1
|
Pimenta RML, Skon-Hegg C, Rose-Hellekant T, Holy J. Mechanoresponsive patterns of KLF2, 4, 5, and 6 expression differ among subclones from a single mammary tumor. Acta Histochem 2025; 127:152238. [PMID: 39983249 DOI: 10.1016/j.acthis.2025.152238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 02/23/2025]
Abstract
A number of Krüppel-like transcription factor (KLF) family members display mechanoresponsive behaviors, and function as mechanosensitive transcription factors. There are many normal and pathological conditions where their roles in mechanotransduction and mechanoadaptation are not well understood, however. In this study, two basic questions regarding KLF mechanoresponsiveness were addressed: 1) are KLF 2, 4, 5, and 6 expressed at different levels among subclones of tumor cells adapted to specific microenvironmental conditions; and 2) is the expression of these KLFs responsive to rapid changes in the physical environment? To address these questions, the heterogeneous and differentially metastatic murine mammary tumor subclones 4T1, 4T07, and 67NR were subjected to physical changes in their culture conditions, and KLF responses assessed. The results show that the expression of different KLFs exhibit distinct responses to reductions in cell tension, as well as cell detachment from 2D and 3D environments. KLF2 and 4 expression is rapidly and temporarily induced upon release of cells from a stiff 2D substrate into liquid suspension culture in all three subclones, and similar responses are observed in two of the subclones upon the release of tension in 3D collagen gel cultures. By contrast, expression patterns of KLF5 and 6 were generally less affected by physical changes in most, but not all, of the cell lines examined. These results support the concept that KLFs differentially participate in transducing physical differences among intratumoral neighborhoods into distinct responses among heterogeneous subclones, thereby contributing to tumor cell behavioral complexity.
Collapse
Affiliation(s)
| | - Cara Skon-Hegg
- Whiteside Institute for Clinical Research, St. Luke's Hospital, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Teresa Rose-Hellekant
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA
| | - Jon Holy
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812, USA.
| |
Collapse
|
2
|
Liao W, Huang Y, Wang X, Hu Z, Zhao C, Wang G. Multidimensional excavation of the current status and trends of mechanobiology in cardiovascular homeostasis and remodeling within 20 years. MECHANOBIOLOGY IN MEDICINE 2025; 3:100127. [PMID: 40395770 PMCID: PMC12067904 DOI: 10.1016/j.mbm.2025.100127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/12/2025] [Accepted: 03/09/2025] [Indexed: 05/22/2025]
Abstract
Mechanobiology is essential for cardiovascular structure and function and regulates the normal physiological and pathological processes of the cardiovascular system. Cells in the cardiovascular system are extremely sensitive to their mechanical environment, and once mechanical stimulation is abnormal, the homeostasis mechanism is damaged or lost, leading to the occurrence of pathological remodeling diseases. In the past 20 years, many articles concerning the mechanobiology of cardiovascular homeostasis and remodeling have been published. To better understand the current development status, research hotspots and future development trends in the field, this paper uses CiteSpace software for bibliometric analysis, quantifies and visualizes the articles published in this field in the past 20 years, and reviews the research hotspots and emerging trends. The regulatory effects of mechanical stimulation on the biological behavior of endothelial cells, smooth muscle cells and the extracellular matrix, as well as the mechanical-related remodeling mechanism in heart failure, have always been research hotspots in this field. This paper reviews the research advances of these research hotspots in detail. This paper also introduces the research status of emerging hotspots, such as those related to cardiac fibrosis, homeostasis, mechanosensitive transcription factors and mechanosensitive ion channels. We hope to provide a systematic framework and new ideas for follow-up research on mechanobiology in the field of cardiovascular homeostasis and remodeling and promote the discovery of more therapeutic targets and novel markers of mechanobiology in the cardiovascular system.
Collapse
Affiliation(s)
- Wei Liao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Yuxi Huang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | | | - Ziqiu Hu
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Chuanrong Zhao
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| | - Guixue Wang
- Key Laboratory of Biorheological and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
- JinFeng Laboratory, Chongqing, 401329, China
| |
Collapse
|
3
|
Li Y, Zhang L, Zhang Q, Zhang Y, Pan S, Zhao H, Zhang L. HSPB1 suppresses oxLDL-induced vascular smooth muscle cell ferroptosis by inhibiting DPP4. Arch Biochem Biophys 2025; 768:110400. [PMID: 40132776 DOI: 10.1016/j.abb.2025.110400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/25/2025] [Accepted: 03/22/2025] [Indexed: 03/27/2025]
Abstract
BACKGROUND Atherosclerosis is the major pathological basis of cardiovascular diseases. Vascular smooth muscle cell (VSMC) dysfunction and death induced by oxidized low-density lipoprotein (oxLDL) play a key role in atherosclerosis. Ferroptosis is a novel iron-dependent lipid peroxidation regulated cell death, which is implicated in atherosclerosis. However, whether oxLDL induces VSMC ferroptosis and the specific mechanism is unclear. METHODS To determine the effects of oxLDL on VSMC ferroptosis, LDH activity, MDA and Fe2+ content, glutathione peroxidase 4 (GPX4) expression and GPX enzyme activity were assayed. The level of lipid peroxidation was detected by C11 BODIPY fluorescence staining. RT-qPCR and Western blot were used to detect the mRNA and protein expressions of heat shock protein B1 (HSPB1), dipeptidyl peptidase 4 (DPP4) and nuclear factor kappa-B (NF-κB). The siRNAs, plasmids and Val-boropro were utilized to explore the roles of HSPB1/NF-κB/DPP4 in oxLDL-induced VSMC ferroptosis. RESULTS oxLDL increased LDH activity, Fe2+ content, lipid peroxidation and MDA content in VSMCs, which were inhibited by ferroptosis inhibitors Lip-1 and DFO. Moreover, oxLDL reduced GPX4 protein expression and GPX enzyme activity, indicating that oxLDL induces VSMC ferroptosis. Notably, HSPB1 inhibited oxLDL-induced VSMC ferroptosis by reducing the accumulation of Fe2+ and lipid peroxidation and increasing GPX4 expression and activity. In addition, HSPB1 suppressed oxLDL-induced VSMC ferroptosis by inhibiting DPP4 through NF-κB. Furthermore, Val-boropro could rescue oxLDL-induced ferroptosis in VSMCs with HSPB1 knockdown by inhibiting DPP4. CONCLUSIONS This study reveals for the first time that HSPB1 suppresses oxLDL-induced VSMC ferroptosis by inhibiting DPP4 through NF-κB, providing new strategies for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yi Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuke Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Shuang Pan
- Department of Physiology, School of Basic Medicine, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Huanhuan Zhao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lijun Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Lao XY, Sun YL, Zhao ZJ, Liu J, Ruan XF. Pharmacological effects of betulinic acid and its protective mechanisms on the cardiovascular system. Fitoterapia 2025; 183:106561. [PMID: 40288588 DOI: 10.1016/j.fitote.2025.106561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/09/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Betulinic acid (BA), a pentacyclic triterpenoid saponin widely found in plants, has attracted attention for its diverse pharmacological activities. Recent studies highlight its cardioprotective potential, promoting its relevance in cardiovascular research. AIM OF THE REVIEW This review summarizes BA's physicochemical properties, structure-activity relationships, natural sources, and synthesis strategies. It further discusses its pharmacokinetics and toxicity to evaluate its drug development potential, with emphasis on cardioprotective effects and related signaling pathways. METHODS Literature was collected from databases such as PubMed and Web of Science, focusing on studies addressing BA's chemical characteristics, biological activities, pharmacokinetics, and cardiovascular relevance. RESULTS BA exerts cardioprotective effects via multiple signaling pathways, including NRF2, NF-κB, MAPK, and NFAT. These contribute to its antioxidant, anti-inflammatory, anti-apoptotic, and anti-proliferative actions, as well as its enhancement of endothelial function through nitric oxide signaling. BA also reduces lipid accumulation. Combined with favorable physicochemical properties and synthetic accessibility, these findings support BA as a promising multifunctional lead compound in cardiovascular pharmacology. CONCLUSION BA shows strong potential as a cardioprotective natural compound. Although further research is needed to validate its clinical efficacy and safety, its multi-target actions and structural versatility provide a solid basis for development in cardiovascular drug discovery.
Collapse
Affiliation(s)
- Xu Yuan Lao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuan Long Sun
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zhe Jun Zhao
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jie Liu
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiao Fen Ruan
- Cardiovascular Research Institute of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Cardiovascular Department of Traditional Chinese Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
5
|
Zhao X, Xiao Y, Jiang M, Cao Y. Pharmacological and toxicological roles of Kruppel-like factors (KLFs) in the cardiovascular system: a review. Mol Biol Rep 2025; 52:506. [PMID: 40418318 DOI: 10.1007/s11033-025-10613-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Kruppel-like factors (KLFs) are transcription factors (TFs) increasingly implicated in cardiovascular pharmacology and toxicology through molecular mechanisms regulating endothelial function, macrophage polarization, and lipid metabolism. For example, KLF2/4 maintains endothelial homeostasis by modulating endothelial nitric oxide synthase (eNOS) activity and oxidative stress, and KLF4 additionally regulates smooth muscle cell phenotypic switch. KLF6 governs macrophage polarization and pyroptosis, while KLF15 modulates cardiomyocyte lipid metabolism, with dysregulation linked to cardiomyopathy. Not surprisingly, drugs such as statins and phytochemicals, as well as toxicants like ox-LDL, nanomaterials, and radiation, alter KLF expression via non-coding RNA (such as microRNA) or TFs, influencing endothelial cell activation, vascular smooth muscle cell phenotypic switch, macrophage inflammation, and cardiomyocyte apoptosis. KLF-dependent pathways intersect with key toxicological processes, such as autophagy, ferroptosis, and lipid dysregulation, culminating in atherosclerosis and heart failure. Despite preclinical advances demonstrating KLFs as therapeutic targets, clinical translation remains limited, with no KLF-targeted agents in active trials. Future studies should delineate tissue-specific KLF interactions, resolve KLFs' conflicting roles, and explore CRISPR-based KLF-targeting modulation. Bridging molecular mechanisms, such as KLF's regulation of phenotypic transformation pathways in smooth muscle cells, to drug discovery could yield novel therapies for cardiovascular diseases. The present review underscores the need for mechanistic and translational research to harness KLFs in cardiovascular pharmacotherapy and toxicant risk assessment.
Collapse
Affiliation(s)
- Xiaomei Zhao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yangfan Xiao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Miao Jiang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hengyang Medical School, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, University of South China, Hengyang, 421001, China
| | - Yi Cao
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
6
|
Luo W, Chen Y, Fang C, Shi H, Luo F. FBXL14 inhibits foam cell formation and atherosclerosis plaque progression by activating the NRF2 signal axis through ubiquitination of DUSP6. J Recept Signal Transduct Res 2025; 45:107-117. [PMID: 40051291 DOI: 10.1080/10799893.2025.2466689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 04/02/2025]
Abstract
OBJECTIVES Atherosclerosis is characterized by persistent inflammatory condition, leading to various cardiovascular complications. Foam cell formation, resulting from macrophage uptake of oxidized low-density lipoprotein (ox-LDL), contributes significantly to atherosclerosis progression. This study was designed to investigate the involvement of bispecific phosphatase-6 (DUSP6) and its potential regulatory mechanisms in foam cell formation and atherosclerosis. METHODS We employed THP-1 cells to induce foam cell formation. The lipid droplet accumulation, cholesterol content, tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 levels were evaluated using Oil Red O staining, cholesterol assay, ELISA, and qRT-PCR techniques. We investigated DUSP6 ubiquitination via immunoprecipitation and western blot (WB) analysis. A bioinformatics approach identified FBXL14 as a potential E3 ligase involved in DUSP6 ubiquitination, further confirmed by siRNA and overexpression experiments. The impact of FBXL14 on the NRF2 signaling pathway was assessed using WB analysis. RESULTS DUSP6 interference suppressed foam cell formation and inflammatory factor secretion. Upon ox-LDL treatment, DUSP6 underwent deubiquitylation, with FBXL14 emerging as the candidate E3 ligase. FBXL14 overexpression induced DUSP6 ubiquitination, leading to the NRF2 signaling pathway activation. It counteracted with DUSP6 overexpression on foam cell formation and inflammation. In ApoE-/- mice, sh-DUSP6 adenovirus injection mitigated atherosclerotic lesion progression and improved the lipid profile, with increased the proteins expression of NQO1, HO-1, and NRF2 in aortic tissue. CONCLUSION DUSP6 and FBXL14 play vital roles in modulating foam cell formation and inflammatory responses in atherosclerosis. Targeting these molecules could offer therapeutic potential in attenuating atherosclerosis-related complications. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Wenjie Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yubin Chen
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Cheng Fang
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hui Shi
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fanyan Luo
- Department of Cardiac Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
7
|
Sun L, Leng R, Liu M, Su M, He Q, Zhang Z, Liu Z, Wang Z, Jiang H, Wang L, Guo S, Xu Y, Huo Y, Miller CL, Banach M, Huang Y, Evans PC, Pelisek J, Camici GG, Berk BC, Offermanns S, Ge J, Xu S, Weng J. Endothelial MICU1 protects against vascular inflammation and atherosclerosis by inhibiting mitochondrial calcium uptake. J Clin Invest 2025; 135:e181928. [PMID: 40166941 PMCID: PMC11957702 DOI: 10.1172/jci181928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 01/31/2025] [Indexed: 04/02/2025] Open
Abstract
Mitochondrial dysfunction fuels vascular inflammation and atherosclerosis. Mitochondrial calcium uptake 1 (MICU1) maintains mitochondrial Ca2+ homeostasis. However, the role of MICU1 in vascular inflammation and atherosclerosis remains unknown. Here, we report that endothelial MICU1 prevents vascular inflammation and atherosclerosis by maintaining mitochondrial homeostasis. We observed that vascular inflammation was aggravated in endothelial cell-specific Micu1 knockout mice (Micu1ECKO) and attenuated in endothelial cell-specific Micu1 transgenic mice (Micu1ECTg). Furthermore, hypercholesterolemic Micu1ECKO mice also showed accelerated development of atherosclerosis, while Micu1ECTg mice were protected against atherosclerosis. Mechanistically, MICU1 depletion increased mitochondrial Ca2+ influx, thereby decreasing the expression of the mitochondrial deacetylase sirtuin 3 (SIRT3) and the ensuing deacetylation of superoxide dismutase 2 (SOD2), leading to the burst of mitochondrial reactive oxygen species (mROS). Of clinical relevance, we observed decreased MICU1 expression in the endothelial layer covering human atherosclerotic plaques and in human aortic endothelial cells exposed to serum from patients with coronary artery diseases (CAD). Two-sample Wald ratio Mendelian randomization further revealed that increased expression of MICU1 was associated with decreased risk of CAD and coronary artery bypass grafting (CABG). Our findings support MICU1 as an endogenous endothelial resilience factor that protects against vascular inflammation and atherosclerosis by maintaining mitochondrial Ca2+ homeostasis.
Collapse
Affiliation(s)
- Lu Sun
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Ruixue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Monan Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Meiming Su
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingze He
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhidan Zhang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhihua Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Hui Jiang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Shuai Guo
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yiming Xu
- School of Basic Medical Sciences, State Key Lab of Respiratory Disease, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuqing Huo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Clint L. Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, USA
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Paul C. Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Giovanni G. Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Bradford C. Berk
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Metabolic Health and Panvascular Diseases, Hefei, Anhui, China
- Department of Endocrinology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
8
|
Guo Y, Zhang J, Gong L, Liu N, Liu Q, Liu Z, Guo B, Yang J. Mechanical Loading Induces NRF2 Nuclear Translocation to Epigenetically Remodel Oxidative Stress Defense in Osteocytes. Antioxidants (Basel) 2025; 14:346. [PMID: 40227420 PMCID: PMC11939503 DOI: 10.3390/antiox14030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/15/2025] Open
Abstract
The mechano-responsiveness of osteocytes is critical for maintaining bone health and associated with a reduced oxidative stress defense, yet the precise molecular mechanisms remain incompletely understood. Here, we address the gap by investigating the epigenetic reprogramming that drives osteocyte responses to mechanical loading. We found overall remodeling of antioxidant response under mechanical loading and identified NRF2, a key transcription factor in oxidative stress response, which plays a vital role in the epigenetic remodeling of osteocytes. The results showed that mechanical loading enhanced NRF2 protein stability, promoted its nuclear translocation, and activated osteocyte-specific transcriptional programs. In contrast, pharmacological stabilization of NRF2 failed to fully replicate these effects, underscoring the unique role of mechanical stimuli in modulating NRF2 activity and antioxidant function. Our findings highlight the potential therapeutic limitations of NRF2-stabilizing drugs and suggest that combining pharmacological approaches with mechanical interventions could offer more effective treatments to maintain oxidative homeostasis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Baosheng Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| | - Jingping Yang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China; (Y.G.); (J.Z.); (L.G.); (N.L.); (Q.L.); (Z.L.)
| |
Collapse
|
9
|
Li H, Ye B, Tian J, Wang B, Zha Y, Zheng S, Ma T, Zhuang W, Park WS, Liang J. Monotropein resists atherosclerosis by reducing inflammation, oxidative stress, and abnormal proliferation and migration of vascular smooth muscle cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:245-255. [PMID: 39972674 PMCID: PMC11842295 DOI: 10.4196/kjpp.24.352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 02/21/2025]
Abstract
Monotropein is a compound classified into iridoid which is found in herbaceous plants Morindae officinalis. It possesses anti-inflammatory, antioxidant, and anti-osteoarthritic activities. Previous study indicates that monotropein may have the potential to combat cardiovascular disease, although the related mechanism remains unclear. In this study, we constructed the model of atherosclerosis by oxidized low density lipoprotein-induced vascular smooth muscle cells and LDLR-/- mice given high-fat diet to investigate the effects of monotropein on atherosclerosis. Our results showed that monotropein treatment significantly reduced the area of atherosclerotic plaques and necrotic cores in mice, inhibited the proliferation and migration of vascular smooth muscle cells, and reduced inflammatory responses and oxidative stress, which in turn alleviated atherosclerosis. In addition, we found that monotropein reduced the expression levels of P-NF-κB and P-AP-1. In conclusion, our data suggest that monotropein inhibited the proliferation and migration of vascular smooth muscle cells by mediating the activity of NF-κB, AP-1, reducing the level of inflammation and oxidative stress, and thus resisting the development of atherosclerosis. These findings demonstrate the efficacious therapeutic impact of monotropein on atherosclerosis and elucidate its specific target.
Collapse
Affiliation(s)
- Hongliang Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Bingqian Ye
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jiping Tian
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Bofan Wang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Yiwen Zha
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Shuying Zheng
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Wenwen Zhuang
- Department of Physiology, Kangwon National University School of Medicine, Chuncheon 24341, Korea
| | - Won Sun Park
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University, Yangzhou 225001, Jiangsu, China
| |
Collapse
|
10
|
González I, Maldonado-Agurto R. The role of cellular senescence in endothelial dysfunction and vascular remodelling in arteriovenous fistula maturation. J Physiol 2025. [PMID: 39977444 DOI: 10.1113/jp287387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/22/2025] Open
Abstract
Haemodialysis (HD) is often required for patients with end-stage renal disease. Arteriovenous fistulas (AVFs), a surgical procedure connecting an artery to a vein, are the preferred vascular access for HD due to their durability and lower complication rates. The aim of AVFs is to promote vein remodelling to accommodate increased blood flow needed for dialysis. However, many AVFs fail to mature properly, making them unsuitable for dialysis. Successful maturation requires remodelling, resulting in an increased luminal diameter and thickened walls to support the increased blood flow. After AVF creation, haemodynamic changes due to increased blood flow on the venous side of the AVF initiate a cascade of events that, when successful, lead to the proper maturation of the AVF, making it suitable for cannulation. In this process, endothelial cells play a crucial role since they are in direct contact with the frictional forces exerted by the blood, known as shear stress. Patients requiring HD often have other conditions that increase the burden of senescent cells, such as ageing, diabetes and hypertension. These senescent cells are characterized by irreversible growth arrest and the secretion of pro-inflammatory and pro-thrombotic factors, collectively known as the senescence-associated secretory phenotype (SASP). This accumulation can impair vascular function by promoting inflammation, reducing vasodilatation, and increasing thrombosis risk, thus hindering proper AVF maturation and function. This review explores the contribution of senescent endothelial cells to AVF maturation and explores potential therapeutic strategies to alleviate the effects of senescent cell accumulation, aiming to improve AVF maturation rates.
Collapse
Affiliation(s)
- Ignacia González
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| | - Rodrigo Maldonado-Agurto
- Center for Biomedical Research (CIBMED), Faculty of Medicine, Universidad Finis Terrae, Santiago, Chile
| |
Collapse
|
11
|
Wang R, Zhang H, Li S, Yan P, Shao S, Liu B, Li N. Current progress of in vitrovascular models on microfluidic chips. Biofabrication 2025; 17:022004. [PMID: 39899982 DOI: 10.1088/1758-5090/adb182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/03/2025] [Indexed: 02/05/2025]
Abstract
The vascular tissue, as an integral component of the human circulatory system, plays a crucial role in retaining normal physiological functions within the body. Pathologies associated with the vasculature, whether direct or indirect, also constitute significant public health concerns that afflict humanity, leading to the wide studies on vascular physiology and pathophysiology. Given the precious nature of human derived vascular tissue, substantial efforts have been dedicated to the construction of vascular models. Due to the high cost associated with animal experimentation and the inability to directly translate results to human, there is an increasing emphasis on the use of primary human cells for the development ofin vitrovascular models. For instance, obtaining an ApoE-/-mouse model for atherosclerosis research typically requires feeding a high-fat diet for over 10 weeks, whereasin vitrovascular models can usually be formed within 2 weeks. With advancements in microfluidic technology,in vitrovascular models capable of precisely emulating the hemodynamic environment within human vessels are becoming increasingly sophisticated. Microfluidic vascular models are primarily constructed through two approaches: (1) directly constructing the vascular models based on the three-layer structure of the vascular wall; (2) co-culture of endothelial cells and supporting cells within hydrogels. The former is effective to replicate vascular tissue structure mimicking vascular wall, while the latter has the capacity to establish microvascular networks. This review predominantly presents and discusses recent advancements in template design, construction methods, and potential applications of microfluidic vascular models based on polydimethylsiloxane (PDMS) soft lithography. Additionally, some refined methodologies addressing the limitations of conventional PDMS-based soft lithography techniques are also elaborated, which might hold profound importance in the field of vascular tissue engineering on microfluidic chips.
Collapse
Affiliation(s)
- Ran Wang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Hangyu Zhang
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Shijun Li
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Peishi Yan
- Department of Cardiology, Central Hospital of Dalian University of Technology, Dalian 116033, People's Republic of China
| | - Shuai Shao
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Bo Liu
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| | - Na Li
- Cancer Hospital of Dalian University of Technology, Shenyang 110042, People's Republic of China
- Faculty of Medicine, Dalian University of Technology, Dalian 116024, People's Republic of China
- Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, People's Republic of China
| |
Collapse
|
12
|
Schwartz MA. IGFBP6 contributes to vascular resilience. NATURE CARDIOVASCULAR RESEARCH 2025; 4:122-123. [PMID: 39794480 DOI: 10.1038/s44161-024-00597-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Affiliation(s)
- Martin A Schwartz
- Departments of Internal Medicine (Cardiovascular Medicine), Cell Biology and Biomedical Engineering, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
13
|
Su M, Zhao W, Jiang H, Zhao Y, Liao Z, Liu Z, Xu M, Jiang S, Wu L, Yang Y, Wang Z, Zeng Z, Fang Y, Tang C, Miller CL, Evans PC, Wang L, Banach M, Jo H, Berk BC, Offermanns S, Huang Y, Ge J, Xu S, Weng J. Endothelial IGFBP6 suppresses vascular inflammation and atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2025; 4:145-162. [PMID: 39794479 PMCID: PMC11825279 DOI: 10.1038/s44161-024-00591-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/28/2024] [Indexed: 01/13/2025]
Abstract
Beyond dyslipidemia, inflammation contributes to the development of atherosclerosis. However, intrinsic factors that counteract vascular inflammation and atherosclerosis remain scarce. Here we identify insulin-like growth factor binding protein 6 (IGFBP6) as a homeostasis-associated molecule that restrains endothelial inflammation and atherosclerosis. IGFBP6 levels are significantly reduced in human atherosclerotic arteries and patient serum. Reduction of IGFBP6 in human endothelial cells by siRNA increases inflammatory molecule expression and monocyte adhesion. Conversely, pro-inflammatory effects mediated by disturbed flow (DF) and tumor necrosis factor (TNF) are reversed by IGFBP6 overexpression. Mechanistic investigations further reveal that IGFBP6 executes anti-inflammatory effects directly through the major vault protein (MVP)-c-Jun N-terminal kinase (JNK)/nuclear factor kappa B (NF-κB) signaling axis. Finally, IGFBP6-deficient mice show aggravated diet- and DF-induced atherosclerosis, whereas endothelial-cell-specific IGFBP6-overexpressing mice protect against atherosclerosis. Based on these findings, we propose that reduction of endothelial IGFBP6 is a predisposing factor in vascular inflammation and atherosclerosis, which can be therapeutically targeted.
Collapse
Affiliation(s)
- Meiming Su
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wenqi Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Hui Jiang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yaping Zhao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhaopeng Liao
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenghong Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyun Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shanshan Jiang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Lili Wu
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Yi Yang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhihua Wang
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhutian Zeng
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yun Fang
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Chaojun Tang
- Cyrus Tang Hematology Center, Cyrus Tang Medical Institute, Soochow University, Suzhou, China
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
| | - Hanjoong Jo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Bradford C Berk
- Aab Cardiovascular Research Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Stefan Offermanns
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Xuhui District, Shanghai, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- Anhui Provincial Key Laboratory of Metabolic Health and Pan-vascular Diseases, Hefei, China.
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- Anhui Provincial Key Laboratory of Metabolic Health and Pan-vascular Diseases, Hefei, China.
| |
Collapse
|
14
|
Nakagawa R, Beardsley A, Durney S, Hayward MK, Subramanyam V, Meyer NP, Wismer H, Goodarzi H, Weaver VM, Van de Mark D, Goga A. Tumor Cell Spatial Organization Directs EGFR/RAS/RAF Pathway Primary Therapy Resistance through YAP Signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.09.26.615226. [PMID: 39386679 PMCID: PMC11463411 DOI: 10.1101/2024.09.26.615226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Non-small cell lung cancers (NSCLC) harboring common mutations in EGFR and KRAS characteristically respond transiently to targeted therapies against those mutations, but invariably, tumors recur and progress. Resistance often emerges through mutations in the therapeutic target or activation of alternative signaling pathways. Mechanisms of acute tumor cell resistance to initial EGFR (EGFRi) or KRASG12C (G12Ci) pathway inhibition remain poorly understood. Our study reveals that acute response to EGFR/RAS/RAF-pathway inhibition is spatial and culture context specific. In vivo, EGFR mutant tumor xenografts shrink by > 90% following acute EGFRi therapy, and residual tumor cells are associated with dense stroma and have increased nuclear YAP. Interestingly, in vitro EGFRi induced cell cycle arrest in NSCLC cells grown in monolayer, while 3D spheroids preferentially die upon inhibitor treatment. We find differential YAP nuclear localization and activity, driven by the distinct culture conditions, as a common resistance mechanism for selective EGFR/KRAS/BRAF pathway therapies. Forced expression of the YAPS127A mutant partially protects cells from EGFR-mediated cell death in spheroid culture. These studies identify YAP activation in monolayer culture as a non-genetic mechanism of acute EGFR/KRAS/BRAF therapy resistance, highlighting that monolayer vs spheroid cell culture systems can model distinct stages of patient cancer progression.
Collapse
Affiliation(s)
- Rachel Nakagawa
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrew Beardsley
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Sophia Durney
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Mary-Kate Hayward
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
| | - Vishvak Subramanyam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Bakar Computational Health Sciences Institute, University of California, San Francisco, CA, USA
| | - Nathaniel P. Meyer
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Harrison Wismer
- Biological Imaging Development CoLab, UCSF, San Francisco, CA, USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Valerie M Weaver
- Department of Surgery and Center for Bioengineering and Tissue Regeneration, University of California San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| | - Daniel Van de Mark
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
| | - Andrei Goga
- Department of Cell & Tissue Biology, University of California, San Francisco, CA, USA
- Department Of Medicine, University of California, San Francisco, San Francisco, CA, USA
- UCSF Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA, USA
| |
Collapse
|
15
|
Pirri C. Exploring the Revolutionary Impact of YAP Pathways on Physical and Rehabilitation Medicine. Biomolecules 2025; 15:96. [PMID: 39858490 PMCID: PMC11764055 DOI: 10.3390/biom15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/20/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Cellular behavior is strongly influenced by mechanical signals in the surrounding microenvironment, along with external factors such as temperature fluctuations, changes in blood flow, and muscle activity, etc. These factors are key in shaping cellular states and can contribute to the development of various diseases. In the realm of rehabilitation physical therapies, therapeutic exercise and manual treatments, etc., are frequently employed, not just for pain relief but also to support recovery from diverse health conditions. However, the detailed molecular pathways through which these therapies interact with tissues and influence gene expression are not yet fully understood. The identification of YAP has been instrumental in closing this knowledge gap. YAP is known for its capacity to perceive and translate mechanical signals into specific transcriptional programs within cells. This insight has opened up new perspectives on how physical and rehabilitation medicine may exert its beneficial effects. The review investigates the involvement of the Hippo/YAP signaling pathway in various diseases and considers how different rehabilitation techniques leverage this pathway to aid in healing. Additionally, it examines the therapeutic potential of modulating the Hippo/YAP pathway within the context of rehabilitation, while also addressing the challenges and controversies that surround its use in physical and rehabilitation medicine.
Collapse
Affiliation(s)
- Carmelo Pirri
- Department of Neuroscience, Institute of Human Anatomy, University of Padova, 35121 Padova, Italy
| |
Collapse
|
16
|
Lan Y, Lu J, Zhang S, Jie C, Chen C, Xiao C, Qin C, Cheng D. Piezo1-Mediated Mechanotransduction Contributes to Disturbed Flow-Induced Atherosclerotic Endothelial Inflammation. J Am Heart Assoc 2024; 13:e035558. [PMID: 39450718 PMCID: PMC11935715 DOI: 10.1161/jaha.123.035558] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 10/26/2024]
Abstract
BACKGROUND Disturbed flow generates oscillatory shear stress (OSS), which in turn leads to endothelial inflammation and atherosclerosis. Piezo1, a biomechanical force sensor, plays a crucial role in the cardiovascular system. However, the specific role of Piezo1 in atherosclerosis remains to be fully elucidated. METHODS AND RESULTS We detected the expression of Piezo1 in atherosclerotic mice and endothelial cells from regions with disturbed blood flow. The pharmacological inhibitor Piezo1 inhibitor (GsMTx4) was used to evaluate the impact of Piezo1 on plaque progression and endothelial inflammation. We examined Piezo1's direct response to OSS in vitro and its effects on endothelial inflammation. Furthermore, mechanistic studies were conducted to explore the potential molecular cascade through which Piezo1 mediates endothelial inflammation in response to OSS. Our findings revealed the upregulation of Piezo1 in apoE-/- (apolipoprotein E) atherosclerotic mice, which is associated with disturbed flow. Treatment with GsMTx4 not only delayed plaque progression but also mitigated endothelial inflammation in both chronic and disturbed flow-induced atherosclerosis. Piezo1 was shown to facilitate calcium ions (Ca2+) influx in response to OSS, thereby activating endothelial inflammation. This inflammatory response was attenuated in the absence of Piezo1. Additionally, we identified that under OSS, Piezo1 activates the Ca2+/CaM/CaMKII (calmodulin/calmodulin-dependent protein kinases Ⅱ) pathways, which subsequently stimulate downstream kinases FAK (focal adhesion kinase) and Src. This leads to the activation of the OSS-sensitive YAP (yes-associated protein), ultimately triggering endothelial inflammation. CONCLUSIONS Our study highlights the key role of Piezo1 in atherosclerotic endothelial inflammation, proposing the Piezo1-Ca2+/CaM/CaMKII-FAK/Src-YAP axis as a previously unknown endothelial mechanotransduction pathway. Piezo1 is expected to become a potential therapeutic target for atherosclerosis and cardiovascular diseases.
Collapse
Affiliation(s)
- Yining Lan
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Jing Lu
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Shaohan Zhang
- The Second Affiliated Hospital of Qiqihar Medical CollegeQiqiharHeilongjiangChina
| | - Chunxiao Jie
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Chunyong Chen
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Chao Xiao
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
- Department of NeurologyLiuzhou People’s HospitalLiuzhouGuangxiChina
| | - Chao Qin
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| | - Daobin Cheng
- Department of NeurologyThe First Affiliated Hospital of Guangxi Medical UniversityNanningGuangxiChina
| |
Collapse
|
17
|
Kowara M, Kopka M, Kopka K, Głowczyńska R, Mitrzak K, Kim DA, Sadowski KA, Cudnoch-Jędrzejewska A. MicroRNA Inhibiting Atheroprotective Proteins in Patients with Unstable Angina Comparing to Chronic Coronary Syndrome. Int J Mol Sci 2024; 25:10621. [PMID: 39408950 PMCID: PMC11476700 DOI: 10.3390/ijms251910621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/20/2024] Open
Abstract
Patients with unstable angina present clinical characteristics of atherosclerotic plaque vulnerability, contrary to chronic coronary syndrome patients. The process of athersclerotic plaque destabilization is also regulated by microRNA particles. In this study, the investigation on expression levels of microRNAs inhibiting the expression of proteins that protect from atherosclerotic plaque progression (miR-92a inhibiting KLF2, miR-10b inhibiting KLF4, miR-126 inhibiting MerTK, miR-98 inhibiting IL-10, miR-29b inhibiting TGFβ1) was undertaken. A number of 62 individuals were enrolled-unstable angina (UA, n = 14), chronic coronary syndrome (CCS, n = 38), and healthy volunteers (HV, n = 10). Plasma samples were taken, and microRNAs expression levels were assessed by qRT-PCR. As a result, the UA patients presented significantly increased miR-10b levels compared to CCS patients (0.097 vs. 0.058, p = 0.033). Moreover, in additional analysis when UA patients were grouped together with stable patients with significant plaque in left main or proximal left anterior descending ("UA and LM/proxLAD" group, n = 29 patients) and compared to CCS patients with atherosclerotic lesions in other regions of coronary circulation ("CCS other" group, n = 25 patients) the expression levels of both miR-10b (0.104 vs. 0.046; p = 0.0032) and miR-92a (92.64 vs. 54.74; p = 0.0129) were significantly elevated. In conclusion, the study revealed significantly increased expression levels of miR-10b and miR-92a, a regulator of endothelial protective KLF factors (KLF4 and KLF2, respectively) in patients with more vulnerable plaque phenotypes.
Collapse
Affiliation(s)
- Michał Kowara
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Michał Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Kopka
- Department of Methodology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Renata Głowczyńska
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Karolina Mitrzak
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
- 1st Department of Cardiology, Medical University of Warsaw, 1a Banacha Street, 02-097 Warsaw, Poland
| | - Dan-ae Kim
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Karol Artur Sadowski
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| | - Agnieszka Cudnoch-Jędrzejewska
- Chair and Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland (A.C.-J.)
| |
Collapse
|
18
|
Joshi D, Coon BG, Chakraborty R, Deng H, Yang Z, Babar MU, Fernandez-Tussy P, Meredith E, Attanasio J, Joshi N, Traylor JG, Orr AW, Fernandez-Hernando C, Libreros S, Schwartz MA. Endothelial γ-protocadherins inhibit KLF2 and KLF4 to promote atherosclerosis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1035-1048. [PMID: 39232138 PMCID: PMC11399086 DOI: 10.1038/s44161-024-00522-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of mortality worldwide. Laminar shear stress from blood flow, sensed by vascular endothelial cells, protects from ASCVD by upregulating the transcription factors KLF2 and KLF4, which induces an anti-inflammatory program that promotes vascular resilience. Here we identify clustered γ-protocadherins as therapeutically targetable, potent KLF2 and KLF4 suppressors whose upregulation contributes to ASCVD. Mechanistic studies show that γ-protocadherin cleavage results in translocation of the conserved intracellular domain to the nucleus where it physically associates with and suppresses signaling by the Notch intracellular domain. γ-Protocadherins are elevated in human ASCVD endothelium; their genetic deletion or antibody blockade protects from ASCVD in mice without detectably compromising host defense against bacterial or viral infection. These results elucidate a fundamental mechanism of vascular inflammation and reveal a method to target the endothelium rather than the immune system as a protective strategy in ASCVD.
Collapse
Affiliation(s)
- Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Brian G Coon
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Raja Chakraborty
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Hanqiang Deng
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - Ziyu Yang
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Muhammad Usman Babar
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | | | - Emily Meredith
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA
| | - John Attanasio
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Nikhil Joshi
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - James G Traylor
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | - Anthony Wayne Orr
- Department of Pathology and Translational Pathobiology, LSU Health Shreveport, Shreveport, LA, USA
| | | | - Stephania Libreros
- Vascular Biology and Therapeutics Program, Yale University, New Haven, CT, USA
- Department of Pathology, Yale University, New Haven, CT, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
19
|
Velarde-Acosta K, Moscoso Ramirez JY, Rojas P, Susanibar L, Reusche LDQ, Cachicatari A, Baltodano-Arellano R. Shaggy aorta: ideal substrate for disaster. Updated review. ARCHIVOS PERUANOS DE CARDIOLOGIA Y CIRUGIA CARDIOVASCULAR 2024; 5:143-152. [PMID: 39411013 PMCID: PMC11473078 DOI: 10.47487/apcyccv.v5i3.410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/02/2024] [Indexed: 10/19/2024]
Abstract
Shaggy aorta (SA) is characterized by a critical and extensive atheromatous disease of the thoracic and abdominal aorta. This degenerative and dangerous pathology is the result of the confluence of multiple modifiable and non-modifiable risk factors. The clinical importance of this pathology relies on the various syndromes that can develop from its etiopathogenesis, which generates great morbidity and mortality in the affected patients. In this document, we present an updated and detailed review of this entity, developing aspects of its pathophysiology, diagnosis, including the importance of multimodal imaging, and its therapeutic approach. Finally, we present the clinical settings of patients with SA in different aortic scenarios (aortic dissection, ulcerated plaques, and thrombosed aneurysms) that denote the nature of this disease and its high mortality.
Collapse
Affiliation(s)
- Kevin Velarde-Acosta
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Josh Yefry Moscoso Ramirez
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Paol Rojas
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
- Interventional Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúInterventional Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Lucy Susanibar
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Lady Diana Quintana Reusche
- Clinical Cardiology Department; Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúClinical Cardiology DepartmentHospital Guillermo Almenara Irigoyen - EsSaludLimaPerú
| | - Angela Cachicatari
- Cardiac imaging area of Cardiology Department, Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúLimaPerú
| | - Roberto Baltodano-Arellano
- Cardiac imaging area of Cardiology Department, Hospital Guillermo Almenara Irigoyen - EsSalud, Lima, PerúLimaPerú
- School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, PerúLimaPerú
| |
Collapse
|
20
|
Getz GS, Reardon CA. Insights from Murine Studies on the Site Specificity of Atherosclerosis. Int J Mol Sci 2024; 25:6375. [PMID: 38928086 PMCID: PMC11204064 DOI: 10.3390/ijms25126375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Atherosclerosis is an inflammatory reaction that develops at specific regions within the artery wall and at specific sites of the arterial tree over a varying time frame in response to a variety of risk factors. The mechanisms that account for the interaction of systemic factors and atherosclerosis-susceptible regions of the arterial tree to mediate this site-specific development of atherosclerosis are not clear. The dynamics of blood flow has a major influence on where in the arterial tree atherosclerosis develops, priming the site for interactions with atherosclerotic risk factors and inducing cellular and molecular participants in atherogenesis. But how this accounts for lesion development at various locations along the vascular tree across differing time frames still requires additional study. Currently, murine models are favored for the experimental study of atherogenesis and provide the most insight into the mechanisms that may contribute to the development of atherosclerosis. Based largely on these studies, in this review, we discuss the role of hemodynamic shear stress, SR-B1, and other factors that may contribute to the site-specific development of atherosclerosis.
Collapse
Affiliation(s)
- Godfrey S. Getz
- Department of Pathology, University of Chicago, Chicago, IL 60637, USA;
| | | |
Collapse
|
21
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
22
|
Hauger PC, Hordijk PL. Shear Stress-Induced AMP-Activated Protein Kinase Modulation in Endothelial Cells: Its Role in Metabolic Adaptions and Cardiovascular Disease. Int J Mol Sci 2024; 25:6047. [PMID: 38892235 PMCID: PMC11173107 DOI: 10.3390/ijms25116047] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
Endothelial cells (ECs) line the inner surface of all blood vessels and form a barrier that facilitates the controlled transfer of nutrients and oxygen from the circulatory system to surrounding tissues. Exposed to both laminar and turbulent blood flow, ECs are continuously subject to differential mechanical stimulation. It has been well established that the shear stress associated with laminar flow (LF) is atheroprotective, while shear stress in areas with turbulent flow (TF) correlates with EC dysfunction. Moreover, ECs show metabolic adaptions to physiological changes, such as metabolic shifts from quiescence to a proliferative state during angiogenesis. The AMP-activated protein kinase (AMPK) is at the center of these phenomena. AMPK has a central role as a metabolic sensor in several cell types. Moreover, in ECs, AMPK is mechanosensitive, linking mechanosensation with metabolic adaptions. Finally, recent studies indicate that AMPK dysregulation is at the center of cardiovascular disease (CVD) and that pharmacological targeting of AMPK is a promising and novel strategy to treat CVDs such as atherosclerosis or ischemic injury. In this review, we summarize the current knowledge relevant to this topic, with a focus on shear stress-induced AMPK modulation and its consequences for vascular health and disease.
Collapse
Affiliation(s)
| | - Peter L. Hordijk
- Department of Physiology, Amsterdam UMC, Amsterdam Cardiovascular Sciences, Microcirculation, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
23
|
Ding H, Tong J, Lin H, Ping F, Yao T, Ye Z, Chu J, Yuan D, Wang K, Liu X, Chen F. KLF4 inhibited the senescence-associated secretory phenotype in ox-LDL-treated endothelial cells via PDGFRA/NAMPT/mitochondrial ROS. Aging (Albany NY) 2024; 16:8070-8085. [PMID: 38728249 PMCID: PMC11132013 DOI: 10.18632/aging.205805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-β-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-β-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.
Collapse
Affiliation(s)
- Haoran Ding
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jing Tong
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hao Lin
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fan Ping
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Tongqing Yao
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zi Ye
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiapeng Chu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Deqiang Yuan
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kangwei Wang
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xuebo Liu
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Fei Chen
- Department of Cardiology, Shanghai Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
24
|
Hurrell BP, Shen S, Li X, Sakano Y, Kazemi MH, Quach C, Shafiei-Jahani P, Sakano K, Ghiasi H, Akbari O. Piezo1 channels restrain ILC2s and regulate the development of airway hyperreactivity. J Exp Med 2024; 221:e20231835. [PMID: 38530239 PMCID: PMC10965393 DOI: 10.1084/jem.20231835] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/16/2024] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
Mechanosensitive ion channels sense force and pressure in immune cells to drive the inflammatory response in highly mechanical organs. Here, we report that Piezo1 channels repress group 2 innate lymphoid cell (ILC2)-driven type 2 inflammation in the lungs. Piezo1 is induced on lung ILC2s upon activation, as genetic ablation of Piezo1 in ILC2s increases their function and exacerbates the development of airway hyperreactivity (AHR). Conversely, Piezo1 agonist Yoda1 reduces ILC2-driven lung inflammation. Mechanistically, Yoda1 inhibits ILC2 cytokine secretion and proliferation in a KLF2-dependent manner, as we found that Piezo1 engagement reduces ILC2 oxidative metabolism. Consequently, in vivo Yoda1 treatment reduces the development of AHR in experimental models of ILC2-driven allergic asthma. Human-circulating ILC2s express and induce Piezo1 upon activation, as Yoda1 treatment of humanized mice reduces human ILC2-driven AHR. Our studies define Piezo1 as a critical regulator of ILC2s, and we propose the potential of Piezo1 activation as a novel therapeutic approach for the treatment of ILC2-driven allergic asthma.
Collapse
Affiliation(s)
- Benjamin P. Hurrell
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stephen Shen
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xin Li
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Yoshihiro Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mohammad Hossein Kazemi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Christine Quach
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Pedram Shafiei-Jahani
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kei Sakano
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Homayon Ghiasi
- Department of Surgery, Center for Neurobiology and Vaccine Development, Ophthalmology Research, Cedars-Sinai Burns and Allen Research Institute, Los Angeles, CA, USA
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
25
|
Yuan Y, Dong M, Wen S, Yuan X, Zhou L. Retinal microcirculation: A window into systemic circulation and metabolic disease. Exp Eye Res 2024; 242:109885. [PMID: 38574944 DOI: 10.1016/j.exer.2024.109885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024]
Abstract
The retinal microcirculation system constitutes a unique terminal vessel bed of the systemic circulation, and its perfusion status is directly associated with the neural function of the retina. This vascular network, essential for nourishing various layers of the retina, comprises two primary microcirculation systems: the retinal microcirculation and the choroidal microcirculation, with each system supplying blood to distinct retinal layers and maintaining the associated neural function. The blood flow of those capillaries is regulated via different mechanisms. However, a range of internal and external factors can disrupt the normal architecture and blood flow within the retinal microcirculation, leading to several retinal pathologies, including diabetic retinopathy, macular edema, and vascular occlusions. Metabolic disturbances such as hyperglycemia, hypertension, and dyslipidemia are known to modify retinal microcirculation through various pathways. These alterations are observable in chronic metabolic conditions like diabetes, coronary artery disease, and cerebral microvascular disease due to advances in non-invasive or minimally invasive retinal imaging techniques. Thus, examination of the retinal microcirculation can provide insights into the progression of numerous chronic metabolic disorders. This review discusses the anatomy, physiology and pathophysiology of the retinal microvascular system, with a particular emphasis on the connections between retinal microcirculation and systemic circulation in both healthy states and in the context of prevalent chronic metabolic diseases.
Collapse
Affiliation(s)
- Yue Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Meiyuan Dong
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China.
| | - Song Wen
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Xinlu Yuan
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China.
| | - Ligang Zhou
- Department of Endocrinology, Shanghai Pudong Hospital, Fudan University, Shanghai, 201399, China; Graduate School of Hebei Medical University, Shijiazhuang, China; Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Shanghai, China.
| |
Collapse
|
26
|
Li S, Xu Z, Wang Y, Chen L, Wang X, Zhou Y, Lei D, Zang G, Wang G. Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis. Genes Dis 2024; 11:101046. [PMID: 38292174 PMCID: PMC10825297 DOI: 10.1016/j.gendis.2023.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease and its complications are a high-incidence disease worldwide. Numerous studies have shown that blood flow shear has a huge impact on the function of vascular endothelial cells, and it plays an important role in gene regulation of pro-inflammatory, pro-thrombotic, pro-oxidative stress, and cell permeability. Many important endothelial cell mechanosensitive genes have been discovered, including KLK10, CCN gene family, NRP2, YAP, TAZ, HIF-1α, NF-κB, FOS, JUN, TFEB, KLF2/KLF4, NRF2, and ID1. Some of them have been intensively studied, whereas the relevant regulatory mechanism of other genes remains unclear. Focusing on these mechanosensitive genes will provide new strategies for therapeutic intervention in atherosclerotic vascular disease. Thus, this article reviews the mechanosensitive genes affecting vascular endothelial cells, including classical pathways and some newly screened genes, and summarizes the latest research progress on their roles in the pathogenesis of atherosclerosis to reveal effective therapeutic targets of drugs and provide new insights for anti-atherosclerosis.
Collapse
Affiliation(s)
- Shuyu Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zichen Xu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lizhao Chen
- Department of Neurosurgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
27
|
Yuan L, Fan L, Zhang Z, Huang X, Liu Q, Zhang Z. Procyanidin B2 alleviates oxidized low-density lipoprotein-induced cell injury, inflammation, monocyte chemotaxis, and oxidative stress by inhibiting the nuclear factor kappa-B pathway in human umbilical vein endothelial cells. BMC Cardiovasc Disord 2024; 24:231. [PMID: 38679696 PMCID: PMC11057093 DOI: 10.1186/s12872-024-03858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
BACKGROUND Oxidized low-density lipoprotein (ox-LDL) can initiate and affect almost all atherosclerotic events including endothelial dysfunction. In this text, the role and underlying molecular basis of procyanidin B2 (PCB2) with potential anti-oxidant and anti-inflammatory activities in ox-LDL-induced HUVEC injury were examined. METHODS HUVECs were treated with ox-LDL in the presence or absence of PCB2. Cell viability and apoptotic rate were examined by CCK-8 assay and flow cytometry, respectively. The mRNA and protein levels of genes were tested by RT-qPCR and western blot assays, respectively. Potential downstream targets and pathways of apple procyanidin oligomers were examined by bioinformatics analysis for the GSE9647 dataset. The effect of PCB2 on THP-1 cell migration was examined by recruitment assay. The effect of PCB2 on oxidative stress was assessed by reactive oxygen species (ROS) level, malondialdehyde (MDA) content, and mitochondrial membrane potential (MMP). RESULTS ox-LDL reduced cell viability, induced cell apoptosis, and facilitated the expression of oxidized low-density lipoprotein receptor 1 (LOX-1), C-C motif chemokine ligand 2 (MCP-1), vascular cell adhesion protein 1 (VCAM-1) in HUVECs. PCB2 alleviated ox-LDL-induced cell injury in HUVECs. Apple procyanidin oligomers triggered the differential expression of 592 genes in HUVECs (|log2fold-change| > 0.58 and adjusted p-value < 0.05). These dysregulated genes might be implicated in apoptosis, endothelial cell proliferation, inflammation, and monocyte chemotaxis. PCB2 inhibited C-X-C motif chemokine ligand 1/8 (CXCL1/8) expression and THP-1 cell recruitment in ox-LDL-stimulated HUVECs. PCB2 inhibited ox-LDL-induced oxidative stress and nuclear factor kappa-B (NF-κB) activation in HUVECs. CONCLUSION PCB2 weakened ox-LDL-induced cell injury, inflammation, monocyte recruitment, and oxidative stress by inhibiting the NF-κB pathway in HUVECs.
Collapse
Affiliation(s)
- Limei Yuan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Lihua Fan
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiqiang Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Xing Huang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Qingle Liu
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China
| | - Zhiguo Zhang
- Department of Cardiovascular, Henan University of Chinese Medicine, 63 Dongming Road, Henan province, Zhengzhou, 450063, China.
| |
Collapse
|
28
|
Pan C, Hao X, Deng X, Lu F, Liu J, Hou W, Xu T. The roles of Hippo/YAP signaling pathway in physical therapy. Cell Death Discov 2024; 10:197. [PMID: 38670949 PMCID: PMC11053014 DOI: 10.1038/s41420-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular behavior is regulated by mechanical signals within the cellular microenvironment. Additionally, changes of temperature, blood flow, and muscle contraction also affect cellular state and the development of diseases. In clinical practice, physical therapy techniques such as ultrasound, vibration, exercise, cold therapy, and hyperthermia are commonly employed to alleviate pain and treat diseases. However, the molecular mechanism about how these physiotherapy methods stimulate local tissues and control gene expression remains unknow. Fortunately, the discovery of YAP filled this gap, which has been reported has the ability to sense and convert a wide variety of mechanical signals into cell-specific programs for transcription, thereby offering a fresh perspective on the mechanisms by which physiotherapy treat different diseases. This review examines the involvement of Hippo/YAP signaling pathway in various diseases and its role in different physical therapy approaches on diseases. Furthermore, we explore the potential therapeutic implications of the Hippo/YAP signaling pathway and address the limitations and controversies surrounding its application in physiotherapy.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
29
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 limits Yap activity to prevent endothelial cell senescence. Aging Cell 2024; 23:e14095. [PMID: 38348753 PMCID: PMC11019141 DOI: 10.1111/acel.14095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 02/27/2024] Open
Abstract
As the innermost lining of the vasculature, endothelial cells (ECs) are constantly subjected to systemic inflammation and particularly vulnerable to aging. Endothelial health is hence vital to prevent age-related vascular disease. Healthy ECs rely on the proper localization of transcription factors via nuclear pore complexes (NPCs) to govern cellular behavior. Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-associated EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player in vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of EC senescence. The loss of Nup93 in human ECs induces cell senescence and promotes the expression of inflammatory adhesion molecules, where restoring Nup93 protein in senescent ECs reverses features of endothelial aging. Mechanistically, we find that both senescence and loss of Nup93 impair endothelial NPC transport, leading to nuclear accumulation of Yap and downstream inflammation. Pharmacological studies indicate Yap hyperactivation as the primary consequence of senescence and Nup93 loss in ECs. Collectively, our findings indicate that the maintenance of endothelial Nup93 is a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism of EC senescence and vascular aging.
Collapse
Affiliation(s)
- Tung D. Nguyen
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Mihir K. Rao
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Shaiva P. Dhyani
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Justin M. Banks
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Michael A. Winek
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Julia Michalkiewicz
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| | - Monica Y. Lee
- Department of Physiology and BiophysicsThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
- The Center for Cardiovascular ResearchThe University of Illinois at Chicago – College of MedicineChicagoIllinoisUSA
| |
Collapse
|
30
|
Mahmoudi A, Jalili A, Aghaee-Bakhtiari SH, Oskuee RK, Butler AE, Rizzo M, Sahebkar A. Analysis of the therapeutic potential of miR-124 and miR-16 in non-alcoholic fatty liver disease. J Diabetes Complications 2024; 38:108722. [PMID: 38503000 DOI: 10.1016/j.jdiacomp.2024.108722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 02/28/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUNDS Non-alcoholic fatty liver disease (NAFLD) is a common condition affecting >25 % of the population worldwide. This disorder ranges in severity from simple steatosis (fat accumulation) to severe steatohepatitis (inflammation), fibrosis and, at its end-stage, liver cancer. A number of studies have identified overexpression of several key genes that are critical in the initiation and progression of NAFLD. MiRNAs are potential therapeutic agents that can regulate several genes simultaneously. Therefore, we transfected cell lines with two key miRNAs involved in targeting NAFLD-related genes. METHODS The suppression effects of the investigated miRNAs (miR-124 and miR-16) and genes (TNF, TLR4, SCD, FASN, SREBF2, and TGFβ-1) from our previous study were investigated by real-time PCR in Huh7 and HepG2 cells treated with oleic acid. Oil red O staining and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay were utilized to assess cell lipid accumulation and cytotoxic effects of the miRNAs, respectively. The pro-oxidant-antioxidant balance (PAB) assay was undertaken for miR-16 and miR-124 after cell transfection. RESULTS Following transfection of miRNAs into HepG2, oil red O staining showed miR-124 and miR-16 reduced oleic acid-induced lipid accumulation by 35.2 % and 28.6 % respectively (p < 0.05). In Huh7, miR-124 and miR-16 reduced accumulation by 23.5 % and 31.3 % respectively (p < 0.05) but without impacting anti-oxidant activity. Real-time PCR in HepG2 revealed miR-124 decreased expression of TNF by 0.13-fold, TLR4 by 0.12-fold and SREBF2 by 0.127-fold (p < 0.05). miR-16 decreased TLR4 by 0.66-fold and FASN by 0.3-fold (p < 0.05). In Huh7, miR-124 decreased TNF by 0.12-fold and FASN by 0.09-fold (p < 0.05). miR-16 decreased SCD by 0.28-fold and FASN by 0.64-fold (p < 0.05). MTT assays showed, in HepG2, viability was decreased 24.7 % by miR-124 and decreased 33 % by miR-16 at 72 h (p < 0.05). In Huh7, miR-124 decreased viability 42 % at 48 h and 29.33 % at 72 h (p < 0.05), while miR-16 decreased viability by 32.3 % (p < 0.05). CONCLUSION These results demonstrate the ability of miR-124 and miR-16 to significantly reduce lipid accumulation and expression of key pathogenic genes associated with NAFLD through direct targeting. Though this requires further in vivo investigation.
Collapse
Affiliation(s)
- Ali Mahmoudi
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Jalili
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyed Hamid Aghaee-Bakhtiari
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Kazemi Oskuee
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Manfredi Rizzo
- School of Medicine, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (Promise), University of Palermo, Italy; Department of Biochemistry, Mohamed Bin Rashid University, Dubai, United Arab Emirates
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
31
|
Cao J, Zhang D, Li W, Yuan W, Luo G, Xie S. Azilsartan improves urinary albumin excretion in hypertension mice. Aging (Albany NY) 2024; 16:4138-4148. [PMID: 38462692 PMCID: PMC10968693 DOI: 10.18632/aging.205271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 03/12/2024]
Abstract
Hypertension is one of the most important risk factors for chronic kidney diseases, leading to hypertensive nephrosclerosis, including excessive albuminuria. Azilsartan, an angiotensin II type 1 receptor blocker, has been widely used for the treatment of hypertension. However, the effects of Azilsartan on urinary albumin excretion in hypertension haven't been reported before. In this study, we investigated whether Azilsartan possesses a beneficial property against albuminuria in mice treated with angiotensin II and a high-salt diet (ANG/HS). Compared to the control group, the ANG/HS group had higher blood pressure, oxidative stress, and inflammatory response, all of which were rescued by Azilsartan dose-dependently. Importantly, the ANG/HS-induced increase in urinary albumin excretion and decrease in the expression of occludin were reversed by Azilsartan. Additionally, it was shown that increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) values, and reduction of occludin and krüppel-like factor 2 (KLF2) were observed in ANG/HS-treated human renal glomerular endothelial cells (HrGECs), then prevented by Azilsartan. Moreover, the regulatory effect of Azilsartan on endothelial monolayer permeability in ANG/HS-treated HrGECs was abolished by the knockdown of KLF2, indicating KLF2 is required for the effect of Azilsartan. We concluded that Azilsartan alleviated diabetic nephropathy-induced increase in Uterine artery embolization (UAE) mediated by the KLF2/occludin axis.
Collapse
Affiliation(s)
- Jun Cao
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Dandan Zhang
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenfeng Li
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Wenjin Yuan
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Gang Luo
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| | - Shaofeng Xie
- Department of Nephrology, People’s Hospital of Ganzhou, Ganzhou 341001, Jiangxi Province, China
| |
Collapse
|
32
|
Sheng C, Zeng Q, Huang W, Liao M, Yang P. Identification of abdominal aortic aneurysm subtypes based on mechanosensitive genes. PLoS One 2024; 19:e0296729. [PMID: 38335213 PMCID: PMC10857568 DOI: 10.1371/journal.pone.0296729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Rupture of abdominal aortic aneurysm (rAAA) is a fatal event in the elderly. Elevated blood pressure and weakening of vessel wall strength are major risk factors for this devastating event. This present study examined whether the expression profile of mechanosensitive genes correlates with the phenotype and outcome, thus, serving as a biomarker for AAA development. METHODS In this study, we identified mechanosensitive genes involved in AAA development using general bioinformatics methods and machine learning with six human datasets publicly available from the GEO database. Differentially expressed mechanosensitive genes (DEMGs) in AAAs were identified by differential expression analysis. Molecular biological functions of genes were explored using functional clustering, Protein-protein interaction (PPI), and weighted gene co-expression network analysis (WGCNA). According to the datasets (GSE98278, GSE205071 and GSE165470), the changes of diameter and aortic wall strength of AAA induced by DEMGs were verified by consensus clustering analysis, machine learning models, and statistical analysis. In addition, a model for identifying AAA subtypes was built using machine learning methods. RESULTS 38 DEMGs clustered in pathways regulating 'Smooth muscle cell biology' and 'Cell or Tissue connectivity'. By analyzing the GSE205071 and GSE165470 datasets, DEMGs were found to respond to differences in aneurysm diameter and vessel wall strength. Thus, in the merged datasets, we formally created subgroups of AAAs and found differences in immune characteristics between the subgroups. Finally, a model that accurately predicts the AAA subtype that is more likely to rupture was successfully developed. CONCLUSION We identified 38 DEMGs that may be involved in AAA. This gene cluster is involved in regulating the maximum vessel diameter, degree of immunoinflammatory infiltration, and strength of the local vessel wall in AAA. The prognostic model we developed can accurately identify the AAA subtypes that tend to rupture.
Collapse
Affiliation(s)
- Chang Sheng
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zeng
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weihua Huang
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Mingmei Liao
- National Health Commission Key Laboratory of Nanobiological Technology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Pu Yang
- Department of Vascular Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
33
|
Antequera-González B, Martínez-Micaelo N, Sureda-Barbosa C, Galian-Gay L, Siliato-Robles MS, Ligero C, Evangelista A, Alegret JM. Specific Multiomic Profiling in Aortic Stenosis in Bicuspid Aortic Valve Disease. Biomedicines 2024; 12:380. [PMID: 38397982 PMCID: PMC10887224 DOI: 10.3390/biomedicines12020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
INTRODUCTION AND PURPOSE Bicuspid aortic valve (BAV) disease is associated with faster aortic valve degeneration and a high incidence of aortic stenosis (AS). In this study, we aimed to identify differences in the pathophysiology of AS between BAV and tricuspid aortic valve (TAV) patients in a multiomics study integrating metabolomics and transcriptomics as well as clinical data. METHODS Eighteen patients underwent aortic valve replacement due to severe aortic stenosis: 8 of them had a TAV, while 10 of them had a BAV. RNA sequencing (RNA-seq) and proton nuclear magnetic resonance spectroscopy (1H-NMR) were performed on these tissue samples to obtain the RNA profile and lipid and low-molecular-weight metabolites. These results combined with clinical data were posteriorly compared, and a multiomic profile specific to AS in BAV disease was obtained. RESULTS H-NMR results showed that BAV patients with AS had different metabolic profiles than TAV patients. RNA-seq also showed differential RNA expression between the groups. Functional analysis helped connect this RNA pattern to mitochondrial dysfunction. Integration of RNA-seq, 1H-NMR and clinical data helped create a multiomic profile that suggested that mitochondrial dysfunction and oxidative stress are key players in the pathophysiology of AS in BAV disease. CONCLUSIONS The pathophysiology of AS in BAV disease differs from patients with a TAV and has a specific RNA and metabolic profile. This profile was associated with mitochondrial dysfunction and increased oxidative stress.
Collapse
Affiliation(s)
- Borja Antequera-González
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
| | - Neus Martínez-Micaelo
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
| | - Carlos Sureda-Barbosa
- Cardiac Surgery Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Laura Galian-Gay
- Cardiology Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.)
| | - M. Sol Siliato-Robles
- Cardiac Surgery Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain
| | - Carmen Ligero
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Spain
| | - Artur Evangelista
- Cardiology Department, Hospital Vall d’Hebron (CIBERCV), Universitat Autonoma de Barcelona, 08035 Barcelona, Spain; (L.G.-G.)
| | - Josep M. Alegret
- Group of Cardiovascular Research, Pere Virgili Health Research Institute (IISPV), Universitat Rovira i Virgili, 43204 Reus, Spain; (B.A.-G.); (C.L.)
- Cardiology Department, Hospital Universitari Sant Joan de Reus, Universitat Rovira i Virgili, 43204 Reus, Spain
| |
Collapse
|
34
|
He J, Blazeski A, Nilanthi U, Menéndez J, Pirani SC, Levic DS, Bagnat M, Singh MK, Raya JG, García-Cardeña G, Torres-Vázquez J. Plxnd1-mediated mechanosensing of blood flow controls the caliber of the Dorsal Aorta via the transcription factor Klf2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.576555. [PMID: 38328196 PMCID: PMC10849625 DOI: 10.1101/2024.01.24.576555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The cardiovascular system generates and responds to mechanical forces. The heartbeat pumps blood through a network of vascular tubes, which adjust their caliber in response to the hemodynamic environment. However, how endothelial cells in the developing vascular system integrate inputs from circulatory forces into signaling pathways to define vessel caliber is poorly understood. Using vertebrate embryos and in vitro-assembled microvascular networks of human endothelial cells as models, flow and genetic manipulations, and custom software, we reveal that Plexin-D1, an endothelial Semaphorin receptor critical for angiogenic guidance, employs its mechanosensing activity to serve as a crucial positive regulator of the Dorsal Aorta's (DA) caliber. We also uncover that the flow-responsive transcription factor KLF2 acts as a paramount mechanosensitive effector of Plexin-D1 that enlarges endothelial cells to widen the vessel. These findings illuminate the molecular and cellular mechanisms orchestrating the interplay between cardiovascular development and hemodynamic forces.
Collapse
Affiliation(s)
- Jia He
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Adriana Blazeski
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Uthayanan Nilanthi
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
| | - Javier Menéndez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Samuel C. Pirani
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Daniel S. Levic
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Michel Bagnat
- Department of Cell Biology, Duke University, Durham, NC 27710, USA
| | - Manvendra K. Singh
- Programme in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, 8 College Road, Singapore, 169857
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore, 169609
| | - José G Raya
- Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Guillermo García-Cardeña
- Center for Excellence in Vascular Biology, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA and Harvard Medical School, Boston, MA, USA
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jesús Torres-Vázquez
- Department of Cell Biology, NYU Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
35
|
Guo J, Ning Y, Pan D, Wu S, Gao X, Wang C, Guo L, Gu Y. Identification of potential hub genes and regulatory networks of smoking-related endothelial dysfunction in atherosclerosis using bioinformatics analysis. Technol Health Care 2024; 32:1781-1794. [PMID: 38073349 DOI: 10.3233/thc-230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
BACKGROUND Endothelial dysfunction, the earliest stage of atherosclerosis, can be caused by smoking, but its molecular mechanism requires further investigation. OBJECTIVE This study aimed to use bioinformatics analysis to identify potential mechanisms involved in smoking-related atherosclerotic endothelial dysfunction. METHODS The transcriptome data used for this bioinformatics analysis were obtained from the Gene Expression Omnibus (GEO) database. The GSE137578 and GSE141136 datasets were used to identify common differentially expressed genes (co-DEGs) in endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) and tobacco. The co-DEGs were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomics (KEGG) databases. Additionally, a protein-protein interaction (PPI) network was constructed to visualize their interactions and screen for hub genes. GSE120521 dataset was used to verify the expression of hub genes in unstable plaques. The miRNA expression profile GSE137580 and online databases (starBase 2.0, TargetScan 8.0 and DGIdb v4.2.0) were used to predict the related non-coding RNAs and drugs. RESULTS A total of 232 co-DEGs were identified, including 113 up-regulated genes and 119 down-regulated genes. These DEGs were primarily enriched in detrimental autophagy, cell death, transcription factors, and cytokines, and were implicated in ferroptosis, abnormal lipid metabolism, inflammation, and oxidative stress pathways. Ten hub genes were screened from the constructed PPI network, including up-regulated genes such as FOS, HMOX1, SQSTM1, PTGS2, ATF3, DDIT3, and down-regulated genes MCM4, KIF15, UHRF1, and CCL2. Importantly, HMOX1 was further up-regulated in unstable plaques (p= 0.034). Finally, a regulatory network involving lncRNA/circRNA-miRNA-hub genes and drug-hub genes was established. CONCLUSION Atherosclerotic endothelial dysfunction is associated with smoking-induced injury. Through bioinformatics analysis, we identified potential mechanisms and provided potential therapeutic targets.
Collapse
Affiliation(s)
- Julong Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yachan Ning
- Department of Intensive Care Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Dikang Pan
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Sensen Wu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xixiang Gao
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Cong Wang
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lianrui Guo
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
36
|
Lv N, Zhang Y, Wang L, Suo Y, Zeng W, Yu Q, Yu B, Jiang X. LncRNA/CircRNA-miRNA-mRNA Axis in Atherosclerotic Inflammation: Research Progress. Curr Pharm Biotechnol 2024; 25:1021-1040. [PMID: 37842894 DOI: 10.2174/0113892010267577231005102901] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Atherosclerosis is characterized by chronic inflammation of the arterial wall. However, the exact mechanism underlying atherosclerosis-related inflammation has not been fully elucidated. To gain insight into the mechanisms underlying the inflammatory process that leads to atherosclerosis, there is need to identify novel molecular markers. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-protein-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have gained prominence in recent years. LncRNAs/circRNAs act as competing endogenous RNAs (ceRNAs) that bind to miRNAs via microRNA response elements (MREs), thereby inhibiting the silencing of miRNA target mRNAs. Inflammatory mediators and inflammatory signaling pathways are closely regulated by ceRNA regulatory networks in atherosclerosis. In this review, we discuss the role of LncRNA/CircRNA-miRNA-mRNA axis in atherosclerotic inflammation and how it can be targeted for early clinical detection and treatment.
Collapse
Affiliation(s)
- Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yilin Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanrong Suo
- Traditional Chinese Medicine Department, Ganzhou People's Hospital, Ganzhou, China
| | - Wenyun Zeng
- Oncology Department, Ganzhou People's Hospital, Ganzhou, China
| | - Qun Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Bin Yu
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
37
|
Zhang Y, Jiang C, Meng N. Targeting Ferroptosis: A Novel Strategy for the Treatment of Atherosclerosis. Mini Rev Med Chem 2024; 24:1262-1276. [PMID: 38284727 DOI: 10.2174/0113895575273164231130070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/04/2023] [Accepted: 10/11/2023] [Indexed: 01/30/2024]
Abstract
Since ferroptosis was reported in 2012, its application prospects in various diseases have been widely considered, initially as a treatment direction for tumors. Recent studies have shown that ferroptosis is closely related to the occurrence and development of atherosclerosis. The primary mechanism is to affect the occurrence and development of atherosclerosis through intracellular iron homeostasis, ROS and lipid peroxide production and metabolism, and a variety of intracellular signaling pathways. Inhibition of ferroptosis is effective in inhibiting the development of atherosclerosis, and it can bring a new direction for treating atherosclerosis. In this review, we discuss the mechanism of ferroptosis and focus on the relationship between ferroptosis and atherosclerosis, summarize the different types of ferroptosis inhibitors that have been widely studied, and discuss some issues worthy of attention in the treatment of atherosclerosis by targeting ferroptosis.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Chengshi Jiang
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| | - Ning Meng
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China
| |
Collapse
|
38
|
Chen J, Xu F, Mo X, Cheng Y, Wang L, Yang H, Li J, Zhang S, Zhang S, Li N, Cao Y. Exploratory Study of Differentially Expressed Genes of Peripheral Blood Monocytes in Patients with Carotid Atherosclerosis. Comb Chem High Throughput Screen 2024; 27:1344-1357. [PMID: 37608666 DOI: 10.2174/1386207326666230822122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/15/2023] [Accepted: 07/13/2023] [Indexed: 08/24/2023]
Abstract
BACKGROUND The abundance of circulating monocytes is closely associated with the development of atherosclerosis in humans. OBJECTIVE This study aimed to further research into diagnostic biomarkers and targeted treatment of carotid atherosclerosis (CAS). METHODS We performed transcriptomics analysis through weighted gene co-expression network analysis (WGCNA) of monocytes from patients in public databases with and without CAS. Differentially expressed genes (DEGs) were screened by R package limma. Diagnostic molecules were derived by the least absolute shrinkage and selection operator (LASSO) and support vector machine recursive feature elimination (SVM-RFE) algorithms. NetworkAnalyst, miRWalk, and Star- Base databases assisted in the construction of diagnostic molecule regulatory networks. The Drug- Bank database predicted drugs targeting the diagnostic molecules. RT-PCR tested expression profiles. RESULTS From 14,369 hub genes and 61 DEGs, six differentially expressed monocyte-related hub genes were significantly associated with immune cells, immune responses, monocytes, and lipid metabolism. LASSO and SVM-RFE yielded five genes for CAS prediction. RT-PCR of these genes showed HMGB1 was upregulated, and CCL3, CCL3L1, CCL4, and DUSP1 were downregulated in CAS versus controls. Then, we constructed and visualized the regulatory networks of 9 transcription factors (TFs), which significantly related to 5 diagnostic molecules. About 11 miRNAs, 19 lncRNAs, and 39 edges centered on four diagnostic molecules (CCL3, CCL4, DUSP1, and HMGB1) were constructed and displayed. Eleven potential drugs were identified, including ibrutinib, CTI-01, roflumilast etc. Conclusion: A set of five biomarkers were identified for the diagnosis of CAS and for the study of potential therapeutic targets.
Collapse
Affiliation(s)
- Juhai Chen
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
- Internal Medicine Department Three Ward, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Fengyan Xu
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Xiangang Mo
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yiju Cheng
- The Department of Respiratory and Critical Medicine, Guiyang Public Health Clinical Center, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Lan Wang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Hui Yang
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Jiajing Li
- Comprehensive Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shiyue Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Shuping Zhang
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Nannan Li
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| | - Yang Cao
- Guizhou Medical University, Guiyang, 550004, Guizhou Province, People's Republic of China
| |
Collapse
|
39
|
Lyu QR, Fu K. Tissue-specific Cre driver mice to study vascular diseases. Vascul Pharmacol 2023; 153:107241. [PMID: 37923099 DOI: 10.1016/j.vph.2023.107241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Vascular diseases, including atherosclerosis and abdominal aneurysms, are the primary cause of mortality and morbidity among the elderly worldwide. The life quality of patients is significantly compromised due to inadequate therapeutic approaches and limited drug targets. To expand our comprehension of vascular diseases, gene knockout (KO) mice, especially conditional knockout (cKO) mice, are widely used for investigating gene function and mechanisms of action. The Cre-loxP system is the most common method for generating cKO mice. Numerous Cre driver mice have been established to study the main cell types that compose blood vessels, including endothelial cells, smooth muscle cells, and fibroblasts. Here, we first discuss the characteristics of each layer of the arterial wall. Next, we provide an overview of the representative Cre driver mice utilized for each of the major cell types in the vessel wall and their most recent applications in vascular biology. We then go over Cre toxicity and discuss the practical methods for minimizing Cre interference in experimental outcomes. Finally, we look into the future of tissue-specific Cre drivers by introducing the revolutionary single-cell RNA sequencing and dual recombinase system.
Collapse
Affiliation(s)
- Qing Rex Lyu
- Medical Research Center, Chongqing General Hospital, Chongqing 401147, China; Chongqing Academy of Medical Sciences, Chongqing 401147, China.
| | - Kailong Fu
- Department of Traditional Chinese Medicine, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| |
Collapse
|
40
|
Chen C, Zheng M, Wang W, Yu W. Elevated circulating inflammatory biomarker levels in the SIRT1-NF-κB-sCD40L pathway in patients with acute myocardial infarction: a case-control study. Ann Med 2023; 55:2284366. [PMID: 37992411 PMCID: PMC11529192 DOI: 10.1080/07853890.2023.2284366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Inflammation plays a key role in atherosclerosis development and progression. However, the role of novel inflammatory biomarker pathways, namely the SIRT1-NF-κB-sCD40L, in the etiopathogenesis of human atherosclerosis remains undefined. This study was designed to evaluate the changes and clinical implications of these inflammatory mediators in the plasma of patients with acute myocardial infarction (AMI). METHODS The peripheral arterial blood of 88 participants (68 patients with AMI and 20 age-matched controls), was drawn prior to performing coronary angiography (CAG). The SIRT1, NF-κB, and sCD40L plasma levels were quantified using ELISA. Spearman's analysis was used to evaluate the correlation between the three inflammatory markers, while Pearson's test assessed their potential correlation with cardiac troponin T (TNT) levels. Sensitivity, specificity, and area under the ROC curve (AUC) were calculated as measures of diagnostic accuracy. RESULTS Patients with AMI showed higher levels of circulating SIRT1, NF-κB, and sCD40L compared to the age-matched controls (p < 0.05). However, the plasma concentrations of these three inflammatory mediators did not differ between the ST-segment elevation myocardial infarction (STEMI) and non-STEMI (NSTEMI) patients. Additionally, in patients with AMI, the SIRT1 level was positively correlated with NF-κB and sCD40L levels (p < 0.001). Likewise, the levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels (p < 0.001). More importantly, the ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels (p < 0.05). CONCLUSIONS The levels of the circulating inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI. These novel biomarkers can improve the diagnostic accuracy of AMI when combined with TNT.KEY MESSAGESAMI is a potentially lethal CAD and is the leading cause of mortality and morbidity worldwide. Inflammation plays a key role in atherosclerosis development and progression. The levels of the circulating novel inflammatory biomarkers, including SIRT1, NF-κB, and sCD40L, were significantly elevated in patients with AMI.The SIRT1 level was positively correlated with NF-κB and sCD40L levels in patients with AMI.The levels of SIRT1, NF-κB and sCD40L were positively correlated with TNT levels.The ROC analysis showed that the diagnostic accuracy of AMI was significantly higher when NF-κB or sCD40L level was used in combination with TNT levels.SIRT1/NF-κB/sCD40L axis inhibition is a potential new target for AMI treatment.
Collapse
Affiliation(s)
- Chunjuan Chen
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Meiyi Zheng
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
- Department of Cardiology, Shantou Central Hospital, Shantou, China
| | - Wei Wang
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Wei Yu
- Department of Cardiology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
41
|
Nguyen TD, Rao MK, Dhyani SP, Banks JM, Winek MA, Michalkiewicz J, Lee MY. Nucleoporin93 (Nup93) Limits Yap Activity to Prevent Endothelial Cell Senescence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.10.566598. [PMID: 38014013 PMCID: PMC10680655 DOI: 10.1101/2023.11.10.566598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Endothelial cells (ECs) form the innermost lining of the vasculature and serve a pivotal role in preventing age-related vascular disease. Endothelial health relies on the proper nucleocytoplasmic shuttling of transcription factors via nuclear pore complexes (NPCs). Emerging studies report NPC degradation with natural aging, suggesting impaired nucleocytoplasmic transport in age-related EC dysfunction. We herein identify nucleoporin93 (Nup93), a crucial structural NPC protein, as an indispensable player for vascular protection. Endothelial Nup93 protein levels are significantly reduced in the vasculature of aged mice, paralleling observations of Nup93 loss when using in vitro models of endothelial aging. Mechanistically, we find that loss of Nup93 impairs NPC transport, leading to the nuclear accumulation of Yap and downstream inflammation. Collectively, our findings indicate maintenance of endothelial Nup93 as a key determinant of EC health, where aging targets endothelial Nup93 levels to impair NPC function as a novel mechanism for EC senescence and vascular aging.
Collapse
|
42
|
Arenas GA, Valenzuela JG, Peñaloza E, Paz AA, Iturriaga R, Saez CG, Krause BJ. Transcriptional Profiling of Human Endothelial Cells Unveils PIEZO1 and Mechanosensitive Gene Regulation by Prooxidant and Inflammatory Inputs. Antioxidants (Basel) 2023; 12:1874. [PMID: 37891953 PMCID: PMC10604317 DOI: 10.3390/antiox12101874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/15/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
PIEZO1 is a mechanosensitive cation channel implicated in shear stress-mediated endothelial-dependent vasorelaxation. Since altered shear stress patterns induce a pro-inflammatory endothelial environment, we analyzed transcriptional profiles of human endothelial cells to determine the effect of altered shear stress patterns and subsequent prooxidant and inflammatory conditions on PIEZO1 and mechanosensitive-related genes (MRG). In silico analyses were validated in vitro by assessing PIEZO1 transcript levels in both the umbilical artery (HUAEC) and vein (HUVEC) endothelium. Transcriptional profiling showed that PIEZO1 and some MRG associated with the inflammatory response were upregulated in response to high (15 dyn/cm2) and extremely high shear stress (30 dyn/cm2) in HUVEC. Changes in PIEZO1 and inflammatory MRG were paralleled by p65 but not KLF or YAP1 transcription factors. Similarly, PIEZO1 transcript levels were upregulated by TNF-alpha (TNF-α) in diverse endothelial cell types, and pre-treatment with agents that prevent p65 translocation to the nucleus abolished PIEZO1 induction. ChIP-seq analysis revealed that p65 bonded to the PIEZO1 promoter region, an effect increased by the stimulation with TNF-α. Altogether this data showed that NF-kappa B activation via p65 signaling regulates PIEZO1 expression, providing a new molecular link for prooxidant and inflammatory responses and mechanosensitive pathways in the endothelium.
Collapse
Affiliation(s)
- German A. Arenas
- Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 2841959, Chile;
| | - Jose G. Valenzuela
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Estefanía Peñaloza
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| | - Adolfo A. Paz
- Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 7500000, Chile
| | - Rodrigo Iturriaga
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Investigación en Fisiología y Medicina en Altura, Facultad de Ciencias de la Salud, Universidad de Antofagasta, Antofagasta 1271155, Chile
| | - Claudia G. Saez
- Department of Hematology-Oncology, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile (C.G.S.)
| | - Bernardo J. Krause
- Instituto de Ciencias de la Salud, Universidad de O’Higgins, Rancagua 2841959, Chile
| |
Collapse
|
43
|
Walther BK, Sears AP, Mojiri A, Avazmohammadi R, Gu J, Chumakova OV, Pandian NKR, Dominic A, Martiel JL, Yazdani SK, Cooke JP, Ohayon J, Pettigrew RI. Disrupted Stiffness Ratio Alters Nuclear Mechanosensing. MATTER 2023; 6:3608-3630. [PMID: 37937235 PMCID: PMC10627551 DOI: 10.1016/j.matt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.
Collapse
Affiliation(s)
- Brandon K. Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Adam P. Sears
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Texas A&M University, Department of Mechanical Engineering, College Station, TX 77843, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Olga V. Chumakova
- University of Texas Health Science Center, Department of Integrative Biology and Pharmacology, Houston, TX 77030, USA
| | | | - Abishai Dominic
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Saami K. Yazdani
- Wake Forest University, Department of Engineering, Winston-Salem, NC 27101, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Jacques Ohayon
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- University Grenoble Alpes, CNRS, TIMC UMR 5525, 38000 Grenoble, France
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, 73376 Le Bourget du Lac, France
| | - Roderic I. Pettigrew
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
44
|
Zhang F, Lin DSY, Rajasekar S, Sotra A, Zhang B. Pump-Less Platform Enables Long-Term Recirculating Perfusion of 3D Printed Tubular Tissues. Adv Healthc Mater 2023; 12:e2300423. [PMID: 37543836 PMCID: PMC11469154 DOI: 10.1002/adhm.202300423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 07/13/2023] [Indexed: 08/07/2023]
Abstract
The direction and pattern of fluid flow affect vascular structure and function, in which vessel-lining endothelial cells exhibit variable cellular morphologies and vessel remodeling by mechanosensing. To recapitulate this microenvironment, some approaches have been reported to successfully apply unidirectional flow on endothelial cells in organ-on-a-chip systems. However, these platforms encounter drawbacks such as the dependency on pumps or confinement to closed microfluidic channels. These constraints impede their synergy with advanced biofabrication techniques like 3D bioprinting, thereby curtailing the potential to introduce greater complexity into engineered tissues. Herein, a pumpless recirculating platform (UniPlate) that enables unidirectional media recirculation through 3D printed tubular tissues, is demonstrated.The device is made of polystyrene via injection molding in combination with 3D printed sacrifical gelatin templates. Tubular blood vessels with unidirectional perfusion are firstly engineered. Then the design is expanded to incorporate duo-recirculating flow for culturing vascularized renal proximal tubules with glucose reabsorption function. In addition to media recirculation, human monocyte recirculation in engineered blood vessels is also demonstrated for over 24 h, with minimal loss of cells, cell viability, and inflammatory activation. UniPlate can be a valuable tool to more precisely control the cellular microenvironment of organ-on-a-chip systems for drug discovery.
Collapse
Affiliation(s)
- Feng Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Dawn S. Y. Lin
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | | | - Alexander Sotra
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| | - Boyang Zhang
- School of Biomedical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
- Department of Chemical EngineeringMcMaster UniversityHamiltonONL8S 4L8Canada
| |
Collapse
|
45
|
McQueen A, Warboys CM. Mechanosignalling pathways that regulate endothelial barrier function. Curr Opin Cell Biol 2023; 84:102213. [PMID: 37531894 DOI: 10.1016/j.ceb.2023.102213] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023]
Abstract
Blood vessels are lined by a single layer of endothelial cells that provide a barrier between circulating plasma and the underlying tissue. Permeability of endothelial cells is tightly regulated, and increased permeability is associated with a number of diseases including atherosclerosis. Endothelial cells are continuously exposed to mechanical forces exerted by flowing blood and are particularly sensitive to shear stress, which is a key determinant of endothelial function. Undisturbed flow promotes endothelial resilience and reduces permeability to macromolecules whereas disturbed flow promotes endothelial dysfunction and barrier disruption. This review will outline recent advances in our understanding of how disturbed and undisturbed flow regulate paracellular and transcellular permeability and will highlight potential cellular targets that could form the basis of therapies to limit the development of cardiovascular disease.
Collapse
Affiliation(s)
- Anna McQueen
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0NN, UK
| | - Christina M Warboys
- Department of Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London, NW1 0NN, UK.
| |
Collapse
|
46
|
Xue J, Zhang Z, Sun Y, Jin D, Guo L, Li X, Zhao D, Feng X, Qi W, Zhu H. Research Progress and Molecular Mechanisms of Endothelial Cells Inflammation in Vascular-Related Diseases. J Inflamm Res 2023; 16:3593-3617. [PMID: 37641702 PMCID: PMC10460614 DOI: 10.2147/jir.s418166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023] Open
Abstract
Endothelial cells (ECs) are widely distributed inside the vascular network, forming a vital barrier between the bloodstream and the walls of blood vessels. These versatile cells serve myriad functions, including the regulation of vascular tension and the management of hemostasis and thrombosis. Inflammation constitutes a cascade of biological responses incited by biological, chemical, or physical stimuli. While inflammation is inherently a protective mechanism, dysregulated inflammation can precipitate a host of vascular pathologies. ECs play a critical role in the genesis and progression of vascular inflammation, which has been implicated in the etiology of numerous vascular disorders, such as atherosclerosis, cardiovascular diseases, respiratory diseases, diabetes mellitus, and sepsis. Upon activation, ECs secrete potent inflammatory mediators that elicit both innate and adaptive immune reactions, culminating in inflammation. To date, no comprehensive and nuanced account of the research progress concerning ECs and inflammation in vascular-related maladies exists. Consequently, this review endeavors to synthesize the contributions of ECs to inflammatory processes, delineate the molecular signaling pathways involved in regulation, and categorize and consolidate the various models and treatment strategies for vascular-related diseases. It is our aspiration that this review furnishes cogent experimental evidence supporting the established link between endothelial inflammation and vascular-related pathologies, offers a theoretical foundation for clinical investigations, and imparts valuable insights for the development of therapeutic agents targeting these diseases.
Collapse
Affiliation(s)
- Jiaojiao Xue
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Ziwei Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Yuting Sun
- Department of Endocrinology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Di Jin
- Department of Nephrology, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Liming Guo
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Daqing Zhao
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Xiaochun Feng
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Wenxiu Qi
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Biomacromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| | - Haoyu Zhu
- Department of Nephropathy and Rheumatology in Children, Children’s Medical Center, First Affiliated Hospital to Changchun University of Chinese Medicine, Changchun, People’s Republic of China
| |
Collapse
|
47
|
Jiang D, Liu H, Zhu G, Li X, Fan L, Zhao F, Xu C, Wang S, Rose Y, Rhen J, Yu Z, Yin Y, Gu Y, Xu X, Fisher EA, Ge J, Xu Y, Pang J. Endothelial PHACTR1 Promotes Endothelial Activation and Atherosclerosis by Repressing PPARγ Activity Under Disturbed Flow in Mice. Arterioscler Thromb Vasc Biol 2023; 43:e303-e322. [PMID: 37199156 PMCID: PMC10524336 DOI: 10.1161/atvbaha.122.318173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 05/02/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Numerous genome-wide association studies revealed that SNPs (single nucleotide polymorphisms) at the PHACTR1 (phosphatase and actin regulator 1) locus strongly correlate with coronary artery disease. However, the biological function of PHACTR1 remains poorly understood. Here, we identified the proatherosclerotic effect of endothelial PHACTR1, contrary to macrophage PHACTR1. METHODS We generated global (Phactr1-/-) and endothelial cell (EC)-specific (Phactr1ECKO) Phactr1 KO (knockout) mice and crossed these mice with apolipoprotein E-deficient (Apoe-/-) mice. Atherosclerosis was induced by feeding the high-fat/high-cholesterol diet for 12 weeks or partially ligating carotid arteries combined with a 2-week high-fat/high-cholesterol diet. PHACTR1 localization was identified by immunostaining of overexpressed PHACTR1 in human umbilical vein ECs exposed to different types of flow. The molecular function of endothelial PHACTR1 was explored by RNA sequencing using EC-enriched mRNA from global or EC-specific Phactr1 KO mice. Endothelial activation was evaluated in human umbilical vein ECs transfected with siRNA targeting PHACTR1 and in Phactr1ECKO mice after partial carotid ligation. RESULTS Global or EC-specific Phactr1 deficiency significantly inhibited atherosclerosis in regions of disturbed flow. PHACTR1 was enriched in ECs and located in the nucleus of disturbed flow areas but shuttled to cytoplasm under laminar flow in vitro. RNA sequencing showed that endothelial Phactr1 depletion affected vascular function, and PPARγ (peroxisome proliferator-activated receptor gamma) was the top transcription factor regulating differentially expressed genes. PHACTR1 functioned as a PPARγ transcriptional corepressor by binding to PPARγ through the corepressor motifs. PPARγ activation protects against atherosclerosis by inhibiting endothelial activation. Consistently, PHACTR1 deficiency remarkably reduced endothelial activation induced by disturbed flow in vivo and in vitro. PPARγ antagonist GW9662 abolished the protective effects of Phactr1 KO on EC activation and atherosclerosis in vivo. CONCLUSIONS Our results identified endothelial PHACTR1 as a novel PPARγ corepressor to promote atherosclerosis in disturbed flow regions. Endothelial PHACTR1 is a potential therapeutic target for atherosclerosis treatment.
Collapse
Affiliation(s)
- Dongyang Jiang
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Hao Liu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Guofu Zhu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Xiankai Li
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Linlin Fan
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Faxue Zhao
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Chong Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Shumin Wang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Yara Rose
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Jordan Rhen
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Ze Yu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yiheng Yin
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yuling Gu
- Shanghai Naturethink Life Science&Technology Co., Itd, Shanghai 201809, China (Y. G.)
| | - Xiangbin Xu
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| | - Edward A. Fisher
- Division of Cardiology, Department of Medicine, New York University School of Medicine, New York, NY 10016, USA (E. A. F.)
| | - Junbo Ge
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Yawei Xu
- Department of Cardiology, Pan-vascular Research Institute, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China (D. J., H. L., G. Z., X. L., L. F., F. Z., C. X., Z. Y., Y. Y., J. G., Y. X.)
| | - Jinjiang Pang
- Aab Cardiovascular Research Institute, Department of Medicine and Dentistry, University of Rochester, Rochester, NY 14642, USA (S. W., Y. R., J. R., X. X., J. P.)
| |
Collapse
|
48
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
49
|
Wang X, Shen Y, Shang M, Liu X, Munn LL. Endothelial mechanobiology in atherosclerosis. Cardiovasc Res 2023; 119:1656-1675. [PMID: 37163659 PMCID: PMC10325702 DOI: 10.1093/cvr/cvad076] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 05/12/2023] Open
Abstract
Cardiovascular disease (CVD) is a serious health challenge, causing more deaths worldwide than cancer. The vascular endothelium, which forms the inner lining of blood vessels, plays a central role in maintaining vascular integrity and homeostasis and is in direct contact with the blood flow. Research over the past century has shown that mechanical perturbations of the vascular wall contribute to the formation and progression of atherosclerosis. While the straight part of the artery is exposed to sustained laminar flow and physiological high shear stress, flow near branch points or in curved vessels can exhibit 'disturbed' flow. Clinical studies as well as carefully controlled in vitro analyses have confirmed that these regions of disturbed flow, which can include low shear stress, recirculation, oscillation, or lateral flow, are preferential sites of atherosclerotic lesion formation. Because of their critical role in blood flow homeostasis, vascular endothelial cells (ECs) have mechanosensory mechanisms that allow them to react rapidly to changes in mechanical forces, and to execute context-specific adaptive responses to modulate EC functions. This review summarizes the current understanding of endothelial mechanobiology, which can guide the identification of new therapeutic targets to slow or reverse the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiaoli Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Min Shang
- Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310020, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lance L Munn
- Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
50
|
Yu F, Duan Y, Liu C, Huang H, Xiao X, He Z. Extracellular vesicles in atherosclerosis and vascular calcification: the versatile non-coding RNAs from endothelial cells and vascular smooth muscle cells. Front Med (Lausanne) 2023; 10:1193660. [PMID: 37469665 PMCID: PMC10352799 DOI: 10.3389/fmed.2023.1193660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/12/2023] [Indexed: 07/21/2023] Open
Abstract
Atherosclerosis (AS) is characterized by the accumulation of lipids, fibrous elements, and calcification in the innermost layers of arteries. Vascular calcification (VC), the deposition of calcium and phosphate within the arterial wall, is an important characteristic of AS natural history. However, medial arterial calcification (MAC) differs from intimal calcification and cannot simply be explained as the consequence of AS. Endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) are directly involved in AS and VC processes. Understanding the communication between ECs and VSMCs is critical in revealing mechanisms underlying AS and VC. Extracellular vesicles (EVs) are found as intercellular messengers in kinds of physiological processes and pathological progression. Non-coding RNAs (ncRNAs) encapsulated in EVs are involved in AS and VC, including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). The effects of ncRNAs have not been comprehensively understood, especially encapsulated in EVs. Some ncRNAs have demonstrated significant roles in AS and VC, but it remains unclear the functions of the majority ncRNAs detected in EVs. In this review, we summarize ncRNAs encapsulated in EC-EVs and VSMC-EVs, and the signaling pathways that are involved in AS and VC.
Collapse
Affiliation(s)
- Fengyi Yu
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yingjie Duan
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Chongmei Liu
- Department of Pathology, Yueyang People's Hospital, Yueyang, Hunan, China
| | - Hong Huang
- Hengyang Medical School, The First Affiliated Hospital, Institute of Clinical Medicine, University of South China, Hengyang, Hunan, China
| | - Xiangcheng Xiao
- Department of Nephrology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|