1
|
Ndawula C, Petra NP, Wasswa FB, Bazira J. Prevalence and Clinical Implications of Pyrazinamide Resistance in Newly Diagnosed TB Patients in Uganda. Infect Drug Resist 2025; 18:1629-1635. [PMID: 40177169 PMCID: PMC11963810 DOI: 10.2147/idr.s491770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025] Open
Abstract
Background Globally, 10.8 million people were diagnosed with tuberculosis during 2023 causing approximately 1.3 million deaths. This study aimed to assess the prevalence and characterization of pyrazinamide resistance by detecting the pncA gene among newly diagnosed Mycobacterium tuberculosis patients attending Bombo General Military Hospital, Central Uganda. Methods Cross-sectional study looking at newly diagnosed TB patients in Bombo General Military Hospital. The sputum samples were confirmed TB positive using GeneXpert PCR technology, DNA extraction using the CTAB method, DNA amplification, and finally gel electrophoresis for pncA gene detection. Results A total of 166 sputum-positive tuberculosis samples were analyzed. Males were 91/166 (55%), while 115 (70%) of the positive sputum samples were positive HIV status. The majority (96%) of the newly diagnosed Mycobacterium tuberculosis patients showed no detection of rifampicin resistance, while the rest 6/160 (4%) showed indeterminate rifampicin resistance. Of the 52 (31%) patients with positive pncA gene, 29 (56%) had HIV positive status 18 (34%) had unknown HIV status and 5 (10%) had negative HIV status. It was observed that only one patient 1 (2%) showed both rifampicin and pyrazinamide resistance and was a female patient aged 42 years of age with positive HIV status and positive pncA gene status. Conclusion This study reveals the important trends regarding drug resistance and its relationship with HIV status. The majority of patients (96%) did not exhibit rifampicin resistance, suggesting that multi-drug-resistant tuberculosis is not widespread among the newly diagnosed cases. The majority (56%) of the patients with the pncA gene mutation, were HIV-positive. This highlights the potential vulnerability of HIV-positive TB patients to multidrug resistance though the overall pyrazinamide resistance rate remains low.
Collapse
Affiliation(s)
- Christopher Ndawula
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, 1410, Uganda
| | - Nalumaga Pauline Petra
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, 1410, Uganda
| | - Fredrickson B Wasswa
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, 1410, Uganda
| | - Joel Bazira
- Department of Microbiology, Mbarara University of Science and Technology, Mbarara, 1410, Uganda
| |
Collapse
|
2
|
Ciftel S, Ciftel S, Altuner D, Huseynova G, Yucel N, Mendil AS, Sarigul C, Suleyman H, Bulut S. Effects of adenosine triphosphate, thiamine pyrophosphate, melatonin, and liv-52 on subacute pyrazinamide proliferation hepatotoxicity in rats. BMC Pharmacol Toxicol 2025; 26:67. [PMID: 40128909 PMCID: PMC11931754 DOI: 10.1186/s40360-025-00901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND Hepatotoxicity of pyrazinamide, an antituberculosis drug, limits its therapeutic use and oxidative stress has been implicated in this toxicity. This study investigated the protective effects of adenosine triphosphate (ATP), thiamine pyrophosphate (TPP), melatonin, and Liv-52, which have previously been shown antioxidant activities, on pyrazinamide-induced hepatotoxicity. METHODS 36 albino Wistar male rats were divided into randomized six groups; healthy (HG), pyrazinamide (PZG), ATP + pyrazinamide (APZG), TPP + pyrazinamide (TPZG), melatonin + pyrazinamide (MPZG) and Liv-52 + pyrazinamide (LPZG) groups. ATP 4 mg/kg and TPP 25 mg/kg were administered intraperitoneally (IP). Melatonin 10 mg/kg and Liv-52 20 mg/kg were given orally. One hour after administration of ATP, TPP, melatonin, and Liv-52, 250 mg/kg pyrazinamide was applied orally to all rats except HG group. The treatment was repeated (1 × 1) for 4 weeks. Then, blood samples were taken for determination of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities. Immediately after, the rats were euthanized with thiopental sodium (50 mg/kg, IP), and the livers were removed. The tissues were analyzed for malondialdehyde (MDA), total glutathione (tGSH), superoxide dismutase (SOD), and catalase (CAT) also hydropic degeneration, necrosis, and apoptosis (caspase 3) were examined.One-Way ANOVA was used in biochemical analyses and Tukey test was used as post-hoc. For histopathological and immunohistochemical analysis, the Kruskal-Wallis test was used and Dunn's test as a post-hoc. RESULTS Pyrazinamide increased MDA land decreased tGSH, SOD, and CAT levels in liver tissues (p < 0.001). It also increased serum ALT and AST activities and caused severe hydropic degeneration and necrosis in liver tissue (p < 0.001). ATP, TPP, melatonin, and Liv-52 significantly prevented the biochemical and histopathological changes induced by pyrazinamide (p < 0.05). On the other hand, Liv-52 was more successful than other potential protectors in protecting liver tissue from pyrazinamide damage (p < 0.05). CONCLUSIONS ATP, TPP, melatonin, and Liv-52 can be used to protect liver tissue from pyrazinamide-induced hepatotoxicity in rats.
Collapse
Affiliation(s)
- Sedat Ciftel
- Division of Gastroenterology, Erzurum City Hospital, Erzurum, Turkey
| | - Serpil Ciftel
- Department of Endocrinology, Faculty of Medicine, Health Science University, Erzurum, Turkey
| | - Durdu Altuner
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Gulbaniz Huseynova
- Department of Pharmacology, Azerbaijan Medical University named after Nariman Narimanov, Baku, Azerbaijan
| | - Nurinisa Yucel
- Pharmacy Services Program, Vocational School of Health Services, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Ali Sefa Mendil
- Department of Pathology, Faculty of Veterinary, Erciyes University, Kayseri, Turkey
| | - Cengiz Sarigul
- Department of Biochemistry, Faculty of Medicine, Erzincan Binali Yıldırım University, Erzincan, Turkey
| | - Halis Suleyman
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - Seval Bulut
- Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey.
| |
Collapse
|
3
|
Gupta VK, Vaishnavi VV, Arrieta-Ortiz ML, Abhirami P, Jyothsna K, Jeyasankar S, Raghunathan V, Baliga NS, Agarwal R. 3D Hydrogel Culture System Recapitulates Key Tuberculosis Phenotypes and Demonstrates Pyrazinamide Efficacy. Adv Healthc Mater 2025; 14:e2304299. [PMID: 38655817 PMCID: PMC7616495 DOI: 10.1002/adhm.202304299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/29/2024] [Indexed: 04/26/2024]
Abstract
The mortality caused by tuberculosis (TB) infections is a global concern, and there is a need to improve understanding of the disease. Current in vitro infection models to study the disease have limitations such as short investigation durations and divergent transcriptional signatures. This study aims to overcome these limitations by developing a 3D collagen culture system that mimics the biomechanical and extracellular matrix (ECM) of lung microenvironment (collagen fibers, stiffness comparable to in vivo conditions) as the infection primarily manifests in the lungs. The system incorporates Mycobacterium tuberculosis (Mtb) infected human THP-1 or primary monocytes/macrophages. Dual RNA sequencing reveals higher mammalian gene expression similarity with patient samples than 2D macrophage infections. Similarly, bacterial gene expression more accurately recapitulates in vivo gene expression patterns compared to bacteria in 2D infection models. Key phenotypes observed in humans, such as foamy macrophages and mycobacterial cords, are reproduced in the model. This biomaterial system overcomes challenges associated with traditional platforms by modulating immune cells and closely mimicking in vivo infection conditions, including showing efficacy with clinically relevant concentrations of anti-TB drug pyrazinamide, not seen in any other in vitro infection model, making it reliable and readily adoptable for tuberculosis studies and drug screening.
Collapse
Affiliation(s)
- Vishal K. Gupta
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | | | | | - P.S. Abhirami
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| | - K.M. Jyothsna
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Varun Raghunathan
- Department of Electrical Communication Engineering, Indian Institute of Science, Bengaluru, India
| | | | - Rachit Agarwal
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
4
|
An Y, Ni R, Zhuang L, Yang L, Ye Z, Li L, Parkkila S, Aspatwar A, Gong W. Tuberculosis vaccines and therapeutic drug: challenges and future directions. MOLECULAR BIOMEDICINE 2025; 6:4. [PMID: 39841361 PMCID: PMC11754781 DOI: 10.1186/s43556-024-00243-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/06/2024] [Accepted: 12/24/2024] [Indexed: 01/23/2025] Open
Abstract
Tuberculosis (TB) remains a prominent global health challenge, with the World Health Organization documenting over 1 million annual fatalities. Despite the deployment of the Bacille Calmette-Guérin (BCG) vaccine and available therapeutic agents, the escalation of drug-resistant Mycobacterium tuberculosis strains underscores the pressing need for more efficacious vaccines and treatments. This review meticulously maps out the contemporary landscape of TB vaccine development, with a focus on antigen identification, clinical trial progress, and the obstacles and future trajectories in vaccine research. We spotlight innovative approaches, such as multi-antigen vaccines and mRNA technology platforms. Furthermore, the review delves into current TB therapeutics, particularly for multidrug-resistant tuberculosis (MDR-TB), exploring promising agents like bedaquiline (BDQ) and delamanid (DLM), as well as the potential of host-directed therapies. The hurdles in TB vaccine and therapeutic development encompass overcoming antigen diversity, enhancing vaccine effectiveness across diverse populations, and advancing novel vaccine platforms. Future initiatives emphasize combinatorial strategies, the development of anti-TB compounds targeting novel pathways, and personalized medicine for TB treatment and prevention. Despite notable advances, persistent challenges such as diagnostic failures and protracted treatment regimens continue to impede progress. This work aims to steer future research endeavors toward groundbreaking TB vaccines and therapeutic agents, providing crucial insights for enhancing TB prevention and treatment strategies.
Collapse
Affiliation(s)
- Yajing An
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ruizi Ni
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Li Zhuang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Ling Yang
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Zhaoyang Ye
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Linsheng Li
- Graduate School, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Seppo Parkkila
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories PLC, Tampere, Finland
| | - Ashok Aspatwar
- Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland.
| | - Wenping Gong
- Beijing Key Laboratory of New Techniques of Tuberculosis Diagnosis and Treatment, Senior Department of Tuberculosis, The Eighth Medical Center of PLA General Hospital, 17#Heishanhu Road, Haidian District, Beijing, 100091, China.
| |
Collapse
|
5
|
Carnero Canales CS, Marquez Cazorla JI, Marquez Cazorla RM, Roque-Borda CA, Polinário G, Figueroa Banda RA, Sábio RM, Chorilli M, Santos HA, Pavan FR. Breaking barriers: The potential of nanosystems in antituberculosis therapy. Bioact Mater 2024; 39:106-134. [PMID: 38783925 PMCID: PMC11112550 DOI: 10.1016/j.bioactmat.2024.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/17/2024] [Accepted: 05/05/2024] [Indexed: 05/25/2024] Open
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis, continues to pose a significant threat to global health. The resilience of TB is amplified by a myriad of physical, biological, and biopharmaceutical barriers that challenge conventional therapeutic approaches. This review navigates the intricate landscape of TB treatment, from the stealth of latent infections and the strength of granuloma formations to the daunting specters of drug resistance and altered gene expression. Amidst these challenges, traditional therapies often fail, contending with inconsistent bioavailability, prolonged treatment regimens, and socioeconomic burdens. Nanoscale Drug Delivery Systems (NDDSs) emerge as a promising beacon, ready to overcome these barriers, offering better drug targeting and improved patient adherence. Through a critical approach, we evaluate a spectrum of nanosystems and their efficacy against MTB both in vitro and in vivo. This review advocates for the intensification of research in NDDSs, heralding their potential to reshape the contours of global TB treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Cesar Augusto Roque-Borda
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Giulia Polinário
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | | | - Rafael Miguel Sábio
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
| | - Marlus Chorilli
- School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| | - Hélder A. Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen (UMCG), University of Groningen, Groningen, 9713 AV, the Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Fernando Rogério Pavan
- Tuberculosis Research Laboratory, School of Pharmaceutical Science, Sao Paulo State University (UNESP), Araraquara, 14800-903, Brazil
| |
Collapse
|
6
|
Putra ON, Purnamasari T, Hamami NM. Pyrazinamide-induced Hyperuricemia in Pulmonary Tuberculosis Patients. Int J Mycobacteriol 2024; 13:282-287. [PMID: 39277890 DOI: 10.4103/ijmy.ijmy_178_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/25/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND Pyrazinamide is one of the antitubercular drugs used for 2 months in the intensive phase. One of the adverse effects of pyrazinamide is hyperuricemia, with a symptom of arthralgia. This study aims to analyze the incidence of hyperuricemia and arthralgia and their causality in pulmonary tuberculosis (TB) patients undergoing treatment in the intensive phase. METHODS It was an analytic observational study with a prospective cohort design. Three ml of blood from each pulmonary TB patient was withdrawn to examine uric acid levels before and after 2 months of treatment with pyrazinamide. The Wilcoxon test was used to analyze changes in uric acid levels and the Chi-square test to analyze the association between uric acid levels and arthralgia. Naranjo algorithm is used to analyze the causality of hyperuricemia. RESULTS Twenty pulmonary TB patients met the inclusion criteria in this study. Eight out of 12 (60%) TB patients showed uric acid levels ≥7 mg/dl and 8 of them (66.6%) showed symptoms of arthralgia. The median uric acid level increased significantly before (5.14 mg/dl) and after 2 months of treatment (7.74 mg/dl), P-value = 0.001. Uric acid levels ≥7 mg/dl were significantly associated with arthralgia (P-value = 0.017; odds ratio 14.00; 95% confidence interval 1.25-156.61). Based on the Naranjo algorithm, those with hyperuricemia, eight and four patients had a total score of 7 and 8, respectively, which are classified as probable. CONCLUSION Uric acid levels significantly increased during the intensive phase. Pulmonary TB patients with hyperuricemia are a risk factor for arthralgia.
Collapse
|
7
|
Dechow SJ, Abramovitch RB. Targeting Mycobacterium tuberculosis pH-driven adaptation. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001458. [PMID: 38717801 PMCID: PMC11165653 DOI: 10.1099/mic.0.001458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/17/2024] [Indexed: 06/13/2024]
Abstract
Mycobacterium tuberculosis (Mtb) senses and adapts to host environmental cues as part of its pathogenesis. One important cue sensed by Mtb is the acidic pH of its host niche - the macrophage. Acidic pH induces widespread transcriptional and metabolic remodelling in Mtb. These adaptations to acidic pH can lead Mtb to slow its growth and promote pathogenesis and antibiotic tolerance. Mutants defective in pH-dependent adaptations exhibit reduced virulence in macrophages and animal infection models, suggesting that chemically targeting these pH-dependent pathways may have therapeutic potential. In this review, we discuss mechanisms by which Mtb regulates its growth and metabolism at acidic pH. Additionally, we consider the therapeutic potential of disrupting pH-driven adaptations in Mtb and review the growing class of compounds that exhibit pH-dependent activity or target pathways important for adaptation to acidic pH.
Collapse
Affiliation(s)
- Shelby J. Dechow
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| | - Robert B. Abramovitch
- Department of Microbiology, Genetics and Immunology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
8
|
Dartois V, Dick T. Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease. Nat Rev Drug Discov 2024; 23:381-403. [PMID: 38418662 PMCID: PMC11078618 DOI: 10.1038/s41573-024-00897-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public-private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.
Collapse
Affiliation(s)
- Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA.
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA.
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
9
|
Xavier V AM, R M, Joseph NM, Ellappan K, Muthuraj M. Pyrazinamide resistance due to pncA gene mutation and its association with treatment outcome among tuberculosis patients of South India- A longitudinal observational study. Indian J Tuberc 2024; 71 Suppl 1:S81-S85. [PMID: 39067961 DOI: 10.1016/j.ijtb.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/13/2024] [Indexed: 07/30/2024]
Abstract
INTRODUCTION Mycobacterium tuberculosis has been extensively studied for mutations leading to drug resistance. Pyrazinamide is a drug acting on the semi-dormant bacteria that is responsible for relapse of tuberculosis. This drug helped reduce the treatment duration of tuberculosis from nine to six months. However, this drug is not being screened for resistance along with Rifampicin and Isoniazid. AIMS AND OBJECTIVES This study aimed to estimate the proportion of pncA gene mutation among tuberculosis patients and its association between treatment outcomes, clinical characteristics, and phenotypic drug resistance. METHOD ology: A total of 154 samples included 73 drug-resistant and 81 drug-susceptible isolates. The isolates were subjected to DNA extraction and amplification using conventional PCR. The PCR product was sequenced by the Sanger sequencing method, and phenotypic drug susceptibility testing was done using the broth dilution method. The association of this gene with the treatment outcome was done by following up with the patients till the end of the regimen. RESULTS None of the drug susceptible tuberculosis patients showed significant non-synonymous mutations. Among the drug-resistant TB patients, seven unique significant mutations out of 73 isolates (9.6%) were distributed among Isoniazid-resistant tuberculosis and Multi-Drug Resistant Tuberculosis isolates. No association was found between the mutations and the clinical characteristics of the subjects harboring these isolates. CONCLUSION This study estimated seven unique mutations in drug-resistant tuberculosis and none in drug-sensitive tuberculosis. Isolates harboring was not significantly associated with the participant's treatment outcome and other clinical characteristics. The pyrazinamide resistance testing by the phenotypic and genotypic methods was found to be in concordance.
Collapse
Affiliation(s)
- Andrew Marie Xavier V
- Department of Pharmacology, Kalapet, Pondicherry Institute of Medical Sciences, Puducherry, India
| | - Mirunalini R
- Institute block, Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education and Research Institute, Puducherry, India.
| | - Noyal Mariya Joseph
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Gorimedu, Puducherry, India
| | - Kalaiarasan Ellappan
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education & Research, Gorimedu, Puducherry, India
| | - Muthaiah Muthuraj
- Head of Department, State Intermediate Reference Laboratory, Dhanvanthri nagar, Gorimedu, Puducherry, India
| |
Collapse
|
10
|
Balay G, Abdella K, Kebede W, Tadesse M, Bonsa Z, Mekonnen M, Amare M, Abebe G. Resistance to pyrazinamide in Mycobacterium tuberculosis complex isolates from previously treated tuberculosis cases in Southwestern Oromia, Ethiopia. J Clin Tuberc Other Mycobact Dis 2024; 34:100411. [PMID: 38222863 PMCID: PMC10787229 DOI: 10.1016/j.jctube.2023.100411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024] Open
Abstract
Objective Pyrazinamide (PZA) susceptibility testing is important to develop evidence-based algorithms for case management. We aimed to assess the prevalence of PZA-resistance and its impact on treatment outcomes in previously treated tuberculosis (TB) cases in southwestern Oromia, Ethiopia. Methods A Phenotypic Drug Susceptibility Testing (DST) of PZA with BACTEC MGIT 960 was conducted at the Mycobacteriology Research Center of Jimma University (MRC-JU) from June to November 2021 on sixty-six Mycobacterium tuberculosis complex (MTBC) isolates from previously treated TB cases. SPSS software package version 21 was used. The differences in the proportion of PZA resistance between the groups were compared using the chi squared test. Logistic regression was used to identify the association between PZA resistance and treatment outcomes. Results Among 66 MTBC isolates (49 rifampicin-resistant and 17 rifampicin-sensitive) included in this study, 31.8 % were resistant to PZA. The proportion of PZA resistance was almost three times higher in previously treated TB cases with rifampicin resistance than in rifampicin-sensitive patients (38.8 % vs. 11.8 %, p = 0.039). An unfavorable treatment outcome was documented for 23 % (15/65) of the participants. Patients with PZA resistance were almost four times more likely to have an unfavorable treatment outcome than patients with PZA sensitive (aOR 4.2, 95 % CI: 1.13-15.3). Conclusions The prevalence of PZA resistance was high compared to the pooled PZA resistance estimated worldwide. The majority of TB cases with PZA resistance had an unfavorable treatment outcome. PZA susceptibility testing should be included in the multidrug-resistant TB diagnostic algorithm to improve management of these patients.
Collapse
Affiliation(s)
- Getu Balay
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kedir Abdella
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Wakjira Kebede
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mulualem Tadesse
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Zegeye Bonsa
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mekidim Mekonnen
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Misikir Amare
- Ethiopian Public Health Institute, National Tuberculosis Reference Laboratory, Addis Ababa, Ethiopia
| | - Gemeda Abebe
- Mycobacteriology Research Center, Institute of Health, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
11
|
Fang L, Yu W, Yu G, Chen G, Ye B. Clinical Significance of Preoperative Pyrazinamide-Containing Therapy in Tuberculous Constrictive Pericarditis. Infect Drug Resist 2024; 17:131-139. [PMID: 38230271 PMCID: PMC10790635 DOI: 10.2147/idr.s445025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/06/2024] [Indexed: 01/18/2024] Open
Abstract
Background Tuberculous constrictive pericarditis (TCP) is recommended to be treated with anti-tuberculosis (TB) therapy before pericardiectomy. Whether different preoperative anti-TB regimens may lead to different outcomes is unclear. Methods We retrospectively collected patients diagnosed as TCP and received pericardiectomy from April 2016 to June 2023. The study patients were assigned into the active TCP (A-TCP) group and the inactive TCP (IA-TCP) group according to the results of Mycobacterium tuberculosis (MTB) culture and MTB RNA assay. Baseline characteristics including anti-TB regimens and surgical outcomes were compared between the two groups. Logistic regression analysis and subgroup analysis were conducted to identify the protective factors of A-TCP. Results Of the 102 study patients, 24 was in the A-TCP group and 78 was in the IA-TCP group. The rate of preoperative anti-TB regimen containing pyrazinamide was 37.5% in the A-TCP group, as compared with 74.4% in the IA-TCP group (P = 0.001). Multivariate analysis showed that preoperative use of pyrazinamide was the protective factor of A-TCP (OR 0.194, 95% CI 0.053-0.703, P = 0.013). Subgroup analysis based on age also showed consistent findings. In the analyses of surgical outcomes, A-TCP was the independent risk factor of postoperative cardiac complications (OR 4.231, 95% CI 1.317-13.593, P = 0.015) and associated with longer hospital stay (P = 0.004) and higher hospitalization cost (P = 0.001). Conclusion A strategy involving anti-TB regimen containing pyrazinamide before pericardiectomy was superior to that without pyrazinamide in the patients with TCP. The strategy was associated with lower risk of A-TCP and might lead to better postoperative recovery and cost-effectiveness.
Collapse
Affiliation(s)
- Likui Fang
- Department of Thoracic Surgery, Hangzhou Red Cross Hospital, Hangzhou, 310003, People’s Republic of China
| | - Wenfeng Yu
- Department of Thoracic Surgery, Hangzhou Red Cross Hospital, Hangzhou, 310003, People’s Republic of China
| | - Guocan Yu
- Department of Thoracic Surgery, Hangzhou Red Cross Hospital, Hangzhou, 310003, People’s Republic of China
| | - Gang Chen
- Department of Thoracic Surgery, Hangzhou Red Cross Hospital, Hangzhou, 310003, People’s Republic of China
| | - Bo Ye
- Department of Thoracic Surgery, Hangzhou Red Cross Hospital, Hangzhou, 310003, People’s Republic of China
| |
Collapse
|
12
|
Razei A, Javanbakht M, Hajizade A, Heiat M, Zhao S, Aghamollaei H, Saadati M, Khafaei M, Asadi M, Cegolon L, Keihan AH. Nano and microparticle drug delivery systems for the treatment of Brucella infections. Biomed Pharmacother 2023; 169:115875. [PMID: 37979375 DOI: 10.1016/j.biopha.2023.115875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Nano-based drug delivery systems are increasingly used for diagnosis, prevention and treatment of several diseases, thanks to several beneficial properties, including the ability to target specific cells or organs, allowing to reduce treatment costs and side effects frequently associated with chemotherapeutic medications, thereby improving treatment compliance of patients. In the field of communicable diseases, especially those caused by intracellular bacteria, the delivery of antibiotics targeting specific cells is of critical importance to maximize their treatment efficacy. Brucella melitensis, an intracellular obligate bacterium surviving and replicating inside macrophages is hard to be eradicated, mainly because of the low ability of antibiotics to enter these phagocityc cells . Although different antibiotics regimens including gentamicin, doxycycline and rifampicin are in fact used against the Brucellosis, no efficient treatment has been attained yet, due to the intracellular life of the respective pathogen. Nano-medicines responding to environmental stimuli allow to maximize drug delivery targeting macropages, thereby boosting treatment efficacy. Several drug delivery nano-technologies, including solid lipid nanoparticles, liposomes, chitosan, niosomes, and their combinations with chitosan sodium alginate can be employed in combination of antibiotics to successfully eradicate Brucellosis infection from patients.
Collapse
Affiliation(s)
- Ali Razei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajizade
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mohammad Heiat
- Baqiyatallah Research Center for Gastroenterology and Liver Diseases (BRCGL), Clinical Sciences Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Hossien Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mojtaba Saadati
- Biology Research Centre, Faculty of Basic Sciences, Imam Hossain University, Tehran, Iran
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah Medical Science University, Tehran, Iran
| | - Mosa Asadi
- Nephrology and Urology Research Center,Clinical Science Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- University of Trieste, Department of Medical, Surgical & Health Sciences, Trieste, Italy; University Health Agency Giuliano-Isontina (ASUGI), Public Health Department, Trieste, Italy
| | - Amir Homayoun Keihan
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Krug S, Gupta M, Kumar P, Feller L, Ihms EA, Kang BG, Srikrishna G, Dawson TM, Dawson VL, Bishai WR. Inhibition of host PARP1 contributes to the anti-inflammatory and antitubercular activity of pyrazinamide. Nat Commun 2023; 14:8161. [PMID: 38071218 PMCID: PMC10710439 DOI: 10.1038/s41467-023-43937-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The antibiotic pyrazinamide (PZA) is a cornerstone of tuberculosis (TB) therapy that shortens treatment durations by several months despite being only weakly bactericidal. Intriguingly, PZA is also an anti-inflammatory molecule shown to specifically reduce inflammatory cytokine signaling and lesion activity in TB patients. However, the target and clinical importance of PZA's host-directed activity during TB therapy remain unclear. Here, we identify the host enzyme Poly(ADP-ribose) Polymerase 1 (PARP1), a pro-inflammatory master regulator strongly activated in TB, as a functionally relevant host target of PZA. We show that PZA inhibits PARP1 enzymatic activity in macrophages and in mice where it reverses TB-induced PARP1 activity in lungs to uninfected levels. Utilizing a PZA-resistant mutant, we demonstrate that PZA's immune-modulatory effects are PARP1-dependent but independent of its bactericidal activity. Importantly, PZA's bactericidal efficacy is impaired in PARP1-deficient mice, suggesting that immune modulation may be an integral component of PZA's antitubercular activity. In addition, adjunctive PARP1 inhibition dramatically reduces inflammation and lesion size in mice and may be a means to reduce lung damage and shorten TB treatment duration. Together, these findings provide insight into PZA's mechanism of action and the therapeutic potential of PARP1 inhibition in the treatment of TB.
Collapse
Affiliation(s)
- Stefanie Krug
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Manish Gupta
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pankaj Kumar
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laine Feller
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth A Ihms
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bong Gu Kang
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geetha Srikrishna
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bishai
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
14
|
Yan X, Sha X. Nanoparticle-Mediated Strategies for Enhanced Drug Penetration and Retention in the Airway Mucosa. Pharmaceutics 2023; 15:2457. [PMID: 37896217 PMCID: PMC10610050 DOI: 10.3390/pharmaceutics15102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Airway mucus is a complex viscoelastic gel composed mainly of water, glycoproteins, lipids, enzymes, minerals, etc. Among them, glycoproteins are the main factors determining mucus's gel-like rheology. Airway mucus forms a protective barrier by secreting mucin, which represents a barrier for absorption, especially for more lipophilic drugs. It rapidly removes drugs from the airway through the physiological mucus clearance mechanism so drugs cannot remain in the lungs or reach the airway epithelial tissue for a long time. Significant progress has been made in enhancing drug lung deposition recently, but strategies are still needed to help drugs break through the lung mucosal barrier. Based on the physiopathological mechanisms of airway mucus, this paper reviews and summarizes strategies to enhance drug penetration and retention in the airway mucosa mediated by nano-delivery systems, including mucosal permeation systems, mucosal adhesion systems, and enzyme-modified delivery systems. On this basis, the potential and challenges of nano-delivery systems for improving airway mucus clearance are revealed. New ideas and approaches are provided for designing novel nano-delivery systems that effectively improve drug retention and penetration in the airway mucus layer.
Collapse
Affiliation(s)
- Xin Yan
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
| | - Xianyi Sha
- Key Laboratory of Smart Drug Delivery, School of Pharmacy, Fudan University, Ministry of Education, Shanghai 201203, China;
- The Institutes of Integrative Medicine of Fudan University, 120 Urumqi Middle Road, Shanghai 200040, China
| |
Collapse
|
15
|
Zahra NUA, Vagiona AC, Uddin R, Andrade-Navarro MA. Selection of Multi-Drug Targets against Drug-Resistant Mycobacterium tuberculosis XDR1219 Using the Hyperbolic Mapping of the Protein Interaction Network. Int J Mol Sci 2023; 24:14050. [PMID: 37762354 PMCID: PMC10530867 DOI: 10.3390/ijms241814050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Tuberculosis remains the leading cause of death from a single pathogen. On the other hand, antimicrobial resistance (AMR) makes it increasingly difficult to deal with this disease. We present the hyperbolic embedding of the Mycobacterium tuberculosis protein interaction network (mtbPIN) of resistant strain (MTB XDR1219) to determine the biological relevance of its latent geometry. In this hypermap, proteins with similar interacting partners occupy close positions. An analysis of the hypermap of available drug targets (DTs) and their direct and intermediate interactors was used to identify potentially useful drug combinations and drug targets. We identify rpsA and rpsL as close DTs targeted by different drugs (pyrazinamide and aminoglycosides, respectively) and propose that the combination of these drugs could have a synergistic effect. We also used the hypermap to explain the effects of drugs that affect multiple DTs, for example, forcing the bacteria to deal with multiple stresses like ethambutol, which affects the synthesis of both arabinogalactan and lipoarabinomannan. Our strategy uncovers novel potential DTs, such as dprE1 and dnaK proteins, which interact with two close DT pairs: arabinosyltransferases (embC and embB), Ser/Thr protein kinase (pknB) and RNA polymerase (rpoB), respectively. Our approach provides mechanistic explanations for existing drugs and suggests new DTs. This strategy can also be applied to the study of other resistant strains.
Collapse
Affiliation(s)
- Noor ul Ain Zahra
- Lab 103 PCMD ext., Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany;
| | - Aimilia-Christina Vagiona
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany;
| | - Reaz Uddin
- Lab 103 PCMD ext., Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Miguel A. Andrade-Navarro
- Institute of Organismic and Molecular Evolution, Faculty of Biology, Johannes Gutenberg University, Hans-Dieter-Hüsch-Weg 15, 55128 Mainz, Germany;
| |
Collapse
|
16
|
Mancuso G, Midiri A, De Gaetano S, Ponzo E, Biondo C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium tuberculosis. Microorganisms 2023; 11:2277. [PMID: 37764122 PMCID: PMC10537529 DOI: 10.3390/microorganisms11092277] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Antibiotics have played a crucial role in the reduction in the incidence of TB globally as evidenced by the fact that before the mid-20th century, the mortality rate within five years of the onset of the disease was 50%. The use of antibiotics has eliminated TB as a devastating disease, but the challenge of resistance to anti-TB drugs, which had already been described at the time of the introduction of streptomycin, has become a major global issue in disease management. Mismanagement of multidrug-resistant tuberculosis (MDR-TB) cases, resulting from intermittent drug use, prescription errors, and non-compliance of patients, has been identified as a critical risk factor for the development of extensively drug-resistant tuberculosis (XDR-TB). Antimicrobial resistance (AMR) in TB is a multi-factorial, complex problem of microbes evolving to escape antibiotics, the gradual decline in antibiotic development, and different economic and social conditions. In this review, we summarize recent advances in our understanding of how Mycobacterium tuberculosis evolves drug resistance. We also highlight the importance of developing shorter regimens that rapidly reach bacteria in diverse host environments, eradicating all mycobacterial populations and preventing the evolution of drug resistance. Lastly, we also emphasize that the current burden of this ancient disease is driven by a combination of complex interactions between mycobacterial and host factors, and that only a holistic approach that effectively addresses all the critical issues associated with drug resistance will limit the further spread of drug-resistant strains throughout the community.
Collapse
Affiliation(s)
| | | | | | | | - Carmelo Biondo
- Mycobacteriology Unit, Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.D.G.); (E.P.)
| |
Collapse
|
17
|
He X, Wu H, Chen M, Lv J, Xiao H, Salas MNL, Wu B, Liu P, Zeng K, Yang G. Improve the Crosslinking Reactivity of Nitrile: Design of Nitrile-Functionalized Pyrazine and its Hydrogen Bond-Assisted Nucleophilic Enhancement Study. Macromol Rapid Commun 2023; 44:e2300199. [PMID: 37247428 DOI: 10.1002/marc.202300199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/10/2023] [Indexed: 05/31/2023]
Abstract
In this study, molecular engineering and biomimetic principles are utilized to prepare highly effective nitrile-functionalized pyrazine crosslinking units by exploiting pyrazine's unique nucleophilic strengthening mechanism and proton bonding ability. The curing behaviors of pyrazine-2,3-dicarbonitrile and phthalonitrile are investigated through model curing systems and molecular simulation. The results indicate that pyrazine-2,3-dicarbonitrile exhibits higher reactivity than phthalonitrile, promoted by amine. The cured products of pyrazine-2,3-dicarbonitrile predominantly comprise thermally stable azaisoindoline and azaphthalocyanine. This novel type of highly effective crosslinking unit, and the comprehended mechanism of action of pyrazine at the molecular level, significantly expand the application of pyrazine in materials science.
Collapse
Affiliation(s)
- Xian He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hao Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Menghao Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiangbo Lv
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Hang Xiao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Maria Nieves López Salas
- Department Sustainable Materials Chemistry, Department of Chemistry, Paderborn University, Warburger Straße 100, D-33098, Paderborn, Germany
| | - Baile Wu
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, AZ, 85287, USA
| | - Pengqing Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ke Zeng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Gang Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
18
|
Nawrot DE, Bouz G, Janďourek O, Konečná K, Paterová P, Bárta P, Novák M, Kučera R, Zemanová J, Forbak M, Korduláková J, Pavliš O, Kubíčková P, Doležal M, Zitko J. Antimycobacterial pyridine carboxamides: From design to in vivo activity. Eur J Med Chem 2023; 258:115617. [PMID: 37423128 DOI: 10.1016/j.ejmech.2023.115617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 07/11/2023]
Abstract
Tuberculosis is the number one killer of infectious diseases caused by a single microbe, namely Mycobacterium tuberculosis (Mtb). The success rate of curing this infection is decreasing due to emerging antimicrobial resistance. Therefore, novel treatments are urgently needed. As an attempt to develop new antituberculars effective against both drugs-sensitive and drug-resistant Mtb, we report the synthesis of a novel series inspired by combining fragments from the first-line agents isoniazid and pyrazinamide (series I) and isoniazid with the second-line agent 4-aminosalicylic acid (series II). We identified compound 10c from series II with selective, potent in vitro antimycobacterial activity against both drug-sensitive and drug-resistant Mtb H37Rv strains with no in vitro or in vivo cytotoxicity. In the murine model of tuberculosis, compound 10c caused a statistically significant decrease in colony-forming units (CFU) in spleen. Despite having a 4-aminosalicylic acid fragment in its structure, biochemical studies showed that compound 10c does not directly affect the folate pathway but rather methionine metabolism. In silico simulations indicated the possibility of binding to mycobacterial methionine-tRNA synthetase. Metabolic study in human liver microsomes revealed that compound 10c does not have any known toxic metabolites and has a half-life of 630 min, overcoming the main drawbacks of isoniazid (toxic metabolites) and 4-aminosalicylic acid (short half-life).
Collapse
Affiliation(s)
- Daria Elżbieta Nawrot
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Ghada Bouz
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Ondřej Janďourek
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Klára Konečná
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Pavla Paterová
- Department of Clinical Microbiology, University Hospital, Sokolská 581, 500 05, Hradec, Králové, Czech Republic.
| | - Pavel Bárta
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Martin Novák
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic; Biomedical Research Center, University Hospital Hradec Kralove, Sokolská 581, 50005, Hradec Králové, Czech Republic.
| | - Radim Kučera
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Júlia Zemanová
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Martin Forbak
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Jana Korduláková
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská Dolina, Ilkovičova 6, 84215, Bratislava, Slovakia.
| | - Oto Pavliš
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, Czech Republic.
| | - Pavla Kubíčková
- Military Health Institute, Military Medical Agency, Tychonova 1, 160 01, Prague 6, Czech Republic.
| | - Martin Doležal
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| | - Jan Zitko
- Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
19
|
Lanni A, Iacobino A, Fattorini L, Giannoni F. Eradication of Drug-Tolerant Mycobacterium tuberculosis 2022: Where We Stand. Microorganisms 2023; 11:1511. [PMID: 37375013 PMCID: PMC10301435 DOI: 10.3390/microorganisms11061511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
The lungs of tuberculosis (TB) patients contain a spectrum of granulomatous lesions, ranging from solid and well-vascularized cellular granulomas to avascular caseous granulomas. In solid granulomas, current therapy kills actively replicating (AR) intracellular bacilli, while in low-vascularized caseous granulomas the low-oxygen tension stimulates aerobic and microaerophilic AR bacilli to transit into non-replicating (NR), drug-tolerant and extracellular stages. These stages, which do not have genetic mutations and are often referred to as persisters, are difficult to eradicate due to low drug penetration inside the caseum and mycobacterial cell walls. The sputum of TB patients also contains viable bacilli called differentially detectable (DD) cells that, unlike persisters, grow in liquid, but not in solid media. This review provides a comprehensive update on drug combinations killing in vitro AR and drug-tolerant bacilli (persisters and DD cells), and sterilizing Mycobacterium tuberculosis-infected BALB/c and caseum-forming C3HeB/FeJ mice. These observations have been important for testing new drug combinations in noninferiority clinical trials, in order to shorten the duration of current regimens against TB. In 2022, the World Health Organization, following the results of one of these trials, supported the use of a 4-month regimen for the treatment of drug-susceptible TB as a possible alternative to the current 6-month regimen.
Collapse
Affiliation(s)
| | | | | | - Federico Giannoni
- Department of Infectious Diseases, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Rome, Italy; (A.L.); (A.I.); (L.F.)
| |
Collapse
|
20
|
Shi D, Zhou Q, Xu S, Zhu Y, Li H, Xu Y. Pyrazinamide Resistance and pncA Mutation Profiles in Multidrug Resistant Mycobacterium Tuberculosis. Infect Drug Resist 2022; 15:4985-4994. [PMID: 36065280 PMCID: PMC9440668 DOI: 10.2147/idr.s368444] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/13/2022] [Indexed: 11/23/2022] Open
Abstract
Purpose Pyrazinamide (PZA) is a critical component of standardized chemotherapy for tuberculosis (TB) and is recommended for the treatment of multidrug-resistant (MDR) TB. We aimed to characterize mutations in pncA of M. tuberculosis and evaluate their diagnostic accuracy for PZA susceptibility in China. We also combined genotypic methods with phenotypic susceptibility testing and pyrazinamidase (PZAse) activity to confirm PZA-resistant M. tuberculosis isolates. Results An evaluation of 82 MDR M. tuberculosis strains revealed that 28.0% (23/82) were phenotypically resistant to 100 mg/L PZA and 15.9% (13/82) showed resistance to 300 mg/L PZA. Mutations in pncA were detected at 33 unique sites, and the majority were point mutations. No evident mutation hotspots or mutations affecting multiple amino acids were found, but the association between pncA mutations and PZA resistance was significant under 100 and 300 mg/L. The sensitivity of pncA mutation detection for predicting PZA susceptibility was 82.6% (19/23), and the specificity was 61.0% (36/59), based on 100 mg/L PZA, whereas the sensitivity was 84.6% (11/13) and the specificity was 55.1% (38/69), based on 300 mg/L PZA. All mutations identified in the highly PZA-resistant (300 mg/L) strains had an 80% loss relative to PZAse activity. No evident PZAse activity loss was observed in one synonymous mutation strain and the loss exceed 60% in all other strains. Conclusion The association between pncA mutation and PZA resistance was significant. Relatively, the molecular method have shown better reliability than the phenotypic method for the detection of PZA resistance. This provides a theoretical basis for the clinical diagnosis of drug-resistant TB.
Collapse
Affiliation(s)
- Dawei Shi
- National Institutes for Food and Drug Control, Institute of Pathogen Biology at the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Qiulong Zhou
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| | - Sihong Xu
- National Institutes for Food and Drug Control, Institute of Pathogen Biology at the Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yumei Zhu
- Shenzhen Center for Chronic Disease Control, Shenzhen, People’s Republic of China
| | - Hui Li
- Tuberculosis Reference Laboratory, Henan Provincial Centers for Disease Control and Prevention, Zhengzhou, People’s Republic of China
| | - Ye Xu
- Engineering Research Centre of Molecular Diagnostics of the Ministry of Education, State Key Laboratory of Cellular Stress Biology, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Life Sciences, Xiamen University, Xiamen, People’s Republic of China
| |
Collapse
|
21
|
Saw W, Leow CY, Harikishore A, Shin J, Cole MS, Aragaw WW, Ragunathan P, Hegde P, Aldrich CC, Dick T, Grüber G. Structural and Mechanistic Insights into Mycobacterium abscessus Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infect Dis 2022; 8:1324-1335. [PMID: 35731701 PMCID: PMC10517418 DOI: 10.1021/acsinfecdis.2c00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mycobacterium tuberculosis (Mtb) aspartate decarboxylase PanD is required for biosynthesis of the essential cofactor coenzyme A and targeted by the first line drug pyrazinamide (PZA). PZA is a prodrug that is converted by a bacterial amidase into its bioactive form pyrazinoic acid (POA). Employing structure-function analyses we previously identified POA-based inhibitors of Mtb PanD showing much improved inhibitory activity against the enzyme. Here, we performed the first structure-function studies on PanD encoded by the nontuberculous mycobacterial lung pathogen Mycobacterium abscessus (Mab), shedding light on the differences and similarities of Mab and Mtb PanD. Solution X-ray scattering data provided the solution structure of the entire tetrameric Mab PanD, which in comparison to the structure of the derived C-terminal truncated Mab PanD1-114 mutant revealed the orientation of the four flexible C-termini relative to the catalytic core. Enzymatic studies of Mab PanD1-114 explored the essentiality of the C-terminus for catalysis. A library of recombinant Mab PanD mutants based on structural information and PZA/POA resistant PanD mutations in Mtb illuminated critical residues involved in the substrate tunnel and enzymatic activity. Using our library of POA analogues, we identified (3-(1-naphthamido)pyrazine-2-carboxylic acid) (analogue 2) as the first potent inhibitor of Mab PanD. The inhibitor shows mainly electrostatic- and hydrogen bonding interaction with the target enzyme as explored by isothermal titration calorimetry and confirmed by docking studies. The observed unfavorable entropy indicates that significant conformational changes are involved in the binding process of analogue 2 to Mab PanD. In contrast to PZA and POA, which are whole-cell inactive, analogue 2 exerts appreciable antibacterial activity against the three subspecies of Mab.
Collapse
Affiliation(s)
- Wuan–Geok Saw
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Chen Yen Leow
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Amaravadhi Harikishore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malcolm S. Cole
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, USA
| | - Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Pooja Hegde
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Courtney C. Aldrich
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, MN 55455, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, New Jersey 07110, USA
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW Medical-Dental Building, Washington, DC 20007, USA
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
22
|
Population Pharmacokinetic Modelling and Limited Sampling Strategies for Therapeutic Drug Monitoring of Pyrazinamide in Patients with Tuberculosis. Antimicrob Agents Chemother 2022; 66:e0000322. [PMID: 35727060 DOI: 10.1128/aac.00003-22] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pyrazinamide is one of the first-line antituberculosis drugs. The efficacy of pyrazinamide is associated with the ratio of 24-h area under the concentration-time curve (AUC24) to MIC. The objective of this study was to develop and validate a limited sampling strategy (LSS) based on a population pharmacokinetic (popPK) model to predict AUC24. A popPK model was developed using an iterative two-stage Bayesian procedure and was externally validated. Using data from 20 treatment-naive adult tuberculosis (TB) patients, a one compartment model with transit absorption and first-order elimination best described pyrazinamide pharmacokinetics and fed state was the only significant covariate for absorption rate constant (ka). External validation, using data from 26 TB patients, showed that the popPK model predicted AUC24 with a slight underestimation of 2.1%. LSS were calculated using Monte Carlo simulation (n = 10,000). External validation showed LSS with time points 0 h, 2 h, and 6 h performed best with RMSE of 9.90% and bias of 0.06%. Food slowed absorption of pyrazinamide, but did not affect bioavailability, which may be advantageous in case of nausea or vomiting in which food can be used to diminish these effects. In this study, we successfully developed and validated a popPK model and LSS, using 0 h, 2 h, and 6 h postdose samples, that could be used to perform therapeutic drug monitoring (TDM) of pyrazinamide in TB patients.
Collapse
|
23
|
Lopez-Varela E, Abulfathi AA, Strydom N, Goussard P, van Wyk AC, Demers AM, Deventer AV, Garcia-Prats AJ, van der Merwe J, Zimmerman M, Carter CL, Janson J, Morrison J, Reuter H, Decloedt EH, Seddon JA, Svensson EM, Warren R, Savic RM, Dartois V, Hesseling AC. Drug concentration at the site of disease in children with pulmonary tuberculosis. J Antimicrob Chemother 2022; 77:1710-1719. [PMID: 35468189 PMCID: PMC9155609 DOI: 10.1093/jac/dkac103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/07/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Current TB treatment for children is not optimized to provide adequate drug levels in TB lesions. Dose optimization of first-line antituberculosis drugs to increase exposure at the site of disease could facilitate more optimal treatment and future treatment-shortening strategies across the disease spectrum in children with pulmonary TB. OBJECTIVES To determine the concentrations of first-line antituberculosis drugs at the site of disease in children with intrathoracic TB. METHODS We quantified drug concentrations in tissue samples from 13 children, median age 8.6 months, with complicated forms of pulmonary TB requiring bronchoscopy or transthoracic surgical lymph node decompression in a tertiary hospital in Cape Town, South Africa. Pharmacokinetic models were used to describe drug penetration characteristics and to simulate concentration profiles for bronchoalveolar lavage, homogenized lymph nodes, and cellular and necrotic lymph node lesions. RESULTS Isoniazid, rifampicin and pyrazinamide showed lower penetration in most lymph node areas compared with plasma, while ethambutol accumulated in tissue. None of the drugs studied was able to reach target concentration in necrotic lesions. CONCLUSIONS Despite similar penetration characteristics compared with adults, low plasma exposures in children led to low site of disease exposures for all drugs except for isoniazid.
Collapse
Affiliation(s)
- Elisa Lopez-Varela
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- ISGlobal, Barcelona Centre for International Health Research (CRESIB), Hospital Clínic - Universidad de Barcelona, Barcelona, Spain
| | - Ahmed A. Abulfathi
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Clinical Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medical Sciences, University of Maiduguri, Maiduguri, Nigeria
- Center for Pharmacometrics & Systems Pharmacology, Department of Pharmaceutics, College of Pharmacy, University of Florida, Orlando, USA
| | - Natasha Strydom
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Pierre Goussard
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abraham C. van Wyk
- Division of Anatomical Pathology, Tygerberg Hospital, National Health Laboratory Service, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anne Marie Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Service de microbiologie, Département clinique de médecine de laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Anneen Van Deventer
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anthony J. Garcia-Prats
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Johannes van der Merwe
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Claire L. Carter
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
- Department of Pathology, Hackensack School of Medicine, Nutley, New Jersey 07110, USA
| | - Jacques Janson
- Division of Cardiothoracic Surgery, Department of Surgery, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Julie Morrison
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Helmuth Reuter
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Eric H. Decloedt
- Division of Clinical Pharmacology, Department of Medicine, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - James A. Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Elin M. Svensson
- Department of Pharmacy, Uppsala University, Uppsala, Sweden
- Department of Pharmacy, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rob Warren
- DST/NRF Centre of Excellence for Biomedical Tuberculosis Research/South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Radojka M. Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, 94158, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, New Jersey, USA, and Department of Medical Sciences, Hackensack School of Medicine, Nutley, New Jersey, USA
| | - Anneke C. Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
24
|
Santucci P, Aylan B, Botella L, Bernard EM, Bussi C, Pellegrino E, Athanasiadi N, Gutierrez MG. Visualizing Pyrazinamide Action by Live Single-Cell Imaging of Phagosome Acidification and Mycobacterium tuberculosis pH Homeostasis. mBio 2022; 13:e0011722. [PMID: 35323041 PMCID: PMC9040869 DOI: 10.1128/mbio.00117-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/24/2022] [Indexed: 01/28/2023] Open
Abstract
Mycobacterium tuberculosis segregates within multiple subcellular niches with different biochemical and biophysical properties that, upon treatment, may impact antibiotic distribution, accumulation, and efficacy. However, it remains unclear whether fluctuating intracellular microenvironments alter mycobacterial homeostasis and contribute to antibiotic enrichment and efficacy. Here, we describe a live dual-imaging approach to monitor host subcellular acidification and M. tuberculosis intrabacterial pH. By combining this approach with pharmacological and genetic perturbations, we show that M. tuberculosis can maintain its intracellular pH independently of the surrounding pH in human macrophages. Importantly, unlike bedaquiline (BDQ), isoniazid (INH), or rifampicin (RIF), the drug pyrazinamide (PZA) displays antibacterial efficacy by disrupting M. tuberculosis intrabacterial pH homeostasis in cellulo. By using M. tuberculosis mutants, we confirmed that intracellular acidification is a prerequisite for PZA efficacy in cellulo. We anticipate this imaging approach will be useful to identify host cellular environments that affect antibiotic efficacy against intracellular pathogens. IMPORTANCE We still do not completely understand why tuberculosis (TB) treatment requires the combination of several antibiotics for up to 6 months. M. tuberculosis is a facultative intracellular pathogen, and it is still unknown whether heterogenous and dynamic intracellular populations of bacteria in different cellular environments affect antibiotic efficacy. By developing a dual live imaging approach to monitor mycobacterial pH homeostasis, host cell environment, and antibiotic action, we show here that intracellular localization of M. tuberculosis affects the efficacy of one first-line anti-TB drug. Our observations can be applicable to the treatment of other intracellular pathogens and help to inform the development of more effective combined therapies for tuberculosis that target heterogenous bacterial populations within the host.
Collapse
Affiliation(s)
- Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Beren Aylan
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Laure Botella
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Elliott M. Bernard
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Claudio Bussi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Enrica Pellegrino
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Natalia Athanasiadi
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Maximiliano G. Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
25
|
Bendre AD, Peters PJ, Kumar J. Tuberculosis: Past, present and future of the treatment and drug discovery research. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100037. [PMID: 34909667 PMCID: PMC8663960 DOI: 10.1016/j.crphar.2021.100037] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 11/25/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. Despite decades of research driving advancements in drug development and discovery against TB, it still leads among the causes of deaths due to infectious diseases. We are yet to develop an effective treatment course or a vaccine that could help us eradicate TB. Some key issues being prolonged treatment courses, inadequate drug intake, and the high dropout rate of patients during the treatment course. Hence, we require drugs that could accelerate the elimination of bacteria, shortening the treatment duration. It is high time we evaluate the probable lacunas in research holding us back in coming up with a treatment regime and/or a vaccine that would help control TB spread. Years of dedicated and focused research provide us with a lead molecule that goes through several tests, trials, and modifications to transform into a ‘drug’. The transformation from lead molecule to ‘drug’ is governed by several factors determining its success or failure. In the present review, we have discussed drugs that are part of the currently approved treatment regimen, their limitations, vaccine candidates under trials, and current issues in research that need to be addressed. While we are waiting for the path-breaking treatment for TB, these factors should be considered during the ongoing quest for novel yet effective anti-tubercular. If these issues are addressed, we could hope to develop a more effective treatment that would cure multi/extremely drug-resistant TB and help us meet the WHO's targets for controlling the global TB pandemic within the prescribed timeline. Despite numerous drugs and vaccines undergoing clinical trials, we have not been able to control TB. Majority of articles list the advancements in the TB drug-discovery; here we review the limitations of existing treatments. Brief description of aspects to be considered for the development of one but effective drug/preventive vaccine. A glance at pediatric tuberculosis: the most neglected area of TB research which requires dedicated research efforts. A concise narrative for research aspects to be re-evaluated by both academia and pharmaceutical R&D teams.
Collapse
Key Words
- BCG, Bacille Calmette-Guérin
- BDQ, Bedaquiline
- BSL, Biosafety level
- CDC, Center for Disease Control and Prevention
- Drug discovery
- Drug resistance
- EMB, Ethambutol
- ESX, ESAT-6 secretion system
- ETC, Electron transport chain
- ETH, Ethionamide
- FAS-1, Fatty acid synthase 1
- FDA, Food and Drug Administration
- INH, Isoniazid
- LPZ, Lansoprazole
- MDR, Multidrug-resistant
- Mtb, Mycobacterium tuberculosis
- POA, pyrazinoic acid
- PZA, Pyrazinamide
- RD, the region of differences
- RIF, Rifampicin
- T7SS, Type 7 secretion system
- TB treatment
- TB, Tuberculosis
- TST, Tuberculin skin test
- Tuberculosis
- WHO, World health organization
- XDR, Extremely drug-resistant
Collapse
Affiliation(s)
- Ameya D Bendre
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| | - Peter J Peters
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Nanoscopy, Maastricht University, Maastricht, the Netherlands
| | - Janesh Kumar
- Laboratory of Membrane Protein Biology, National Centre for Cell Science, NCCS Complex, S. P. Pune University, Maharashtra, Pune, 411007, India
| |
Collapse
|
26
|
Grosu-Creangă IA, Trofor AC, Crișan-Dabija RA, Robu-Popa D, Ghiciuc CM, Lupușoru EC. Adverse effects induced by second-line antituberculosis drugs: an update based on last WHO treatment recommendations for drug-resistant tuberculosis. PNEUMOLOGIA 2021; 70:117-126. [DOI: 10.2478/pneum-2022-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Abstract
Introduction: Tuberculosis (TB), a common condition worldwide, is still among the main infectious diseases with high mortality rates, both in adults and infants. Drug-resistant tuberculosis (DR-TB) drugs, revised by the World Health Organization (WHO) in 2018, are a prolonged and complex therapy associated with many adverse drug effects (ADEs).
Aim: To systematically review the ADEs of second-line anti-TB drugs reported in multicentric studies published after the latest WHO guidelines, compared with those from clinical trials published before 2018.
Material and methods: A PubMed search, using keywords (TB OR DR-TB) AND (adverse effects) AND “second-line anti-TB drugs”, resulted in 56 studies. Only two studies, published after the last update of WHO guidelines in 2018, reported ADEs.
Results: A total of 223 participants were included in the two selected studies. The use of multidrug regimens has been associated with an increased incidence of ADEs: 42 ADEs were recorded in 30 patients (26.3%) in the first study, while all patients had at least one ADE that occurred or worsened during treatment; and 19 (17%) had severe ADEs in the second study. However, both studies had a good favourable outcome rate (90% and 79.8%, respectively). Gastrointestinal disturbances, hepatotoxicity, headache and dizziness are the most common ADEs induced by a majority of second-line DR-TB treatments. A special attention should be given in the case of association of drugs determining QT interval (QT) prolongation on electrocardiogram, or psychiatric disorders.
Conclusions: Proper strategies about ADE management have to be planned for timely detection of the possible ADEs that can be induced by second-line anti-TB therapy.
Collapse
Affiliation(s)
- Ionela-Alina Grosu-Creangă
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Antigona Carmen Trofor
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Radu Adrian Crișan-Dabija
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Daniela Robu-Popa
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Clinical Hospital of Pulmonary Diseases , Iaşi , Romania
| | - Cristina Mihaela Ghiciuc
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Department of Morpho-Functional Sciences II – Pharmacology and Clinical Pharmacology at “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
| | - Elena Cătălina Lupușoru
- “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
- Department of Morpho-Functional Sciences II – Pharmacology and Clinical Pharmacology at “Grigore T. Popa” University of Medicine and Pharmacy Iași , Romania
| |
Collapse
|
27
|
Santucci P, Greenwood DJ, Fearns A, Chen K, Jiang H, Gutierrez MG. Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat Commun 2021; 12:3816. [PMID: 34155215 PMCID: PMC8217510 DOI: 10.1038/s41467-021-24127-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Abstract
To be effective, chemotherapy against tuberculosis (TB) must kill the intracellular population of the pathogen, Mycobacterium tuberculosis. However, how host cell microenvironments affect antibiotic accumulation and efficacy remains unclear. Here, we use correlative light, electron, and ion microscopy to investigate how various microenvironments within human macrophages affect the activity of pyrazinamide (PZA), a key antibiotic against TB. We show that PZA accumulates heterogeneously among individual bacteria in multiple host cell environments. Crucially, PZA accumulation and efficacy is maximal within acidified phagosomes. Bedaquiline, another antibiotic commonly used in combined TB therapy, enhances PZA accumulation via a host cell-mediated mechanism. Thus, intracellular localisation and specific microenvironments affect PZA accumulation and efficacy. Our results may explain the potent in vivo efficacy of PZA, compared to its modest in vitro activity, and its critical contribution to TB combination chemotherapy.
Collapse
Affiliation(s)
- Pierre Santucci
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Daniel J Greenwood
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.,Institute of Molecular Systems Biology, ETH, Zurich, Switzerland
| | - Antony Fearns
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Kai Chen
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia
| | - Haibo Jiang
- School of Molecular Sciences, University of Western Australia, Perth, AU, Australia. .,Department of Chemistry, The University of Hong Kong, Hong Kong, China.
| | - Maximiliano G Gutierrez
- Host-Pathogen Interactions in Tuberculosis Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
28
|
Ragunathan P, Cole M, Latka C, Aragaw WW, Hegde P, Shin J, Subramanian Manimekalai MS, Rishikesan S, Aldrich CC, Dick T, Grüber G. Mycobacterium tuberculosis PanD Structure-Function Analysis and Identification of a Potent Pyrazinoic Acid-Derived Enzyme Inhibitor. ACS Chem Biol 2021; 16:1030-1039. [PMID: 33984234 DOI: 10.1021/acschembio.1c00131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common strategy employed in antibacterial drug discovery is the targeting of biosynthetic processes that are essential and specific for the pathogen. Specificity in particular avoids undesirable interactions with potential enzymatic counterparts in the human host, and it ensures on-target toxicity. Synthesis of pantothenate (Vitamine B5), which is a precursor of the acyl carrier coenzyme A, is an example of such a pathway. In Mycobacterium tuberculosis (Mtb), which is the causative agent of tuberculosis (TB), pantothenate is formed by pantothenate synthase, utilizing D-pantoate and β-Ala as substrates. β-Ala is mainly formed by the decarboxylation of l-aspartate, generated by the decarboxylase PanD, which is a homo-oliogomer in solution. Pyrazinoic acid (POA), which is the bioactive form of the TB prodrug pyrazinamide, binds and inhibits PanD activity weakly. Here, we generated a library of recombinant Mtb PanD mutants based on structural information and PZA/POA resistance mutants. Alterations in oligomer formation, enzyme activity, and/or POA binding were observed in respective mutants, providing insights into essential amino acids for Mtb PanD's proper structural assembly, decarboxylation activity and drug interaction. This information provided the platform for the design of novel POA analogues with modifications at position 3 of the pyrazine ring. Analogue 2, which incorporates a bulky naphthamido group at this position, displayed a 1000-fold increase in enzyme inhibition, compared to POA, along with moderately improved antimycobacterial activity. The data demonstrate that an improved understanding of mechanistic and enzymatic features of key metabolic enzymes can stimulate design of more-potent PanD inhibitors.
Collapse
Affiliation(s)
- Priya Ragunathan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Malcolm Cole
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Chitra Latka
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
| | - Pooja Hegde
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Joon Shin
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | - Sankaranarayanan Rishikesan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Courtney C. Aldrich
- University of Minnesota, College of Pharmacy, Department of Medicinal Chemistry 8-101 Weaver-Densford Hall 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, New Jersey 07110, United States
- Department of Medical Sciences, Hackensack Meridian School of Medicine, 123 Metro Boulevard, Nutley, New Jersey 07110, United States
- Department of Microbiology and Immunology, Georgetown University, 3900 Reservoir Road NW Medical-Dental Building, Washington, District of Columbia 20007, United States
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| |
Collapse
|
29
|
Alsayed SSR, Lun S, Payne A, Bishai WR, Gunosewoyo H. Facile synthesis and antimycobacterial activity of isoniazid, pyrazinamide and ciprofloxacin derivatives. Chem Biol Drug Des 2021; 97:1137-1150. [PMID: 33638304 PMCID: PMC8113106 DOI: 10.1111/cbdd.13836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/28/2021] [Indexed: 12/14/2022]
Abstract
Several rationally designed isoniazid (INH), pyrazinamide (PZA) and ciprofloxacin (CPF) derivatives were conveniently synthesized and evaluated in vitro against H37Rv Mycobacterium tuberculosis (M. tb) strain. CPF derivative 16 displayed a modest activity (MIC = 16 µg/ml) and was docked into the M. tb DNA gyrase. Isoniazid-pyrazinoic acid (INH-POA) hybrid 21a showed the highest potency in our study (MIC = 2 µg/ml). It also retained its high activity against the other tested M. tb drug-sensitive strain (DS) V4207 (MIC = 4 µg/ml) and demonstrated negligible cytotoxicity against Vero cells (IC50 ≥ 64 µg/ml). Four tested drug-resistant (DR) M. tb strains were refractory to 21a, similar to INH, whilst being sensitive to CPF. Compound 21a was also inactive against two non-tuberculous mycobacterial (NTM) strains, suggesting its selective activity against M. tb. The noteworthy activity of 21a against DS strains and its low cytotoxicity highlight its potential to treat DS M. tb.
Collapse
Affiliation(s)
- Shahinda S. R. Alsayed
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| | - Shichun Lun
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
| | - Alan Payne
- School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - William R. Bishai
- Center for Tuberculosis Research, Department of Medicine, Division of Infectious Disease, Johns Hopkins School of Medicine, 1550, Orleans Street, Baltimore, Maryland, 21231-1044, United States
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, Maryland, 20815-6789, United States
| | - Hendra Gunosewoyo
- School of Pharmacy and Biomedical Sciences, Faculty of Health Sciences, Curtin University, Bentley, Perth, WA 6102, Australia
| |
Collapse
|
30
|
Yuan T, Werman JM, Sampson NS. The pursuit of mechanism of action: uncovering drug complexity in TB drug discovery. RSC Chem Biol 2021; 2:423-440. [PMID: 33928253 PMCID: PMC8081351 DOI: 10.1039/d0cb00226g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 12/23/2020] [Indexed: 12/21/2022] Open
Abstract
Whole cell-based phenotypic screens have become the primary mode of hit generation in tuberculosis (TB) drug discovery during the last two decades. Different drug screening models have been developed to mirror the complexity of TB disease in the laboratory. As these culture conditions are becoming more and more sophisticated, unraveling the drug target and the identification of the mechanism of action (MOA) of compounds of interest have additionally become more challenging. A good understanding of MOA is essential for the successful delivery of drug candidates for TB treatment due to the high level of complexity in the interactions between Mycobacterium tuberculosis (Mtb) and the TB drug used to treat the disease. There is no single "standard" protocol to follow and no single approach that is sufficient to fully investigate how a drug restrains Mtb. However, with the recent advancements in -omics technologies, there are multiple strategies that have been developed generally in the field of drug discovery that have been adapted to comprehensively characterize the MOAs of TB drugs in the laboratory. These approaches have led to the successful development of preclinical TB drug candidates, and to a better understanding of the pathogenesis of Mtb infection. In this review, we describe a plethora of efforts based upon genetic, metabolomic, biochemical, and computational approaches to investigate TB drug MOAs. We assess these different platforms for their strengths and limitations in TB drug MOA elucidation in the context of Mtb pathogenesis. With an emphasis on the essentiality of MOA identification, we outline the unmet needs in delivering TB drug candidates and provide direction for further TB drug discovery.
Collapse
Affiliation(s)
- Tianao Yuan
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Joshua M. Werman
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| | - Nicole S. Sampson
- Department of Chemistry, Stony Brook UniversityStony BrookNY 11794-3400USA+1-631-632-5738+1-631-632-7952
| |
Collapse
|
31
|
Weng T, Sun F, Li Y, Chen J, Chen X, Li R, Ge S, Zhao Y, Zhang W. Refining MDR-TB treatment regimens for ultra short therapy (TB-TRUST): study protocol for a randomized controlled trial. BMC Infect Dis 2021; 21:183. [PMID: 33596848 PMCID: PMC7888137 DOI: 10.1186/s12879-021-05870-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 01/17/2023] Open
Abstract
Background Multidrug-resistant tuberculosis (MDR-TB) are unsatisfied to treat, pressing more effective and innovative treatment regimens. New efficient regimens for MDR-TB have obtained high treatment success rates. However, those regimens without drug susceptibility testing (DST) are also likely to contribute to the emergence of resistance. Precision treatments guided by DST might optimize the patients’ treatment outcome individually and minimize resistance amplification. Methods TB-TRUST is a phase III, multicenter, open-label, randomized controlled clinical trial of non-inferiority comparing the treatment success rate between the World Health Organization (WHO) shorter regimen and the refined ultra-short regimen for fluoroquinolones and second-line injectable drugs susceptible rifampicin-resistant TB. The control arm uses the WHO injectable-containing shorter regimen for 36–44 weeks depending on time of sputum smear conversion. The investigational arm uses a refined ultra-short regimen guided by molecular DST to pyrazinamide via whole-genome sequencing (WGS) to optimize the treatment of pyrazinamide-susceptible patients with levofloxacin, linezolid, cycloserine and pyrazinamide for 24–32 weeks and pyrazinamide-resistant with levofloxacin, linezolid, cycloserine and clofazimine for 36–44 weeks. The primary outcome is the treatment success rate without relapse at 84 weeks after treatment initiation. Secondary outcomes include the time of sputum culture conversion and occurrence of adverse events. Assuming α = 0.025 level of significance (one-sided test), a power of 80%, a < 10% difference in treatment success rate between control arm and investigational (80% vs. 82%), and a 5% lost follow-up rate, the number of participants per arm to show non-inferiority was calculated as 177(354 in total). Discussion Rapid molecular testing distinguishes patients who are eligible for shorter regimen with fluoroquinolone and the WGS-guided results shorten the treatment to 6 months for pyrazinamide susceptible patients. It’s foreseeable that not only novel developed medicines, but also traditional powerful medicines with the susceptibility confirmed by DST are the key factors to ensure the effect of anti-MDR-TB drugs. As a DST-guided precision treatment, TB-TRUST are expected to optimize therapy outcome in more patients who cannot afford the expensive new medicines and minimize and even avoid resistance amplification with the rational use of anti-TB drugs. Trail registration ClinicalTrial.gov, NCT03867136. Registered on March 7, 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-05870-w.
Collapse
Affiliation(s)
- Taoping Weng
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feng Sun
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yang Li
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiazhen Chen
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinchang Chen
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Rong Li
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Shijia Ge
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yanlin Zhao
- National Center for Tuberculosis Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Wenhong Zhang
- Departments of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
32
|
Rohde KH, Sorci L. The Prospective Synergy of Antitubercular Drugs With NAD Biosynthesis Inhibitors. Front Microbiol 2021; 11:634640. [PMID: 33584600 PMCID: PMC7873932 DOI: 10.3389/fmicb.2020.634640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 12/23/2020] [Indexed: 11/29/2022] Open
Abstract
Given the upsurge of drug-resistant tuberculosis worldwide, there is much focus on developing novel drug combinations allowing shorter treatment duration and a lower toxicity profile. Nicotinamide adenine dinucleotide (NAD) biosynthesis targeting is acknowledged as a promising strategy to combat drug-susceptible, drug-resistant, and latent tuberculosis (TB) infections. In this review, we describe the potential synergy of NAD biosynthesis inhibitors with several TB-drugs in prospective novel combination therapy. Despite not directly targeting the essential NAD cofactor's biosynthesis, several TB prodrugs either require a NAD biosynthesis enzyme to be activated or form a toxic chemical adduct with NAD(H) itself. For example, pyrazinamide requires the action of nicotinamidase (PncA), often referred to as pyrazinamidase, to be converted into its active form. PncA is an essential player in NAD salvage and recycling. Since most pyrazinamide-resistant strains are PncA-defective, a combination with downstream NAD-blocking molecules may enhance pyrazinamide activity and possibly overcome the resistance mechanism. Isoniazid, ethionamide, and delamanid form NAD adducts in their active form, partly perturbing the redox cofactor metabolism. Indeed, NAD depletion has been observed in Mycobacterium tuberculosis (Mtb) during isoniazid treatment, and activation of the intracellular NAD phosphorylase MbcT toxin potentiates its effect. Due to the NAD cofactor's crucial role in cellular energy production, additional synergistic correlations of NAD biosynthesis blockade can be envisioned with bedaquiline and other drugs targeting energy-metabolism in mycobacteria. In conclusion, future strategies targeting NAD metabolism in Mtb should consider its potential synergy with current and other forthcoming TB-drugs.
Collapse
Affiliation(s)
- Kyle H. Rohde
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, United States
| | - Leonardo Sorci
- Division of Bioinformatics and Biochemistry, Department of Materials, Environmental Sciences and Urban Planning, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
33
|
Goossens SN, Sampson SL, Van Rie A. Mechanisms of Drug-Induced Tolerance in Mycobacterium tuberculosis. Clin Microbiol Rev 2020; 34:e00141-20. [PMID: 33055230 PMCID: PMC7566895 DOI: 10.1128/cmr.00141-20] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Successful treatment of tuberculosis (TB) can be hampered by Mycobacterium tuberculosis populations that are temporarily able to survive antibiotic pressure in the absence of drug resistance-conferring mutations, a phenomenon termed drug tolerance. We summarize findings on M. tuberculosis tolerance published in the past 20 years. Key M. tuberculosis responses to drug pressure are reduced growth rates, metabolic shifting, and the promotion of efflux pump activity. Metabolic shifts upon drug pressure mainly occur in M. tuberculosis's lipid metabolism and redox homeostasis, with reduced tricarboxylic acid cycle activity in favor of lipid anabolism. Increased lipid anabolism plays a role in cell wall thickening, which reduces sensitivity to most TB drugs. In addition to these general mechanisms, drug-specific mechanisms have been described. Upon isoniazid exposure, M. tuberculosis reprograms several pathways associated with mycolic acid biosynthesis. Upon rifampicin exposure, M. tuberculosis upregulates the expression of its drug target rpoB Upon bedaquiline exposure, ATP synthesis is stimulated, and the transcription factors Rv0324 and Rv0880 are activated. A better understanding of M. tuberculosis's responses to drug pressure will be important for the development of novel agents that prevent the development of drug tolerance following treatment initiation. Such agents could then contribute to novel TB treatment-shortening strategies.
Collapse
Affiliation(s)
- Sander N Goossens
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| | - Samantha L Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research/SA MRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Family Medicine and Population Health (FAMPOP), Faculty of Medicine and Health Sciences, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
34
|
Riccardi N, Canetti D, Rodari P, Besozzi G, Saderi L, Dettori M, Codecasa LR, Sotgiu G. Tuberculosis and pharmacological interactions: A narrative review. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2020; 2:100007. [PMID: 34909643 PMCID: PMC8663953 DOI: 10.1016/j.crphar.2020.100007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/04/2023] Open
Abstract
Even if major improvements in therapeutic regimens and treatment outcomes have been progressively achieved, tuberculosis (TB) remains the leading cause of death from a single infectious microorganism. To improve TB treatment success as well as patients' quality of life, drug-drug-interactions (DDIs) need to be wisely managed. Comprehensive knowledge of anti-TB drugs, pharmacokinetics and pharmacodynamic (PK/PD) parameters, potential patients' changes in absorption and distribution, possible side effects and interactions, is mandatory to built effective anti-TB regimens. Optimization of treatments and adherence to international guidelines can help bend the curve of TB-related mortality and, ultimately, decrease the likelihood of treatment failure and drop-out during anti-TB treatment. Aim of this paper is to describe the most relevant DDIs between anti-TB and other drugs used in daily clinical practice, providing an updated and "easy-to-use" guide to minimize adverse effects, drop-outs and, in the long run, increase treatment success.
Collapse
Affiliation(s)
- Niccolò Riccardi
- StopTB Italia Onlus, Milan, Italy
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Diana Canetti
- StopTB Italia Onlus, Milan, Italy
- Clinic of Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Rodari
- Department of Infectious - Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | | | - Laura Saderi
- StopTB Italia Onlus, Milan, Italy
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Marco Dettori
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Luigi R. Codecasa
- StopTB Italia Onlus, Milan, Italy
- Regional TB Reference Centre, Villa Marelli Inst., Niguarda Hospital, Milan, Italy
| | - Giovanni Sotgiu
- StopTB Italia Onlus, Milan, Italy
- Clinical Epidemiology and Medical Statistics Unit, Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
35
|
Butman HS, Kotzé TJ, Dowd CS, Strauss E. Vitamin in the Crosshairs: Targeting Pantothenate and Coenzyme A Biosynthesis for New Antituberculosis Agents. Front Cell Infect Microbiol 2020; 10:605662. [PMID: 33384970 PMCID: PMC7770189 DOI: 10.3389/fcimb.2020.605662] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/23/2020] [Indexed: 01/05/2023] Open
Abstract
Despite decades of dedicated research, there remains a dire need for new drugs against tuberculosis (TB). Current therapies are generations old and problematic. Resistance to these existing therapies results in an ever-increasing burden of patients with disease that is difficult or impossible to treat. Novel chemical entities with new mechanisms of action are therefore earnestly required. The biosynthesis of coenzyme A (CoA) has long been known to be essential in Mycobacterium tuberculosis (Mtb), the causative agent of TB. The pathway has been genetically validated by seminal studies in vitro and in vivo. In Mtb, the CoA biosynthetic pathway is comprised of nine enzymes: four to synthesize pantothenate (Pan) from l-aspartate and α-ketoisovalerate; five to synthesize CoA from Pan and pantetheine (PantSH). This review gathers literature reports on the structure/mechanism, inhibitors, and vulnerability of each enzyme in the CoA pathway. In addition to traditional inhibition of a single enzyme, the CoA pathway offers an antimetabolite strategy as a promising alternative. In this review, we provide our assessment of what appear to be the best targets, and, thus, which CoA pathway enzymes present the best opportunities for antitubercular drug discovery moving forward.
Collapse
Affiliation(s)
- Hailey S. Butman
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Timothy J. Kotzé
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Cynthia S. Dowd
- Department of Chemistry, George Washington University, Washington, DC, United States
| | - Erick Strauss
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
36
|
Shi J, Su R, Zheng D, Zhu Y, Ma X, Wang S, Li H, Sun D. Pyrazinamide Resistance and Mutation Patterns Among Multidrug-Resistant Mycobacterium tuberculosis from Henan Province. Infect Drug Resist 2020; 13:2929-2941. [PMID: 32903869 PMCID: PMC7445508 DOI: 10.2147/idr.s260161] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE This study was designed to identify the phenotypic and genotypic characteristics of pyrazinamide (PZA) resistance among multidrug-resistant Mycobacterium tuberculosis (MDR-TB) from Henan and to evaluate the efficacy of pncA, rpsA, and panD mutations in predicting PZA resistance. MATERIALS AND METHODS A total of 152 MDR strains were included in this study. The Bactec MGIT system was used to determine PZA susceptibility for all strains. The pncA, rpsA, and panD genes were sequenced to identify any mutations, and the sequences were then aligned with the sequence of standard strain H37Rv. Moreover, the correlations between PZA-resistant phenotypes and treatment outcomes were analysed. RESULTS Of the152 strains, 105 had a PZA-resistant phenotype, and 102 harboured the pncA mutation. The PZA resistance rate was higher in the strains with resistance to all four first-line drugs and those that were pre-extensively drug-resistant (pre-XDR) and extensively drug-resistant (XDR). A total of 100 different pncA mutation patterns were identified, including 80 point mutations and 20 insertions/deletions, and 32 new pncA mutation patterns were detected. In this study, 13 strains had multiple mutations. Of the11 PZA-resistant strains without pncA mutations, two harboured the rpsA mutation, and one harboured the panD mutation. With PZA susceptibility results as the reference, single-gene pncA sequencing had sensitivity of 89.52% and specificity of 89.36%. With the combination of rpsA and panD, the sensitivity increased to 92.38%, and the specificity remained the same. No significant differences were observed in the sputum smear/culture conversion rate between PZA-resistant patients and PZA-sensitive patients. However, PZA resistance was related to the time to sputum smear/culture conversion (P = 0.018). CONCLUSION The combination of pncA, rpsA, and panD was beneficial for the timely diagnosis of PZA resistance and could provide a laboratory basis for customizing treatment regimens for MDR-TB patients.
Collapse
Affiliation(s)
- Jie Shi
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Ruyue Su
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Danwei Zheng
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Yankun Zhu
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Xiaoguang Ma
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Shaohua Wang
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Hui Li
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| | - Dingyong Sun
- Henan Province Center for Disease Control and Prevention, Zhengzhou, Henan Province, People’s Republic of China
| |
Collapse
|
37
|
Juhás M, Kučerová L, Horáček O, Janďourek O, Kubíček V, Konečná K, Kučera R, Bárta P, Janoušek J, Paterová P, Kuneš J, Doležal M, Zitko J. N-Pyrazinoyl Substituted Amino Acids as Potential Antimycobacterial Agents-The Synthesis and Biological Evaluation of Enantiomers. Molecules 2020; 25:E1518. [PMID: 32230728 PMCID: PMC7181131 DOI: 10.3390/molecules25071518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis is an infectious disease caused by Mycobacterium tuberculosis (Mtb), each year causing millions of deaths. In this article, we present the synthesis and biological evaluations of new potential antimycobacterial compounds containing a fragment of the first-line antitubercular drug pyrazinamide (PZA), coupled with methyl or ethyl esters of selected amino acids. The antimicrobial activity was evaluated on a variety of (myco)bacterial strains, including Mtb H37Ra, M. smegmatis, M. aurum, Staphylococcus aureus, Pseudomonas aeruginosa, and fungal strains, including Candida albicans and Aspergillus flavus. Emphasis was placed on the comparison of enantiomer activities. None of the synthesized compounds showed any significant activity against fungal strains, and their antibacterial activities were also low, the best minimum inhibitory concentration (MIC) value was 31.25 µM. However, several compounds presented high activity against Mtb. Overall, higher activity was seen in derivatives containing ʟ-amino acids. Similarly, the activity seems tied to the more lipophilic compounds. The most active derivative contained phenylglycine moiety (PC-ᴅ/ʟ-Pgl-Me, MIC < 1.95 µg/mL). All active compounds possessed low cytotoxicity and good selectivity towards Mtb. To the best of our knowledge, this is the first study comparing the activities of the ᴅ- and ʟ-amino acid derivatives of pyrazinamide as potential antimycobacterial compounds.
Collapse
Affiliation(s)
- Martin Juhás
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Lucie Kučerová
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Horáček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Ondřej Janďourek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Vladimír Kubíček
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Klára Konečná
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Radim Kučera
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavel Bárta
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jiří Janoušek
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Pavla Paterová
- University Hospital Hradec Králové, Department of Clinical Microbiology, Sokolská 581, 500 05 Hradec Králové, Czech Republic;
| | - Jiří Kuneš
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Martin Doležal
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| | - Jan Zitko
- Charles University, Faculty of Pharmacy in Hradec Králové, Akademika Heyrovského 1203, Hradec Králové, Czech Republic; (L.K.); (O.H.); (O.J.); (V.K.); (K.K.); (R.K.); (P.B.); (J.J.); (J.K.); (M.D.)
| |
Collapse
|
38
|
Novel pyrazine based anti-tubercular agents: Design, synthesis, biological evaluation and in silico studies. Bioorg Chem 2020; 96:103610. [DOI: 10.1016/j.bioorg.2020.103610] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/02/2019] [Accepted: 01/20/2020] [Indexed: 12/31/2022]
|