demonstration of the safety and efficacy of ruthenium-based photoactivated chemotherapy compounds in a tumor xenograft.
Collapse
Affiliation(s)
| | | | | | | | - David Y Leger
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | | | | | | | | | | | | | | | - Vincent Sol
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | - Bertrand Liagre
- Laboratoire PEIRENE EA7500, Faculté de Pharmacie , Université de Limoges , 2 rue du Dr Marcland , 87025 Limoges , France
| | | | | |
Collapse
|
23
|
Hopkins ME, Zavalina OL. Evaluating physicians’ serendipitous knowledge discovery in online discovery systems. ASLIB J INFORM MANAG 2019. [DOI: 10.1108/ajim-02-2019-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
A new approach to investigate serendipitous knowledge discovery (SKD) of health information is developed and tested to evaluate the information flow-serendipitous knowledge discovery (IF-SKD) model. The purpose of this paper is to determine the degree to which IF-SKD reflects physicians’ information behaviour in a clinical setting and explore how the information system, Spark, designed to support physicians’ SKD, meets its goals.
Design/methodology/approach
The proposed pre-experimental study design employs an adapted version of the McCay-Peet’s (2013) and McCay-Peet et al.’s (2015) serendipitous digital environment (SDE) questionnaire research tool to address the complexity associated with defining the way in which SKD is understood and applied in system design. To test the IF-SKD model, the new data analysis approach combining confirmatory factor analysis, data imputation and Monte Carlo simulations was developed.
Findings
The piloting of the proposed novel analysis approach demonstrated that small sample information behaviour survey data can be meaningfully examined using a confirmatory factor analysis technique.
Research limitations/implications
This method allows to improve the reliability in measuring SKD and the generalisability of findings.
Originality/value
This paper makes an original contribution to developing and refining methods and tools of research into information-system-supported serendipitous discovery of information by health providers.
Collapse
|
24
|
Anticandidal agent for multiple targets: the next paradigm in the discovery of proficient therapeutics/overcoming drug resistance. Future Med Chem 2019; 11:2955-2974. [DOI: 10.4155/fmc-2018-0479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Candida albicans is a prominent human fungal pathogen. Current treatments are suffering a massive gap due to emerging resistance against available antifungals. Therefore, there is an ardent need for novel antifungal candidates that essentially have more than one target, as most antifungal repertoires are single-target drugs. Exploration of multiple-drug targeting in antifungal therapeutics is still pending. An extensive literature survey was performed to categorize and comprehend relevant studies and the current therapeutic scenario that led researchers to preferentially consider multitarget drug-based Candida infection therapy. With this article, we identified and compiled a few potent antifungal compounds that are directed toward multiple virulent targets in C. albicans. Such compound(s) provide an optimistic platform of multiple targeting and could leave a substantial impact on the development of effective antifungals.
Collapse
|
25
|
Drug repurposing for breast cancer therapy: Old weapon for new battle. Semin Cancer Biol 2019; 68:8-20. [PMID: 31550502 PMCID: PMC7128772 DOI: 10.1016/j.semcancer.2019.09.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/24/2022]
Abstract
Despite tremendous resources being invested in prevention and treatment, breast cancer remains a leading cause of cancer deaths in women globally. The available treatment modalities are very costly and produces severe side effects. Drug repurposing that relate to new uses for old drugs has emerged as a novel approach for drug development. Repositioning of old, clinically approved, off patent non-cancer drugs with known targets, into newer indication is like using old weapons for new battle. The advances in genomics, proteomics and information computational biology has facilitated the process of drug repurposing. Repositioning approach not only fastens the process of drug development but also offers more effective, cheaper, safer drugs with lesser/known side effects. During the last decade, drugs such as alkylating agents, anthracyclins, antimetabolite, CDK4/6 inhibitor, aromatase inhibitor, mTOR inhibitor and mitotic inhibitors has been repositioned for breast cancer treatment. The repositioned drugs have been successfully used for the treatment of most aggressive triple negative breast cancer. The literature review suggest that serendipity plays a major role in the drug development. This article describes the comprehensive overview of the current scenario of drug repurposing for the breast cancer treatment. The strategies as well as several examples of repurposed drugs are provided. The challenges associated with drug repurposing are discussed.
Collapse
|
26
|
Kunnumakkara AB, Bordoloi D, Sailo BL, Roy NK, Thakur KK, Banik K, Shakibaei M, Gupta SC, Aggarwal BB. Cancer drug development: The missing links. Exp Biol Med (Maywood) 2019; 244:663-689. [PMID: 30961357 PMCID: PMC6552400 DOI: 10.1177/1535370219839163] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
IMPACT STATEMENT The success rate for cancer drugs which enter into phase 1 clinical trials is utterly less. Why the vast majority of drugs fail is not understood but suggests that pre-clinical studies are not adequate for human diseases. In 1975, as per the Tufts Center for the Study of Drug Development, pharmaceutical industries expended 100 million dollars for research and development of the average FDA approved drug. By 2005, this figure had more than quadrupled, to $1.3 billion. In order to recover their high and risky investment cost, pharmaceutical companies charge more for their products. However, there exists no correlation between drug development cost and actual sale of the drug. This high drug development cost could be due to the reason that all patients might not respond to the drug. Hence, a given drug has to be tested in large number of patients to show drug benefits and obtain significant results.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bethsebie Lalduhsaki Sailo
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Nand Kishor Roy
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory, DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Mehdi Shakibaei
- Faculty of Medicine, Institute of Anatomy, Ludwig Maximilian University of Munich, Munich D-80336, Germany
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
27
|
McCarron JG, Wilson C, Heathcote HR, Zhang X, Buckley C, Lee MD. Heterogeneity and emergent behaviour in the vascular endothelium. Curr Opin Pharmacol 2019; 45:23-32. [PMID: 31005824 PMCID: PMC6700393 DOI: 10.1016/j.coph.2019.03.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/18/2019] [Indexed: 12/16/2022]
Abstract
The endothelium is the single layer of cells lining all blood vessels, and it is a remarkable cardiovascular control centre. Each endothelial cell has only a small number (on average six) of interconnected neighbours. Yet this arrangement produces a large repertoire of behaviours, capable of controlling numerous cardiovascular functions in a flexible and dynamic way. The endothelium regulates the delivery of nutrients and removal of waste by regulating blood flow and vascular permeability. The endothelium regulates blood clotting, responses to infection and inflammation, the formation of new blood vessels, and remodelling of the blood vessel wall. To carry out these roles, the endothelium autonomously interprets a complex environment crammed with signals from hormones, neurotransmitters, pericytes, smooth muscle cells, various blood cells, viral or bacterial infection and proinflammatory cytokines. It is generally assumed that the endothelium responds to these instructions with coordinated responses in a homogeneous population of endothelial cells. Here, we highlight evidence that shows that neighbouring endothelial cells are highly heterogeneous and display different sensitivities to various activators. Cells with various sensitivities process different extracellular signals into distinct streams of information in parallel, like a vast switchboard. Communication occurs among cells and new ‘emergent’ signals are generated that are non-linear composites of the inputs. Emergent signals cannot be predicted or deduced from the properties of individual cells. Heterogeneity and emergent behaviour bestow capabilities on the endothelial collective that far exceed those of individual cells. The implications of heterogeneity and emergent behaviour for understanding vascular disease and drug discovery are discussed.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Helen R Heathcote
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Xun Zhang
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Charlotte Buckley
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
28
|
Guesmi F, Ben Hmed M, Prasad S, Tyagi AK, Landoulsi A. In vivo pathogenesis of colon carcinoma and its suppression by hydrophilic fractions of Clematis flammula via activation of TRAIL death machinery (DRs) expression. Biomed Pharmacother 2018; 109:2182-2191. [PMID: 30551475 DOI: 10.1016/j.biopha.2018.11.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 02/06/2023] Open
Abstract
This work focused on characterizing hydrophilic fractions of Clematis flammula (CFl). The data here clearly demonstrated that hydrolate fractions act as a free radical scavengers and inhibited proliferation of different cell lines in a time- and concentration-dependent manner, transwell, and with a significant cytotoxic effect. Treating cells with CFl had the effect of suppressing cell growth attenuated by ROS generation in colonic carcinoma. Moreover, CFl in HCT116 cells suppressed survival, proliferation, invasion, angiogenesis and metastasis in vitro by inhibiting gene expression. Following CFl treatment, caspases and PARP cleavage were detected. The up- and down-regulated genes obtained from the WBA of the effect of CFl showed that several biological processes were associated with apoptosis and induction of G1 cell cycle arrest. CFl synergizes the effect of TRAIL by down-regulating the expression of cell survival proteins involved in apoptosis compared to cells treated with CFl or TRAIL alone. Our findings showed that CFl sensitizes apoptosis in TRAIL-resistant cells by activating MAPKs, SP1, and CHOP, that induced DR5 expression. Overall, our data showed that CFl is a promising antitumor agent through kinases and transcription factor induction, both of which are required to activate TRAIL receptors. Colon inflammation induced by LPS was inhibited by CFl hydrolate.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.
| | - Marwa Ben Hmed
- Research Unit of Macromolecular Biochemistry and Genetics, Faculty of Sciences of Gafsa, 2112, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA.
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
29
|
Vancura A, Bu P, Bhagwat M, Zeng J, Vancurova I. Metformin as an Anticancer Agent. Trends Pharmacol Sci 2018; 39:867-878. [PMID: 30150001 DOI: 10.1016/j.tips.2018.07.006] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/22/2018] [Accepted: 07/26/2018] [Indexed: 12/17/2022]
Abstract
Metformin has been a frontline therapy for type 2 diabetes (T2D) for many years. Its effectiveness in T2D treatment is mostly attributed to its suppression of hepatic gluconeogenesis; however, the mechanistic aspects of metformin action remain elusive. In addition to its glucose-lowering effect, metformin possesses other pleiotropic health-promoting effects that include reduced cancer risk and tumorigenesis. Metformin inhibits the electron transport chain (ETC) and ATP synthesis; however, recent data reveal that metformin regulates AMP-activated protein kinase (AMPK) and the mechanistic target of rapamycin complex 1 (mTORC1) by multiple, mutually nonexclusive mechanisms that do not necessarily depend on the inhibition of ETC and the cellular ATP level. In this review, we discuss recent advances in elucidating the molecular mechanisms that are relevant for metformin use in cancer treatment.
Collapse
Affiliation(s)
- Ales Vancura
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA.
| | - Pengli Bu
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Madhura Bhagwat
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Joey Zeng
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| | - Ivana Vancurova
- Department of Biological Sciences, St. John's University, Queens, NY 11439, USA
| |
Collapse
|
30
|
Guesmi F, Tyagi AK, Prasad S, Landoulsi A. Terpenes from essential oils and hydrolate of Teucrium alopecurus triggered apoptotic events dependent on caspases activation and PARP cleavage in human colon cancer cells through decreased protein expressions. Oncotarget 2018; 9:32305-32320. [PMID: 30190788 PMCID: PMC6122345 DOI: 10.18632/oncotarget.25955] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 07/29/2018] [Indexed: 12/20/2022] Open
Abstract
This study focused on characterizing the Hydrophobic and Hydrophilic fractions of Teucrium alopecurus in the context of cancer prevention and therapy. The goal was also to elucidate the molecular mechanisms involved and to determine its efficacy against cancer by triggering apoptosis and suppressing tumorigenesis in human colon cancer. The data here clearly demonstrated that oily fractions of Teucrium alopecurus act as free radical scavengers, antibacterial agent and inhibited the proliferation of HCT-116, U266, SCC4, Panc28, KBM5, and MCF-7 cells in a time- and concentration-dependent manner. The results of live/dead and colony formation assays further revealed that Teucrium essential oil has the efficacy to suppress the growth of colon carcinoma cells. In addition, essential oil of Teucrium alopecurus induced apoptosis, as indicated by cleavage of caspases-3, -8, and -9 and poly-adenosine diphosphate ribose polymerase. Moreover, Teucrium alopecurus essential oil suppressed gene expression involved in survival, proliferation, invasion, angiogenesis, and metastasis in human colon cancer cells. No sign of toxicity was detected in vivo after treatment with increasing concentrations of essential oil. Oral administration of T.alopecurus inhibited LPS-induced colon inflammation. This anticancer property of this specie Teucrium alopecurus fractions could be due to their phenolic and/or sesquiterpene content (d-limonene, α-Bisabolol, Humulene, Thymol, and (+)-epi-Bicyclosesquiphellandrene). Hence our study reveals the anticancer activity of Teucrium alopecurus oil mediated through the suppression of cell growth, cell proliferation, and the induction of apoptosis of cancer cells. Thus, it has potential to be developed as an anticancer agent; however more in vitro and in vivo studies are warranted.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| | - Amit K Tyagi
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunis, Tunisia
| |
Collapse
|
31
|
Proschak E, Stark H, Merk D. Polypharmacology by Design: A Medicinal Chemist's Perspective on Multitargeting Compounds. J Med Chem 2018; 62:420-444. [PMID: 30035545 DOI: 10.1021/acs.jmedchem.8b00760] [Citation(s) in RCA: 319] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Multitargeting compounds comprising activity on more than a single biological target have gained remarkable relevance in drug discovery owing to the complexity of multifactorial diseases such as cancer, inflammation, or the metabolic syndrome. Polypharmacological drug profiles can produce additive or synergistic effects while reducing side effects and significantly contribute to the high therapeutic success of indispensable drugs such as aspirin. While their identification has long been the result of serendipity, medicinal chemistry now tends to design polypharmacology. Modern in vitro pharmacological methods and chemical probes allow a systematic search for rational target combinations and recent innovations in computational technologies, crystallography, or fragment-based design equip multitarget compound development with valuable tools. In this Perspective, we analyze the relevance of multiple ligands in drug discovery and the versatile toolbox to design polypharmacology. We conclude that despite some characteristic challenges remaining unresolved, designed polypharmacology holds enormous potential to secure future therapeutic innovation.
Collapse
Affiliation(s)
- Ewgenij Proschak
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry , Heinrich Heine University Düsseldorf , Universitaetsstrasse 1 , D-40225 , Duesseldorf , Germany
| | - Daniel Merk
- Institute of Pharmaceutical Chemistry , Goethe University Frankfurt , Max-von-Laue-Strasse 9 , D-60438 Frankfurt , Germany.,Department of Chemistry and Applied Biosciences, Institute of Pharmaceutical Sciences , Swiss Federal Institute of Technology (ETH) Zürich , Vladimir-Prelog-Weg 4 , CH-8093 Zürich , Switzerland
| |
Collapse
|
32
|
Muller AWJ. Aging is an adaptation that selects in animals against disruption of homeostasis. Med Hypotheses 2018; 119:68-78. [PMID: 30122495 DOI: 10.1016/j.mehy.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/17/2018] [Accepted: 07/25/2018] [Indexed: 01/10/2023]
Abstract
During evolution, Muller's ratchet permanently generates deleterious germline mutations that eventually must be defused by selection. It seems widely held that cancer and aging-related diseases (ARDs) cannot contribute to this germline gene selection because they tail reproduction and thus occur too late, at the end of the life cycle. Here we posit however that by lessening the offspring's survival by proxy through diminishing parental care, they can still contribute to the selection. The hypothesis in detail: The widespread occurrence of aging in animals suggests that it is an adaptation. But to what benefit? Aging seems to have only drawbacks. In humans, ARDs cause today almost all mortality; they include heart disease, cerebrovascular disease, Alzheimer's disease, kidney disease and cancer. Compensation seems unthinkable. For cancer, the author proposed in a previous study a benefit to the species: purifying selection against deleterious germline genes that when expressed enhance intracellular energy dissipation. This multicausal energy dissipation, posited as the universal origin of cancer initiation, relates to cellular heat generation, disrupted metabolism, and inflammation. The organism reproduces during cancer's dormancy, and when approaching its end of life, the onset of cancer is accelerated in proportion to the cancer-initiating signal. Through cancer, the organism, now a parent, implements the self-actuated programmed death of Skulachev's phenoptosis. This "first death" enhances by proxy the offspring's chance of "second death" (or "double death") through diminished parental care. Repetition over generations realizes a purifying selection against genes causing energy dissipation. The removal of the deleterious germline gene mutations permanently generated by Muller's ratchet gives a benefit. We generalize, motivated by the parallels between cancer and aging, the purifying selection posited for cancer to aging. An ARD would be initiated in the organ by multicausal disruption of homeostasis, and be followed by dormancy and senescence until its onset near the end of the life cycle. Just as for cancer, the ARD eventually enhances double death, and the realized permanent selection gives a benefit to the species through the selection against germ line genes that disrupt homeostasis. Given their similarities, cancer and aging are combined in the posited Unified Cancer-Aging Adaptation (UCAA) model, which may be confirmed by next-generation sequencing data. Also because of the emerging important role of cellular senescence, the hypothesis may guide the development of therapies against both cancer and aging.
Collapse
Affiliation(s)
- Anthonie W J Muller
- Synthetic Systems Biology - Nuclear Organization Group, Swammerdam Institute for Life Sciences/University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands.
| |
Collapse
|
33
|
Liu Y, Zhang P, Li F, Jin X, Li J, Chen W, Li Q. Metal-based NanoEnhancers for Future Radiotherapy: Radiosensitizing and Synergistic Effects on Tumor Cells. Theranostics 2018; 8:1824-1849. [PMID: 29556359 PMCID: PMC5858503 DOI: 10.7150/thno.22172] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/05/2018] [Indexed: 12/13/2022] Open
Abstract
Radiotherapy is one of the major therapeutic strategies for cancer treatment. In the past decade, there has been growing interest in using high Z (atomic number) elements (materials) as radiosensitizers. New strategies in nanomedicine could help to improve cancer diagnosis and therapy at cellular and molecular levels. Metal-based nanoparticles usually exhibit chemical inertness in cellular and subcellular systems and may play a role in radiosensitization and synergistic cell-killing effects for radiation therapy. This review summarizes the efficacy of metal-based NanoEnhancers against cancers in both in vitro and in vivo systems for a range of ionizing radiations including gamma-rays, X-rays, and charged particles. The potential of translating preclinical studies on metal-based nanoparticles-enhanced radiation therapy into clinical practice is also discussed using examples of several metal-based NanoEnhancers (such as CYT-6091, AGuIX, and NBTXR3). Also, a few general examples of theranostic multimetallic nanocomposites are presented, and the related biological mechanisms are discussed.
Collapse
Affiliation(s)
- Yan Liu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feifei Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Jin Li
- State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Lanzhou, China
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Gansu Province, Lanzhou, China
| |
Collapse
|
34
|
Guesmi F, Prasad S, Tyagi AK, Landoulsi A. Antinflammatory and anticancer effects of terpenes from oily fractions of Teucruim alopecurus, blocker of IκBα kinase, through downregulation of NF-κB activation, potentiation of apoptosis and suppression of NF-κB-regulated gene expression. Biomed Pharmacother 2017; 95:1876-1885. [PMID: 28968948 DOI: 10.1016/j.biopha.2017.09.115] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 09/14/2017] [Accepted: 09/23/2017] [Indexed: 12/21/2022] Open
Abstract
Teucrium alopecurus is an endemic plant limited to southern Tunisia. In the present study, the chemical composition, anticancer and nuclear factor-κB (NF-κB) inhibitory effects of Teucrium alopecurus leaf essential oil was investigated. The analysis of Teucrium alopecurus (TA-1) with Gas Chromatography-Mass Spectrometry (GC/MS) showed that α-Bisabolol, (+)-epi-Bicyclosesquiphellandrene and α-Cadinol, were found in relatively high amounts (16.16%, 15.40% and 8.52%, respectively). Cell viability was determined by 3-(4-5-dimethylthiazol-2-yl) 2-5-diphenyl-tetrazolium (MTT) assay. Cell cycle and apoptosis assay were determined by flow cytometry. TA-1 functions as an anticancer agent by triggering apoptosis potentiated by chemotherapeutic agents and TNF in human myeloid leukemia cells (KBM5) through a mechanism involving poly(ADP-ribose) polymerase (PARP) cleavage and initiator and effector caspases activation. Moreover, electrophoretic mobility shift assay (EMSA) revealed that TA-1 downregulated nuclear localization of NF-κB and its phosphorylation induced by TNF-α and this, allows the suppression of the degradation and phosphorylation of IκB and the inhibition of the phosphorylation of p65 phosphorylation and the p50-p65 heterodimer nuclear translocation, causing attenuation of NF-κB-regulated antiapoptotic (Survivin, Bcl-2, c-IAP1/2, Bcl-xL, Mcl-1, and cFLIP), invasion (ICAM1), metasatsis (MMP-9), and angiogenesis (VEGF) gene expression in KBM5; and finally reporter gene expression. Furthermore, treatment with essential oil and TNF-α suppressed the NF-κB DNA binding activity. Finally, the activation of nuclear factor-κB induced by different plasmids (TNFR1, TRADD, TRAF2, NIK, TAK1/TAB1, and IKKβ) was inhibited following treatment with TA-1. Overall, TA-1 inhibits NF-κB activation and further growth and proliferation of cancer cells.
Collapse
Affiliation(s)
- Fatma Guesmi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia.
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Amit K Tyagi
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Ahmed Landoulsi
- Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
35
|
Strzemecki D, Guzowska M, Grieb P. Survival rates of homozygotic Tp53 knockout rats as a tool for preclinical assessment of cancer prevention and treatment. Cell Mol Biol Lett 2017; 22:9. [PMID: 28536640 PMCID: PMC5437597 DOI: 10.1186/s11658-017-0039-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/09/2017] [Indexed: 11/24/2022] Open
Abstract
Background The gene that encodes tumor protein p53, Tp53, is mutated or silenced in most human cancers and is recognized as one of the most important cancer drivers. Homozygotic Tp53 knockout mice, which develop lethal cancers early in their lives, are already used in cancer prevention studies, and now Tp53 knockout rats have also been generated. This study assessed feasibility of using homozygous Tp53 knockout rats to evaluate the possible outcome of cancer chemoprevention. Methods A small colony of Tp53 knockout rats with a Wistar strain genetic background was initiated and maintained in the animal house at our institution. Tp53 heterozygotic females were bred with Tp53 homozygous knockout males to obtain a surplus of knockout homozygotes. To evaluate the reproducibility of their lifespan, 4 groups of Tp53 homozygous knockout male rats born during consecutive quarters of the year were kept behind a sanitary barrier in a controlled environment until they reached a moribund state. Their individual lifespan data were used to construct quarterly survival curves. Results The four consecutive quarterly survival curves were highly reproducible. They were combined into a single “master” curve for use as a reference in intervention studies. The average lifespan of untreated male Tp53 homozygous knockout rats was normally distributed, with a median of 133 days. Sample size vs. effect calculations revealed that confirming a 20% and 30% increase in the lifespan would respectively require a sample size of 18 and 9 animals (when assessed using the t-test with a power of 80% and alpha set at 0.05). As an example, the Tp53 homozygous knockout rat model was used to test the chemopreventive properties of carnosine, a dipeptide with suspected anticancer properties possibly involving modulation of the mTOR pathway. The result was negative. Conclusion Further evaluation of the Tp53 homozygous knockout male rat colony is required before it can be confirmed as a viable tool for assessing new methods of cancer prevention or treatment.
Collapse
Affiliation(s)
- Damian Strzemecki
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., Warsaw, 02-106 Poland
| | - Magdalena Guzowska
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., Warsaw, 02-106 Poland
| | - Paweł Grieb
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 5 Pawińskiego Str., Warsaw, 02-106 Poland
| |
Collapse
|
36
|
McCarron JG, Lee MD, Wilson C. The Endothelium Solves Problems That Endothelial Cells Do Not Know Exist. Trends Pharmacol Sci 2017; 38:322-338. [PMID: 28214012 PMCID: PMC5381697 DOI: 10.1016/j.tips.2017.01.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/19/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
The endothelium is the single layer of cells that lines the entire cardiovascular system and regulates vascular tone and blood-tissue exchange, recruits blood cells, modulates blood clotting, and determines the formation of new blood vessels. To control each function, the endothelium uses a remarkable sensory capability to continuously monitor vanishingly small changes in the concentrations of many simultaneously arriving extracellular activators that each provides cues to the physiological state. Here we suggest that the extraordinary sensory capabilities of the endothelium do not come from single cells but from the combined activity of a large number of endothelial cells. Each cell has a limited, but distinctive, sensory capacity and shares information with neighbours so that sensing is distributed among cells. Communication of information among connected cells provides system-level sensing substantially greater than the capabilities of any single cell and, as a collective, the endothelium solves sensory problems too complex for any single cell.
Collapse
Affiliation(s)
- John G McCarron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK.
| | - Matthew D Lee
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| | - Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, SIPBS Building, 161 Cathedral Street, Glasgow G4 0RE, UK
| |
Collapse
|
37
|
Searching for Positive Side Effects of Common Drugs. Trends Pharmacol Sci 2017; 38:111. [PMID: 27823801 DOI: 10.1016/j.tips.2016.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 10/19/2016] [Indexed: 11/22/2022]
|