1
|
Lai Y, Xie B, Zhang W, He W. Pure drug nanomedicines - where we are? Chin J Nat Med 2025; 23:385-409. [PMID: 40274343 DOI: 10.1016/s1875-5364(25)60851-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/26/2024] [Accepted: 11/03/2024] [Indexed: 04/26/2025]
Abstract
Pure drug nanomedicines (PDNs) encompass active pharmaceutical ingredients (APIs), including macromolecules, biological compounds, and functional components. They overcome research barriers and conversion thresholds associated with nanocarriers, offering advantages such as high drug loading capacity, synergistic treatment effects, and environmentally friendly production methods. This review provides a comprehensive overview of the latest advancements in PDNs, focusing on their essential components, design theories, and manufacturing techniques. The physicochemical properties and in vivo behaviors of PDNs are thoroughly analyzed to gain an in-depth understanding of their systematic characteristics. The review introduces currently approved PDN products and further explores the opportunities and challenges in expanding their depth and breadth of application. Drug nanocrystals, drug-drug cocrystals (DDCs), antibody-drug conjugates (ADCs), and nanobodies represent the successful commercialization and widespread utilization of PDNs across various disease domains. Self-assembled pure drug nanoparticles (SAPDNPs), a next-generation product, still require extensive translational research. Challenges persist in transitioning from laboratory-scale production to mass manufacturing and overcoming the conversion threshold from laboratory findings to clinical applications.
Collapse
Affiliation(s)
- Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wanting Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, China.
| |
Collapse
|
2
|
Jing Y, Zhao Q, Zhang J, Xue J, Liu J, Qin J, Hong Z, Du Y. RS, S (+) - and R (-)-ibuprofen cocrystal polymorphs: Vibrational spectra, XRD measurement and DFT calculation studies. Heliyon 2025; 11:e41986. [PMID: 39927141 PMCID: PMC11804694 DOI: 10.1016/j.heliyon.2025.e41986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/24/2024] [Accepted: 01/15/2025] [Indexed: 02/11/2025] Open
Abstract
In this paper, cocrystal polymorphs of RS-ibuprofen (RS-IBU), S (+)-ibuprofen (S(+)-IBU), R (-)-ibuprofen (R(-)-IBU) with nicotinamide (NIC) were synthesized by different methods. RS-IBU is a chiral drug with only one chiral center in the molecule, which has two enantiomers (S (+)-IBU and R (-)-IBU). Due to the low solubility and bioavailability of IBU, its application is limited. The pharmaceutical cocrystal technology can improve the physicochemical properties of the drug. In this paper, we characterized RS-IBU, S (+)-IBU, R (-)-IBU, NIC, physical mixtures and cocrystal polymorphs by terahertz (THz), Raman and X-ray Diffraction (XRD), respectively. By observing the experimental results, we could clearly distinguish the cocrystal polymorphs. We found that the melt recrystallization method can generate cocrystal form A, while the solvent drop grinding method and solution evaporation method can generate cocrystal form B. In addition, in order to verify the successful preparation of them, we used density functional theory (DFT) to optimize and simulate the theoretical structures of the RS-IBU: NIC cocrystal polymorphs, and compared the simulated results with the experimental results. These research results provide a reference for the analysis and preparation of pharmaceutical cocrystal polymorphs and help to distinguish the cocrystal polymorphs.
Collapse
Affiliation(s)
- Yaqi Jing
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Qiuhui Zhao
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Jiale Zhang
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Jianyuan Qin
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou, 310018, China
| |
Collapse
|
3
|
Dayo Owoyemi BC, Zeller M, Pereira da Silva B, Akinyemi AO, Ando RA, de Araujo GLB, Byrn SR. Drug Property Optimization: Design, Synthesis, and Characterization of Novel Pharmaceutical Salts and Cocrystal-Salt of Lumefantrine. Mol Pharm 2025; 22:1042-1060. [PMID: 39804247 DOI: 10.1021/acs.molpharmaceut.4c01244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Lumefantrine (LMF) is a low-solubility antimalarial drug that cures acute, uncomplicated malaria. It exerts its pharmacological effects against erythrocytic stages of Plasmodium spp. and prevents malaria pathogens from producing nucleic acid and protein, thereby eliminating the parasites. Modifying the structure of a drug through the formation of a pharmaceutical cocrystal or salt presents an avenue through which its physicochemical properties can be optimized. In this work, we report the design/synthesis and solid-state characterization of four new salts and cocrystal-salt forms of LMF; an LMF-ADP salt, monoclinic space group P21/n; an LMF-FUM cocrystal-salt, monoclinic space group P21/c; an LMF-TAR solvate salt, monoclinic space group P21/n; and an LMF-SUC salt, triclinic, space group P1̅ (ADP, dianion of adipic acid; FUM, monoanion of fumaric acid; TAR, dianion of tartaric acid; SUC, dianion of succinic acid). These salts can be obtained by solution as well as by mechanochemical cocrystallization methods. The multicomponent systems gain their stability from hydrogen and partial ionic bonding interactions (N-H···O, O-H···O, N+-H···O-, and O-H+···O-) originating from both the dibutyl ammonium (N+-H) site and the alcohol hydroxyl (-OH) site of LMF toward the carboxylate (-C(O-)═O) functional groups of the coformer anions. SCXRD indicates for LMF-ADP, LMF-TAR, and LMF-SUC complete transfer of all carboxylic acid protons (H+) toward the LMF nitrogen, while for LMF-FUM, one of the protons is transferred (leaving a hydrofumarate monoanion). Using salicylic and acetylsalicylic acids as coformers yielded coamorphous solids. Solid-state characterization using powder X-ray diffraction (XRD) and thermal techniques (DSC and TGA) support and confirm the structures obtained from single-crystal XRD. LMF-ADP and LMF-FUM present superior stability under standard conditions (40 ± 2 °C, 75 ± 5% RH, and 3 months) compared to the amorphous samples and the other two salts. LMF-SUC showed poor thermal stability by DSC/TGA, and powder XRD patterns for LMF-TAR showed substantial change after the 3-month stability test. Finally, the calculated equilibrium solubilities for the cocrystal salts indicate an increase of more than twofold compared to LMF's solubility.
Collapse
Affiliation(s)
- Bolaji C Dayo Owoyemi
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Brenda Pereira da Silva
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Amos O Akinyemi
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington 40536-0298, United States
| | - Romulo A Ando
- Institute of Chemistry, University of São Paulo - USP, Av. Professor Lineu Prestes, 748 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Gabriel L Barros de Araujo
- Department of Pharmaceutical Science, University of São Paulo - USP, Av. Professor Lineu Prestes, 580 - Cidade Universitária São Paulo, São Paulo CEP 05508-000, Brazil
| | - Stephen R Byrn
- Department of Industrial and Molecular Pharmaceutics, College of Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| |
Collapse
|
4
|
Yu J, Henry RF, Zhang GGZ. Cocrystal screening in minutes by solution-mediated phase transformation (SMPT): Preparation and characterization of ketoconazole cocrystals with nine aliphatic dicarboxylic acids. J Pharm Sci 2025; 114:592-598. [PMID: 39471890 DOI: 10.1016/j.xphs.2024.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The rapid and efficient cocrystal screening, based on solution-mediated phase transformation (SMPT), was applied to the screening of cocrystals between ketoconazole (KTZ) and nine aliphatic dicarboxylic acids. Cocrystals formed successfully, in minutes, with a change of suspension characteristics, either a cake formation or the formation of large particles. Bulk cocrystals were characterized by powder X-ray diffraction, thermal analysis, and Raman spectroscopy. Single crystals were grown, and molecular structures were determined. Three previously reported cocrystals were reproduced, and six new cocrystals were discovered, including one that was reported as a failure in literature by solution or grinding method. Two hydrogen-bonded motifs are observed in these nine cocrystals: Most cocrystals form hydrogen bonded discrete tetramer with two KTZ and two acids molecules; while two cocrystals form infinite chain. This study demonstrated the high efficacy of cocrystal generation using the slurry screening method. It should be fully utilized in future cocrystal screening.
Collapse
Affiliation(s)
- Junguang Yu
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, United States; Vertex Pharmaceuticals Incorporated, 50 Northern Avenue, Boston, MA 02210, United States
| | - Rodger F Henry
- Structural Chemistry, Research and Development, AbbVie Inc., North Chicago, IL, 60064, United States
| | - Geoff G Z Zhang
- Development Sciences, Research and Development, AbbVie Inc., North Chicago, IL, 60064, United States; ProPhysPharm LLC, Lincolnshire, IL 60069, United States; Department of Industrial and Molecular Pharmaceutics, Purdue University, West Lafayette, IN 47907, United States.
| |
Collapse
|
5
|
Wu D, Fu L, Hao H, Chen C, Chen G, Li S, Baiqi L, Wang T, Wang N, Huang X. Effect of conformational landscape on the polymorphism and monomorphism of tizanidine cocrystallization outcomes. Int J Pharm 2024; 667:124859. [PMID: 39461676 DOI: 10.1016/j.ijpharm.2024.124859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/20/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Molecular conformational diversity plays a crucial role in both polymorphic nucleation and cocrystal formation during the cocrystallization process. However, the relationship between molecular conformation and cocrystallization polymorphism is not well-explored. Herein, the impact of molecular conformational landscapes on cocrystallization outcomes was investigated using tizanidine (TZND) as model compound. Four coformers, namely maleic acid (MA), salicylic acid (SA), p-hydroxybenzoic acid (pHBA), and heptanedioic acid (HDA), were employed and five salt forms were developed for the first time. Compared with TZND, all five salts showed significantly improved water solubility and dissolution rate. The cocrystallization behavior of TZND varied with each coformer: MA exhibited solvent-dependent polymorphism, while SA, pHBA, and HDA showed solvent-independent monomorphism. Crystal structure and conformational analyses revealed the conformational variation of TZND across different cocrystallization outcomes. Molecular dynamics simulations and quantum chemical calculations demonstrated that the interplay between solvent effects and coformer interactions determines the dominant conformations of TZND. The cocrystallization nucleation process was also examined, and the molecular mechanism that explains both polymorphism and monomorphism in the cocrystallization of TZND was proposed.
Collapse
Affiliation(s)
- Di Wu
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Lin Fu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, PR China
| | - Hongxun Hao
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Chen Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, PR China
| | - Gang Chen
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd., Luzhou, PR China
| | - Shuyu Li
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Liu Baiqi
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Ting Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Na Wang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Xin Huang
- National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China; State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|
6
|
Trzeciak K, Dudek MK, Potrzebowski MJ. Mechanochemical Transformations of Pharmaceutical Cocrystals: Polymorphs and Coformer Exchange. Chemistry 2024; 30:e202402683. [PMID: 39384536 DOI: 10.1002/chem.202402683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Transformations of solid samples under solvent-free or minimal solvent conditions set the future trend and define a modern strategy for the production of new materials. Of the various technologies tested in recent years, the mechanochemical approach seems to be the most promising for economic and ecological reasons. The aim of this review article is to present the current state of art in solid state research on binary systems, which have found numerous applications in the pharmaceutical and materials science industries. This article is divided into three sections. In the first part, we describe the new equipment improvements, which include the innovative application of thermo-mechanochemistry, sono-mechanochemistry, photo-mechanochemistry, electro-mechanochemistry, as well as resonant acoustic mixing (RAM), and transformation under high-speed sample spinning ("SpeedMixing"). A brief description of techniques dedicated to ex-situ and in-situ studies of progress and the mechanism of solid matter transformation (PXRD, FTIR, Raman and NMR spectroscopy) is presented. In the second section, we discuss the problem of cocrystal polymorphism highlighting the issue related with correlation between mechanochemical parameters (time, temperature, energy, molar ratio, solvent used as a liquid assistant, surface energy, crystal size, crystal shape) and preference for the formation of requested polymorph. The last part is devoted to the description of the processes of coformer exchange in binary systems forced by mechanical and/or thermal stimuli. The influence of the thermodynamic factor on the selection of the best-suited partner for the formation of a two-component stable structure is presented.
Collapse
Affiliation(s)
- Katarzyna Trzeciak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marta K Dudek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| | - Marek J Potrzebowski
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363, Lodz, Poland
| |
Collapse
|
7
|
Li Q, Xie Y, Wang Z, Li S, Yang S, Yang D, Zhang L, Du G, Lu Y. Optimization of physicochemical properties of theophylline by forming cocrystals with amino acids. RSC Adv 2024; 14:40006-40017. [PMID: 39713182 PMCID: PMC11660086 DOI: 10.1039/d4ra06804a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
This study presents the synthesis and characterization of novel cocrystal structures of theophylline (THE) with the amino acids gamma-aminobutyric acid (GABA) and l-arginine (ARG). Despite a large number of reports about THE cocrystals, no crystallographic parameters of cocrystals formed by THE and amino acids have been reported. THE is characterized by low solubility, while amino acids as cocrystal co-formers (CCFs) are increasingly recognized for their high solubility and safety. Consequently, the synthesis of cocrystals with amino acids has garnered considerable research interest. To optimize THE's physicochemical properties, amino acids were chosen as CCFs, resulting in the synthesis of two novel cocrystals: THE-GABA and THE-ARG-2H2O. Comprehensive characterization, such as X-ray diffraction analysis, spectral analysis, thermal analysis, and dynamic vapor sorption were conducted for THE-GABA and THE-ARG-2H2O, alongside stability and solubility assessments. To better explain the characterization and evaluation results, the theoretical calculation methods were adopted, including the molecular electrostatic potential (MESP), topological analysis, energy framework, Hirshfeld surface and crystal voids. The study's findings reveal that the solubility and permeability of THE in both novel cocrystals, THE-GABA and THE-ARG-2H2O, have increased, especially in the latter. Meanwhile, the hygroscopicity of them was at a low level which was basically consistent with THE.
Collapse
Affiliation(s)
- Qi Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Yifei Xie
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Zhipeng Wang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Shuang Li
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Shiying Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Dezhi Yang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Li Zhang
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Guanhua Du
- Beijing City Key Laboratory of Drug Target and Screening Research, National Center for Pharmaceutical Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| | - Yang Lu
- Beijing City Key Laboratory of Polymorphic Drugs, Center of Pharmaceutical Polymorphs, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing 100050 P.R. China
| |
Collapse
|
8
|
Panzade P, Wagh A, Harale P, Bhilwade S. Pharmaceutical cocrystals: a rising star in drug delivery applications. J Drug Target 2024; 32:115-127. [PMID: 38164658 DOI: 10.1080/1061186x.2023.2300690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Pharmaceutical cocrystals, owing to their manifold applications, are acting as bridge between drug discovery and pharmaceutical product development. The ability to scale up pharmaceutical cocrystals through continuous manufacturing approaches offers superior and economic pharmaceutical products. Moreover, cocrystals can be an aid for the nanoparticulate systems to solve the issues related to scale-up and cost. Cocrystals grabbed attention of academic researchers and pharmaceutical scientist due to their potential to target various diseases like cancer. The present review is mainly focussed on the diverse and comprehensive applications of pharmaceutical cocrystals in drug delivery including solubility and dissolution enhancement, improvement of bioavailability of drug, mechanical and flow properties of active pharmaceutical ingredients, controlled/sustained release and colour tuning of API. Besides, phytochemical based cocrystals, multi-drug cocrystals and cocrystals for tumour therapy have been discussed in this review. Additionally, recent progress pertinent to pharmaceutical cocrystals is also included, which may provide future directions to manufacturing and scale-up of cocrystals.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Anita Wagh
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| | - Pratiksha Harale
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Sumeet Bhilwade
- Department of Pharmacognosy, Srinath College of Pharmacy, Aurangabad, India
| |
Collapse
|
9
|
Liang D, Li F, Duan J, Sun W, Yu X. Two Novel Hydrate Salts of Norfloxacin with Phenolic Acids and Their Physicochemical Properties. Antibiotics (Basel) 2024; 13:888. [PMID: 39335061 PMCID: PMC11429011 DOI: 10.3390/antibiotics13090888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Norfloxacin (NORF) is a broad-spectrum quinolone that is widely utilized for the treatment of various bacterial infections and is considered one of the most commonly used fluoroquinolone antibiotics. However, NORF's clinical utility is limited by its poor water solubility and relatively low oral bioavailability. This study presents an optimization and synergistic enhancement approach through salt/co-crystal, aiming to maximize the biopharmaceutical properties of NORF with the use of phenolic acid. Following this strategy, two new hydrate salts of NORF with phenolic acid, namely, NORF-3,5-DBA hydrate (salt 1) and NORF-VA hydrate (salt 2), were prepared and systematically confirmed. Two hydrate salts were produced by means of the slow evaporation crystallization method, and the structures were determined through single-crystal X-ray diffraction (SCXRD). Additionally, powder X-ray diffraction (PXRD), Fourier-transform infrared (FT-IR) spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and high-performance liquid chromatography (HPLC) were applied to analyze the features of the two salts. The experimental results indicated that the formation of the two salts could enhance the solubility and improve the release behavior of NORF. Interestingly, the physicochemical properties of NORF were significantly improved as a result, leading to an enhancement in its antibacterial activity. This was demonstrated by the enhanced inhibition of bacterial strains and the lower minimum inhibitory concentration values.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoyan Yu
- School of Pharmaceutical Sciences, Jilin University, Changchun 130021, China; (D.L.); (F.L.); (J.D.); (W.S.)
| |
Collapse
|
10
|
Piccirillo G, Aroso R, Baptista JA, A E Castro R, da Silva GJ, Calvete MJF, Pereira MM, Canotilho J, Ermelinda S Eusébio M. Trimethoprim-Based multicomponent solid Systems: Mechanochemical Screening, characterization and antibacterial activity assessment. Int J Pharm 2024; 661:124416. [PMID: 38964490 DOI: 10.1016/j.ijpharm.2024.124416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
In this work, multicomponent trimethoprim-based pharmaceutical solid systems were developed by mechanochemistry, using coformers from the GRAS list and other active pharmaceutical ingredients. The choice of coformers took into account their potential to increase the aqueous solubility/dissolution rate of TMP or its antibacterial activity. All the binary systems were characterized by thermal analysis, powder X-ray diffraction and infrared spectroscopy, and 3 equimolar systems with FTIR pointing to salts, and 4 eutectic mixtures were identified. The intrinsic dissolution rate of TMP in combination with nicotinic acid (a salt) and with paracetamol (eutectic mixture) were 25% and 5% higher than for pure TMP, respectively. For both Gram-positive and -negative strains, the antibacterial activity of TMP with some of the coformers was improved, since the dosage used was lower than the TMP control. A significant increase in antibacterial activity against E. coli was found for the eutectic mixture with curcumin, with the best results being obtained for the eutectic and equimolar mixtures with ciprofloxacin. Combining trimethoprim with coformers offers an interesting alternative to using trimethoprim alone: multicomponent forms with enhanced TMP dissolution rates were identified, as well as combinations showing enhanced antibacterial activity relatively to the pure drug.
Collapse
Affiliation(s)
- Giusi Piccirillo
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Rafael Aroso
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João A Baptista
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Ricardo A E Castro
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - Gabriela J da Silva
- University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal; Center for Neurosciences and Cell Biology of the University of Coimbra, 3004-535, Coimbra, Portugal
| | - Mário J F Calvete
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - Mariette M Pereira
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal
| | - João Canotilho
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal; University of Coimbra, Faculty of Pharmacy, 3000-548, Coimbra, Portugal
| | - M Ermelinda S Eusébio
- University of Coimbra, Coimbra Chemistry Centre, Department of Chemistry, Rua Larga, 3004-535, Coimbra, Portugal.
| |
Collapse
|
11
|
Aree T. Variation of Cyclodextrin (CD) Complexation with Biogenic Amine Tyramine: Pseudopolymorphs of β-CD Inclusion vs. α-CD Exclusion, Deep Atomistic Insights. Int J Mol Sci 2024; 25:7983. [PMID: 39063225 PMCID: PMC11277041 DOI: 10.3390/ijms25147983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024] Open
Abstract
Tyramine (TRM) is a biogenic catecholamine neurotransmitter, which can trigger migraines and hypertension. TRM accumulated in foods is reduced and detected using additive cyclodextrins (CDs) while their association characteristics remain unclear. Here, single-crystal X-ray diffraction and density functional theory (DFT) calculation have been performed, demonstrating the elusive pseudopolymorphs in β-CD inclusion complexes with TRM base/HCl, β-CD·0.5TRM·7.6H2O (1) and β-CD·TRM HCl·4H2O (2) and the rare α-CD·0.5(TRM HCl)·10H2O (3) exclusion complex. Both 1 and 2 share the common inclusion mode with similar TRM structures in the round and elliptical β-CD cavities, belong to the monoclinic space group P21, and have similar herringbone packing structures. Furthermore, 3 differs from 2, as the smaller twofold symmetry-related, round α-CD prefers an exclusion complex with the twofold disordered TRM-H+ sites. In the orthorhombic P21212 lattice, α-CDs are packed in a channel-type structure, where the column-like cavity is occupied by disordered water sites. DFT results indicate that β-CD remains elliptical to suitably accommodate TRM, yielding an energetically favorable inclusion complex, which is significantly contributed by the β-CD deformation, and the inclusion complex of α-CD with the TRM aminoethyl side chain is also energetically favorable compared to the exclusion mode. This study suggests the CD implications for food safety and drug/bioactive formulation and delivery.
Collapse
Affiliation(s)
- Thammarat Aree
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
12
|
Xiong J, Xu D, Zhang H, Shi Y, Wu X, Wang S. Improving the Solubility and Bioavailability of Progesterone Cocrystals with Selected Carboxylic Acids. Pharmaceutics 2024; 16:816. [PMID: 38931937 PMCID: PMC11207217 DOI: 10.3390/pharmaceutics16060816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Progesterone (PROG) is a natural steroid hormone with low solubility and high permeability that belongs to biopharmaceutics classification system class II. In this study, novel pharmaceutical cocrystals of PROG were successfully prepared by solvent evaporation or a liquid-assisted grinding process aimed at enhancing its solubility and bioavailability. The cocrystal formers selected based on crystal engineering principles were carboxylic acids, namely, 4-formylbenzeneboronic acid (BBA), isophthalic acid (IPA), and 3-nitrophthalic acid (NPA). The cocrystal structures were characterized using multiple techniques. Single-crystal X-ray diffraction results showed that the carbonyl group, acting as a hydrogen bond acceptor, was pivotal in the cocrystal network formation, with C-H···O interactions further stabilizing the crystals. The cocrystals exhibited improved solubility and dissolution profiles in vitro, with no significant changes in hygroscopicity. The parallel artificial membrane permeability assay (PAMPA) models indicated that the cocrystals retained PROG's high permeability. Pharmacokinetic studies in Sprague-Dawley rats revealed that all cocrystals increased PROG exposure, with AUC(0~∞) values for PROG-BBA, PROG-IPA, and PROG-NPA being 742.59, 1201.72 and 442.67 h·ng·mL-1, respectively. These values are substantially higher compared to free PROG, which had an AUC(0~∞) of 301.48 h·ng·mL-1. Notably, PROG-IPA provided the highest AUC improvement, indicating a significant enhancement in bioavailability. Collectively, the study concludes that the cocrystal approach is a valuable strategy for optimizing the physicochemical properties and oral bioavailability of PROG, with potential implications for the development of other poor water-soluble drugs.
Collapse
Affiliation(s)
- Jing Xiong
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
- Institute for Chemical Drug Control, National Institutes for Food and Drug Control, Beijing 102629, China
| | - Dezhong Xu
- Key Laboratory of Radiopharmaceuticals of Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China;
| | - Hui Zhang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Yan Shi
- Institute for Chinese Traditional Medicine Control, National Institutes for Food and Drug Control, Beijing 102629, China;
| | - Xiangxiang Wu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, China;
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China;
| |
Collapse
|
13
|
Majhi D, Stevensson B, Nguyen TM, Edén M. 1H and 13C chemical shift-structure effects in anhydrous β-caffeine and four caffeine-diacid cocrystals probed by solid-state NMR experiments and DFT calculations. Phys Chem Chem Phys 2024; 26:14345-14363. [PMID: 38700003 DOI: 10.1039/d3cp06197c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
By using density functional theory (DFT) calculations, we refined the H atom positions in the structures of β-caffeine (C), α-oxalic acid (OA; (COOH)2), α-(COOH)2·2H2O, β-malonic acid (MA), β-glutaric acid (GA), and I-maleic acid (ME), along with their corresponding cocrystals of 2 : 1 (2C-OA, 2C-MA) or 1 : 1 (C-GA, C-ME) stoichiometry. The corresponding 13C/1H chemical shifts obtained by gauge including projector augmented wave (GIPAW) calculations agreed overall very well with results from magic-angle-spinning (MAS) nuclear magnetic resonance (NMR) spectroscopy experiments. Chemical-shift/structure trends of the precursors and cocrystals were examined, where good linear correlations resulted for all COO1H sites against the H⋯O and/or H⋯N H-bond distance, whereas a general correlation was neither found for the aliphatic/caffeine-stemming 1H sites nor any 13C chemical shift against either the intermolecular hydrogen- or tetrel-bond distance, except for the 13COOH sites of the 2C-OA, 2C-MA, and C-GA cocrystals, which are involved in a strong COOH⋯N bond with caffeine that is responsible for the main supramolecular stabilization of the cocrystal. We provide the first complete 13C NMR spectral assignment of the structurally disordered anhydrous β-caffeine polymorph. The results are discussed in relation to previous literature on the disordered α-caffeine polymorph and the ordered hydrated counterpart, along with recommendations for NMR experimentation that will secure sufficient 13C signal-resolution for reliable resonance/site assignments.
Collapse
Affiliation(s)
- Debashis Majhi
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Baltzar Stevensson
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Tra Mi Nguyen
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Mattias Edén
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
14
|
D’Abbrunzo I, Procida G, Perissutti B. Praziquantel Fifty Years on: A Comprehensive Overview of Its Solid State. Pharmaceutics 2023; 16:27. [PMID: 38258039 PMCID: PMC10821272 DOI: 10.3390/pharmaceutics16010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
This review discusses the entire progress made on the anthelmintic drug praziquantel, focusing on the solid state and, therefore, on anhydrous crystalline polymorphs, amorphous forms, and multicomponent systems (i.e., hydrates, solvates, and cocrystals). Despite having been extensively studied over the last 50 years, new polymorphs and the greater part of their cocrystals have only been identified in the past decade. Progress in crystal engineering science (e.g., the use of mechanochemistry as a solid form screening tool and more strategic structure-based methods), along with the development of analytical techniques, including Synchrotron X-ray analyses, spectroscopy, and microscopy, have furthered the identification of unknown crystal structures of the drug. Also, computational modeling has significantly contributed to the prediction and design of new cocrystals by considering structural conformations and interactions energy. Whilst the insights on praziquantel polymorphs discussed in the present review will give a significant contribution to controlling their formation during manufacturing and drug formulation, the detailed multicomponent forms will help in designing and implementing future praziquantel-based functional materials. The latter will hopefully overcome praziquantel's numerous drawbacks and exploit its potential in the field of neglected tropical diseases.
Collapse
Affiliation(s)
| | | | - Beatrice Perissutti
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy (G.P.)
| |
Collapse
|
15
|
Guo H, Liu S, Sun CC. Modulating Pharmaceutical Properties of Berberine Chloride through Cocrystallization with Benzendiol Isomers. Pharm Res 2023; 40:2791-2800. [PMID: 37226026 DOI: 10.1007/s11095-023-03533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
PURPOSE To synthesize and characterize new cocrystals of berberine chloride (BCl) for potential pharmaceutical tablet formulation. METHODS Solutions of BCl with each of three selected cocrystal formers, catechol (CAT), resorcinol (RES), and hydroquinone (HYQ) were slowly evaporated at room temperature to obtain crystals. Crystal structures were solved using single crystal X-ray diffraction. Bulk powders were characterized by powder X-ray diffraction, thermogravimetric-differential scanning calorimetry, FTIR, dynamic moisture sorption, and dissolution (both intrinsic and powder). RESULTS Single crystal structures confirmed the formation of cocrystals with all three coformers, which revealed various intermolecular interactions that stabilized crystal lattices, including O-H···Cl- hydrogen bonds. All three cocrystals exhibited better stability against high humidity (up to 95% relative humidity) at 25 ℃ and higher intrinsic and powder dissolution rates than BCl. CONCLUSION The enhanced pharmaceutical properties of all three cocrystals, as compared to BCl, further contribute to the existing evidence that confirms the beneficial role of cocrystallization in facilitating drug development. These new cocrystals expand the structure landscape of BCl solid forms, which is important for future analysis to establish a reliable relationship between crystal structure and pharmaceutical properties.
Collapse
Affiliation(s)
- Hongjie Guo
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Shuyu Liu
- School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China.
| | - Changquan Calvin Sun
- Pharmaceutical Materials Science and Engineering Laboratory, Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
16
|
Dai XL, Pang BW, Lv WT, Zhen JF, Gao L, Li CW, Xiong J, Lu TB, Chen JM. Improving the physicochemical and pharmacokinetic properties of olaparib through cocrystallization strategy. Int J Pharm 2023; 647:123497. [PMID: 37827390 DOI: 10.1016/j.ijpharm.2023.123497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Olaparib (OLA) is the first PARP inhibitor worldwide used for the treatment of ovarian cancer. However, the oral absorption of OLA is extremely limited by its poor solubility. Herein, pharmaceutical cocrystallization strategy was employed to optimize the physicochemical and pharmacokinetic properties. Four cocrystals of OLA with oxalic acid (OLA-OA), malonic acid (OLA-MA), fumaric acid (OLA-FA) and maleic acid (OLA-MLA) were successfully discovered and characterized. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirmed the formation of cocrystals rather than salts, and the possible hydrogen bonding patterns were analyzed through molecular surface electrostatic potential calculations. The in vitro and in vivo evaluations indicate that all of the cocrystals demonstrate significantly improved dissolution performance, oral absorption and tabletability compared to pure OLA. Among them, OLA-FA exhibit sufficient stability and the most increased Cmax and AUC0-24h values that were 11.6 and 6.1 times of free OLA, respectively, which has great potential to be developed into the improved solid preparations of OLA.
Collapse
Affiliation(s)
- Xia-Lin Dai
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Bo-Wen Pang
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Wen-Ting Lv
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jian-Feng Zhen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Lu Gao
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Cai-Wen Li
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jing Xiong
- National Institutes for Food and Drug Control, Beijing 102629, China.
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jia-Mei Chen
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
17
|
Taldaev A, Pankov DI, Terekhov RP, Zhevlakova AK, Selivanova IA. Modification of the Physicochemical Properties of Active Pharmaceutical Ingredients via Lyophilization. Pharmaceutics 2023; 15:2607. [PMID: 38004585 PMCID: PMC10674228 DOI: 10.3390/pharmaceutics15112607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Bioavailability is an important biopharmaceutical characteristic of active pharmaceutical ingredients (APIs) that is often correlated with their solubility in water. One of the methods of increasing solubility is freeze drying (lyophilization). The article provides a systematic review of studies published from 2012 to 2022 aimed at optimizing the properties of active pharmaceutical ingredients by freeze drying. This review was carried out in accordance with the recommendations of Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). In general, 141 modifications of 36 APIs attributed to 12 pharmacological groups were reported in selected publications. To characterize the products of phase modification after lyophilization, a complex of analytical methods was used, including microscopic, thermal, X-ray, and spectral approaches. Solubility and pharmacokinetic parameters were assessed. There is a tendency to increase solubility due to the amorphization of APIs during lyophilization. Thus, the alcohol lyophilizate of dihydroquercetin is "soluble" in water compared to the initial substance belonging to the category "very poorly soluble". Based on the analysis of the literature, it can be argued that lyophilization is a promising method for optimizing the properties of APIs.
Collapse
Affiliation(s)
- Amir Taldaev
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, 141701 Moscow, Russia
| | - Denis I. Pankov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Roman P. Terekhov
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Anastasia K. Zhevlakova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Irina A. Selivanova
- Nelyubin Institute of Pharmacy, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
18
|
Samie A, Alavian H, Vafaei-Pour Z, Mohammadpour AH, Jafarian AH, Danesh NM, Abnous K, Taghdisi SM. Accelerated Wound Healing with a Diminutive Scar through Cocrystal Engineered Curcumin. Mol Pharm 2023; 20:5090-5107. [PMID: 37624646 DOI: 10.1021/acs.molpharmaceut.3c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Pharmaceutical cocrystals ( Regulatory Classification of Pharmaceutical Co-Crystals Guidance for Industry; Food and Drug Administration, 2018) are crystalline solids produced through supramolecular chemistry to modulate the physicochemical properties of active pharmaceutical ingredients (APIs). Despite their extensive development in interdisciplinary sciences, this is a pioneering study on the efficacy of pharmaceutical cocrystals in wound healing and scar reducing. Curcumin-pyrogallol cocrystal (CUR-PYR) was accordingly cherry-picked since its superior physicochemical properties adequately compensate for limitative drawbacks of curcumin (CUR). CUR-PYR has been synthesized by a liquid-assisted grinding (LAG) method and characterized via FT-IR, DSC, and PXRD analyses. In vitro antibacterial study indicated that CUR-PYR cocrystal, CUR+PYR physical mixture (PM), and PYR are more effective against both Gram-negative (Pseudomonas aeruginosa and Escherichia coli) and Gram-positive (Staphylococcus aureus and Bacillus subtilis) bacteria in comparison with CUR. In vitro results also demonstrated that the viability of HDF and NIH-3T3 cells treated with CUR-PYR were improved more than those received CUR which is attributed to the effect of PYR in the form of cocrystal. The wound healing process has been monitored through a 15 day in vivo experiment on 75 male rats stratified into six groups: five groups treated by CUR-PYR+Vaseline (CUR-PYR.ung), CUR+PYR+Vaseline (CUR+PYR.ung), CUR+Vaseline (CUR.ung), PYR+Vaseline (PYR.ung), and Vaseline (VAS) ointments and a negative control group of 0.9% sodium chloride solution (NS). It was revealed that the wounds under CUR-PYR.ung treatment closed by day 12 postsurgery, while the wounds in other groups failed to reach the complete closure end point until the end of the experiment. Surprisingly, a diminutive scar (3.89 ± 0.97% of initial wound size) was observed in the CUR-PYR.ung treated wounds by day 15 after injury, followed by corresponding values for PYR.ung (12.08 ± 2.75%), CUR+PYR.ung (13.89 ± 5.02%), CUR.ung (16.24 ± 6.39%), VAS (18.97 ± 6.89%), and NS (20.33 ± 5.77%). Besides, investigating histopathological parameters including inflammation, granulation tissue, re-epithelialization, and collagen deposition signified outstandingly higher ability of CUR-PYR cocrystal in wound healing than either of its two constituents separately or their simple PM. It was concluded that desired solubility of the prepared cocrystal was essentially responsible for accelerating wound closure and promoting tissue regeneration which yielded minimal scarring. This prototype research suggests a promising application of pharmaceutical cocrystals for the purpose of wound healing.
Collapse
Affiliation(s)
- Ali Samie
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Hoda Alavian
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Zeinab Vafaei-Pour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Amir Hooshang Mohammadpour
- Department of Clinical Pharmacy, School of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948954, Iran
| | - Amir Hossein Jafarian
- Cancer and Molecular Research Center, Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Noor Mohammad Danesh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Khalil Abnous
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| | - Seyed Mohammad Taghdisi
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
| |
Collapse
|
19
|
Li L, Chen X, Zhang K, Tian G, Ding X, Bai S, Zeng Q. Effects of Thymol and Carvacrol Eutectic on Growth Performance, Serum Biochemical Parameters, and Intestinal Health in Broiler Chickens. Animals (Basel) 2023; 13:2242. [PMID: 37444040 DOI: 10.3390/ani13132242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to evaluate the effect of diets supplementing with various levels of thymol and carvacrol eutectic (TCE) on growth performance, serum biochemical parameters, intestinal morphology, and the expression of intestinal nutrient absorption, barrier function- and inflammation-related genes in broiler chickens. A total of 640 one-day-old Arbor Acres male broilers with similar body weights were randomly divided into four groups (8 replicates/group, 20 broilers/replicate). Birds in the four experimental groups were fed a basal diet with TCE at 0, 30, 60, or 120 mg/kg. The results showed that the growth performance of birds during 22-42 d or 1-42 d, serum IgE and IgG content at 21 d of age, jejunal and ileal morphology, ileal MUC2, OCLN, and IL-10 mRNA expression were significantly increased compared with the control group (p < 0.05), and the ileal IL-6 mRNA expression quadratically decreased (p < 0.05) with increasing dietary TCE supplemented dosage, and its expression showed a linear downward trend (0.05 < p < 0.1). Meanwhile, compared with the other three groups, birds fed diets with 30 mg/kg TCE presented better (p < 0.05) growth performance, intestinal morphology, and function. These results indicated that the optimal supplementation amount of TCE in the broiler diets was 30 mg/kg.
Collapse
Affiliation(s)
- Lixuan Li
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaochun Chen
- Institute of Animal Science, Chengdu Agricultural College, Chengdu 611130, China
| | - Keying Zhang
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Gang Tian
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuemei Ding
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Shiping Bai
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiufeng Zeng
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
20
|
Zhang J, Wan M, Fang J, Hong Z, Liu J, Qin J, Xue J, Du Y. Vibrational spectroscopic detection and analysis of isoniazid-nicotinamide-succinic acid ternary cocrystal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 295:122623. [PMID: 36963218 DOI: 10.1016/j.saa.2023.122623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
In this paper, binary and ternary cocrystals in the ternary cocrystal system of isoniazid-nicotinamide-succinic acid were prepared by solvent evaporation and grinding methods. All of them were characterized by terahertz time-domain spectroscopy (THz-TDS), confirming that the cocrystals could be obtained by the above two methods. In addition, to investigate the formation of hydrogen bonds and their influence in cocrystal, several possible forms of hydrogen bond in cocrystal were simulated by density functional theory (DFT). The simulated result was in good agreement with the experimental result, indicating that the hydrogen bonds in cocrystal were the carboxyl groups on both side of succinic acid forming a pyridine N-carboxylic acid heterosynthon with pyridine N of isoniazid or nicotinamide respectively. Meanwhile, the vibrational modes of the cocrystal were analyzed to investigate the effect of hydrogen bond to the molecules. To further understand the formation process of ternary cocrystal in this system, Raman spectroscopy was used to analyze the cocrystal samples with different time of grinding. Process information of cocrystal formation were obtained by analyzing the changes of the characteristic peaks in the corresponding Raman spectra. These results provide a wealth of information and a unique approach to the analysis of both structures and intermolecular interactions shown within ternary cocrystal.
Collapse
Affiliation(s)
- Jiale Zhang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Mei Wan
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jiyuan Fang
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Zhi Hong
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jianjun Liu
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jianyuan Qin
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China
| | - Jiadan Xue
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Yong Du
- Centre for THz Research, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|
21
|
Singh M, Barua H, Jyothi VGSS, Dhondale MR, Nambiar AG, Agrawal AK, Kumar P, Shastri NR, Kumar D. Cocrystals by Design: A Rational Coformer Selection Approach for Tackling the API Problems. Pharmaceutics 2023; 15:1161. [PMID: 37111646 PMCID: PMC10140925 DOI: 10.3390/pharmaceutics15041161] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Active pharmaceutical ingredients (API) with unfavorable physicochemical properties and stability present a significant challenge during their processing into final dosage forms. Cocrystallization of such APIs with suitable coformers is an efficient approach to mitigate the solubility and stability concerns. A considerable number of cocrystal-based products are currently being marketed and show an upward trend. However, to improve the API properties by cocrystallization, coformer selection plays a paramount role. Selection of suitable coformers not only improves the drug's physicochemical properties but also improves the therapeutic effectiveness and reduces side effects. Numerous coformers have been used till date to prepare pharmaceutically acceptable cocrystals. The carboxylic acid-based coformers, such as fumaric acid, oxalic acid, succinic acid, and citric acid, are the most commonly used coformers in the currently marketed cocrystal-based products. Carboxylic acid-based coformers are capable of forming the hydrogen bond and contain smaller carbon chain with the APIs. This review summarizes the role of coformers in improving the physicochemical and pharmaceutical properties of APIs, and deeply explains the utility of afore-mentioned coformers in API cocrystal formation. The review concludes with a brief discussion on the patentability and regulatory issues related to pharmaceutical cocrystals.
Collapse
Affiliation(s)
- Maan Singh
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Harsh Barua
- Solid State Pharmaceutical Cluster (SSPC), Science Foundation Ireland Research Centre for Pharmaceuticals, Bernal Institute, Department of Chemical Sciences, University of Limerick, V94T9PX Limerick, Ireland
| | - Vaskuri G. S. Sainaga Jyothi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, India
| | - Madhukiran R. Dhondale
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Amritha G. Nambiar
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Ashish K. Agrawal
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | | | - Dinesh Kumar
- Pharmaceutical Solid State Research Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| |
Collapse
|
22
|
Shen Y, Cruz-Cabeza AJ, Azzouz O, Edkins K. Using Prenucleation Aggregation of Caffeine-Benzoic Acid as a Rapid Indication of Co-crystallization from Solutions. Mol Pharm 2023; 20:1942-1950. [PMID: 36942815 DOI: 10.1021/acs.molpharmaceut.2c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Co-crystal design is a convenient way to remedy the poor biopharmaceutical properties of drugs. Most studies focus on experimental co-crystal screening or computational prediction, but hardly any work has been done toward fast, efficient, and reliable prediction of solution crystallization for co-crystal formation. Here, we study the caffeine-benzoic acid co-crystal system, due to its reported difficulty to crystallize from the solution phase. With this work, we investigate whether there is a link between prenucleation aggregation in solution and co-crystal formation and how to harness this for crystallization prediction. 1H and 13C NMR spectroscopy is used to study the prenucleation interaction between caffeine and benzoic acid in methanol, acetone, and acetonitrile as examples of common solvents. In this system, crystallization from methanol leads to no co-crystallization, from acetone to concomitant crystallization of co-crystal and caffeine, and from acetonitrile to pure co-crystal formation from solution. Strong heteromeric dimers were found to exist in all three solvents. Ternary phase diagrams were defined and a solution-accessible co-crystal region was found for all solvents. For this system, the prenucleation clusters found in solution could be linked to the crystallization of the co-crystal. Crystallization from DMSO did not yield the co-crystal and there were no detectable prenucleation aggregates. NMR spectroscopy to probe dimers in solution can thus be used as a fast, reliable, and promising tool to predict co-crystallization from specific solvents and to screen for suitable solvents for manufacturing and scale-up.
Collapse
Affiliation(s)
- Yichun Shen
- School of Health Sciences, University of Manchester, Manchester M13 9PT, U.K
| | | | - Ossama Azzouz
- School of Health Sciences, University of Manchester, Manchester M13 9PT, U.K
| | - Katharina Edkins
- School of Health Sciences, University of Manchester, Manchester M13 9PT, U.K
| |
Collapse
|
23
|
Myślińska M, Stocker MW, Ferguson S, Healy AM. A Comparison of Spray-Drying and Co-Precipitation for the Generation of Amorphous Solid Dispersions (ASDs) of Hydrochlorothiazide and Simvastatin. J Pharm Sci 2023:S0022-3549(23)00064-3. [PMID: 36805392 DOI: 10.1016/j.xphs.2023.02.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/13/2023] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Co-processing of APIs, the practice of creating multi-component APIs directly in chemical processing facilities used to make drug substance, is gaining increased attention with a view to streamlining manufacturing, improving supply chain robustness and accessing enhanced product attributes in terms of stability and bioavailability. Direct co-precipitation of amorphous solid dispersions (ASDs) at the final step of chemical processing is one such example of co-processing. The purpose of this work was to investigate the application of different advanced solvent-based processing techniques - direct co-precipitation (CP) and the benchmark well-established spray-drying (SD) process - to the production of ASDs comprised of a drug with a high Tg (hydrochlorothiazide, HCTZ) or a low Tg (simvastatin, SIM) molecularly dispersed in a PVP/VA 64 or Soluplus® matrix. ASDs of the same composition were manufactured by the two different methods and were characterised using powder X-ray diffraction (PXRD), modulated differential scanning calorimetry (mDSC), attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and scanning electron microscopy (SEM). Both methods produced ASDs that were PXRD amorphous, with some differences, depending on the process used, in glass transition temperature and particle size distribution. Irrespective of manufacturing method used, all ASDs remained PXRD amorphous when subjected to high relative humidity conditions (75% RH, 25°C) for four weeks, although changes in the colour and physical characteristics were observed on storage for spray-dried systems with SIM and PVP/VA 64 copolymer. The particle morphology differed for co-precipitated compared to spray dried systems, with powder generated by the former process being comprised of more irregularly shaped particles of larger particle size when compared to the equivalent spray-dried systems which may enable more streamlined drug product processes to be used for CP materials. These differences may have implications in downstream drug product processing. A limitation identified when applying the solvent/anti-solvent co-precipitation method to SIM was the high antisolvent to solvent ratios required to effect the precipitation process. Thus, while similar outcomes may arise for both co-precipitation and spray drying processes in terms of ASD critical quality attributes, practical implications of applying the co-precipitation method and downstream processability of the resulting ASDs should be considered when choosing one solvent-based ASD production process over another.
Collapse
Affiliation(s)
- Monika Myślińska
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland
| | - Michael W Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland; I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Dublin 4, Ireland; National Institute for Bioprocess Research and Training, Dublin, Ireland
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, Dublin 2, Ireland; SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, Ireland; EPSRC-SFI Centre for Doctoral Training in Transformative Pharmaceutical Technologies, Ireland.
| |
Collapse
|
24
|
Madanayake SN, Manipura A, Thakuria R, Adassooriya NM. Opportunities and Challenges in Mechanochemical Cocrystallization toward Scaled-Up Pharmaceutical Manufacturing. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- Sithmi Nimashi Madanayake
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Aruna Manipura
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Ranjit Thakuria
- Department of Chemistry, Gauhati University, Guwahati 781014, Assam, India
| | - Nadeesh M. Adassooriya
- Department of Chemical and Process Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya 20400, Sri Lanka
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
25
|
Haneef J, Amir M, Sheikh NA, Chadha R. Mitigating Drug Stability Challenges Through Cocrystallization. AAPS PharmSciTech 2023; 24:62. [PMID: 36759434 DOI: 10.1208/s12249-023-02522-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/24/2023] [Indexed: 02/11/2023] Open
Abstract
Drug stability plays a significant role in the pharmaceutical industry from early-phase drug discovery to product registration as well as the entire life cycle of a product. Various formulation approaches have been employed to overcome drug stability issues. These approaches are sometimes time-consuming which ultimately affect the timeline of the product launch and may further require formulation optimization steps, affecting the overall cost. Pharmaceutical cocrystal is a well-established route to fine tune the biopharmaceutical properties of drugs without covalent modification. This article highlights the role of cocrystallization in mitigating the stability issues of challenging drug molecules. Representative case studies wherein the drug stability issue is addressed through pharmaceutical cocrystals have been discussed briefly and are summarized in tabular form. The emphasis has been made on the structural information of cocrystals and understanding the mechanism that improves the stability of the parent drug through cocrystallization. Besides, a guided strategy has been proposed to modulate the stability of drug molecules through cocrystallization approach. Finally, the stability concern of fixed-dose or drug combinations and the challenges associated with cocrystals are also touched.
Collapse
Affiliation(s)
- Jamshed Haneef
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India.
| | - Mohd Amir
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Nadeem Ahmed Sheikh
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110 062, India
| | - Renu Chadha
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
26
|
Zhou H, Duan C, Qin H, Huang C, Hou J, Chen Y, Zhu J, Xu C, Jin J, Zhuang T. Synthesis and structural characterization of a novel palbociclib-kaempferol cocrystal with improved tabletability and synergistic antitumor activity. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Li M, Liu Y, Shao L, Hua B, Wang M, Liang H, Khashab NM, Sessler JL, Huang F. Pillararene-Based Variable Stoichiometry Co-Crystallization: A Versatile Approach to Diversified Solid-State Superstructures. J Am Chem Soc 2023; 145:667-675. [PMID: 36574672 DOI: 10.1021/jacs.2c11618] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Variable stoichiometry co-crystals are important in solid-state supramolecular chemistry as they allow studies of structure-property relationships while permitting the synthesis of new scaffolds using identical synthons. In this work, we extend the concept of variable stoichiometry co-crystals into the realm of pillararene chemistry and show that this permits the rational construction of a diverse set of supramolecular structures in the solid state. Specifically, we report a series of variable stoichiometry co-crystals based on pillar[n]arenes and tetracyanobenzene (TCNB) and show that the combination of in-cavity complexation by pillar[n]arenes (n = 5,6) and outside binding with TCNB allows several types of co-crystals with different self-assembled superstructures to be isolated. The variable stoichiometry co-crystals of this study display different solid-state physicochemical properties, including colors and luminescence features. Among these pillar[n]arene-based co-crystals, we discovered unique crystallographic architectures wherein two sets of individual host-guest complexes co-exist in the solid state. These mixed co-crystal systems allow for vapochromic-based detection of n-bromoalkanes. This work highlights a new strategy for the construction of self-assembled superstructures in the solid state and for tuning their intrinsic characteristics, including their luminescent and substrate-responsive features.
Collapse
Affiliation(s)
- Ming Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Yang Liu
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Li Shao
- Department of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, P. R. China
| | - Bin Hua
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.,Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China
| | - Mengbin Wang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Haozhong Liang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310058, P. R. China.,Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
28
|
Pharmaceutical cocrystal of antibiotic drugs: A comprehensive review. Heliyon 2022; 8:e11872. [DOI: 10.1016/j.heliyon.2022.e11872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022] Open
|
29
|
Roy P, Kumari N, Pandey N, Gour A, Raj A, Srividya B, Nandi U, Ghosh A. Development of ezetimibe eutectic with improved biopharmaceutical and mechanical properties to design an optimized oral solid dosage formulation. Pharm Dev Technol 2022; 27:989-998. [PMID: 36322702 DOI: 10.1080/10837450.2022.2143525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Eutectics are multicomponent systems which are an alternative to the conventional techniques for modulating the biopharmaceutical properties of a pharmaceutical. Ezetimibe (ETZ) is a hypocholesterolemic agent with limited dissolution, poor water solubility, and subsequently demonstrates low oral bioavailability. Additionally, ETZ exhibits poor mechanical properties, leading to difficulties in developing dosage forms through direct compression. The present work highlights the applicability of eutectics in the simultaneous improvement of physicochemical along with mechanical properties of ETZ. A pharmaceutical eutectic of ETZ with succinimide (SUC) was prepared by mechanochemical grinding and thoroughly characterized using thermoanalytical, X-ray diffraction, and spectroscopic methods. Intrinsic dissolution rate and pharmacokinetic analysis were also performed for ezetimibe-succinimide (ETZ-SUC) eutectic in contrast to pure ETZ. The eutectic demonstrated ∼2-fold increase in the solubility and dissolution rate. In pharmacokinetic studies, the area under the curve (AUC) for ETZ-SUC eutectic (28.03 ± 2.22 ng*h/mL) was found to be higher than ETZ (8.98 ± 0.36 ng*h/mL), indicating improved oral bioavailability for eutectics. Also, it was observed that enhanced material functionality aids in designing directly compressed tablets, where the eutectic formulation showed an improved dissolution profile over the ETZ formulation. The study demonstrates that eutectic conglomerates could be utilized to develop ideal oral solid dosage formulations.
Collapse
Affiliation(s)
- Parag Roy
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Nimmy Kumari
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India.,Department of Pharmacy, Muzaffarpur Institute of Technology, Muzaffarpur, Muzaffarpur, India
| | - Noopur Pandey
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Abhishek Gour
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Amit Raj
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - B Srividya
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| | - Utpal Nandi
- PK-PD, Toxicology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, India
| | - Animesh Ghosh
- Department of Pharmaceutical Sciences and Technology, Solid State Pharmaceutics Research Laboratory, Birla Institute of Technology, Mesra, Ranchi, India
| |
Collapse
|
30
|
Chauhan V, Mardia R, Patel M, Suhagia B, Parmar K. Technical and Formulation Aspects of Pharmaceutical Co‐Crystallization: A Systematic Review. ChemistrySelect 2022. [DOI: 10.1002/slct.202202588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Vishva Chauhan
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Rajnikant Mardia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Mehul Patel
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Bhanu Suhagia
- Department of Pharmacy Dharmsinh Desai University Nadiad Gujarat India 387001 Corresponding author: Vishva Chauhan
| | - Komal Parmar
- Affiliation: a-ROFEL Shri G.M. Bilakhia College of Pharmacy Namdha campus Vapi Gujarat India 396191
| |
Collapse
|
31
|
Charpentier MD, Devogelaer JJ, Tijink A, Meekes H, Tinnemans P, Vlieg E, de Gelder R, Johnston K, ter Horst JH. Comparing and Quantifying the Efficiency of Cocrystal Screening Methods for Praziquantel. CRYSTAL GROWTH & DESIGN 2022; 22:5511-5525. [PMID: 36097547 PMCID: PMC9460446 DOI: 10.1021/acs.cgd.2c00615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Pharmaceutical cocrystals are highly interesting due to their effect on physicochemical properties and their role in separation technologies, particularly for chiral molecules. Detection of new cocrystals is a challenge, and robust screening methods are required. As numerous techniques exist that differ in their crystallization mechanisms, their efficiencies depend on the coformers investigated. The most important parameters characterizing the methods are the (a) screenable coformer fraction, (b) coformer success rate, (c) ability to give several cocrystals per successful coformer, (d) identification of new stable phases, and (e) experimental convenience. Based on these parameters, we compare and quantify the performance of three methods: liquid-assisted grinding, solvent evaporation, and saturation temperature measurements of mixtures. These methods were used to screen 30 molecules, predicted by a network-based link prediction algorithm (described in Cryst. Growth Des. 2021, 21(6), 3428-3437) as potential coformers for the target molecule praziquantel. The solvent evaporation method presented more drawbacks than advantages, liquid-assisted grinding emerged as the most successful and the quickest, while saturation temperature measurements provided equally good results in a slower route yielding additional solubility information relevant for future screenings, single-crystal growth, and cocrystal production processes. Seventeen cocrystals were found, with 14 showing stability and 12 structures resolved.
Collapse
Affiliation(s)
- Maxime D. Charpentier
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), University of Strathclyde,
Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K..
| | - Jan-Joris Devogelaer
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Arnoud Tijink
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Hugo Meekes
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Paul Tinnemans
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Elias Vlieg
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - René de Gelder
- Institute
for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525AJ Nijmegen, The Netherlands
| | - Karen Johnston
- Department
of Chemical and Process Engineering, University
of Strathclyde, James Weir Building, 75 Montrose Street, Glasgow G1 1XJ, U.K.
| | - Joop H. ter Horst
- EPSRC
Centre for Innovative Manufacturing in Continuous Manufacturing and
Crystallization (CMAC), University of Strathclyde,
Technology and Innovation Centre, 99 George Street, Glasgow G1 1RD, U.K..
- Laboratoire
Sciences et Méthodes Séparatives, Université de Rouen Normandie, Place Emile Blondel, 76821 Mont Saint Aignan Cedex, France
| |
Collapse
|
32
|
Garg U, Azim Y. Experimental and computational analyses of the cocrystal of Tetrahydrofuran-2,3,4,5-tetracarboxylic acid and urea. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
33
|
Two Novel Co-Crystals of Naproxen: Comparison of Stability, Solubility and Intermolecular Interaction. Pharmaceuticals (Basel) 2022; 15:ph15070807. [PMID: 35890107 PMCID: PMC9317554 DOI: 10.3390/ph15070807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Two novel co-crystals of naproxen (NPX) were designed and prepared at a stoichiometric ratio of 1:1, namely, naproxen–caprolactam (NPX–CPL) and naproxen–oxymatrine (NPX–OMT). The characteristics of the co-crystals were evaluated in terms of stability and solubility studies. In terms of solubility, in four kinds of solvent systems with different pH, the solubility of NPX–OMT was significantly improved compared with that of NPX, whereas the NPX–CPL showed advantages in acidic solvent systems, indicating that the co-crystals can be applied to concoct preparations depending on therapeutic purposes. Furthermore, the experimental results of the thermal analysis showed that the co-crystal NPX–OMT had better thermal stability than the co-crystal NPX–CPL. Finally, as a complement to the single crystal X-ray diffraction (SC XRD) method, the theoretical calculation based on density functional theory (DFT) was also used to reveal the intermolecular interaction of the co-crystals at the molecular level and visually display the difference between them.
Collapse
|
34
|
Salem A, Khanfar E, Nagy S, Széchenyi A. Cocrystals of tuberculosis antibiotics: Challenges and missed opportunities. Int J Pharm 2022; 623:121924. [PMID: 35738333 DOI: 10.1016/j.ijpharm.2022.121924] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/26/2022] [Accepted: 06/13/2022] [Indexed: 01/10/2023]
Abstract
Cocrystals have been extensively used to improve the physicochemical properties and bioavailability of active pharmaceutical ingredients. Cocrystals of anti-tuberculosis medications are among those commonly reported. This review provides a summary of the tuberculosis antibiotic cocrystals reported in the literature, providing the main results on current tuberculosis medications utilized in cocrystals. Moreover, anti-tuberculosis cocrystals limitations and advantages are described, including evidence for enhanced solubility, stability and effect. Opportunities to enhance anti-tuberculosis medications and fixed dose combinations using cocrystals are given. Several cocrystal pairs are suggested to enhance the effectiveness of anti-tuberculosis drugs.
Collapse
Affiliation(s)
- Ala' Salem
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary.
| | - Esam Khanfar
- Department of Immunology and Biotechnology, Medical School, University of Pécs, Pécs, Hungary
| | - Sándor Nagy
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary
| | - Aleksandar Széchenyi
- Institute of Pharmaceutical Technology and Biopharmacy, Faculty of Pharmacy, University of Pécs, Pécs, Hungary; Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
35
|
Share Mohammadi H, Haghighi Asl A, Khajenoori M. Determination of amiodarone hydrochloride solubility in pure and ethanol-modified subcritical water: Experimental data and modeling. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Ma N, Liu Y, Ling G, Zhang P. Preparation of meloxicam-salicylic acid co-crystal and its application in the treatment of rheumatoid arthritis. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
38
|
Mazivila SJ, Santos JL. A review on multivariate curve resolution applied to spectroscopic and chromatographic data acquired during the real-time monitoring of evolving multi-component processes: From process analytical chemistry (PAC) to process analytical technology (PAT). Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
O'Sullivan A, Long B, Verma V, Ryan KM, Padrela L. Solid-State and Particle Size Control of Pharmaceutical Cocrystals using Atomization-Based Techniques. Int J Pharm 2022; 621:121798. [PMID: 35525471 DOI: 10.1016/j.ijpharm.2022.121798] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/12/2022]
Abstract
Poor bioavailability and aqueous solubility represent a major constraint during the development of new API molecules and can influence the impact of new medicines or halt their approval to the market. Cocrystals offer a novel and competitive advantage over other conventional methods with respect towards the substantial improvement in solubility profiles relative to the single-API crystals. Furthermore, the production of such cocrystals through atomization-based methods allow for greater control, with respect to particle size reduction, to further increase the solubility of the API. Such atomization-based methods include supercritical fluid methods, conventional spray drying and electrohydrodynamic atomization/electrospraying. The influence of process parameters such as solution flow rates, pressure and solution concentration, in controlling the solid-state and final particle size are discussed in this review with respect to atomization-based methods. For the last decade, literature has been attempting to catch-up with new regulatory rulings regarding the classification of cocrystals, due in part to data sparsity. In recent years, there has been an increase in cocrystal publications, specifically employing atomization-based methods. This review considers the benefits to employing atomization-based methods for the generation of pharmaceutical cocrystals, examines the most recent regulatory changes regarding cocrystals and provides an outlook towards the future of this field.
Collapse
Affiliation(s)
- Aaron O'Sullivan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Barry Long
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Vivek Verma
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Kevin M Ryan
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland
| | - Luis Padrela
- SSPC Research Centre, Department of Chemical Sciences, Bernal Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
40
|
Cho HJ, Woo MR, Cho JH, Kim YI, Choi HG. Novel dapagliflozin di-L-proline cocrystal-loaded tablet: Preparation, physicochemical characterization, and pharmacokinetics in beagle dogs and mini-pigs. Pharm Dev Technol 2022; 27:331-340. [PMID: 35264063 DOI: 10.1080/10837450.2022.2052320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Dapagliflozin base and a commercial dapagliflozin propanediol hydrate cocrystal (DPF-PDHC) were highly hygroscopic and thermally unstable. In this study, to address this limitation, we prepared a novel dapagliflozin di-L-proline cocrystal (DPF-LPC) and evaluated its physicochemical characterization compared with DPF-PDHC. After the preparation of the DPF-LPC-loaded tablet, its dissolution, stability and bioequivalence in beagle dogs and mini-pigs were assessed. DPF-LPC was well prepared with a dapagliflozin base and L-proline in a molar ratio of 1:2. Similar to DPF-PDHC, DPF-LPC was highly lipophilic and crystalline in nature. However, these two cocrystals exhibited different melting points and crystalline structures, indicating their different cocrystal forms. Moreover, DPF-LPC exhibited less hygroscopicity and lower water content than DPF-PDHC. The DPF-LPC-loaded tablet composed of DPF-LPC, Comprecel M102, lactose monohydrate, crospovidone, magnesium stearate, and Opadry (coating) at a weight ratio of 15.6:104.4:100.0:8.0:2.0:7.0, was dissolution-equivalent to the commercial tablet. Moreover, it provided lower impurities than the commercial tablet, indicating its better stability. In the two animals, there were no significant differences in the plasma concentrations, AUC, Cmax, and Tmax values, suggesting that they were bioequivalent. Therefore, the novel DPF-LPC-loaded tablet with excellent stability and bioequivalence may be used as a potential alternative to the commercial DPF-PDHC-loaded tablet.
Collapse
Affiliation(s)
- Hyuk Jun Cho
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea.,Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Mi Ran Woo
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| | - Jung Hyun Cho
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Yong Il Kim
- Pharmaceutical Research Centre, Hanmi Pharm. Co., Paltan-myeon, 893-5 Hwaseong, Gyeonggi-Do 445-913, South Korea
| | - Han-Gon Choi
- College of Pharmacy, Hanyang University, 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, 15588, South Korea
| |
Collapse
|
41
|
Shahbaz M, Khan UA, Chaudhary MI, Yousuf S. A new bioactive cocrystal of coumarin-3-carboxylic acid and thiourea: detailed structural features and biological activity studies. Acta Crystallogr C Struct Chem 2022; 78:192-200. [PMID: 35245216 DOI: 10.1107/s205322962200081x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 01/23/2022] [Indexed: 11/10/2022] Open
Abstract
Cocrystallization is a phenomenon widely used to enhance the biological and physicochemical properties of active pharmaceutical ingredients (APIs). The present study deals with the synthesis of a cocrystal of coumarin-3-carboxylic acid (2-oxochromene-3-carboxylic acid, C10H6O4), a synthetic analogue of the naturally occurring antioxidant coumarin, with thiourea (CH4N2S) using the neat grinding method. The purity and homogeneity of the coumarin-3-carboxylic acid-thiourea (1/1) cocrystal was confirmed by single-crystal X-ray diffraction, FT-IR analysis and thermal stability studies based on differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Detailed geometry analysis via density functional theory (DFT) demonstrated that the 1:1 cocrystal stoichiometry is sustained by N-H...O hydrogen bonding between the amine (-NH2) groups of thiourea and the carbonyl group of coumarin. The synthesized cocrystal exhibited potent antioxidant activity (IC50 = 127.9 ± 5.95 µM) in a DPPH radical scavenger assay in vitro in comparison with the standard N-acetyl-L-cysteine (IC50 = 111.6 ± 2.4 µM). The promising results of the present study highlight the significance of cocrystallization as a crystal engineering tool to improve the efficacy of pharmaceutical ingredients.
Collapse
Affiliation(s)
- Muhammad Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - Umair Ahmed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - M Iqbal Chaudhary
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| | - Sammer Yousuf
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Sindh 75270, Pakistan
| |
Collapse
|
42
|
Huang GL, Yang L, Ren BY, Lv XY, Song LY, Dai XL, Chen JM. Simultaneously improving the physicochemical and pharmacokinetic properties of vemurafenib through cocrystallization strategy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Medium Gaussian SVM, Wide Neural Network and stepwise linear method in estimation of Lornoxicam pharmaceutical solubility in supercritical solvent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118120] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
44
|
Wang Q, Sun Z, Li D, Ye K, Xie C, Zhang S, Jiang L, Zheng K, Pang Q. Determination of protonation state in molecular salt of minoxidil and 2,4-dihydroxybenzoic acid through a combined experimental and theoretical study: influence of proton transfer on biological activities. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131560] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
An innovative rhein-matrine cocrystal: Synthesis, characterization, formation mechanism and pharmacokinetic study. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Bu FZ, Yu YM, Shen YL, Liu L, Yan CW, Wu ZY, Li YT. Cocrystallization-driven self-assembly with vanillic acid offers a new opportunity for surmounting fast and excessive absorption issues of antifungal drug 5-fluorocytosine: a combined theoretical and experimental research. CrystEngComm 2022. [DOI: 10.1039/d2ce00114d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The cocrystal of 5-fluorocytosine (FCY) with vanillic acid (VAA) was assembled via a cocrystallization technique, giving a novel understanding for conquering the dose-limited hepatotoxicity caused by the rapid and almost complete absorption of FCY.
Collapse
Affiliation(s)
- Fan-Zhi Bu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yue-Ming Yu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Yu-Li Shen
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Lu Liu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Cui-Wei Yan
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
| | - Zhi-Yong Wu
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| | - Yan-Tuan Li
- School of Medicine and Pharmacy and College of Marine Life Science, Ocean University of China, Qingdao, Shandong 266003, PR China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, 266003, PR China
| |
Collapse
|
47
|
Kim P, Lee IS, Kim JY, Mswahili M, Jeong YS, Yoon WJ, Yun H, Lee MJ, Choi GJ. A study to discover novel pharmaceutical cocrystals of pelubiprofen with a machine learning approach compared. CrystEngComm 2022. [DOI: 10.1039/d2ce00153e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pelubiprofen (PF), a biopharmaceutical classification system (BCS) class II non-steroidal anti-inflammatory drug, has been on the market only in its crystalline form. To discover the first cocrystal form(s) of the...
Collapse
|
48
|
Xia MY, Zhu BQ, Wang JR, Yang ZE, Mei XF. Superior Dissolution Behavior and Bioavailability of Pharmaceutical Cocrystals and Recent Regulatory Issues. ACS Med Chem Lett 2021; 13:29-37. [PMID: 35059121 PMCID: PMC8762724 DOI: 10.1021/acsmedchemlett.1c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/15/2021] [Indexed: 01/16/2023] Open
Abstract
Cocrystallization has been used extensively to optimize the physicochemical properties of active pharmaceutical ingredients (APIs), such as stability, dissolution, and bioavailability. This review summarizes the history and development of cocrystals, the differences between pharmaceutical cocrystals and salts, and the mechanism underlying the improvement of dissolution through cocrystallization. The correlation of in vitro dissolution and in vivo absorption data (IVIVC) of cocrystals has been discussed as well. Subsequently, guidelines for regulatory classification of cocrystals by the U.S. Food and Drug Administration (FDA) and European Medicines Agency (EMA) are introduced. Finally, d-α-tocopherol is used as an example to demonstrate the potential of cocrystals in patent generation.
Collapse
Affiliation(s)
- Meng Y. Xia
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China,University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing Q. Zhu
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Jian-R. Wang
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Ze E. Yang
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China
| | - Xue F. Mei
- Pharmaceutical
Analytical & Solid-State Chemistry Research Center, Shanghai Institute of Materia Medica, Chinese Academy
of Sciences, Shanghai 201203, China,University
of Chinese Academy of Sciences, Beijing 100049, China,
| |
Collapse
|
49
|
Wang L, Yan Y, Zhang X, Zhou X. Novel pharmaceutical cocrystal of lenalidomide with nicotinamide: Structural design, evaluation, and thermal phase transition study. Int J Pharm 2021; 613:121394. [PMID: 34933081 DOI: 10.1016/j.ijpharm.2021.121394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Lenalidomide (LDM), widely used for the treatment of transfusion-dependent anaemia, has low oral bioavailability due to its poor aqueous solubility. Herein, we selected nicotinamide (NIC) as a coformer and synthesized a novel pharmaceutical cocrystal: lenalidomide-nicotinamide cocrystal (LNC) with a 1:1 stoichiometric ratio for enhancing the physicochemical properties of LDM, such as solubility and stability. For evaluating the ability to form cocrystal of LDM and NIC, a model of hydrogen-bond propensity (HBP) was utilized to calculate the hydrogen bond formation possibility for every hydrogen bond pair based on theexisting structuralinformation in the database. Afterward, solid-state grinding and liquid-assisted grinding methods were conducted to synthesize LNC, which were then characterized using powder X-ray diffraction, thermal and spectroscopic analysis. Besides, in the heating process, an interesting and anomalous phenomenon called thermal phase transition of the cocrystal was firstly observed and visualized by the hot stage microscope. Notably, the second thermal stage controlled by the vapor pressure of NIC was further determined experimentally and theoretically, which means that intermolecular hydrogen bonds gradually break when NIC occurs phase transition (from liquid to gas). Further, the physicochemical stability of cocrystal was proved reliable after being tested under accelerated stability conditions of 40 °C/75% RH for one month. Compared to lenalidomide and their physical mixture (molar ratio of 1:1), the dissolution and solubility of LNC have also been improved.
Collapse
Affiliation(s)
- Lijuan Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yizhen Yan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiangyang Zhang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Xinggui Zhou
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
50
|
Panzade P, Shendarkar G, Kulkarni D, Shelke S. Solid State Characterization and Dissolution Enhancement of Nevirapine Cocrystals. Adv Pharm Bull 2021; 11:772-776. [PMID: 34888225 PMCID: PMC8642792 DOI: 10.34172/apb.2021.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 09/22/2020] [Indexed: 11/18/2022] Open
Abstract
Purpose: Novel cocrystals of nevirapine (NP) were designed and prepared with salicylamide and 3-hydroxy benzoic acid (3-HBA). Methods: The cocrystals were prepared by solvent drop grinding method by adding few drops of acetone to enhance the solubility and dissolution. The drug and cocrystals were characterized by differential scanning calorimetry (DSC) and powder x-ray diffraction (PXRD). The solubility of NP, its wet ground form, and cocrystals were investigated at different pH. Moreover, the effect of surfactant on solubility of cocrystals was also studied. Finally, intrinsic dissolution rate (IDR) and stability of cocrystals was examined. Results: The characterization of cocrystals by DSC and PXRD revealed formation of new solid forms due to changes in thermogram and PXRD pattern. The cocrystal of NP with 3-HBA showed 4.5 folds greater solubility in pH 1.2 buffer and 5.5 folds in 1% Tween 80 as compared to original drug. IDR of cocrystals was higher than the pure drug in 0.1 N hydrochloric acid (HCl). Moreover, cocrystals were found physically stable after 3 months as evident from unchanged IDR. Conclusion: Hence, the present research indicates the new stable solid forms of NP with improved dissolution rate than pure drug.
Collapse
Affiliation(s)
- Prabhakar Panzade
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | | | - Deepak Kulkarni
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| | - Santosh Shelke
- Department of Pharmaceutics, Srinath College of Pharmacy, Aurangabad, India
| |
Collapse
|