1
|
Irshad I, Alqahtani SA, Ikejima K, Yu ML, Romero-Gomez M, Eslam M. Energy metabolism: An emerging therapeutic frontier in liver fibrosis. Ann Hepatol 2025; 30:101896. [PMID: 40057035 DOI: 10.1016/j.aohep.2025.101896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 03/18/2025]
Abstract
Liver fibrosis is a progressive response to chronic liver diseases characterized by a wound-healing process that leads to the accumulation of fibrillary extracellular matrix (ECM) proteins in and around the liver tissue. If left untreated, liver fibrosis can advance to cirrhosis and ultimately result in liver failure. Although there have been significant advancements in understanding the molecular mechanisms involved in liver fibrosis, effective therapeutic strategies to reverse or halt the condition remain limited. Recent research has underscored the critical role of energy metabolism in the initiation and progression of liver fibrosis. In response to liver injury, hepatic cells undergo metabolic reprogramming to meet the energy demands of myofibroblasts. This reprogramming involves various metabolic changes, including mitochondrial dysfunction, alterations in cellular bioenergetics, shifts in glycolysis and oxidative phosphorylation, as well as changes in lipid metabolism. These modifications can disrupt cellular energy homeostasis and increase energy release, activating hepatic cells, primarily hepatic stellate cells (HSCs). Activated HSCs then stimulate fibrogenic pathways, leading to the accumulation of ECM proteins in the liver, which exacerbates the progression of fibrosis. This review aims to explore the emerging connection between energy metabolism and liver fibrosis, focusing on the metabolic alterations and molecular mechanisms that drive this condition. We also examine the therapeutic implications of modulating energy metabolism to reduce energy release and mitigate liver fibrosis. Altering energy metabolism to decrease energy release may represent a promising approach for treating liver fibrosis and chronic liver diseases.
Collapse
Affiliation(s)
- Iram Irshad
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Saleh A Alqahtani
- Liver, Digestive, & Lifestyle Health Research Section, and Organ Transplant Center of Excellence, King Faisal Specialist Hospital & Research Center, Riyadh, Saudi Arabia; Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Kenichi Ikejima
- Department of Gastroenterology, Juntendo University School of Medicine, Japan
| | - Ming-Lung Yu
- School of Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung, Taiwan; Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital; College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Manuel Romero-Gomez
- Digestive Diseases Department and Ciberehd, Virgen del Rocío University Hospital, Institute of Biomedicine of Seville (HUVR/CSIC/US), University of Seville, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Ao N, Du J, Jin S, Suo L, Yang J. The cellular and molecular mechanisms mediating the protective effects of sodium-glucose linked transporter 2 inhibitors against metabolic dysfunction-associated fatty liver disease. Diabetes Obes Metab 2025; 27:457-467. [PMID: 39508115 DOI: 10.1111/dom.16043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/16/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD), formerly known as nonalcoholic fatty liver disease (NAFLD), is a common, highly heterogeneous condition that affects about a quarter of the world's population, with no approved drug therapy. Current evidence from preclinical research and a number of small clinical trials indicates that SGLT2 inhibitors could also be effective for MAFLD. MAFLD is associated with a higher risk of chronic liver disease and multiple extrahepatic events, especially cardiovascular disease (CVD) and chronic kidney disease (CKD). MAFLD is considered a more appropriate terminology than NAFLD because it captures the complex bidirectional interplay between fatty liver and metabolic dysfunctions associated with disease progression, such as obesity and type 2 diabetes mellitus (T2DM). SGLT2 inhibitors are antidiabetic drugs that block glucose reabsorption in the kidney proximal tubule. In this article, we reviewed current clinical evidence supporting the potential use of SGLT2 inhibitors as a drug therapy for MAFLD and discussed the possible cellular and molecular mechanisms involved. We also reviewed the clinical benefits of SGLT2 inhibitors against MAFLD-related comorbidities, especially CVD, CKD and cardiovascular-kidney-metabolic syndrome (CKM). The broad beneficial effects of SGLT2 inhibitors support their use, likely in combination with other drugs, as a therapy for MAFLD.
Collapse
Affiliation(s)
- Na Ao
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jian Du
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shi Jin
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Linna Suo
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Yang
- Department of Endocrinology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Maharajan N, Kim KH, Vijayakumar KA, Cho GW. Unlocking Therapeutic Potential: Camphorquinone's Role in Alleviating Non-Alcoholic Fatty Liver Disease via SIRT1/LKB1/AMPK Pathway Activation. Tissue Eng Regen Med 2025; 22:129-144. [PMID: 39680356 PMCID: PMC11712022 DOI: 10.1007/s13770-024-00684-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/16/2024] [Accepted: 11/06/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a pathological condition that increase the risk of simple steatosis to hepatocellular carcinoma. This study aimed to investigate the biological effects of camphorquinone (CQ) in a high-fat diet (HFD)-fed and low dose streptozotocin (STZ)-induced mouse model, widely used to mimic the concurrent development of NAFLD pathological conditions in vivo, and a free fatty acid-induced hepatic steatosis cell model in vitro. METHODS CQ (10 or 30 mg/kg/day; i.p.) was injected for three weeks, and fasting blood glucose levels, glucose tolerance, and liver lipid metabolism were assessed. RESULTS CQ administration alleviated the increase in body and liver weights and improved glucose tolerance in NAFLD mice model. CQ also reduced the gene expression levels of lipid biosynthesis and inflammation markers, while increasing the levels of fatty acid oxidation markers in liver tissues and HepG2 cells. These beneficial effects of CQ were mediated via activation of the sirtuin 1 (SIRT1)/adenosine monophosphate-activated protein kinase (AMPK) signalling pathway in vitro and in vivo. CONCLUSION Collectively, our data suggest that CQ improves liver lipid metabolism and reduces blood glucose levels via activation of the SIRT1/serine/threonine kinase 11 (STK11/LKB1)/AMPK axis.
Collapse
Affiliation(s)
- Nagarajan Maharajan
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Kil Hwan Kim
- Veterans Health Service Medical Center, Veterans Medical Research Institute, Seoul, 05368, Korea
| | - Karthikeyan A Vijayakumar
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea
| | - Gwang-Won Cho
- Department of Biological Science, College of Natural Sciences, Chosun University, 309 Pilmun-Daero, Dong-Gu, Gwangju, 501-759, Korea.
- The Basic Science Institute of Chosun University, Chosun University, Gwangju, 61452, Korea.
- Department of Integrative Biological Science, BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Korea.
| |
Collapse
|
4
|
Wang B, Zhu X, Yu S, Xue H, Deng L, Zhang Y, Zhang Y, Liu Y. Roflumilast ameliorates GAN diet-induced non-alcoholic fatty liver disease by reducing hepatic steatosis and fibrosis in ob/ob mice. Biochem Biophys Res Commun 2024; 722:150170. [PMID: 38797152 DOI: 10.1016/j.bbrc.2024.150170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent progressive liver disease. Currently, there is only one drug for NAFLD treatment, and the options are limited. Phosphodiesterase-4 (PDE-4) inhibitors have potential in treating NAFLD. Therefore, this study aims to investigate the effect of roflumilast on NAFLD. Here, we fed ob/ob mice to induce the NAFLD model by GAN diet. Roflumilast (1 mg/kg) was administered orally once daily. Semaglutide (20 nmol/kg), used as a positive control, was injected subcutaneously once daily. Our findings showed that roflumilast has beneficial effects on NAFLD. Roflumilast prevented body weight gain and improved lipid metabolism in ob/ob-GAN NAFLD mice. In addition, roflumilast decreased hepatic steatosis by down-regulating the expression of hepatic fatty acid synthesis genes (SREBP1c, FASN, and CD36) and improving oxidative stress. Roflumilast not only reduced liver injury by decreasing serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, but also ameliorated hepatic inflammation by reducing the gene expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6). Roflumilast lessened liver fibrosis by inhibiting the expression of fibrosis mRNA (TGFβ1, α-SMA, COL1a1, and TIMP-1). Collectively, roflumilast could ameliorate NAFLD, especially in reducing hepatic steatosis and fibrosis. Our findings suggested a PDE-4 inhibitor roflumilast could be a potential drug for NAFLD.
Collapse
Affiliation(s)
- Bin Wang
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Xiaochan Zhu
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Siting Yu
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Huan Xue
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Lijiao Deng
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yushan Zhang
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China
| | - Yi Zhang
- Department of Pharmacology, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Department of Pharmacy, Shanxi Medical University, 030001, Taiyuan, Shanxi, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| | - Yunfeng Liu
- Department of Endocrinology, First Hospital of Shanxi Medical University, Shanxi Medical University, 030001, Taiyuan, Shanxi, China.
| |
Collapse
|
5
|
Li Y, van den Berg EH, Kurilshikov A, Zhernakova DV, Gacesa R, Hu S, Lopera-Maya EA, Zhernakova A, de Meijer VE, Sanna S, Dullaart RPF, Blokzijl H, Festen EAM, Fu J, Weersma RK. Genome-wide Studies Reveal Genetic Risk Factors for Hepatic Fat Content. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae031. [PMID: 39142818 PMCID: PMC12016563 DOI: 10.1093/gpbjnl/qzae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/12/2023] [Accepted: 01/08/2024] [Indexed: 08/16/2024]
Abstract
Genetic susceptibility to metabolic associated fatty liver disease (MAFLD) is complex and poorly characterized. Accurate characterization of the genetic background of hepatic fat content would provide insights into disease etiology and causality of risk factors. We performed genome-wide association study (GWAS) on two noninvasive definitions of hepatic fat content: magnetic resonance imaging proton density fat fraction (MRI-PDFF) in 16,050 participants and fatty liver index (FLI) in 388,701 participants from the United Kingdom (UK) Biobank (UKBB). Heritability, genetic overlap, and similarity between hepatic fat content phenotypes were analyzed, and replicated in 10,398 participants from the University Medical Center Groningen (UMCG) Genetics Lifelines Initiative (UGLI). Meta-analysis of GWASs of MRI-PDFF in UKBB revealed five statistically significant loci, including two novel genomic loci harboring CREB3L1 (rs72910057-T, P = 5.40E-09) and GCM1 (rs1491489378-T, P = 3.16E-09), respectively, as well as three previously reported loci: PNPLA3, TM6SF2, and APOE. GWAS of FLI in UKBB identified 196 genome-wide significant loci, of which 49 were replicated in UGLI, with top signals in ZPR1 (P = 3.35E-13) and FTO (P = 2.11E-09). Statistically significant genetic correlation (rg) between MRI-PDFF (UKBB) and FLI (UGLI) GWAS results was found (rg = 0.5276, P = 1.45E-03). Novel MRI-PDFF genetic signals (CREB3L1 and GCM1) were replicated in the FLI GWAS. We identified two novel genes for MRI-PDFF and 49 replicable loci for FLI. Despite a difference in hepatic fat content assessment between MRI-PDFF and FLI, a substantial similar genetic architecture was found. FLI is identified as an easy and reliable approach to study hepatic fat content at the population level.
Collapse
Affiliation(s)
- Yanni Li
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Eline H van den Berg
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Dasha V Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Laboratory of Genomic Diversity, Center for Computer Technologies, ITMO University, Saint Petersburg 199034, Russia
| | - Ranko Gacesa
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Shixian Hu
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Institute of Precision Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Esteban A Lopera-Maya
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Serena Sanna
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Hans Blokzijl
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Eleonora A M Festen
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen 9713 GZ, The Netherlands
| |
Collapse
|
6
|
Pan Z, Eslam M. MERTK and Fibrosis: A New Target for Therapy. DNA Cell Biol 2024; 43:311-314. [PMID: 38818793 DOI: 10.1089/dna.2024.0099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Organ fibrosis is a devastating medical challenge that is collectively responsible for an estimated 45% of all deaths in developed countries and poses a substantial health and economic burden. The process of fibrosis has common characteristics that can occur in various organs, such as the liver, kidney, lung, and skin. Currently, there is a paucity of effective treatments available for fibrosis. Therefore, it is crucial to identify new approaches to find potential therapeutic targets. Genetic studies have shown great promise in advancing the drug development process. Mer tyrosine kinase (MERTK) was recently identified as a crucial regulator of fibrosis that specifically controls the activity of transforming growth factor beta (TGFβ). In this brief review, we provide an overview of the potential role of MERTK as a targeted and valuable approach for treating organ fibrosis.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| |
Collapse
|
7
|
Pan Z, Alharthi J, Bayoumi A, George J, Eslam M. A Cell Specific Effect of MBOAT7 MAFLD-risk Variant on Immune Cells. FRONT BIOSCI-LANDMRK 2024; 29:148. [PMID: 38682204 DOI: 10.31083/j.fbl2904148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/19/2024] [Accepted: 03/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Disease risk variants are likely to affect gene expression in a context- and cell-type specific manner. The membrane bound O-acyltransferase domain containing 7 (MBOAT7) rs8736 metabolic-dysfunction-associated fatty liver disease (MAFLD)-risk variant was recently reported to be a negative regulator of toll-like receptors (TLRs) signalling in macrophages. Whether this effect is generic or cell-type specific in immune cells is unknown. METHODS We investigated the impact of modulating TLR signaling on MBOAT7 expression in peripheral blood mononuclear cells (PBMCs). We also examined whether the rs8736 polymorphism in MBOAT7 regulates this effect. Furthermore, we measured the allele-specific expression of MBOAT7 in various immune cell populations under both unstimulated and stimulated conditions. RESULTS We show that MBOAT7 is down-regulated by TLRs in PBMCs. This effect is modulated by the MBOAT7 rs8736 polymorphism. Additionally, we provide evidence that MBOAT7 acts primarily as a modulator of TLR signalling in mononuclear phagocytes. CONCLUSION Our results highlight the importance of studying Genome-Wide Association Studies (GWAS) signals in the specific cell types in which alterations of gene expression are found.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
- Department of Biotechnology, Faculty of Science, Taif University, 21944 Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW 2145, Australia
| |
Collapse
|
8
|
Pan Z, El Sharkway R, Bayoumi A, Metwally M, Gloss BS, Brink R, Lu DB, Liddle C, Alqahtani SA, Yu J, O'Connell PJ, George J, Eslam M. Inhibition of MERTK reduces organ fibrosis in mouse models of fibrotic disease. Sci Transl Med 2024; 16:eadj0133. [PMID: 38569018 DOI: 10.1126/scitranslmed.adj0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
Transforming growth factor-β (TGFβ) drives fibrosis and disease progression in a number of chronic disorders, but targeting this ubiquitously expressed cytokine may not yield a viable and safe antifibrotic therapy. Here, we sought to identify alternative ways to inhibit TGFβ signaling using human hepatic stellate cells and macrophages from humans and mice in vitro, as well as mouse models of liver, kidney, and lung fibrosis. We identified Mer tyrosine kinase (MERTK) as a TGFβ-inducible effector of fibrosis that was up-regulated during fibrosis in multiple organs in three mouse models. We confirmed these findings in liver biopsy samples from patients with metabolic dysfunction-associated fatty liver disease (MAFLD). MERTK also induced TGFβ expression and drove TGFβ signaling resulting in a positive feedback loop that promoted fibrosis in cultured cells. MERTK regulated both canonical and noncanonical TGFβ signaling in both mouse and human cells in vitro. MERTK increased transcription of genes regulating fibrosis by modulating chromatin accessibility and RNA polymerase II activity. In each of the three mouse models, disrupting the fibrosis-promoting signaling loop by reducing MERTK expression reduced organ fibrosis. Pharmacological inhibition of MERTK reduced fibrosis in these mouse models either when initiated immediately after injury or when initiated after fibrosis was established. Together, these data suggest that MERTK plays a role in modulating organ fibrosis and may be a potential target for treating fibrotic diseases.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Rasha El Sharkway
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW 2145, Australia
| | - Robert Brink
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW 2010, Australia
- St. Vincent's Healthcare Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - David Bo Lu
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Saleh A Alqahtani
- Organ Transplant Centre of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK-Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Philip J O'Connell
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, University of Sydney, Sydney, NSW 2145, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW 2145, Australia
| |
Collapse
|
9
|
Ramírez-Mejía MM, Qi X, Abenavoli L, Romero-Gómez M, Eslam M, Méndez-Sánchez N. Metabolic dysfunction: The silenced connection with fatty liver disease. Ann Hepatol 2023; 28:101138. [PMID: 37468095 DOI: 10.1016/j.aohep.2023.101138] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 07/21/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents a global public health burden. Despite the increase in its prevalence, the disease has not received sufficient attention compared to the associated diseases such as diabetes mellitus and obesity. In 2020 it was proposed to rename NAFLD to metabolic dysfunction-associated fatty liver disease (MAFLD) in order to recognize the metabolic risk factors and the complex pathophysiological mechanisms associated with its development. Furthermore, along with the implementation of the proposed diagnostic criteria, the aim is to address the whole clinical spectrum of the disease, regardless of BMI and the presence of other hepatic comorbidities. As would it be expected with such a paradigm shift, differing viewpoints have emerged regarding the benefits and disadvantages of renaming fatty liver disease. The following review aims to describe the way to the MAFLD from a historical, pathophysiological and clinical perspective in order to highlight why MAFLD is the approach to follow.
Collapse
Affiliation(s)
- Mariana M Ramírez-Mejía
- Plan of Combined Studies in Medicine (PECEM-MD/PhD), Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico; Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command (formerly General Hospital of Shenyang Military Area), Liaoning Province, China
| | - Ludovico Abenavoli
- Department of Health Sciences, University Magna Graecia of Catanzaro, Italy
| | - Manuel Romero-Gómez
- Digestive Diseases Unit, Department of Medicine, SeLiver Group, Institute of Biomedicine of Sevilla (HUVR/CSIC/US), University of Seville, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Nahum Méndez-Sánchez
- Liver Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico; Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
10
|
Yang H, Li Y, Xu W, Liu W, Xie Y. Exploring the underlying mechanisms of Ashitaba in the management of non-alcoholic fatty liver disease by integrating the analysis of transcriptomics and metabolomics. Front Med (Lausanne) 2023; 10:1247851. [PMID: 37920601 PMCID: PMC10618682 DOI: 10.3389/fmed.2023.1247851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/25/2023] [Indexed: 11/04/2023] Open
Abstract
Ashitaba seems to improve glucose intolerance and decrease triglyceride (TG) and total cholesterol (TC), which contribute to the development of non-alcoholic fatty liver disease (NAFLD). However, it remains to be explored the mechanism of Ashitaba in managing NAFLD. We determined the impact of Ashitaba on NAFLD, particularly its underlying mechanisms at the bioinformatic level. The established NAFLD mouse model was treated with or without Ashitaba, and the underlying mechanism was explored using transcriptomics paired with metabolomics. Ashitaba reduced obesity and liver steatosis in NAFLD mice. It identified 429 differentially expressed genes (DEGs) and verified 45 differential metabolites, especially those that alleviate NAFLD via the FXR signaling pathway. Our data may provide insight into the therapeutic impact of Ashitaba in the management of NAFLD and may be useful in clinical interventions for NAFLD.
Collapse
Affiliation(s)
- Huan Yang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Changning Administration Center of Public Hospital and Community Healthcare Center, Shanghai, China
| | - Yunshan Li
- Department of Endocrinology, Seven People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weihong Xu
- Department of Clinical Laboratory, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjuan Liu
- Department of Internal Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
11
|
Zhang Z, Ji G, Li M. Glucokinase regulatory protein: a balancing act between glucose and lipid metabolism in NAFLD. Front Endocrinol (Lausanne) 2023; 14:1247611. [PMID: 37711901 PMCID: PMC10497960 DOI: 10.3389/fendo.2023.1247611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common liver disease worldwide, affected by both genetics and environment. Type 2 diabetes (T2D) stands as an independent environmental risk factor that precipitates the onset of hepatic steatosis and accelerates its progression to severe stages of liver damage. Furthermore, the coexistence of T2D and NAFLD magnifies the risk of cardiovascular disease synergistically. However, the association between genetic susceptibility and metabolic risk factors in NAFLD remains incompletely understood. The glucokinase regulator gene (GCKR), responsible for encoding the glucokinase regulatory protein (GKRP), acts as a regulator and protector of the glucose-metabolizing enzyme glucokinase (GK) in the liver. Two common variants (rs1260326 and rs780094) within the GCKR gene have been associated with a lower risk for T2D but a higher risk for NAFLD. Recent studies underscore that T2D presence significantly amplifies the effect of the GCKR gene, thereby increasing the risk of NASH and fibrosis in NAFLD patients. In this review, we focus on the critical roles of GKRP in T2D and NAFLD, drawing upon insights from genetic and biological studies. Notably, prior attempts at drug development targeting GK with glucokinase activators (GKAs) have shown potential risks of augmented plasma triglycerides or NAFLD. Conversely, overexpression of GKRP in diabetic rats improved glucose tolerance without causing NAFLD, suggesting the crucial regulatory role of GKRP in maintaining hepatic glucose and lipid metabolism balance. Collectively, this review sheds new light on the complex interaction between genes and environment in NAFLD, focusing on the GCKR gene. By integrating evidence from genetics, biology, and drug development, we reassess the therapeutic potential of targeting GK or GKRP for metabolic disease treatment. Emerging evidence suggests that selectively activating GK or enhancing GK-GKRP binding may represent a holistic strategy for restoring glucose and lipid metabolic balance.
Collapse
Affiliation(s)
| | | | - Meng Li
- Institute of Digestive Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
12
|
Yuan X, Hou M, Wang Y, Zhang S, Li L, Mi Y, Du H, Yu S, Nan Y. Mitofusin-2 gene polymorphisms and metabolic dysfunction associated fatty liver disease: a case-control study in a Chinese population. J Int Med Res 2023; 51:3000605231187953. [PMID: 37522325 PMCID: PMC10392247 DOI: 10.1177/03000605231187953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023] Open
Abstract
OBJECTIVES Mitofusion-2 (Mfn2) may have a role in mitochondrial oxidative stress and insulin resistance that can promote the development of metabolic dysfunction associated fatty liver disease (MAFLD). This retrospective and case control study aimed to explore the relationships between common Mfn2 single nucleotide polymorphisms (SNPs) and MAFLD in a northern Han Chinese population. METHODS Six Mfn2 SNPs (rs2336384, rs873458, rs873457, rs4846085, rs2878677, and rs2236057) were genotyped using the ligase detection reaction in 466 MAFLD patients and 423 healthy controls. Genotype and allele frequencies were calculated, along with haplotype analysis and pairwise linkage disequilibrium. RESULTS The genotype distribution of rs2336384, rs2878677, and rs2236057 among the MAFLD patients showed a significantly different pattern from that of healthy controls. The data showed that an increased risk of MAFLD was significantly correlated with patients carrying the GG genotype of rs2336384, CC genotype of rs873457, TT genotype of rs4846085, TT genotype of rs2878677, and the AA genotype of rs2236057. Moreover, The GGCTTA haplotype was found to be adversely linked with MAFLD by haplotype analysis. CONCLUSION The current findings suggest a strong link between certain Mfn2 gene polymorphisms and MAFLD.
Collapse
Affiliation(s)
- Xiwei Yuan
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Mengmeng Hou
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yiqi Wang
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Siyu Zhang
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yingjun Mi
- School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Huijuan Du
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Songhao Yu
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuemin Nan
- Department of Traditional and Western Medical Hepatology & Hebei Key Laboratory of Mechanism of Liver Fibrosis in Chronic Liver Disease, Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
13
|
Pan Z, Alqahtani SA, Eslam M. MAFLD and chronic kidney disease: two sides of the same coin? Hepatol Int 2023; 17:519-521. [PMID: 37069420 DOI: 10.1007/s12072-023-10526-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/16/2023] [Indexed: 04/19/2023]
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Saleh A Alqahtani
- Liver Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, 12713, Saudi Arabia
- Division of Gastroenterology and Hepatology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia.
| |
Collapse
|
14
|
Ge X, Wang X, Yan Y, Zhang L, Yu C, Lu J, Xu X, Gao J, Liu M, Jiang T, Ke B, Song C. Behavioural activity pattern, genetic factors, and the risk of nonalcoholic fatty liver disease: A prospective study in the UK Biobank. Liver Int 2023; 43:1287-1297. [PMID: 37088982 DOI: 10.1111/liv.15588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND & AIMS Physical activity, sedentary behaviour, and genetic variants have been associated with the nonalcoholic fatty liver disease (NAFLD). However, whether and how the degree of healthy activity patterns may modify the impact of genetic susceptibility on NAFLD remains unknown. METHODS Behaviour activity factors were determined according to total physical activity (TPA) and sedentary time. The polygenic risk score (PRS) was calculated by variants in PNPLA3, TM6SF2, MBOAT7, and GCKR. Cox regression was used to analyse the associations of genetic and behaviour activity factors with incident NAFLD in the UK Biobank (N = 338 087). RESULTS During a median follow-up of 12.4 years, 3201 incident NAFLD cases were ascertained. Analyses of TPA and sedentary time simultaneously showed a dose-response association with the risk of NAFLD (ptrend < .001). The association of behaviour activity patterns with NAFLD varied by genetic variants. Of the subjects with high genetic risk, we observed a null protective effect of moderate or high TPA on NAFLD risk, while sitting less than three hours a day significantly decreased the risk of NAFLD (p = 3.50 × 10-4 ). The high genetic risk of NAFLD can also be offset by the combination of moderate physical activity and shorter sedentary time. Moreover, the high genetic risk group has the greatest reduction of 10-year absolute risk (6.95 per 1000 person-years) if reaching both healthy activities. CONCLUSIONS Moderate-to-high physical activity and favourable sedentary behaviour may be lifestyle modifications in preventing NAFLD, which could offset the harmful effect of predisposing genetic factors.
Collapse
Affiliation(s)
- Xinyuan Ge
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Xiao Wang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Infectious Disease, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuqian Yan
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Lu Zhang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Chengxiao Yu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Jing Lu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Health Management Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xin Xu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jiaxin Gao
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Maojie Liu
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tao Jiang
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Bibo Ke
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Ci Song
- Department of Epidemiology, China International Cooperation Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Research Units of Cohort Study on Cardiovascular Diseases and Cancers, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Valenzuela-Vallejo L, Sanoudou D, Mantzoros CS. Precision Medicine in Fatty Liver Disease/Non-Alcoholic Fatty Liver Disease. J Pers Med 2023; 13:830. [PMID: 37241000 PMCID: PMC10224312 DOI: 10.3390/jpm13050830] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease, and is related to fatal and non-fatal liver, metabolic, and cardiovascular complications. Its non-invasive diagnosis and effective treatment remain an unmet clinical need. NAFLD is a heterogeneous disease that is most commonly present in the context of metabolic syndrome and obesity, but not uncommonly, may also be present without metabolic abnormalities and in subjects with normal body mass index. Therefore, a more specific pathophysiology-based subcategorization of fatty liver disease (FLD) is needed to better understand, diagnose, and treat patients with FLD. A precision medicine approach for FLD is expected to improve patient care, decrease long-term disease outcomes, and develop better-targeted, more effective treatments. We present herein a precision medicine approach for FLD based on our recently proposed subcategorization, which includes the metabolic-associated FLD (MAFLD) (i.e., obesity-associated FLD (OAFLD), sarcopenia-associated FLD (SAFLD, and lipodystrophy-associated FLD (LAFLD)), genetics-associated FLD (GAFLD), FLD of multiple/unknown causes (XAFLD), and combined causes of FLD (CAFLD) as well as advanced stage fibrotic FLD (FAFLD) and end-stage FLD (ESFLD) subcategories. These and other related advances, as a whole, are expected to enable not only improved patient care, quality of life, and long-term disease outcomes, but also a considerable reduction in healthcare system costs associated with FLD, along with more options for better-targeted, more effective treatments in the near future.
Collapse
Affiliation(s)
- Laura Valenzuela-Vallejo
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Despina Sanoudou
- Clinical Genomics and Pharmacogenomics Unit, 4(th) Department of Internal Medicine, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Molecular Biology Division, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Christos S. Mantzoros
- Department of Medicine, Beth-Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Department of Medicine, Boston VA Healthcare System, Boston, MA 02130, USA
| |
Collapse
|
16
|
Mohamed Fteah A, Abdel Rahim A, Ahmed AbdelHady A, Shawky H, A Elrefaiy M, Mamdouh Aly D. Association of PNPLA3 (rs738409) & TM6SF2 (rs58542926) and ATG16L1 (rs2241880) genetic variants with susceptibility to hepatocellular carcinoma in a group of Egyptian patients with HCV-induced liver cirrhosis. Tumour Virus Res 2023; 15:200256. [PMID: 36804832 PMCID: PMC9975679 DOI: 10.1016/j.tvr.2023.200256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
| | - Ali Abdel Rahim
- Hepato-gastroentrology Department - Theodor Bilharz Research Institute, Egypt
| | | | - Hanan Shawky
- Clinical Chemistry Department - Theodor Bilharz Research Institute, Egypt
| | - Mohamed A Elrefaiy
- Hepato-gastroentrology Department - Theodor Bilharz Research Institute, Egypt
| | - Doaa Mamdouh Aly
- Clinical Chemistry Department - Theodor Bilharz Research Institute, Egypt
| |
Collapse
|
17
|
Alharthi J, Bayoumi A, Thabet K, Pan Z, Gloss BS, Latchoumanin O, Lundberg M, Twine NA, McLeod D, Alenizi S, Adams LA, Weltman M, Berg T, Liddle C, George J, Eslam M. A metabolic associated fatty liver disease risk variant in MBOAT7 regulates toll like receptor induced outcomes. Nat Commun 2022; 13:7430. [PMID: 36473860 PMCID: PMC9726889 DOI: 10.1038/s41467-022-35158-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The breakdown of toll-like receptor (TLR) tolerance results in tissue damage, and hyperactivation of the TLRs and subsequent inflammatory consequences have been implicated as risk factors for more severe forms of disease and poor outcomes from various diseases including COVID-19 and metabolic (dysfunction) associated fatty liver disease (MAFLD). Here we provide evidence that membrane bound O-acyltransferase domain containing 7 (MBOAT7) is a negative regulator of TLR signalling. MBOAT7 deficiency in macrophages as observed in patients with MAFLD and in COVID-19, alters membrane phospholipid composition. We demonstrate that this is associated with a redistribution of arachidonic acid toward proinflammatory eicosanoids, induction of endoplasmic reticulum stress, mitochondrial dysfunction, and remodelling of the accessible inflammatory-related chromatin landscape culminating in macrophage inflammatory responses to TLRs. Activation of MBOAT7 reverses these effects. These outcomes are further modulated by the MBOAT7 rs8736 (T) MAFLD risk variant. Our findings suggest that MBOAT7 can potentially be explored as a therapeutic target for diseases associated with dysregulation of the TLR signalling cascade.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Khaled Thabet
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 6111, Egypt
| | - Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Brian S Gloss
- Westmead Research Hub, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mischa Lundberg
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
- The University of Queensland Diamantina Institute, The University of Queensland, Woolloongabba, QLD, 4102, Australia
- The University of Queensland Faculty of Medicine, Brisbane, QLD, Australia
| | - Natalie A Twine
- Transformational Bioinformatics, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Duncan McLeod
- Department of Anatomical Pathology, Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Martin Weltman
- Department of Gastroenterology and Hepatology, Nepean Hospital, Sydney, NSW, Australia
| | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
18
|
Pal SC, Eslam M, Mendez-Sanchez N. Detangling the interrelations between MAFLD, insulin resistance, and key hormones. Hormones (Athens) 2022; 21:573-589. [PMID: 35921046 DOI: 10.1007/s42000-022-00391-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/19/2022] [Indexed: 11/04/2022]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) has increasingly become a significant and highly prevalent cause of chronic liver disease, displaying a wide array of risk factors and pathophysiologic mechanisms of which only a few have so far been clearly elucidated. A bidirectional interaction between hormonal discrepancies and metabolic-related disorders, including obesity, type 2 diabetes mellitus (T2DM), and polycystic ovarian syndrome (PCOS) has been described. Since the change in nomenclature from non-alcoholic fatty liver disease (NAFLD) to MAFLD is based on the clear impact of metabolic elements on the disease, the reciprocal interactions of hormones such as insulin, adipokines (leptin and adiponectin), and estrogens have strongly pointed to the intrinsic links that lead to the heterogeneous epidemiology, clinical presentations, and risk factors involved in MAFLD in different populations. The objective of this work is twofold. Firstly, there is a brief discussion regarding the change in nomenclature as well as epidemiology, risk factors, and pathophysiologic mechanisms other than hormonal effects, which include nutrition and the gut microbiome, as well as genetic and epigenetic influences. Secondly, we review the basis of the most important hormonal factors involved in the development and progression of MAFLD that act both independently and in an interrelated manner.
Collapse
Affiliation(s)
- Shreya C Pal
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| | - Nahum Mendez-Sanchez
- Faculty of Medicine, National Autonomous University of Mexico, Av. Universidad 3000, Coyoacán, 4510, Mexico City, Mexico.
- Liver Research Unit, Medica Sur Clinic & Foundation, Puente de Piedra 150. Col. Toriello Guerra, 14050, Tlalpan, Mexico City, Mexico.
| |
Collapse
|
19
|
Zhu X, Xia M, Gao X. Update on genetics and epigenetics in metabolic associated fatty liver disease. Ther Adv Endocrinol Metab 2022; 13:20420188221132138. [PMID: 36325500 PMCID: PMC9619279 DOI: 10.1177/20420188221132138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/25/2022] [Indexed: 11/06/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is becoming the most frequent chronic liver disease worldwide. Metabolic (dysfunction) associated fatty liver disease (MAFLD) is suggested to replace the nomenclature of NAFLD. For individuals with metabolic dysfunction, multiple NAFLD-related factors also contribute to the development and progression of MAFLD including genetics and epigenetics. The application of genome-wide association study (GWAS) and exome-wide association study (EWAS) uncovers single-nucleotide polymorphisms (SNPs) in MAFLD. In addition to the classic SNPs in PNPLA3, TM6SF2, and GCKR, some new SNPs have been found recently to contribute to the pathogenesis of liver steatosis. Epigenetic factors involving DNA methylation, histone modifications, non-coding RNAs regulations, and RNA methylation also play a critical role in MAFLD. DNA methylation is the most reported epigenetic modification. Developing a non-invasion biomarker to distinguish metabolic steatohepatitis (MASH) or liver fibrosis is ongoing. In this review, we summarized and discussed the latest progress in genetic and epigenetic factors of NAFLD/MAFLD, in order to provide potential clues for MAFLD treatment.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| | - Mingfeng Xia
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, 180 Fenglin Rd, Shanghai 200032, China
| | - Xin Gao
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan Institute for Metabolic Diseases, Fudan University, Shanghai, China
| |
Collapse
|
20
|
Sarin SK, Eslam M, Fan JG, Lin HC, George J, Omata M. MAFLD, patient-centred care, and APASL. Hepatol Int 2022; 16:1032-1034. [PMID: 36070122 DOI: 10.1007/s12072-022-10408-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/12/2022] [Indexed: 11/04/2022]
Abstract
Asian-Pacific nations are home to more than half the world's population and similar to other global super regions, metabolic dysfunction associated fatty liver disease (MAFLD) is the principal cause for chronic liver disease. To address the challenges ahead for tackling the disease at-scale, the Asian Pacific Association for the Study of the Liver (APASL) was the first pan-national society to endorse and lead the process for redefining the disease and adopting the more appropriate term "MAFLD" with its accompanying set of positive diagnostic criteria. As with this initiative, APASL and Hepatology International will continue to strive to lead the field and work with sister societies towards full adoption of MAFLD. This will advance the science and practice of Hepatology and help incorporate MAFLD within multidisciplinary care teams. Ultimately, it will lead to more cogent clinical trials built on innovative design platforms that include patients with any disease related to metabolic dysfunction. For our patients, an outcome of these endeavours will be the provision of holistic person-centred care for this disease that is so common in our region.
Collapse
Affiliation(s)
- Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han-Chieh Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, NSW, 2145, Australia
| | - Masao Omata
- Department of Gastroenterology, Yamanashi Prefectural Central Hospital, Kofu, Yamanashi, Japan
- The University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Eslam M, El-Serag HB, Francque S, Sarin SK, Wei L, Bugianesi E, George J. Metabolic (dysfunction)-associated fatty liver disease in individuals of normal weight. Nat Rev Gastroenterol Hepatol 2022; 19:638-651. [PMID: 35710982 DOI: 10.1038/s41575-022-00635-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 12/12/2022]
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects up to a third of the global population; its burden has grown in parallel with rising rates of type 2 diabetes mellitus and obesity. MAFLD increases the risk of end-stage liver disease, hepatocellular carcinoma, death and liver transplantation and has extrahepatic consequences, including cardiometabolic disease and cancers. Although typically associated with obesity, there is accumulating evidence that not all people with overweight or obesity develop fatty liver disease. On the other hand, a considerable proportion of patients with MAFLD are of normal weight, indicating the importance of metabolic health in the pathogenesis of the disease regardless of body mass index. The clinical profile, natural history and pathophysiology of patients with so-called lean MAFLD are not well characterized. In this Review, we provide epidemiological data on this group of patients and consider overall metabolic health and metabolic adaptation as a framework to best explain the pathogenesis of MAFLD and its heterogeneity in individuals of normal weight and in those who are above normal weight. This framework provides a conceptual schema for interrogating the MAFLD phenotype in individuals of normal weight that can translate to novel approaches for diagnosis and patient care.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| | - Hashem B El-Serag
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium
- Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Lai Wei
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology and Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
22
|
Kim N, Jung S, Lee E, Jo EB, Yoon S, Jeong Y. Gryllus bimaculatus De Geer hydrolysates alleviate lipid accumulation, inflammation, and endoplasmic reticulum stress in palmitic acid-treated human hepatoma G2 cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 291:115117. [PMID: 35182670 DOI: 10.1016/j.jep.2022.115117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Nonalcoholic fatty liver disease (NAFLD) is one of the most common hepatic diseases closely intertwined with saturated fatty acids intake. Therefore, various studies are being conducted to find natural substances to prevent either the onset or progression of NAFLD. According to traditional medicinal literature, it has been reported that Gryllus bimaculatus De Geer (GB) has systemic detoxifying activity; however, the preventive effects of GB on NAFLD have not been elucidated to date. AIM OF STUDY To evaluate the potential of GB as a material for the mitigation of NAFLD, we investigated the effects of GB hydrolysates on the hepatic lipid accumulation, inflammation, and endoplasmic reticulum (ER) stress in human hepatoma G2 (Hep G2) cells treated with palmitic acid (PA). METHODS Steamed and dried GB was defatted, pulverized, and then lyophilized following hydrolyzation using Neutrase® (GB-N) or Flavourzyme® (GB-F). Hep G2 cells were incubated with GB-N or GB-F at various concentrations (0, 0.25, 0.5, and 1 mg/mL) for 24 h, and then PA was treated for another 24 h. RESULTS The GB-N and GB-F significantly prevented the PA-induced intracellular lipid accumulation in the human liver cells (p < 0.05). Moreover, the GB-N and GB-F increased the hepatic cellular viability against the PA-treatment (p < 0.05). In addition, the GB-N and GB-F significantly ameliorated the PA-inducible proinflammatory cytokines mRNA expression, such as tumor necrosis factor-α and interleukin-1β, compared to the PA-treated hepatic cells (p < 0.05). Furthermore, the GB-N and GB-F inhibited the PA-inducible lipogenic mRNA expression, such as fatty acid synthase, sterol regulatory element-binding protein 1c, and peroxisome proliferator-activated receptor-γ (p < 0.05). Moreover, the GB-N and GB-F alleviated the ER stress-related mRNA expression, such as glucose regulatory protein 78 and X-box binding protein increased in PA-treated cells (p < 0.05). CONCLUSIONS These results indicate that GB-N and GB-F could be used as materials to prevent the NAFLD onset or progression with alleviating hepatic lipid accumulation, inflammation, and ER stress.
Collapse
Affiliation(s)
- Nayeon Kim
- Department of Food Science and Nutrition, Dankook University, Cheonan, Chungnam, 31116, South Korea; Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan, Chungnam, 31116, South Korea; R&D, Hanmi Natural Nutrition Co., Ltd., Paju, Gyeonggi, 10808, South Korea.
| | - Sunyoon Jung
- Department of Food Science and Nutrition, Dankook University, Cheonan, Chungnam, 31116, South Korea; Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan, Chungnam, 31116, South Korea.
| | - Eunjung Lee
- Department of Food Science and Nutrition, Dankook University, Cheonan, Chungnam, 31116, South Korea; Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan, Chungnam, 31116, South Korea.
| | - Eun-Byeol Jo
- Department of Food Science and Nutrition, Dankook University, Cheonan, Chungnam, 31116, South Korea; Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan, Chungnam, 31116, South Korea.
| | - Seongjun Yoon
- Department of Baking Science, Hyejeon College, Hongsung, Chungnam, 32244, South Korea.
| | - Yoonhwa Jeong
- Department of Food Science and Nutrition, Dankook University, Cheonan, Chungnam, 31116, South Korea; Research Center for Industrialization of Natural Nutraceuticals, Dankook University, Cheonan, Chungnam, 31116, South Korea.
| |
Collapse
|
23
|
Farahat TM, Ungan M, Vilaseca J, Ponzo J, Gupta PP, Schreiner AD, Al Sharief W, Casler K, Abdelkader T, Abenavoli L, Alami FZM, Ekstedt M, Jabir MS, Armstrong MJ, Osman MH, Wiegand J, Attia D, Verhoeven V, Amir AAQ, Hegazy NN, Tsochatzis EA, Fouad Y, Cortez-Pinto H. The paradigm shift from NAFLD to MAFLD: A global primary care viewpoint. Liver Int 2022; 42:1259-1267. [PMID: 35129258 DOI: 10.1111/liv.15188] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/09/2022] [Accepted: 01/31/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Taghreed M Farahat
- The Egyptian Family Medicine Association (EFMA), WONCA East Mediterranean, Department of Public Health and Community Medicines, Menoufia University, Menoufia, Egypt
| | - Mehmet Ungan
- The Turkish Association of Family Physicians (TAHUD), WONCA Europe, Department of Family Medicine, Ankara University School of Medicine, Ankara, Turkey
| | - Josep Vilaseca
- Barcelona Esquerra Primary Health Care Consortium, Barcelona, Spain
- WONCA Europe, Faculty of Medicine, University of Barcelona, Barcelona, Spain
- Faculty of MedicineUniversity of Vic - Central University of Catalonia, Vic, Barcelona, Spain
| | - Jacqueline Ponzo
- WONCA Iberoamericana, Departamento de Montevideo, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Pramendra Prasad Gupta
- WONCA South Asia, Department of General Practice and Emergency Medicine, B.P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Andrew D Schreiner
- Departments of Medicine Public Health Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Wadeia Al Sharief
- President Emirates Family Medicine Society, President Family Medicine Scientific Council in Arab Board for Medical Specialization Council, Director Medical Education & Research Department, Dubai, UAE
| | - Kelly Casler
- Director of Family Nurse Practitioner Program, The Ohio State University College of Nursing, Columbus, Ohio, USA
| | - Tafat Abdelkader
- Algerian Society of General Medicine/Societe Algerienne De Medecine Generale (SAMG), Algeria
| | - Ludovico Abenavoli
- Department of Health Sciences, Magna Graecia University, Catanzaro, Italy
| | | | - Mattias Ekstedt
- Division of Diagnostics and Specialist Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | | | - Matthew J Armstrong
- Liver Unit, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Mona H Osman
- Department of Family Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Johannes Wiegand
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Dina Attia
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Veronique Verhoeven
- Department of FAMPOP (Family Medicine and Population Health), University of Antwerp, Antwerpen, Belgium
| | | | - Nagwa N Hegazy
- The Egyptian Family Medicine Association (EFMA), WONCA East Mediterranean, Department of Public Health and Community Medicines, Menoufia University, Menoufia, Egypt
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, UK
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya, Egypt
| | - Helena Cortez-Pinto
- Clínica Universitária de Gastrenterologia, Laboratório de Nutrição, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
24
|
Role of TFEB in Autophagy and the Pathogenesis of Liver Diseases. Biomolecules 2022; 12:biom12050672. [PMID: 35625599 PMCID: PMC9139110 DOI: 10.3390/biom12050672] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/29/2022] [Accepted: 05/03/2022] [Indexed: 12/13/2022] Open
Abstract
The transcription factor EB (TFEB) is a master regulator of lysosomal function and autophagy. Mechanistic target of rapamycin (mTOR)-mediated phosphorylation on TFEB is known to regulate TFEB subcellular localization and activity at the lysosomal surface. Recent studies have shown that TFEB also plays a critical role in physiological processes such as lipid metabolism, and dysfunction of TFEB has been observed in the pathogenesis of several diseases. Owing to its ability to improve disease status in murine models, TFEB has attracted attention as a therapeutic target for diseases. In this review, we will present the regulation of TFEB and its role in the pathogenesis of liver diseases, particularly non-alcoholic fatty liver disease (NAFLD).
Collapse
|
25
|
Metwally M, Berg T, Tsochatzis EA, Eslam M. Translation Reprogramming as a Novel Therapeutic Target in MAFLD. Adv Biol (Weinh) 2022; 6:e2101298. [PMID: 35240009 DOI: 10.1002/adbi.202101298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/19/2022] [Indexed: 01/27/2023]
Abstract
Approved pharmacotherapies for metabolic-dysfunction-associated fatty liver disease (MAFLD) are lacking. Novel approaches and therapeutic targets that are likely to translate to clinical benefit are required. Targeting components of the translation machinery hold promise as a novel therapeutic approach that can overcome the well-known disease heterogeneity, as dysregulation of mRNA translation is a common feature independent of the MAFLD drivers. In this perspective, recent advances in understanding the role of mRNA translation in MAFLD are discussed, with a particular focus on the potential implications and challenges to "translate" these findings to the clinic, and an overview of similar recent efforts in other diseases is provided.
Collapse
Affiliation(s)
- Mayada Metwally
- Department of Internal Medicine, Minia University, Minia, 61111, Egypt
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, 04103, Leipzig, Germany
| | - Emmanuel A Tsochatzis
- UCL Institute for Liver and Digestive Health, Royal Free Hospital and UCL, London, NW3 2QG, UK
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, New South Wales, 2145, Australia
| |
Collapse
|
26
|
Alharthi J, Gastaldelli A, Cua IH, Ghazinian H, Eslam M. Metabolic dysfunction-associated fatty liver disease: a year in review. Curr Opin Gastroenterol 2022; 38:251-260. [PMID: 35143431 DOI: 10.1097/mog.0000000000000823] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW In 2020, a novel comprehensive redefinition of fatty liver disease was proposed by an international panel of experts. This review aims to explore current evidence regarding the impact of this new definition on the current understanding of the epidemiology, pathogenesis, diagnosis, and clinical trials for fatty liver disease. RECENT FINDINGS The effectiveness of metabolic dysfunction-associated fatty liver disease (MAFLD) was compared to the existing criteria for nonalcoholic fatty liver disease (NAFLD). Recent data robustly suggest the superior utility of MAFLD in identifying patients at high risk for metabolic dysfunction, the hepatic and extra-hepatic complications, as well as those who would benefit from genetic testing, including patients with concomitant liver diseases. This change in name and criteria also appears to have improved disease awareness among patients and physicians. SUMMARY The transformation in name and definition from NAFLD to MAFLD represents an important milestone, which indicates significant tangible progress towards a more inclusive, equitable, and patient-centred approach to addressing the profound challenges of this disease. Growing evidence has illustrated the broader and specific contexts that have tremendous potential for positively influencing the diagnosis and treatment. In addition, the momentum accompanying this name change has included widespread public attention to the unique burden of this previously underappreciated disease.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | | | - Ian Homer Cua
- Institute of Digestive and Liver Diseases, St. Luke's Medical Center, Global City, Philippines
| | - Hasmik Ghazinian
- Hepatology Department, National Centre of Infectious Diseases, Yerevan, Armenia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
27
|
Fouad Y, Palmer M, Chen M, Regev A, Banerjee R, Myers R, Riccio R, Torstenson R, Younes R, Arora PS, Landgren H, Karsdal MA, Blake M, Shapiro DA, Gruss HJ, Sheikh MY, Attia D, Bollipo S, Smith AD, Freilich B, Gish RG, Schuppan D. Redefinition of Fatty Liver Disease from NAFLD to MAFLD through the Lens of Drug Development and Regulatory Science. J Clin Transl Hepatol 2022; 10:374-382. [PMID: 35528969 PMCID: PMC9039717 DOI: 10.14218/jcth.2021.00408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 09/25/2021] [Accepted: 09/30/2021] [Indexed: 12/04/2022] Open
Abstract
Metabolic (dysfunction)-associated fatty liver disease (MAFLD) affects a third of the population and is a leading cause of liver-related death. Since no effective treatments exist, novel approaches to drug development are required. Unfortunately, outdated terminology and definitions of the disease are hampering efforts to develop new drugs and treatments. An international consensus panel has put forth an influential proposal for the disease to be renamed from nonalcoholic fatty liver disease (NAFLD) to MAFLD, including a proposal for how the disease should be diagnosed. As allies with the many stakeholders in MAFLD care-including patients, patients' advocates, clinicians, researchers, nurse and allied health groups, regional societies, and others-we are aware of the negative consequences of the NAFLD term and definition. We share the sense of urgency for change and will act in new ways to achieve our goals. Although there is much work to be done to overcome clinical inertia and reverse worrisome recent trends, the MAFLD initiative provides a firm foundation to build on. It provides a roadmap for moving forward toward more efficient care and affordable, sustainable drug and device innovation in MAFLD care. We hope it will bring promising new opportunities for a brighter future for MAFLD care and improve care and outcomes for patients of one of the globe's largest and costliest public health burdens. From this viewpoint, we have revisited this initiative through the perspectives of drug development and regulatory science.
Collapse
Affiliation(s)
- Yasser Fouad
- Department of Gastroenterology, Hepatology, and Endemic Medicine, Faculty of Medicine, Minia University, Minia, Egypt
| | - Melissa Palmer
- Gannex/Ascletis Pharma Co Ltd, Beijing, China
- Liver Consulting LLC, New York, NY, USA
| | - Minjun Chen
- Division of Bioinformatics and Biostatistics, National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
| | - Arie Regev
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Rob Myers
- Gilead Sciences Inc, Foster City, CA, USA
| | | | | | - Ramy Younes
- Boehringer Ingelheim International, GmbH, Ingelheim, Germany
| | | | | | | | | | | | | | | | - Dina Attia
- Gastroenterology and Hepatology Department, Beni-Suef University, Beni Suef, Egypt
| | - Steven Bollipo
- Department of Gastroenterology and Endoscopy, John Hunter Hospital, Newcastle, NSW, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, Australia
| | | | | | - Robert G. Gish
- Division of Gastroenterology and Hepatology, Loma Linda University, Loma Linda, CA, USA
| | - Detlef Schuppan
- Institute of Translational Immunology and Research Center for Immune Therapy, University Medical Center, Mainz, Germany
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
28
|
Oh JH, Jun DW, Kim HY, Lee SM, Yoon EL, Hwang J, Park JH, Lee H, Kim W, Kim H. Discovery of dipeptidyl peptidase-4 inhibitor specific biomarker in NAFLD mouse models using modified basket trial. Clin Mol Hepatol 2022; 28:497-509. [PMID: 35484644 PMCID: PMC9293604 DOI: 10.3350/cmh.2022.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 04/15/2022] [Indexed: 11/23/2022] Open
Abstract
Background/Aims We aimed to define an optimal target population and drug-specific biomarkers that may predict dipeptidyl peptidase (DPP)-4 inhibitor responses in non-alcoholic fatty liver disease (NAFLD). Methods An exploration study (study I) was performed using three different NAFLD models (basket study design; high-fat diet [HFD], methionine choline-deficient diet [MCD], and high-cholesterol Western diet [WD] models). RNA transcriptome analysis was performed on pre-studied liver tissues to identify biomarkers that could predict the response to DPP-4 inhibitors. In the validation study (study II), the HFD-induced NAFLD model was divided into high and low hepatic insulin-like growth factor binding protein 1 (Igfbp-1) groups based on the pre-study liver biopsy. Results DPP-4 inhibitor attenuated the NAFLD activity score and fibrosis stage in the HFD model but not in the WD and MCD models. The overall response rate was 19% across the modified basket NAFLD trial and 42%, 25%, and 0% in the HFD, WD, and MCD models. Hepatic Igfbp-1 expression was higher in the responder group than in the non-responder group in pre-study biopsy samples. In contrast, hepatic Igfbp-1 expression was lower in the responder group than in the non-responder group in the end-study biopsy samples. DPP-4 inhibitor response rates were 83% and 17% in the baseline hepatic high Igfbp-1 and low Igfbp-1 groups, respectively. Hepatic messenger RNA Igfbp-1 expression was positively correlated with serum IGFBP-1 levels. Conclusions The DPP-4 inhibitor response was higher in the HFD phenotype and pre-treatment levels of hepatic or serum IGFBP-1 were high.
Collapse
Affiliation(s)
- Ju Hee Oh
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Dae Won Jun
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea.,Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hye Young Kim
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Seung Min Lee
- Department of Translational Medicine, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Eileen L Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jungwook Hwang
- Department of Medical genetic, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Jung Hwan Park
- Department of Endocrinology, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Hanbi Lee
- Department of Life Sciences, College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Wankyu Kim
- Department of Life Sciences, College of Natural Science, Ewha Womans University, Seoul, Korea
| | - Hyunsung Kim
- Department of Pathology, Hanyang University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
29
|
Alharthi J, Eslam M. Biomarkers of Metabolic (Dysfunction)-associated Fatty Liver Disease: An Update. J Clin Transl Hepatol 2022; 10:134-139. [PMID: 35233382 PMCID: PMC8845164 DOI: 10.14218/jcth.2021.00248] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/26/2021] [Accepted: 09/09/2021] [Indexed: 12/04/2022] Open
Abstract
The prevalence of metabolic (dysfunction)-associated fatty liver disease (MAFLD) is rapidly increasing and affects up to two billion individuals globally, and this has also resulted in increased risks for cirrhosis, hepatocellular carcinoma, and liver transplants. In addition, it has also been linked to extrahepatic consequences, such as cardiovascular disease, diabetes, and various types of cancers. However, only a small proportion of patients with MAFLD develop these complications. Therefore, the identification of high-risk patients is paramount. Liver fibrosis is the major determinant in developing these complications. Although, liver biopsy is still considered the gold standard for the assessment of patients with MAFLD. Because of its invasive nature, among many other limitations, the search for noninvasive biomarkers for MAFLD remains an area of intensive research. In this review, we provide an update on the current and future biomarkers of MAFLD, including a discussion of the associated genetics, epigenetics, microbiota, and metabolomics. We also touch on the next wave of multiomic-based biomarkers.
Collapse
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
- Department of Biotechnology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Pan Z, Chan WK, Eslam M. The role of B cells in metabolic (dysfunction)-associated fatty liver disease. Hepatobiliary Surg Nutr 2021; 10:875-877. [PMID: 35004959 PMCID: PMC8683912 DOI: 10.21037/hbsn-21-404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/18/2021] [Indexed: 08/29/2023]
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Wah-Kheong Chan
- Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| |
Collapse
|
31
|
Pal P, Palui R, Ray S. Heterogeneity of non-alcoholic fatty liver disease: Implications for clinical practice and research activity. World J Hepatol 2021; 13:1584-1610. [PMID: 34904031 PMCID: PMC8637673 DOI: 10.4254/wjh.v13.i11.1584] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/29/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition with a wide spectrum of clinical presentations and natural history and disease severity. There is also substantial inter-individual variation and variable response to a different therapy. This heterogeneity of NAFLD is in turn influenced by various factors primarily demographic/dietary factors, metabolic status, gut microbiome, genetic predisposition together with epigenetic factors. The differential impact of these factors over a variable period of time influences the clinical phenotype and natural history. Failure to address heterogeneity partly explains the sub-optimal response to current and emerging therapies for fatty liver disease. Consequently, leading experts across the globe have recently suggested a change in nomenclature of NAFLD to metabolic-associated fatty liver disease (MAFLD) which can better reflect current knowledge of heterogeneity and does not exclude concomitant factors for fatty liver disease (e.g. alcohol, viral hepatitis, etc.). Precise identification of disease phenotypes is likely to facilitate clinical trial recruitment and expedite translational research for the development of novel and effective therapies for NAFLD/MAFLD.
Collapse
Affiliation(s)
- Partha Pal
- Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad 500082, India
| | - Rajan Palui
- Department of Endocrinology, The Mission Hospital, Durgapur 713212, West Bengal, India
| | - Sayantan Ray
- Department of Endocrinology, Jagannath Gupta Institute of Medical Sciences and Hospital, Kolkata 700137, West Bengal, India
- Diabetes and Endocrinology, Apollo Clinic, Ballygunge, Kolkata 700019, West Bengal, India.
| |
Collapse
|
32
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
33
|
Alharthi J, Eslam M. Metabolic associated fatty liver disease (MAFLD): a milestone in the history of fatty liver disease. Hepatobiliary Surg Nutr 2021; 10:696-698. [PMID: 34760977 PMCID: PMC8527417 DOI: 10.21037/hbsn-21-269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/20/2021] [Indexed: 01/13/2023]
Affiliation(s)
- Jawaher Alharthi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
Pan Z, Fan JG, Eslam M. An update on drug development for the treatment of metabolic (dysfunction) associated fatty liver disease: Progress and opportunities. Curr Opin Pharmacol 2021; 60:170-176. [PMID: 34455284 DOI: 10.1016/j.coph.2021.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/25/2021] [Accepted: 07/07/2021] [Indexed: 12/23/2022]
Abstract
Despite the rising health burden of metabolic (dysfunction) associated fatty liver disease (MAFLD), there are no approved pharmacotherapies for MAFLD currently. This situation led to a significant escalation in drug development and randomized controlled trials for MAFLD, particularly as novel information about its molecular pathogenesis unfolds. Currently, there are numerous investigational candidate drugs for MAFLD in various stages of clinical development that act on different pathophysiological processes, such as metabolism/steatosis, inflammation or fibrosis. Here, we provide an update on drug development for the treatment of MAFLD and discuss the prospects and challenges for improving and accelerating the nonalcoholic fatty liver disease drug discovery pipeline.
Collapse
Affiliation(s)
- Ziyan Pan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, 2145, NSW, Australia
| | - Jian-Gao Fan
- Center for Fatty Liver, Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, 2145, NSW, Australia.
| |
Collapse
|
35
|
Meroni M, Longo M, Tria G, Dongiovanni P. Genetics Is of the Essence to Face NAFLD. Biomedicines 2021; 9:1359. [PMID: 34680476 PMCID: PMC8533437 DOI: 10.3390/biomedicines9101359] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the commonest cause of chronic liver disease worldwide. It is closely related to obesity, insulin resistance (IR) and dyslipidemia so much so it is considered the hepatic manifestation of the Metabolic Syndrome. The NAFLD spectrum extends from simple steatosis to nonalcoholic steatohepatitis (NASH), a clinical condition which may progress up to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). NAFLD is a complex disease whose pathogenesis is shaped by both environmental and genetic factors. In the last two decades, several heritable modifications in genes influencing hepatic lipid remodeling, and mitochondrial oxidative status have been emerged as predictors of progressive hepatic damage. Among them, the patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M, the Transmembrane 6 superfamily member 2 (TM6SF2) p.E167K and the rs641738 membrane bound-o-acyltransferase domain-containing 7 (MBOAT7) polymorphisms are considered the most robust modifiers of NAFLD. However, a forefront frontier in the study of NAFLD heritability is to postulate score-based strategy, building polygenic risk scores (PRS), which aggregate the most relevant genetic determinants of NAFLD and biochemical parameters, with the purpose to foresee patients with greater risk of severe NAFLD, guaranteeing the most highly predictive value, the best diagnostic accuracy and the more precise individualized therapy.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, 20122 Milano, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, Via F Sforza 35, 20122 Milan, Italy; (M.M.); (M.L.); (G.T.)
| |
Collapse
|
36
|
Eslam M, Ahmed A, Després JP, Jha V, Halford JCG, Wei Chieh JT, Harris DCH, Nangaku M, Colagiuri S, Targher G, Joshi S, Byrne CD, Khunti K, Nguyen MH, Gish RG, George J. Incorporating fatty liver disease in multidisciplinary care and novel clinical trial designs for patients with metabolic diseases. Lancet Gastroenterol Hepatol 2021; 6:743-753. [PMID: 34265276 DOI: 10.1016/s2468-1253(21)00132-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/26/2021] [Indexed: 02/08/2023]
Abstract
With the global epidemics of obesity and associated conditions, including type 2 diabetes, metabolic dysfunction-associated fatty liver disease, chronic kidney disease, hypertension, stroke, cardiovascular disease, osteoporosis, cancer, and cognitive changes, the prevalence of multimorbidity is rapidly increasing worldwide. In this Review, a panel of international experts from across the spectrum of metabolic diseases come together to identify the challenges and provide perspectives on building a framework for a virtual primary care-driven, patient-centred, multidisciplinary model to deliver holistic care for patients with metabolic dysfunction-associated fatty liver disease and associated metabolic diseases. We focus on clinical care and innovative trial design for metabolic dysfunction-associated fatty liver disease and associated metabolic diseases. This work represents a call to action to promote collaboration and partnerships between stakeholders for improving the lives of people with, or at risk of, metabolic dysfunction-associated fatty liver disease and associated metabolic diseases.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia.
| | - Aijaz Ahmed
- Division of Gastroenterology and Hepatology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Jean-Pierre Després
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec, QC, Canada; Department of Kinesiology, Faculty of Medicine, Université Laval, Québec, QC, Canada; Université Laval, Québec, QC, Canada
| | - Vivekanand Jha
- George Institute for Global Health, UNSW, New Delhi, India; School of Public Health, Imperial College London, London, UK; Manipal Academy of Higher Education, Manipal, India
| | | | - Jack Tan Wei Chieh
- Department of Cardiovascular Medicine, National Heart Centre Singapore, Singapore
| | - David C H Harris
- Centre for Transplantation and Renal Research, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| | - Masaomi Nangaku
- The University of Tokyo Graduate School of Medicine, Tokyo, Japan
| | - Stephen Colagiuri
- Boden Collaboration for Obesity, Nutrition, Exercise and Eating Disorders, Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | | | - Christopher D Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK; Nutrition and Metabolism, Faculty of Medicine, University of Southampton, UK
| | - Kamlesh Khunti
- Diabetes Research Centre, University of Leicester, Leicester, UK; Leicester General Hospital, Leicester, UK
| | - Mindie H Nguyen
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA; Division of Gastroenterology and Hepatology, Stanford University Medical Center, Palo Alto, CA, USA
| | - Robert G Gish
- Division of Gastroenterology and Hepatology, Loma Linda University, Loma Linda, CA, USA
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
37
|
Nan Y, An J, Bao J, Chen H, Chen Y, Ding H, Dou X, Duan Z, Fan J, Gao Y, Han T, Han Y, Hu P, Huang Y, Huang Y, Jia J, Jiang J, Jiang Y, Li J, Li J, Li R, Li S, Li W, Li Y, Lin S, Liu J, Liu S, Lu L, Lu Q, Luo X, Ma X, Rao H, Ren H, Ren W, Shang J, Shi L, Su M, Wang B, Wang R, Wei L, Wen Z, Wu B, Wu J, Xin S, Xing H, Xu J, Yan M, Yang J, Yang J, Yang L, Yang Y, Yu Y, Zhang L, Zhang L, Zhang X, Zhang Y, Zhang Y, Zhao J, Zhao S, Zheng H, Zhou Y, Zhou Y, Zhuang H, Zuo W, Xu X, Qiao L. The Chinese Society of Hepatology position statement on the redefinition of fatty liver disease. J Hepatol 2021; 75:454-461. [PMID: 34019941 DOI: 10.1016/j.jhep.2021.05.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023]
Abstract
Fatty liver disease associated with metabolic dysfunction is of increasing concern in mainland China, the world's most populous country. The incidence of fatty liver disease is highest in China, surpassing the incidence in European countries and the USA. An international consensus panel recently published an influential report recommending a novel definition of fatty liver disease associated with metabolic dysfunction. This recommendation includes a switch in name from non-alcoholic fatty liver disease (NAFLD) to metabolic (dysfunction)-associated fatty liver disease (MAFLD) and adoption of a set of positive criteria for disease diagnosis that are independent of alcohol intake or other liver diseases. Given the unique importance of this proposal, the Chinese Society of Hepatology (CSH) invited leading hepatologists and gastroenterologists representing their respective provinces and cities to reach consensus on alternative definitions for fatty liver disease from a national perspective. The CSH endorses the proposed change from NAFLD to MAFLD (supported by 95.45% of participants). We expect that the new definition will result in substantial improvements in health care for patients and advance disease awareness, public health policy, and political, scientific and funding outcomes for MAFLD in China.
Collapse
Affiliation(s)
- Yuemin Nan
- Department of Traditional and Western Medical Hepatology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, China.
| | - Jihong An
- Department of Infectious Diseases, Inner Mongolia Autonomous Region People's Hospital, Hohhot, Inner Mongolia 010017, China
| | - Jianfeng Bao
- Department of Hepatology, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Hongsong Chen
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Yu Chen
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Huiguo Ding
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoguang Dou
- Department of Infectious Diseases, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Zhongping Duan
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jiangao Fan
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yanhang Gao
- Department of Hepatology, The First Hospital of Jilin University, Changchun 130021, China
| | - Tao Han
- Department of Hepatology and Gastroenterology, Tianjin Third Central Hospital, Tianjin 300170, China
| | - Ying Han
- Department of Gastroenterology, The First Affiliated Hospital of Air Force Medical University, Xi'an 710032, China
| | - Peng Hu
- Department of Infectious Diseases, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yan Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuan Huang
- Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Jidong Jia
- Liver Research Centre, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Jiaji Jiang
- Liver Diseases Research Centre, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, China
| | - Ying'an Jiang
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jie Li
- Department of Microbiology, Peking University Health Science Centre, Beijing 100191, China
| | - Jun Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Rongkuan Li
- Department of Infectious Diseases, The Second Hospital of Dalian Medical University, Dalian 116027, China
| | - Shuchen Li
- Department of Infectious Diseases, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wengang Li
- Radiation Oncology Centre, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Yufang Li
- Department of Infectious Diseases, The General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Shumei Lin
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jingfeng Liu
- Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, China
| | - Shourong Liu
- Department of Infectious Diseases, Hangzhou Xixi Hospital, Hangzhou 310023, China
| | - Lungen Lu
- Department of Gastroenterology Shanghai General Hospital Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Qinghua Lu
- Department of Liver Diseases, The Fourth People's Hospital of Qinghai Province, Xining 810001, China
| | - Xinhua Luo
- Department of Infectious Diseases, Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Xiong Ma
- Department of Gastroenterology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Institute of Digestive Diseases, Shanghai 200001, China
| | - Huiying Rao
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Peking University Hepatology Institute, Peking University People's Hospital, Beijing 100044, China
| | - Hong Ren
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wanhua Ren
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, China
| | - Jia Shang
- Department of Infectious Diseases, Henan Province People's Hospital, Zhengzhou University People's Hospital and Henan University People's Hospital, Zhengzhou 450003, China
| | - Li Shi
- Department of Infectious Diseases, People's Hospital of Tibet Autonomous Region, Lhasa 850000, China
| | - Minghua Su
- Department of Infectious Diseases, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Bingyuan Wang
- Department of Gastroenterology, First Affiliated Hospital, China Medical University, Shenyang 110001, China
| | - Rongqi Wang
- Department of Traditional and Western Medical Hepatology, Third Hospital of Hebei Medical University, Shijiazhuang 050051, China
| | - Lai Wei
- Tsinghua University Affiliated Beijing Tsinghua Changgung Hospital, Beijing 102218, China
| | - Zhili Wen
- Department of Gastroenterology, The Second Affiliated Hospital of Nanchang University, Nanchang 330008, China
| | - Biao Wu
- Department of Infectious Diseases, Hainan General Hospital, Haikou 570311, China
| | - Jing Wu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Shaojie Xin
- Liver Failure Treatment and Research Centre, The Fifth Medical Centre of Chinese PLA General Hospital, Beijing 100039, China
| | - Huichun Xing
- Centre for Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jinghang Xu
- Department of Infectious Diseases, Peking University First Hospital, Beijing 100034, China
| | - Ming Yan
- Department of Hepatology and Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, China
| | - Jiming Yang
- Tianjin Second People's Hospital, Tianjin 300192, China
| | - Jinhui Yang
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Li Yang
- West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yongfeng Yang
- The Second Hospital of Nanjing, Affiliated to Nanjing University of Chinese Medicine, Nanjing 210003, China
| | - Yanyan Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China
| | - Liaoyun Zhang
- Department of Infectious Diseases, The First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Lingyi Zhang
- Department of Hepatology, Lanzhou University Second Hospital, Lanzhou 730030, China
| | - Xinxin Zhang
- Department of Infectious Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuguo Zhang
- Department of Infectious Diseases, Hainan General Hospital, Haikou 570311, China
| | - Yuexin Zhang
- Centre for Infectious Diseases, The First Affiliated Hospital of Xinjiang Medical University, Wulumuqi 830000, China
| | - Jingmin Zhao
- Centre for Pathological Diagnosis and Research, The Fifth Medical Centre of PLA General Hospital (Beijing 302 Hospital), Beijing 100039, China
| | - Shousong Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - Huanwei Zheng
- Liver Research Centre, The Fifth Hospital of Shijiazhuang, Shijiazhuang 050021, China
| | - Yongjian Zhou
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou 510181, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Hui Zhuang
- Department of Microbiology and Centre for Infectious Diseases, Peking University Health Science Centre, Beijing 100191, China
| | - Weize Zuo
- Department of Infectious Diseases, The First Affiliated Hospital of Shihezi University School of Medicine, Xinjiang Uygur Autonomous Region 832000, China
| | - Xiaoyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, China.
| | - Liang Qiao
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney at Westmead Hospital, Westmead NSW 2145, Australia.
| |
Collapse
|
38
|
Metwally M, Bayoumi A, Khan A, Adams LA, Aller R, García-Monzón C, Arias-Loste MT, Bugianesi E, Miele L, Anna A, Latchoumanin O, Han S, Alenizi S, Sharkawy RE, Elattar A, Gallego-Durán R, Fischer J, Berg T, Liddle C, Romero-Gomez M, George J, Eslam M. Copy number variation and expression of exportin-4 associates with severity of fibrosis in metabolic associated fatty liver disease. EBioMedicine 2021; 70:103521. [PMID: 34388518 PMCID: PMC8365315 DOI: 10.1016/j.ebiom.2021.103521] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Liver fibrosis risk is a heritable trait, the outcome of which is the net deposition of extracellular matrix by hepatic stellate cell-derived myofibroblasts. Whereas nucleotide sequence variations have been extensively studied in liver fibrosis, the role of copy number variations (CNV) in which genes exist in abnormal numbers of copies (mostly due to duplication or deletion) has had limited exploration. METHODS The impact of the XPO4 CNV on histological liver damage was examined in a cohort comprised 646 Caucasian patients with biopsy-proven MAFLD and 170 healthy controls. XPO4 expression was modulated and function was examined in human and animal models. FINDINGS Here we demonstrate in a cohort of 816 subjects, 646 with biopsy-proven metabolic associated liver disease (MAFLD) and 170 controls, that duplication in the exportin 4 (XPO4) CNV is associated with the severity of liver fibrosis. Functionally, this occurs via reduced expression of hepatic XPO4 that maintains sustained activation of SMAD3/SMAD4 and promotes TGF-β1-mediated HSC activation and fibrosis. This effect was mediated through termination of nuclear SMAD3 signalling. XPO4 demonstrated preferential binding to SMAD3 compared to other SMADs and led to reduced SMAD3-mediated responses as shown by attenuation of TGFβ1 induced SMAD transcriptional activity, reductions in the recruitment of SMAD3 to target gene promoters following TGF-β1, as well as attenuation of SMAD3 phosphorylation and disturbed SMAD3/SMAD4 complex formation. INTERPRETATION We conclude that a CNV in XPO4 is a critical mediator of fibrosis severity and can be exploited as a therapeutic target for liver fibrosis. FUNDING ME and JG are supported by the Robert W. Storr Bequest to the Sydney Medical Foundation, University of Sydney; a National Health and Medical Research Council of Australia (NHMRC) Program Grant (APP1053206) and Project and ideas grants (APP2001692, APP1107178 and APP1108422). AB is supported by an Australian Government Research Training Program (RTP) scholarship. EB is supported by Horizon 2020 under grant 634413 for the project EPoS.
Collapse
Affiliation(s)
- Mayada Metwally
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Ali Bayoumi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Anis Khan
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Leon A Adams
- Medical School, Sir Charles Gairdner Hospital Unit, University of Western Australia, Nedlands, WA, Australia
| | - Rocio Aller
- Center of Investigation of Endocrinology and Nutrition, School of Medicine, and Unit of Investigation, Hospital Clinico Universitario de Valladolid, Valladolid, Spain
| | - Carmelo García-Monzón
- Liver Research Unit, Instituto de Investigacion Sanitaria Princesa, University Hospital Santa Cristina, CIBERehd, Madrid, Spain
| | - María Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Marqués de Valdecilla University Hospital, 39008 Santander, Spain
| | - Elisabetta Bugianesi
- Division of Gastroenterology, Department of Medical Science, University of Turin, Turin, Italy
| | - Luca Miele
- Department of Internal Medicine, Catholic University of the Sacred Heart, Rome, Italy
| | - Alisi Anna
- Research Unit of Molecular Genetics of Complex Phenotypes, IRCCS "Bambino Gesù" Children's Hospital, Rome, Italy
| | - Olivier Latchoumanin
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shuanglin Han
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Shafi Alenizi
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rasha El Sharkawy
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Afaf Elattar
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Rocio Gallego-Durán
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Janett Fischer
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Thomas Berg
- Section of Hepatology, Clinic for Gastroenterology and Rheumatology, University Clinic Leipzig, Leipzig, Germany
| | - Christopher Liddle
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Manuel Romero-Gomez
- Virgen del Rocío University Hospital, Institute of Biomedicine of Seville, Sevilla, Spain
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
39
|
Loomba R, Friedman SL, Shulman GI. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell 2021; 184:2537-2564. [PMID: 33989548 DOI: 10.1016/j.cell.2021.04.015] [Citation(s) in RCA: 1103] [Impact Index Per Article: 275.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/21/2021] [Accepted: 04/09/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the leading chronic liver disease worldwide. Its more advanced subtype, nonalcoholic steatohepatitis (NASH), connotes progressive liver injury that can lead to cirrhosis and hepatocellular carcinoma. Here we provide an in-depth discussion of the underlying pathogenetic mechanisms that lead to progressive liver injury, including the metabolic origins of NAFLD, the effect of NAFLD on hepatic glucose and lipid metabolism, bile acid toxicity, macrophage dysfunction, and hepatic stellate cell activation, and consider the role of genetic, epigenetic, and environmental factors that promote fibrosis progression and risk of hepatocellular carcinoma in NASH.
Collapse
Affiliation(s)
- Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology, Department of Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Scott L Friedman
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Gerald I Shulman
- Departments of Internal Medicine and Cellular & Molecular Physiology, Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
40
|
Liu WY, Eslam M, Zheng KI, Ma HL, Rios RS, Lv MZ, Li G, Tang LJ, Zhu PW, Wang XD, Byrne CD, Targher G, George J, Zheng MH. Associations of Hydroxysteroid 17-beta Dehydrogenase 13 Variants with Liver Histology in Chinese Patients with Metabolic-associated Fatty Liver Disease. J Clin Transl Hepatol 2021; 9:194-202. [PMID: 34007801 PMCID: PMC8111109 DOI: 10.14218/jcth.2020.00151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/24/2021] [Accepted: 02/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS In Europeans, variants in the hydroxysteroid 17-beta dehydrogenase 13 (HSD17B13) gene impact liver histology in metabolic-associated fatty liver disease (MAFLD). The impact of these variants in ethnic Chinese is unknown. The aim of this study was to investigate the potential associations in Chinese patients. METHODS In total, 427 Han Chinese with biopsy-confirmed MAFLD were enrolled. Two single nucleotide polymorphisms in HSD17B13 were genotyped: rs72613567 and rs6531975. Logistic regression was used to test the association between the single nucleotide polymorphisms and liver histology. RESULTS In our cohort, the minor allele TA of the rs72613567 variant was related to an increased risk of fibrosis [odds ratio (OR): 2.93 (1.20-7.17), p=0.019 for the additive model; OR: 3.32 (1.39-7.91), p=0.007 for the recessive model], representing an inverse association as compared to the results from European cohorts. In contrast, we observed a protective effect on fibrosis for the minor A allele carriers of the HSD17B13 rs6531975 variant [OR: 0.48 (0.24-0.98), p=0.043 for the additive model; OR: 0.62 (0.40-0.94), p=0.025 for the dominant model]. HSD17B13 variants were only associated with fibrosis but no other histological features. Furthermore, HSD17B13 rs6531975 modulated the effect of PNPLA3 rs738409 on hepatic steatosis. CONCLUSIONS HSD17B13 rs72613567 is a risk variant for fibrosis in a Han Chinese MAFLD population but with a different direction for allelic association to that seen in Europeans. These data exemplify the need for studying diverse populations in genetic studies in order to fine map genome-wide association studies signals.
Collapse
Affiliation(s)
- Wen-Yue Liu
- Department of Endocrinology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, Australia
| | - Kenneth I. Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Hong-Lei Ma
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Rafael S. Rios
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min-Zhi Lv
- Department of Biostatistics, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gang Li
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Liang-Jie Tang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Pei-Wu Zhu
- Department of Laboratory Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiao-Dong Wang
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Christopher D. Byrne
- Southampton National Institute for Health Research Biomedical Research Centre, University Hospital Southampton, Southampton General Hospital, Southampton, UK
| | - Giovanni Targher
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, Westmead, Sydney, Australia
| | - Ming-Hua Zheng
- NAFLD Research Center, Department of Hepatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Institute of Hepatology, Wenzhou Medical University, Wenzhou, Zhejiang, China
- Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease in Zhejiang Province, Wenzhou, Zhejiang, China
| |
Collapse
|
41
|
Koh YC, Lin YC, Lee PS, Lu TJ, Lin KY, Pan MH. A multi-targeting strategy to ameliorate high-fat-diet- and fructose-induced (western diet-induced) non-alcoholic fatty liver disease (NAFLD) with supplementation of a mixture of legume ethanol extracts. Food Funct 2021; 11:7545-7560. [PMID: 32815965 DOI: 10.1039/d0fo01405b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
NAFLD (non-alcoholic fatty liver disease) is a multifactorial liver disease related to multiple causes or unhealthy conditions, including obesity and chronic inflammation. The accumulation of excess triglycerides, called steatosis, is known as a hallmark of an imbalance between the rates of hepatic fatty acid uptake/synthesis and oxidation/export. Furthermore, occurrence of NAFLD may lead to a cocktail of disease consequences caused by the altered metabolism of glucose, lipids, and lipoproteins, for instance, insulin resistance, type II diabetes, nonalcoholic steatohepatitis (NASH), liver fibrosis, and even hepatocarcinogenesis. Due to the complexity of the occurrence of NAFLD, a multi-targeting strategy is highly recommended to effectively address the issue and combat the causal loop. Ethanol extracts of legumes are popular supplements due to their richness and diversity in phytochemicals, especially isoflavones and anthocyanins. Although many of them have been reported to have efficacy in the treatment of different metabolic syndromes and obesity, there have not been many studies on them as a supplemental mixture. In this study, the alleviative effects of selected legume ethanol extracts (CrE) on high-fat-diet- and fructose-induced obesity, liver steatosis, and hyperglycemia are discussed. As revealed by the findings, CrE not only ameliorated obesity in terms of weight gained and enlargement of adipose tissue, but also significantly reduced the incidence of steatosis via phosphorylation of AMPK, resulting in inhibition of the downstream SREBP-1c/FAS pathway and an increase in an indicator of β-oxidation (carnitine palmitoyl transferase 1a, CPT1A). Furthermore, CrE dramatically alleviated inflammatory responses, including both plasma and hepatic TNF-α, IL-6, and MCP-1 levels. CrE also had attenuating effects on hyperglycemia and insulin resistance and significantly reduced the fasting glucose level, fasting insulin level, and plasma leptin, and it exhibited positive effects in the Oral glucose tolerance test (OGTT) and Homeostatic Model Assessment for Insulin Resistance (HOMA-IR). At the molecular level, CrE could activate the PI3K/Akt/Glut2 pathway, which indicated an increase in insulin sensitivity and glucose uptake. Taken together, these results suggest that ethanol extracts of legumes could be potential supplements for metabolic syndromes, and their efficacy and effectiveness might facilitate the multi-targeting strategy required to mitigate NAFLD.
Collapse
Affiliation(s)
- Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Yen-Cheng Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Pei-Sheng Lee
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Ting-Jang Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai-Yi Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan.
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 10617, Taiwan. and Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan and Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
42
|
Eslam M, Ratziu V, George J. Yet more evidence that MAFLD is more than a name change. J Hepatol 2021; 74:977-979. [PMID: 33453331 DOI: 10.1016/j.jhep.2020.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| | - Vlad Ratziu
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié Salpêtrière, Institute of Cardiometabolism and Nutrition (ICAN), Paris, France
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia.
| |
Collapse
|
43
|
Rauff B, Amar A, Chudhary SA, Mahmood S, Tayyab GUN, Hanif R. Interferon-λ rs12979860 genotype association with liver fibrosis in chronic hepatitis C (CHC) patients in the Pakistani population. Arch Virol 2021; 166:1047-1056. [PMID: 33528661 DOI: 10.1007/s00705-020-04901-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Risk and progression of liver fibrosis and cirrhosis in chronic hepatitis C (CHC) patients is significantly influenced by host genetic factors in a polygenic manner. The rs12979860 genetic polymorphism in the interferon-λ3-interferon-λ4 (IFNL3-IFNL4) region has been found to be a major determinant of hepatic inflammatory and fibrotic progression in CHC patients of mainly Caucasian origin; however, it is not known if this association applies to other ethnicities, including Pakistani CHC patients. Here, we genotyped IFNL3-IFNL4 rs12979860 genetic variants in a sample set of 502 Pakistani patients with CHC and used logistic regression analysis to determine its association with the risk and progression of HCV-related fibrosis and cirrhosis. We demonstrate that the rs12979860 major (CC) genotype, despite not determining the risk of stage-specific hepatic fibrosis independently, is associated with a marginally significant risk of liver cirrhosis (OR: 1.64, p = 0.049) after an adjustment for age, gender, body mass index, HCV viral load, and liver enzymes. In a subgroup of CHC patients with sustained ALT levels of <60 IU/L, a more pronounced impact of the IFNL3-IFNL4 rs12979860 major (CC) genotype on advanced liver fibrosis (OR: 4.99, p = 0.017) and cirrhosis (OR: 3.34, p = 0.005) was seen. The present study suggests that IFNL3-IFNL4 rs12979860 polymorphism may also be a significant predictor of hepatic fibrosis and cirrhosis in Pakistani CHC patients, especially in those with normal or near-normal liver enzyme levels.
Collapse
Affiliation(s)
- Bisma Rauff
- Storr Liver Centre, The Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Sydney, Australia
- Institute of Biomedical and Allied Health Sciences (IBAHS), University of Health Sciences (UHS), Lahore, Pakistan
| | - Ali Amar
- Department of Human Genetics and Molecular Biology, University of Health Sciences (UHS), Lahore, Pakistan
| | - Shafiq Ahmad Chudhary
- Institute of Biomedical and Allied Health Sciences (IBAHS), University of Health Sciences (UHS), Lahore, Pakistan
| | - Saqib Mahmood
- Institute of Biomedical and Allied Health Sciences (IBAHS), University of Health Sciences (UHS), Lahore, Pakistan
| | | | - Rumeza Hanif
- Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
44
|
Rinaldi L, Pafundi PC, Galiero R, Caturano A, Morone MV, Silvestri C, Giordano M, Salvatore T, Sasso FC. Mechanisms of Non-Alcoholic Fatty Liver Disease in the Metabolic Syndrome. A Narrative Review. Antioxidants (Basel) 2021; 10:270. [PMID: 33578702 PMCID: PMC7916383 DOI: 10.3390/antiox10020270] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and metabolic syndrome (MS) are two different entities sharing common clinical and physio-pathological features, with insulin resistance (IR) as the most relevant. Large evidence leads to consider it as a risk factor for cardiovascular disease, regardless of age, sex, smoking habit, cholesterolemia, and other elements of MS. Therapeutic strategies remain still unclear, but lifestyle modifications (diet, physical exercise, and weight loss) determine an improvement in IR, MS, and both clinical and histologic liver picture. NAFLD and IR are bidirectionally correlated and, consequently, the development of pre-diabetes and diabetes is the most direct consequence at the extrahepatic level. In turn, type 2 diabetes is a well-known risk factor for multiorgan damage, including an involvement of cardiovascular system, kidney and peripheral nervous system. The increased MS incidence worldwide, above all due to changes in diet and lifestyle, is associated with an equally significant increase in NAFLD, with a subsequent rise in both morbidity and mortality due to both metabolic, hepatic and cardiovascular diseases. Therefore, the slowdown in the increase of the "bad company" constituted by MS and NAFLD, with all the consequent direct and indirect costs, represents one of the main challenges for the National Health Systems.
Collapse
Affiliation(s)
- Luca Rinaldi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Pia Clara Pafundi
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Raffaele Galiero
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Alfredo Caturano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Maria Vittoria Morone
- Department of Experimental Medicine, Section of Microbiology, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy;
| | - Chiara Silvestri
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Mauro Giordano
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| | - Teresa Salvatore
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Via De Crecchio 7, 80138 Naples, Italy;
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli, Piazza Luigi Miraglia 2, 80138 Naples, Italy; (L.R.); (P.C.P.); (R.G.); (A.C.); (C.S.); (M.G.)
| |
Collapse
|
45
|
Ismaiel A, Dumitrascu DL. Genetic predisposition in metabolic-dysfunction-associated fatty liver disease and cardiovascular outcomes-Systematic review. Eur J Clin Invest 2020; 50:e13331. [PMID: 32589269 DOI: 10.1111/eci.13331] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/02/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Despite the demonstrated increased cardiovascular (CV) risk associated with metabolic-dysfunction-associated fatty liver disease (MAFLD), genetic variants predisposing to MAFLD were not constantly associated with CV events. Recently, rs641738C > T near membrane-bound O-acyltransferase domain-containing 7 (MBOAT7) has been studied in MAFLD and CV outcomes. Therefore, we aimed to evaluate the association between rs641738C > T in the presence and severity of hepatic steatosis, fibrosis, biochemical markers and progression to hepatocellular carcinoma (HCC), in addition to CV outcomes in MAFLD. MATERIALS AND METHODS An electronic search on PubMed, Embase and Cochrane Library for articles published till 23 March 2020 was systematically performed. Articles were screened, and data extracted from eligible studies by two reviewers independently. RESULTS Studies conducted on adults with MAFLD involving European, Hispanic and African American populations evaluating rs641738 reported reduced hepatic expression of MBOAT7, increased hepatic fat content, severity of MAFLD, susceptibility to develop NASH, advanced fibrosis and HCC in adults. However, most articles involving Asian individuals contradicted these findings. Studies involving obese children associated rs641738 with increased plasma alanine aminotransferase (ALT) levels, while its association with MAFLD remains inconsistent. The rs641738 variant was assessed as a MAFLD susceptibility gene in coronary artery disease (CAD) reporting neutral effects. CONCLUSIONS Despite inconclusive results in Asian populations, rs641738C > T near MBOAT7 is associated with increased hepatic fat, MAFLD severity, susceptibility to develop NASH, advanced fibrosis and HCC in adults from Caucasian, Hispanic and African American ethnicities with MAFLD, as well as elevated ALT levels in children, while exerting neutral effects in CAD.
Collapse
Affiliation(s)
- Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2nd Department of Internal Medicine, Cluj-Napoca, Romania
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- 2nd Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
46
|
Lonardo A, Leoni S, Alswat KA, Fouad Y. History of Nonalcoholic Fatty Liver Disease. Int J Mol Sci 2020; 21:5888. [PMID: 32824337 PMCID: PMC7460697 DOI: 10.3390/ijms21165888] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/10/2020] [Accepted: 08/12/2020] [Indexed: 12/15/2022] Open
Abstract
Based on the assumption that characterizing the history of a disease will help in improving practice while offering a clue to research, this article aims at reviewing the history of nonalcoholic fatty liver disease (NAFLD) in adults and children. To this end, we address the history of NAFLD histopathology, which begins in 1980 with Ludwig's seminal studies, although previous studies date back to the 19th century. Moreover, the principal milestones in the definition of genetic NAFLD are summarized. Next, a specific account is given of the evolution, over time, of our understanding of the association of NAFLD with metabolic syndrome, spanning from the outdated concept of "NAFLD as a manifestation of the Metabolic Syndrome", to the more appropriate consideration that NAFLD has, with metabolic syndrome, a mutual and bi-directional relationship. In addition, we also report on the evolution from first intuitions to more recent studies, supporting NAFLD as an independent risk factor for cardiovascular disease. This association probably has deep roots, going back to ancient Middle Eastern cultures, wherein the liver had a significance similar to that which the heart holds in contemporary society. Conversely, the notions that NAFLD is a forerunner of hepatocellular carcinoma and extra-hepatic cancers is definitely more modern. Interestingly, guidelines issued by hepatological societies have lagged behind the identification of NAFLD by decades. A comparative analysis of these documents defines both shared attitudes (e.g., ultrasonography and lifestyle changes as the first approaches) and diverging key points (e.g., the threshold of alcohol consumption, screening methods, optimal non-invasive assessment of liver fibrosis and drug treatment options). Finally, the principal historical steps in the general, cellular and molecular pathogenesis of NAFLD are reviewed. We conclude that an in-depth understanding of the history of the disease permits us to better comprehend the disease itself, as well as to anticipate the lines of development of future NAFLD research.
Collapse
Affiliation(s)
- Amedeo Lonardo
- Ospedale Civile di Baggiovara, UOC Medicina Metabolica, Dipartimento di Medicina Interna Generale, d’Urgenza e post Acuzie, Azienda Ospedaliero-Universitaria di Modena, Via Giardini 1135, 41125 Modena, Italy
| | - Simona Leoni
- Internal Medicine Unit, Department of Digestive Diseases, S.Orsola-Malpighi Hospital, Via Massarenti 9, 40136 Bologna, Italy;
| | - Khalid A. Alswat
- Liver Research Center, Department of Medicine, College of Medicine, King Saud University, Riyadh 11322, Saudi Arabia;
| | - Yasser Fouad
- Department of Gastroenterology, Hepatology and Endemic Medicine, Faculty of Medicine, Minia University, Minya 19111, Egypt;
| |
Collapse
|
47
|
Meroni M, Longo M, Dongiovanni P. Genetic and metabolic factors: the perfect combination to treat metabolic associated fatty liver disease. EXPLORATION OF MEDICINE 2020; 1:218-243. [DOI: 10.37349/emed.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 06/20/2020] [Indexed: 01/04/2025] Open
Abstract
The prevalence of nonalcoholic or more recently re-defined metabolic associated fatty liver disease (MAFLD) is rapidly growing worldwide. It is characterized by hepatic fat accumulation exceeding 5% of liver weight not attributable to alcohol consumption. MAFLD refers to an umbrella of conditions ranging from simple steatosis to nonalcoholic steatohepatitis which may finally progress to cirrhosis and hepatocellular carcinoma. MAFLD is closely related to components of the metabolic syndrome and to environmental factors. In addition to the latter, genetic predisposition plays a key role in MAFLD pathogenesis and strictly contributes to its progressive forms. The candidate genes which have been related to MAFLD hereditability are mainly involved in lipids remodeling, lipid droplets assembly, lipoprotein packaging and secretion, de novo lipogenesis, and mitochondrial redox status. In the recent years, it has emerged the opportunity to translate the genetics into clinics by aggregating the genetic variants mostly associated with MAFLD in polygenic risk scores. These scores might be used in combination with metabolic factors to identify those patients at higher risk to develop more severe liver disease and to schedule an individual therapeutic approach.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milano, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milano, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milano, Italy
| |
Collapse
|
48
|
Gao Y, Zhang S, Li J, Zhao J, Xiao Q, Zhu Y, Zhang J, Huang W. Effect and mechanism of ginsenoside Rg1-regulating hepatic steatosis in HepG2 cells induced by free fatty acid. Biosci Biotechnol Biochem 2020; 84:2228-2240. [PMID: 32654591 DOI: 10.1080/09168451.2020.1793293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Ginsenoside Rg1 (G-Rg1) is a bioactive phytochemical that has been found to be beneficial for the treatment of several diseases including nonalcoholic fatty liver disease (NAFLD). But there is a lack of literature reporting the effect of G-Rg1 on lipid metabolism balance in NAFLD. We investigated the effect and mechanism of G-Rg1 on lipid metabolism in vitro. We found that G-Rg1 decreased the levels of TG, TC, and MDA, and increased activity of SOD. Results of RT-PCR and western blotting showed that supplementation with G-Rg1 downregulated the expression of PPAR γ, FABP1, FATP2/5, CD36, SREBP1 c, and FASN, while the expression of PPAR ɑ, CPT1, ACOX1, MTTP, and ApoB100 was upregulated, after induction by a free fatty acid. Taken together, we conclude that G-Rg1 inhibits lipid synthesis and lipid uptake, and enhances lipid oxidation and lipid export to reduce hepatic steatosis of HepG2 cells by regulating PPAR ɑ and PPAR γ expression.
Collapse
Affiliation(s)
- Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Yali Zhu
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Jia Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University , Chongqing, China
| |
Collapse
|
49
|
Meroni M, Longo M, Fracanzani AL, Dongiovanni P. MBOAT7 down-regulation by genetic and environmental factors predisposes to MAFLD. EBioMedicine 2020; 57:102866. [PMID: 32629394 PMCID: PMC7339032 DOI: 10.1016/j.ebiom.2020.102866] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/12/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) encompasses a broad spectrum of hepatic disorders, which include steatosis, nonalcoholic steatohepatitis (NASH), fibrosis and cirrhosis, that is a critical risk factor for hepatocellular carcinoma (HCC) development. Its pathogenesis is intertwined with obesity and type 2 diabetes (T2D). However, the predisposition to develop MAFLD is severely influenced by environmental and inherited cues. The rs641738 variant close to MBOAT7 gene has been identified by a genome-wide association screening in heavy drinkers. Although this variant has been associated with the entire spectrum of MAFLD, these results have not been completely replicated and the debate is still opened. Thus, functional studies that unravel the biological mechanisms underlying the genetic association with fatty liver are required. This review aims to summarize the clinical and experimental findings regarding the rs641738 variation and MBOAT7 function, with the purpose to shed light to its role as novel player in MAFLD pathophysiology.
Collapse
Affiliation(s)
- Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Anna L Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy; Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Via Francesco Sforza 35, 20122 Milano, Milan, Italy.
| |
Collapse
|
50
|
LncPRYP4-3 serves as a novel diagnostic biomarker for dissecting subtypes of metabolic associated fatty liver disease by targeting RPS4Y2. Clin Exp Med 2020; 20:587-600. [PMID: 32494880 DOI: 10.1007/s10238-020-00636-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 05/23/2020] [Indexed: 02/08/2023]
Abstract
Longitudinal studies have improved current diagnostics and management of metabolic associated fatty liver disease (MAFLD) patients by liver biopsy and therapeutic intervention, yet the deficiency of biomarker spectrum for dissecting subtypes largely hinders the symptomatic treatment. We originally enriched serum from peripheral blood of 618 healthy donors (HD) and 580 MAFLD (400 NAFL, 180 NASH) patients according to multiple clinicopathological indicators. Microarray profiling and qRT-PCR were conducted to identify lncRNAs as candidate biomarkers of MAFLD. Then, we analyzed the matching score of the indicated lncRNA with CAP or MAFLD-associated pathological parameters as well. Additionally, we took advantage of interaction network together with gene expression profiling analysis to further explore the underlying target genes of the identified lncRNA. Herein, we found CAP in nearly all of the NAFL (399/400) and NASH (179/180) patients was higher than that in the HDs (611/618). The differentially expressed lncRNAs were involved in multiple metabolic or immunologic processes by regulating MAFLD-associated pathways. Of them, serum lncPRYP4-3 was identified as a novel candidate biomarker of MAFLD, which was further confirmed by correlation analysis with clinical indicators. Thereafter, we deduced PRS4Y2 was a candidate target of lncPRYP4-3 and mediated the dysfunction in NAFL and NASH patients. Serum lncPRYP4-3 served as a novel biomarker of MAFLD and helped distinguish the subtypes and benefit precise intervention therapy. Our findings also provided overwhelming new evidence for the alteration in biological processes and gene ontology in MAFLD patients.
Collapse
|