1
|
Yuan Y, Chen L. Transporters in vitamin uptake and cellular metabolism: impacts on health and disease. LIFE METABOLISM 2025; 4:loaf008. [PMID: 40444179 PMCID: PMC12121362 DOI: 10.1093/lifemeta/loaf008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/20/2025] [Accepted: 03/01/2025] [Indexed: 06/02/2025]
Abstract
Vitamins are vital nutrients essential for metabolism, functioning as coenzymes, antioxidants, and regulators of gene expression. Their absorption and metabolism rely on specialized transport proteins that ensure bioavailability and cellular utilization. Water-soluble vitamins, including B-complex and vitamin C, are transported by solute carrier (SLC) family proteins and ATP-binding cassette (ABC) transporters for efficient uptake and cellular distribution. Fat-soluble vitamins (A, D, E, and K) rely on lipid-mediated pathways through proteins like scavenger receptor class B type I (SR-BI), CD36, and Niemann-Pick C1-like 1 (NPC1L1), integrating their absorption with lipid metabolism. Defective vitamin transporters are associated with diverse metabolic disorders, including neurological, hematological, and mitochondrial diseases. Advances in structural and functional studies of vitamin transporters highlight their tissue-specific roles and regulatory mechanisms, shedding light on their impact on health and disease. This review emphasizes the significance of vitamin transporters and their potential as therapeutic targets for deficiencies and related chronic conditions.
Collapse
Affiliation(s)
- Yaxuan Yuan
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| | - Ligong Chen
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, China
- State Key Laboratory of Metabolic Dysregulation & Prevention and Treatment of Esophageal Cancer, Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of China, Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical sciences, Zhengzhou University, Zhengzhou, Henan, China, 450001
| |
Collapse
|
2
|
Di J, Song L, Liu L, Di Y, Chen S, Xiang C. The unexpected role of B vitamins in osteoarthritis: a call for caution. Food Funct 2025; 16:3658-3670. [PMID: 40244921 DOI: 10.1039/d4fo05162a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
Background: The purpose of this study was to investigate the single and mixed effects of B vitamins on OA. Methods: Data from the National Health and Nutrition Examination Survey (NHANES) database, from 2003 to 2018, were extracted. A weighted multiple logistic regression model was used to assess the association between B vitamin intake alone and OA. In addition, Bayesian kernel machine regression (BKMR), weighted quantile sum (WQS) regression and quantile g-calculation (qgcomp) models were used to evaluate the combined effects of six B vitamins on OA. Additionally, restricted cubic spline (RCS) was used to assess possible nonlinear associations between individual B vitamins and OA. Results: The study found that vitamin B1 (OR = 1.17, 95%CI = 1.05-1.30), vitamin B2 (OR = 1.12, 95%CI = 1.02-1.22), vitamin B12 (OR = 1.01, 95%CI = 1.00-1.01) and total folate (OR = 1.001, 95%CI = 1.000-1.001) increased the risk of OA. Subgroup analysis showed that the association was more significant in people older than 65 and in women. In addition, the mixed effect model also suggested that the mixed effect of six B vitamin mixtures on OA risk was greater. Among them, vitamin B2 and vitamin B12 contributed the most to the promotion of OA disease by B-complex vitamins. Folic acid, however, showed a protective effect on the bone and joints in the mixed effect model. Conclusion: The data show that the intake of B vitamins accelerates the occurrence and progression of OA. People with OA disease and those at high risk should be cautious about using vitamin B as a dietary supplement.
Collapse
Affiliation(s)
- Jingkai Di
- Department of Orthopedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, China.
| | - Liying Song
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lujia Liu
- School of Basic Medical Sciences, The Stomatological Hospital of Shanxi Medical University, Taiyuan, China
| | - Yijing Di
- The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Shuai Chen
- Department of Orthopedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, China.
| | - Chuan Xiang
- Department of Orthopedics, Second Hospital of Shanxi Medical University, No. 382, Wuyi Road, Xinghualing District, Taiyuan, Shanxi, China.
| |
Collapse
|
3
|
Zhu J, Liao X, Du L, Lv P, Deng J. Associations of serum folate and vitamin B 12 levels with all-cause mortality among patients with metabolic dysfunction associated steatotic liver disease: a prospective cohort study. Front Endocrinol (Lausanne) 2024; 15:1426103. [PMID: 39703860 PMCID: PMC11655224 DOI: 10.3389/fendo.2024.1426103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 11/11/2024] [Indexed: 12/21/2024] Open
Abstract
Introduction Serum folate and vitamin B12 levels correlate with the prevalence of fatty liver disease, but it is not clear how they affect mortality. Therefore, this study aimed to investigate the association of serum folate and vitamin B12 concentrations with all-cause mortality in individuals with metabolic dysfunction-associated steatotic liver disease (MASLD). Methods MASLD subjects were from the Third National Health and Nutrition Examination Survey (NHANES III) in the United States, and mortality follow-up data were obtained by linkage to death records from the National Death Index. Multivariable Cox proportional regression models and restricted cubic spline (RCS) models were used to evaluate the association of serum folate/vitamin B12 with all-cause mortality in the MASLD population. Results 3,636 and 2,125 MASLD individuals were included in the analyses related to serum folate and vitamin B12, respectively. During a follow-up period of more than 20 years, the RCS models demonstrated significant nonlinear associations of both serum folate (P <0.001) and vitamin B12 (P =0.016) with all-cause mortality in MASLD. When their serum concentrations were below the median level, the risk of all-cause mortality decreased with increasing concentration, reaching a lowest risk around the median level, and then leveled off. In the multivariable cox regression model, for vitamin B12, the risk of all-cause mortality was reduced by 42% and 28% in the third and fourth quartile groups, respectively, compared with the lowest quartile group (hazard ratio [HR]=0.58, 95% CI: 0.39-0.86, P =0.008; HR =0.72, 95% CI: 0.54-0.96, P=0.026, respectively). For folate, the risk of all-cause mortality was reduced by 28% in the third quartile compared with the lowest quartile (HR =0.72, 95% CI: 0.57-0.91, P =0.005). Conclusion This longitudinal cohort study suggests that low serum folate and vitamin B12 levels in patients with MASLD are significantly associated with an elevated risk of all-cause mortality.
Collapse
Affiliation(s)
- Jiaxin Zhu
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Du
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Pengju Lv
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
4
|
Yee SW, Wang J, Giacomini KM. Rare Diseases Linked to Mutations in Vitamin Transporters Expressed in the Human Blood-Brain Barrier. Clin Pharmacol Ther 2024; 116:1513-1520. [PMID: 39234898 PMCID: PMC11567784 DOI: 10.1002/cpt.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Recent advances have significantly enhanced our understanding of the role of membrane transporters in drug disposition, particularly focusing on their influence on pharmacokinetics, and consequently, pharmacodynamics. The relevance of these transporters in clinical pharmacology is well acknowledged. Recent research has also underscored the critical role of membrane transporters as targets in human diseases, including their involvement in rare genetic disorders. This review focuses on transporters for water-soluble B vitamins, such as thiamine, riboflavin, and biotin, essential cofactors for metabolic enzymes. Mutations in transporters, such as SLC19A3 (thiamine), SLC52A2, and SLC52A3 (riboflavin), and SLC5A6 (multiple B vitamins including pantothenic acid and biotin) are linked to severe neurological disorders due to their role in the blood-brain barrier, which is crucial for brain vitamin supply. Current treatments, mainly involving vitamin supplementation, often result in variable response. This review also provides a short perspective on the role of the transporters in the blood-cerebrospinal fluid barrier and highlights the potential development of pharmacologic treatments for rare disorders associated with mutations in these transporters.
Collapse
Affiliation(s)
- Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| | - Joanne Wang
- Department of Pharmaceutics, University of Washington
| | - Kathleen M. Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco
| |
Collapse
|
5
|
Zheng X, Xia C, Liu M, Wu H, Yan J, Zhang Z, Huang Y, Gu Q, Li P. Role of folic acid in regulating gut microbiota and short-chain fatty acids based on an in vitro fermentation model. Appl Microbiol Biotechnol 2024; 108:40. [PMID: 38175236 DOI: 10.1007/s00253-023-12825-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 10/04/2023] [Accepted: 10/14/2023] [Indexed: 01/05/2024]
Abstract
Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.
Collapse
Affiliation(s)
- Xiaogu Zheng
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Chenlan Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Manman Liu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Hongchen Wu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Jiaqian Yan
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Zihao Zhang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Yingjie Huang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
6
|
Yu Y, Chen CZ, Celardo I, Tan BWZ, Hurcomb JD, Leal NS, Popovic R, Loh SHY, Martins LM. Enhancing mitochondrial one-carbon metabolism is neuroprotective in Alzheimer's disease models. Cell Death Dis 2024; 15:856. [PMID: 39582067 PMCID: PMC11586400 DOI: 10.1038/s41419-024-07179-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/26/2024]
Abstract
Alzheimer's disease (AD) is the most common form of age-related dementia. In AD, the death of neurons in the central nervous system is associated with the accumulation of toxic amyloid β peptide (Aβ) and mitochondrial dysfunction. Mitochondria are signal transducers of metabolic and biochemical information, and their impairment can compromise cellular function. Mitochondria compartmentalise several pathways, including folate-dependent one-carbon (1C) metabolism and electron transport by respiratory complexes. Mitochondrial 1C metabolism is linked to electron transport through complex I of the respiratory chain. Here, we analysed the proteomic changes in a fly model of AD by overexpressing a toxic form of Aβ (Aβ-Arc). We found that expressing Aβ-Arc caused alterations in components of both complex I and mitochondrial 1C metabolism. Genetically enhancing mitochondrial 1C metabolism through Nmdmc improved mitochondrial function and was neuroprotective in fly models of AD. We also found that exogenous supplementation with the 1C donor folinic acid improved mitochondrial health in both mammalian cells and fly models of AD. We found that genetic variations in MTHFD2L, the human orthologue of Nmdmc, were linked to AD risk. Additionally, Mendelian randomisation showed that increased folate intake decreased the risk of developing AD. Overall, our data suggest enhancement of folate-dependent 1C metabolism as a viable strategy to delay the progression and attenuate the severity of AD.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
- Healthspan Biotics Ltd, Milner Therapeutics Institute, Cambridge Biomedical Campus, Cambridge, UK.
| | - Civia Z Chen
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Ivana Celardo
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Bryan Wei Zhi Tan
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - James D Hurcomb
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Nuno Santos Leal
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Rebeka Popovic
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - Samantha H Y Loh
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK
| | - L Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge, CB2 1QR, UK.
| |
Collapse
|
7
|
Mishra VK, Rodriguez-Lecompte JC, Ahmed M. Nanoparticles mediated folic acid enrichment. Food Chem 2024; 456:139964. [PMID: 38876059 DOI: 10.1016/j.foodchem.2024.139964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Folate is an essential component of many metabolic processes, and folate deficiency is known to cause various disorders. Folate and folic acid, a synthetic and chemically stable form of folate, enriched diet are typically used to overcome this deficiency. Folic acid and folate however, are susceptible to harsh environment and folates enrichment using nanoparticles is an intensively studied strategy in food industry. This review highlights the current methods and types of matrices utilized to develop folic acid/folate carrying nanoparticles. The folic acid/folate loaded nanoparticles prevent cargo degradation during gut absorption and under harsh food processing conditions including, high temperatures, UV light, and autoclaving. The data demonstrates that nanofortifcation of folates using proteins and biopolymers effectively enhances the bioavailability of the cargo. The encapsulation of folic acid in biopolymers by emulsion, spray drying and ionic gelation represent simplistic methods that can be easily scaled up with applications in food industry.
Collapse
Affiliation(s)
- Vineet Kumar Mishra
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Juan Carlos Rodriguez-Lecompte
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada
| | - Marya Ahmed
- Department of Chemistry, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada; Faculty of Sustainable Design Engineering, University of Prince Edward Island, 550 University Ave., Charlottetown, PE C1A 4P3, Canada.
| |
Collapse
|
8
|
Qiao L, Du X, Wang H, Wang Z, Gao S, Zhao CQ. Research Progress on the Strategies for Crossing the Blood-Brain Barrier. Mol Pharm 2024; 21:4786-4803. [PMID: 39231367 DOI: 10.1021/acs.molpharmaceut.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Recently, the incidence of brain diseases, such as central nervous system degenerative diseases, brain tumors, and cerebrovascular diseases, has increased. However, the blood-brain barrier (BBB) limits the effective delivery of drugs to brain disease areas. Therefore, the mainstream direction of new drug development for these diseases is to engineer drugs that can better cross the BBB to exert their effects in the brain. This paper reviews the research progress and application of the main trans-BBB drug delivery strategies (receptor/transporter-mediated BBB crossing, focused ultrasound to open the BBB, adenosine agonist reversible opening of the BBB, aromatic resuscitation, transnasal administration, cell-mediated trans-BBB crossing, and viral vector system-mediated brain drug delivery). Meanwhile, the potential applications, advantages, and disadvantages of these strategies for crossing the BBB are analyzed. Finally, the future development prospects of strategies for crossing the BBB are also discussed. These strategies have potential value for treating brain diseases.
Collapse
Affiliation(s)
- Li Qiao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Xiuwei Du
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Hua Wang
- College of Intelligence and Information Engineering, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Zhiyi Wang
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Shijie Gao
- Experimental Centre, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| | - Chun-Qin Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, P. R. China
| |
Collapse
|
9
|
Kannane S, Touloun O, Boussaa S. The prevalence of neural tube defects and their prevention by folic acid supplementation. Clin Nutr ESPEN 2024; 63:57-67. [PMID: 38923466 DOI: 10.1016/j.clnesp.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 05/17/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND & AIMS Folate is crucial for the development of the fetal neurological system. Moroccan Health authorities promote Folic acid (FA) supplementation, before and during pregnancy, as a significant protection against fetal neural tube defects (NTDs). Thus, the current study aims to investigate the effect of FA supplementation guidelines on NTDs prevalence and to assess the health professionals' (HPs) knowledge, attitude, and practice (KAP) regarding FA supplementation in Morocco. METHODS To assess the prevalence of NTDs, epidemiological data were collected from local and regional medical facilities and enhanced through a literature study. In addition, an auto-administered questionnaire was implemented to evaluate KAP among HPs on the FA supplementation national program. RESULTS The study results showed that from 2017 to 2023, the national prevalence rate of NTDs ranged from 4.26 to 21 per 10,000 live births, according to the region. Lack of information about FA supplementation is evident among HPs; while, 13.7% of the participants confused FA with vitamin B12; merely 50% recognized the significance of FA; and 11.9% had no idea which foods contained the most folate. Consequently, HPs' attitude and practice towards FA supplementation were deemed inadequate. Additionally, only 35.8% of respondents stated that they occasionally inquire about their patients' nutrition, 55.9% do not prescribe FA, and 44.1% are unwilling to report cases of NTDs. CONCLUSION NTDs remain a serious public health problem in Morocco. Despite the significant incidence of these diseases, HPs' knowledge, attitudes and practices in terms of prevention present gaps and inadequacies. According to the results of this study, the preparation of specific training sessions and the start of preconception consultations constitute an urgent and important issue.
Collapse
Affiliation(s)
- Soukaina Kannane
- Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Oulaid Touloun
- Polydisciplinary Faculty, Sultan Moulay Slimane University, 23000, Beni Mellal, Morocco
| | - Samia Boussaa
- ISPITS- Higher Institute of Nursing and Health Techniques, Ministry of Health and Social Protection, 10000, Rabat, Morocco.
| |
Collapse
|
10
|
Sangha V, Aboulhassane S, Bendayan R. Regulation of folate transport at the mouse arachnoid barrier. Fluids Barriers CNS 2024; 21:67. [PMID: 39192328 DOI: 10.1186/s12987-024-00566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND Folates are a family of B9 vitamins essential for normal growth and development in the central nervous system (CNS). Transport of folates is mediated by three major transport proteins: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate uptake occurs at the choroid plexus (CP) epithelium through coordinated actions of FRα and PCFT, or directly into brain parenchyma at the vascular blood-brain barrier (BBB), mediated by RFC. Impaired folate transport can occur due to loss of function mutations in FRα or PCFT, resulting in suboptimal CSF folate levels. Our previous reports have demonstrated RFC upregulation by nuclear respiratory factor-1 (NRF-1) once activated by the natural compound pyrroloquinoline quinone (PQQ). More recently, we have identified folate transporter localization at the arachnoid barrier (AB). The purpose of the present study was to further characterize folate transporters localization and function in AB cells, as well as their regulation by NRF-1/PGC-1α signaling and folate deficiency. METHODS In immortalized mouse AB cells, polarized localization of RFC and PCFT was assessed by immunocytochemical analysis, with RFC and PCFT functionality examined with transport assays. The effects of PQQ treatment on changes in RFC functional expression were also investigated. Mouse AB cells grown in folate-deficient conditions were assessed for changes in gene expression of the folate transporters, and other key transporters and tight junction proteins. RESULTS Immunocytochemical analysis revealed apical localization of RFC at the mouse AB epithelium, with PCFT localized on the basolateral side and within intracellular compartments. PQQ led to significant increases in RFC functional expression, mediated by activation of the NRF-1/PGC-1α signalling cascade. Folate deficiency led to significant increases in expression of RFC, MRP3, P-gp, GLUT1 and the tight junction protein claudin-5. CONCLUSION These results uncover the polarized expression of RFC and PCFT at the AB, with induction of RFC functional expression by activation of the NRF-1/PGC-1α signalling pathway and folate deficiency. These results suggest that the AB may contribute to the flow of folates into the CSF, representing an additional pathway when folate transport at the CP is impaired.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
11
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
12
|
Huang C, Hoque MT, Qu QR, Henderson J, Bendayan R. Antiretroviral drug dolutegravir induces inflammation at the mouse brain barriers. FASEB J 2024; 38:e23790. [PMID: 38982638 DOI: 10.1096/fj.202400558r] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/05/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Integrase strand transfer inhibitors (INSTIs) based antiretroviral therapy (ART) is currently used as first-line regimen to treat HIV infection. Despite its high efficacy and barrier to resistance, ART-associated neuropsychiatric adverse effects remain a major concern. Recent studies have identified a potential interaction between the INSTI, dolutegravir (DTG), and folate transport pathways at the placental barrier. We hypothesized that such interactions could also occur at the two major blood-brain interfaces: blood-cerebrospinal fluid barrier (BCSFB) and blood-brain barrier (BBB). To address this question, we evaluated the effect of two INSTIs, DTG and bictegravir (BTG), on folate transporters and receptor expression at the mouse BCSFB and the BBB in vitro, ex vivo and in vivo. We demonstrated that DTG but not BTG significantly downregulated the mRNA and/or protein expression of folate transporters (RFC/SLC19A1, PCFT/SLC46A1) in human and mouse BBB models in vitro, and mouse brain capillaries ex vivo. Our in vivo study further revealed a significant downregulation in Slc19a1 and Slc46a1 mRNA expression at the BCSFB and the BBB following a 14-day DTG oral treatment in C57BL/6 mice. However, despite the observed downregulatory effect of DTG in folate transporters/receptor at both brain barriers, a 14-day oral treatment of DTG-based ART did not significantly alter the brain folate level in animals. Interestingly, DTG treatment robustly elevated the mRNA and/or protein expression of pro-inflammatory cytokines and chemokines (Cxcl1, Cxcl2, Cxcl3, Il6, Il23, Il12) in primary cultures of mouse brain microvascular endothelial cells (BBB). DTG oral treatment also significantly upregulated proinflammatory cytokines and chemokine (Il6, Il1β, Tnfα, Ccl2) at the BCSFB in mice. We additionally observed a downregulated mRNA expression of drug efflux transporters (Abcc1, Abcc4, and Abcb1a) and tight junction protein (Cldn3) at the CP isolated from mice treated with DTG. Despite the structural similarities, BTG only elicited minor effects on the markers of interest at both the BBB and BCSFB. In summary, our current data demonstrates that DTG but not BTG strongly induced inflammatory responses in a rodent BBB and BCSFB model. Together, these data provide valuable insights into the mechanism of DTG-induced brain toxicity, which may contribute to the pathogenesis of DTG-associated neuropsychiatric adverse effect.
Collapse
Affiliation(s)
- Chang Huang
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Qing Rui Qu
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Jeffrey Henderson
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
13
|
Yu Y, Martins LM. Mitochondrial One-Carbon Metabolism and Alzheimer's Disease. Int J Mol Sci 2024; 25:6302. [PMID: 38928008 PMCID: PMC11203557 DOI: 10.3390/ijms25126302] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/13/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024] Open
Abstract
Mitochondrial one-carbon metabolism provides carbon units to several pathways, including nucleic acid synthesis, mitochondrial metabolism, amino acid metabolism, and methylation reactions. Late-onset Alzheimer's disease is the most common age-related neurodegenerative disease, characterised by impaired energy metabolism, and is potentially linked to mitochondrial bioenergetics. Here, we discuss the intersection between the molecular pathways linked to both mitochondrial one-carbon metabolism and Alzheimer's disease. We propose that enhancing one-carbon metabolism could promote the metabolic processes that help brain cells cope with Alzheimer's disease-related injuries. We also highlight potential therapeutic avenues to leverage one-carbon metabolism to delay Alzheimer's disease pathology.
Collapse
Affiliation(s)
- Yizhou Yu
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| | - L. Miguel Martins
- MRC Toxicology Unit, University of Cambridge, Gleeson Building, Tennis Court Road, Cambridge CB2 1QR, UK
| |
Collapse
|
14
|
Hou X, Lu Z, Yu T, Zhang Y, Yao Q, Zhang C, Niu Y, Liang Q. Two maize homologs of mammalian proton-coupled folate transporter, ZmMFS_1-62 and ZmMFS_1-73, are essential to salt and drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108623. [PMID: 38626656 DOI: 10.1016/j.plaphy.2024.108623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/31/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
Folates are essential to the maintenance of normal life activities in almost all organisms. Proton-coupled folate transporter (PCFT), belonging to the major facilitator superfamily, is one of the three major folate transporter types widely studied in mammals. However, information about plant PCFTs is limited. Here, a genome-wide identification of maize PCFTs was performed, and two PCFTs, ZmMFS_1-62 and ZmMFS_1-73, were functionally investigated. Both proteins contained the typical 12 transmembrane helixes with N- and C-termini located in the cytoplasm, and were localized in the plasma membrane. Molecular docking analysis indicated their binding activity with folates via hydrogen bonding. Interference with ZmMFS_1-62 and ZmMFS_1-73 in maize seedlings through virus-induced gene silencing disrupted folate homeostasis, mainly in the roots, and reduced tolerance to drought and salt stresses. Moreover, a molecular chaperone protein, ZmHSP20, was found to interact with ZmMFS_1-62 and ZmMFS_1-73, and interference with ZmHSP20 in maize seedlings also led to folate disruption and increased sensitivity to drought and salt stresses. Overall, this is the first report of functional identification of maize PCFTs, which play essential roles in salt and drought stress tolerance, thereby linking folate metabolism with abiotic stress responses in maize.
Collapse
Affiliation(s)
- Xiaowan Hou
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China; Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Zhiwei Lu
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Taifei Yu
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China.
| | - Yuanyuan Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Quansheng Yao
- Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China.
| | - Chunyi Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China.
| | - Qiuju Liang
- Biotechnology Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China; National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572000, China.
| |
Collapse
|
15
|
Li M, Yang L, Zhang L, Zhang Q, Liu Y. Specific biomarkers and neurons distribution of different brain regions in largemouth bass ( Micropterus salmoides). Front Endocrinol (Lausanne) 2024; 15:1385575. [PMID: 38745953 PMCID: PMC11091468 DOI: 10.3389/fendo.2024.1385575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
The brain regulates multiple physiological processes in fish. Despite this, knowledge about the basic structure and function of distinct brain regions in non-model fish species remains limited due to their diversity and the scarcity of common biomarkers. In the present study, four major brain parts, the telencephalon, diencephalon, mesencephalon and rhombencephalon, were isolated in largemouth bass, Micropterus salmoides. Within these parts, nine brain regions and 74 nuclei were further identified through morphological and cytoarchitectonic analysis. Transcriptome analysis revealed a total of 7153 region-highly expressed genes and 176 region-specifically expressed genes. Genes related to growth, reproduction, emotion, learning, and memory were significantly overexpressed in the olfactory bulb and telencephalon (OBT). Feeding and stress-related genes were in the hypothalamus (Hy). Visual system-related genes were predominantly enriched in the optic tectum (OT), while vision and hearing-related genes were widely expressed in the cerebellum (Ce) region. Sensory input and motor output-related genes were in the medulla oblongata (Mo). Osmoregulation, stress response, sleep/wake cycles, and reproduction-related genes were highly expressed in the remaining brain (RB). Three candidate marker genes were further identified for each brain regions, such as neuropeptide FF (npff) for OBT, pro-melanin-concentrating hormone (pmch) for Hy, vesicular inhibitory amino acid transporter (viaat) for OT, excitatory amino acid transporter 1 (eaat1) for Ce, peripherin (prph) for Mo, and isotocin neurophysin (itnp) for RB. Additionally, the distribution of seven neurotransmitter-type neurons and five types of non-neuronal cells across different brain regions were analyzed by examining the expression of their marker genes. Notably, marker genes for glutamatergic and GABAergic neurons showed the highest expression levels across all brain regions. Similarly, the marker gene for radial astrocytes exhibited high expression compared to other markers, while those for microglia were the least expressed. Overall, our results provide a comprehensive overview of the structural and functional characteristics of distinct brain regions in the largemouth bass, which offers a valuable resource for understanding the role of central nervous system in regulating physiological processes in teleost.
Collapse
Affiliation(s)
- Meijia Li
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
| | - Leshan Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| | - Lei Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Qian Zhang
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - Ying Liu
- College of Biosystems Engineering and Food Science (BEFS), Zhejiang University, Hangzhou, China
- Key Laboratory of Environment Controlled Aquaculture, Ministry of Education, Dalian, China
| |
Collapse
|
16
|
Chokor FAZ, Hwalla N, Naja F, Nasreddine L. Food sources of fiber and micronutrients of concern among infants and young children in Lebanon: a national cross-sectional study. BMC Pediatr 2024; 24:57. [PMID: 38243229 PMCID: PMC10797939 DOI: 10.1186/s12887-024-04535-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 01/03/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND Intakes of fiber, iron, zinc, calcium, vitamin D, vitamin A, and folate were shown to be low in a substantial proportion of infants and children in Lebanon. The study aims to identify the top food sources of fiber, iron, zinc, calcium, vitamin D, vitamin A, and folate amongst infants and young children in Lebanon and to evaluate the evolution of food sources of these nutrients from the beginning of the complementary feeding journey up until the age of 47.9 months. METHODS A national cross-sectional survey was conducted in 2012 as part of the "Early Life Nutrition and Health in Lebanon" project using stratified cluster sampling. Dietary intakes for infants and young children aged 6-47.9 months (n = 763) were assessed using 24- Hour Dietary Recall. Food items were categorized into food groups and the percent contribution of each food group to nutrient intakes was determined to identify the top food sources of fiber and selected micronutrients for three age groups: 6-11.9 m (infants), 12-23.9 m (toddlers), and 24-47.9 m (preschoolers). RESULTS The top food source of fiber was vegetables among children aged 6-47.9 months. Among infants and toddlers, infant/young child formula was the main contributor to iron, zinc, calcium, vitamin D, vitamin A, and folate intakes. Baby cereals also contributed to around 14% of iron intakes among infants. Among preschoolers, meat and fish contributed to 13% of iron intakes and 29% of zinc intakes, while cow's milk was the major contributor of calcium (41%), vitamin D (81%) and vitamin A (25%) intakes. Sweetened beverages and sweet bakery were also ranked among the major food sources contributing to substantial intakes of key nutrients, including fiber, iron, zinc, calcium, vitamin A, and folate among infants, toddlers, and preschoolers. CONCLUSIONS In addition to milk sources, vegetables, beans and legumes, breads, meats, and rice and pasta, sweet bakery and sweetened beverages have contributed to intakes of key nutrients from early ages. This calls for implementing initiatives and designing approaches to support nutrition education and improve nutrient intakes in infancy and early childhood.
Collapse
Affiliation(s)
- Fatima Al Zahraa Chokor
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Nahla Hwalla
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| | - Farah Naja
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, Research Institute of Medical and Health Sciences (RIMHS), University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Lara Nasreddine
- Department of Nutrition and Food Sciences, Faculty of Agricultural and Food Sciences, American University of Beirut, P.O. Box 11-0236, Beirut, Lebanon
| |
Collapse
|
17
|
Baker S, Baker D, Baker R, Brown CJ. Case series of retinal vein occlusions showing early recovery using oral l-methylfolate. Ther Adv Ophthalmol 2024; 16:25158414241240687. [PMID: 38628356 PMCID: PMC11020740 DOI: 10.1177/25158414241240687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 02/11/2024] [Indexed: 04/19/2024] Open
Abstract
This case series describes the aggregate rate of recovery in five consecutive subjects (six eyes) with retinal vein occlusion (RVO) who received l-methylfolate and other vitamins via Ocufolin®, a medical food. Subjects were followed for 10-33 months by a single ophthalmologist. Ocufolin® was prescribed at the time of diagnosis and subjects remained on the regimen throughout the time of observation. Examinations were performed in an un-masked fashion at 3-month intervals with recording of best corrected visual acuity (BCVA), average retinal nerve fiber layer (ARNFL) and central macular thickness (CMT), and fundus (examination of the retina, macula, optic nerve, and vessels) photography. Testing was done for vitamin deficiencies, vascular and coagulable risk factors, and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Vitamin deficiencies and vascular risk factors were found in all subjects, and all four tested subjects carried at least one MTHFR polymorphism. By the end of the study period BCVA in all subjects was 20/25 or better. Cystoid macular edema was identified and measured by optical coherence tomography (OCT). The percent change was calculated and plotted at 3-month intervals using the percent change in thickness from the time of diagnosis and percent change toward normative values for ARNFL and CMT. The total reduction in thickness of ARNFL and CMT from time of diagnosis was 44.19% and 30.27%, respectively. The comparison to normative data shows a reduction of ARNFL from 164.2% to 94% and CMT from 154.4% to 112.7% of normal thickness (100%). Plots showed the aggregate recovery was most rapid over the first 3 months and slowed over the next 3 months with most of the recovery taking place within 6 months of treatment. The rate of improvement in BCVA and resolution of retinal thickening was found to be better than predicted on historical grounds. No subjects progressed from nonischemic to ischemic RVO. Vitamin deficiencies, vascular risk factors, and genetic predisposition to oxidative stress were common in this RVO series. It appears that addressing these factors with Ocufolin® had a salutary effect on recovery.
Collapse
Affiliation(s)
- Steven Baker
- Northwest Arkansas NeuroVision, Fayetteville, AR, USA
| | - Dylan Baker
- Becker Friedman Institute for Economics, University of Chicago, Chicago, IL, USA
| | - Robert Baker
- Northwest Arkansas NeuroVision, Fayetteville, AR, USA
| | - Craig J. Brown
- Department of Ophthalmology, College of Medicine, University of Arkansas for Medical Sciences, 1923 East Joyce Blvd, Fayetteville, AR 72703, USA
| |
Collapse
|
18
|
Sangha V, Aboulhassane S, Qu QR, Bendayan R. Protective effects of pyrroloquinoline quinone in brain folate deficiency. Fluids Barriers CNS 2023; 20:84. [PMID: 37981683 PMCID: PMC10659058 DOI: 10.1186/s12987-023-00488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Folates (Vitamin B9) are critical for normal neurodevelopment and function, with transport mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Cerebral folate uptake primarily occurs at the blood-cerebrospinal fluid barrier (BCSFB) through concerted actions of FRα and PCFT, with impaired folate transport resulting in the neurological disorder cerebral folate deficiency (CFD). Increasing evidence suggests that disorders associated with CFD also present with neuroinflammation, oxidative stress, and mitochondrial dysfunction, however the role of brain folate deficiency in inducing these abnormalities is not well-understood. Our laboratory has identified the upregulation of RFC by nuclear respiratory factor 1 (NRF-1) at the blood-brain barrier (BBB) once indirectly activated by the natural compound pyrroloquinoline quinone (PQQ). PQQ is also of interest due to its anti-inflammatory, antioxidant, and mitochondrial biogenesis effects. In this study, we examined the effects of folate deficiency and PQQ treatment on inflammatory and oxidative stress responses, and changes in mitochondrial function. METHODS Primary cultures of mouse mixed glial cells exposed to folate-deficient (FD) conditions and treated with PQQ were analyzed for changes in gene expression of the folate transporters, inflammatory markers, oxidative stress markers, and mitochondrial DNA (mtDNA) content through qPCR analysis. Changes in cellular reactive oxygen species (ROS) levels were analyzed in vitro through a DCFDA assay. Wildtype (C57BL6/N) mice exposed to FD (0 mg/kg folate), or control (2 mg/kg folate) diets underwent a 10-day (20 mg/kg/day) PQQ treatment regimen and brain tissues were collected and analyzed. RESULTS Folate deficiency resulted in increased expression of inflammatory and oxidative stress markers in vitro and in vivo, with increased cellular ROS levels observed in mixed glial cells as well as a reduction of mitochondrial DNA (mtDNA) content observed in FD mixed glial cells. PQQ treatment was able to reverse these changes, while increasing RFC expression through activation of the PGC-1α/NRF-1 signaling pathway. CONCLUSION These results demonstrate the effects of brain folate deficiency, which may contribute to the neurological deficits commonly seen in disorders of CFD. PQQ may represent a novel treatment strategy for disorders associated with CFD, as it can increase folate uptake, while in parallel reversing many abnormalities that arise with brain folate deficiency.
Collapse
Affiliation(s)
- Vishal Sangha
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Sara Aboulhassane
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Qing Rui Qu
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada.
| |
Collapse
|
19
|
Mai J, Wu L, Yang L, Sun T, Liu X, Yin R, Jiang Y, Li J, Li Q. Therapeutic strategies targeting folate receptor α for ovarian cancer. Front Immunol 2023; 14:1254532. [PMID: 37711615 PMCID: PMC10499382 DOI: 10.3389/fimmu.2023.1254532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is the deadliest gynecological cancer, and presents a major clinical challenge due to limited treatment options. Folate receptor alpha (FRα), encoded by the FOLR1 gene, is an attractive therapeutically target due to its prevalent and high expression in EOC cells. Recent basic and translational studies have explored several modalities, such as antibody-drug conjugate (ADC), monoclonal antibodies, small molecules, and folate-drug conjugate, to exploit FRα for EOC treatment. In this review, we summarize the function of FRα, and clinical efficacies of various FRα-based therapeutics. We highlight mirvetuximab soravtansine (MIRV), or Elahere (ImmunoGen), the first FRα-targeting ADC approved by the FDA to treat platinum-resistant ovarian cancer. We discuss potential mechanisms and management of ocular adverse events associated with MIRV administration.
Collapse
Affiliation(s)
- Jia Mai
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Limei Wu
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
- Department of Obstetrics and Gynecology, Chengdu Second People's Hospital, Chengdu, Sichuan, China
| | - Ling Yang
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Ting Sun
- Department of Clinical Laboratory, The first Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaojuan Liu
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Rutie Yin
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Yongmei Jiang
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Jinke Li
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| | - Qintong Li
- Department of Laboratory Medicine, Obstetrics & Gynecology and Pediatrics, West China Second University Hospital, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Center of Growth, Metabolism and Aging, State Key Laboratory of Biotherapy and Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Gök V, Erdem Ş, Haliloğlu Y, Bişgin A, Belkaya S, Başaran KE, Canatan MF, Özcan A, Yılmaz E, Acıpayam C, Karakükcü M, Canatan H, Per H, Patıroğlu T, Eken A, Ünal E. Immunodeficiency associated with a novel functionally defective variant of SLC19A1 benefits from folinic acid treatment. Genes Immun 2023; 24:12-20. [PMID: 36517554 DOI: 10.1038/s41435-022-00191-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/28/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
Insufficient dietary folate intake, hereditary malabsorption, or defects in folate transport may lead to combined immunodeficiency (CID). Although loss of function mutations in the major intestinal folate transporter PCFT/SLC46A1 was shown to be associated with CID, the evidence for pathogenic variants of RFC/SLC19A1 resulting in immunodeficiency was lacking. We report two cousins carrying a homozygous pathogenic variant c.1042 G > A, resulting in p.G348R substitution who showed symptoms of immunodeficiency associated with defects of folate transport. SLC19A1 expression by peripheral blood mononuclear cells (PBMC) was quantified by real-time qPCR and immunostaining. T cell proliferation, methotrexate resistance, NK cell cytotoxicity, Treg cells and cytokine production by T cells were examined by flow cytometric assays. Patients were treated with and benefited from folinic acid. Studies revealed normal NK cell cytotoxicity, Treg cell counts, and naive-memory T cell percentages. Although SLC19A1 mRNA and protein expression were unaltered, remarkably, mitogen induced-T cell proliferation was significantly reduced at suboptimal folic acid and supraoptimal folinic acid concentrations. In addition, patients' PBMCs were resistant to methotrexate-induced apoptosis supporting a functionally defective SLC19A1. This study presents the second pathogenic SLC19A1 variant in the literature, providing the first experimental evidence that functionally defective variants of SLC19A1 may present with symptoms of immunodeficiency.
Collapse
Affiliation(s)
- Veysel Gök
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Şerife Erdem
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Yeşim Haliloğlu
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye.,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Atıl Bişgin
- Department of Medical Genetics, Faculty of Medicine, Çukurova University, Adana, Türkiye
| | - Serkan Belkaya
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, Ankara, Türkiye
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | | | - Alper Özcan
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ebru Yılmaz
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Can Acıpayam
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Sütçü İmam University, Kahramanmaraş, Türkiye
| | - Musa Karakükcü
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Halit Canatan
- Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Hüseyin Per
- Department of Pediatrics, Division of Pediatric Neurology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Türkan Patıroğlu
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.,Department of Pediatrics, Division of Pediatric Immunology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye
| | - Ahmet Eken
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Medical Biology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye.
| | - Ekrem Ünal
- Department of Pediatrics, Division of Pediatric Hematology & Oncology, Faculty of Medicine, Erciyes University, Kayseri, Türkiye. .,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Türkiye. .,Department of Blood Banking and Transfusion Medicine, Health Science Institution, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
21
|
Folate in maternal rheumatoid arthritis-filial autism spectrum disorder continuum. Reprod Toxicol 2023; 115:29-35. [PMID: 36402436 DOI: 10.1016/j.reprotox.2022.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Rheumatoid Arthritis (RA) is an inflammatory autoimmune disease that affects women three times more than men. Epidemiological studies found that the incidence of Autism Spectrum Disorder (ASD), a neurological and developmental disorder, in children born to mothers suffering from RA is higher compared with the control population. Considering that the pathogenesis of ASD could be traced back to pregnancy and in uterine conditions, and the evidence of reduced folate levels in the brain of ASD-affected children, we aimed to study the role of folate, as an important nutritional factor during pregnancy, in associating maternal RA to ASD development in the offspring. Folate balance during RA could be influenced twice, initially during the immune activation associated with disease onset, and later during the treatment with anti-folate drugs, with a potential consequence of folate deficiency. Maternal folate deficiency during pregnancy could increase homocysteine levels, oxidative stress, and global DNA hypomethylation, all known risk factors in ASD pathogenesis. These effects could be intensified by genetic polymorphisms in the folate system, which were also found as genetic risk factors for both RA and ASD. The available evidence suggests that folate level as an important factor during RA, pregnancy and ASD could have pathological and therapeutical significance and should be carefully monitored and investigated in the RA-pregnancy-ASD axis.
Collapse
|
22
|
Dang Y, Zhou D, Du X, Zhao H, Lee CH, Yang J, Wang Y, Qin C, Guo Z, Zhang Z. Molecular mechanism of substrate recognition by folate transporter SLC19A1. Cell Discov 2022; 8:141. [PMID: 36575193 PMCID: PMC9794768 DOI: 10.1038/s41421-022-00508-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/09/2022] [Indexed: 12/29/2022] Open
Abstract
Folate (vitamin B9) is the coenzyme involved in one-carbon transfer biochemical reactions essential for cell survival and proliferation, with its inadequacy causing developmental defects or severe diseases. Notably, mammalian cells lack the ability to de novo synthesize folate but instead rely on its intake from extracellular sources via specific transporters or receptors, among which SLC19A1 is the ubiquitously expressed one in tissues. However, the mechanism of substrate recognition by SLC19A1 remains unclear. Here we report the cryo-EM structures of human SLC19A1 and its complex with 5-methyltetrahydrofolate at 3.5-3.6 Å resolution and elucidate the critical residues for substrate recognition. In particular, we reveal that two variant residues among SLC19 subfamily members designate the specificity for folate. Moreover, we identify intracellular thiamine pyrophosphate as the favorite coupled substrate for folate transport by SLC19A1. Together, this work establishes the molecular basis of substrate recognition by this central folate transporter.
Collapse
Affiliation(s)
- Yu Dang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Dong Zhou
- grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaojuan Du
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China ,grid.411472.50000 0004 1764 1621Present Address: Peking University First Hospital, Peking University Health Science Center, Beijing, China
| | - Hongtu Zhao
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Chia-Hsueh Lee
- grid.240871.80000 0001 0224 711XDepartment of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN USA
| | - Jing Yang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Yijie Wang
- grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| | - Changdong Qin
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhenxi Guo
- grid.11135.370000 0001 2256 9319Cryo-EM Platform, School of Life Sciences, Peking University, Beijing, China
| | - Zhe Zhang
- grid.11135.370000 0001 2256 9319State Key Laboratory of Membrane Biology, Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China ,grid.11135.370000 0001 2256 9319School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
23
|
Sangha V, Hoque MT, Henderson JT, Bendayan R. Novel localization of folate transport systems in the murine central nervous system. Fluids Barriers CNS 2022; 19:92. [PMID: 36419095 PMCID: PMC9686069 DOI: 10.1186/s12987-022-00391-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/11/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Folates are a family of B9 vitamins that serve as one-carbon donors critical to biosynthetic processes required for the development and function of the central nervous system (CNS) in mammals. Folate transport is mediated by three highly specific systems: (1) folate receptor alpha (FRα; FOLR1/Folr1), (2) the reduced folate-carrier (RFC; SLC19A1/Slc19a1) and (3) the proton-coupled folate transporter (PCFT; SLC46A1/Slc46a1). Folate transport into and out of the CNS occurs at the blood-cerebrospinal fluid barrier (BCSFB), mediated by FRα and PCFT. Impairment of folate transport at the BCSFB results in cerebral folate deficiency in infants characterized by severe neurological deficiencies and seizures. In contrast to the BCSFB, CNS folate transport at other brain barriers and brain parenchymal cells has not been extensively investigated. The aim of this study is to characterize folate transport systems in the murine CNS at several known barriers encompassing the BCSFB, arachnoid barrier (AB), blood-brain barrier (BBB) and parenchymal cells (astrocytes, microglia, neurons). METHODS Applying immunohistochemistry, localization of folate transport systems (RFC, PCFT, FRα) was examined at CNS barriers and parenchymal sites in wildtype (C57BL6/N) mice. Subcellular localization of the folate transport systems was further assessed in an in vitro model of the mouse AB. Gene and protein expression was analyzed in several in vitro models of brain barriers and parenchyma by qPCR and western blot analysis. RESULTS RFC, PCFT, and FRα expression was localized within the BCSFB and BBB consistent with previous reports. Only RFC and PCFT expression was detected at the AB. Varied levels of RFC and PCFT expression were detected in neuronal and glial cells. CONCLUSIONS Localization of RFC and PCFT within the AB, described here for the first time, suggest that AB may contribute to folate transport between the peripheral circulation and the CSF. RFC and PCFT expression observed in astrocytes and microglia is consistent with the role that one or both of these transporters may play in delivering folates into cells within brain parenchyma. These studies provide insights into mechanisms of folate transport in the CNS and may enhance our understanding of the critical role folates play in neurodevelopment and in the development of novel treatment strategies for disorders of brain folate deficiency due to impaired transporter function.
Collapse
Affiliation(s)
- Vishal Sangha
- grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Md. Tozammel Hoque
- grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Jeffrey T. Henderson
- grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| | - Reina Bendayan
- grid.17063.330000 0001 2157 2938Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
| |
Collapse
|
24
|
Zamek-Gliszczynski MJ, Sangha V, Shen H, Feng B, Wittwer MB, Varma MVS, Liang X, Sugiyama Y, Zhang L, Bendayan R. Transporters in drug development: International transporter consortium update on emerging transporters of clinical importance. Clin Pharmacol Ther 2022; 112:485-500. [PMID: 35561119 DOI: 10.1002/cpt.2644] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 11/07/2022]
Abstract
During its 4th transporter workshop in 2021, the International Transporter Consortium (ITC) provided updates on emerging clinically relevant transporters for drug development. Previously highlighted and new transporters were considered based on up-to-date clinical evidence of their importance in drug-drug interactions and potential for altered drug efficacy and safety, including drug-nutrient interactions leading to nutrient deficiencies. For the first time, folate transport pathways (PCFT, RFC, and FRα) were examined in-depth as a potential mechanism of drug-induced folate deficiency and related toxicities (e.g., neural tube defects, megaloblastic anemia). However, routine toxicology studies conducted in support of drug development appear sufficient to flag such folate deficiency toxicities, while prospective prediction from in vitro folate metabolism and transport inhibition is not well enough established to inform drug development. Previous suggestion of retrospective study of intestinal OATP2B1 inhibition to explain unexpected decreases in drug exposure were updated. Furthermore, when the absorption of a new molecular entity is more rapid and extensive than can be explained by passive permeability, evaluation of OATP2B1 transport may be considered. Emerging research on hepatic and renal OAT2 is summarized, but current understanding of the importance of OAT2 was deemed insufficient to justify specific consideration for drug development. Hepatic, renal, and intestinal MRPs (MRP2, MRP3, MRP4) were revisited. MRPs may be considered when they are suspected to be the major determinant of drug disposition (e.g., direct glucuronide conjugates); MRP2 inhibition as a mechanistic explanation for drug-induced hyperbilirubinemia remains justified. There were no major changes in recommendations from previous ITC whitepapers.
Collapse
Affiliation(s)
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | - Hong Shen
- Drug Metabolism and PK, Bristol Myers Squibb Company, Route 206 & Province Line Road, Princeton, NJ, 08543, USA
| | - Bo Feng
- Drug Metabolism and PK, Vertex Pharmaceuticals, Inc, 50 Northern Avenue, Boston, MA, 02210, USA
| | - Matthias B Wittwer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, CH-4070, Basel, Switzerland
| | - Manthena V S Varma
- PK, Dynamics and Metabolism, Medicine Design, Pfizer Inc, Worldwide R&D, Groton, CT, 06340, USA
| | - Xiaomin Liang
- Drug Metabolism, Gilead Sciences, Inc, 333 Lakeside Drive, Foster City, CA, 94404, USA
| | - Yuichi Sugiyama
- Laboratory of Quantitative System PK/Pharmacodynamics, School of Pharmacy, Josai International University, Kioicho Campus, Tokyo, 102-0093, Japan
| | - Lei Zhang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20993, USA
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, University of Toronto, Leslie Dan Faculty of Pharmacy, 144 College Street, Toronto, ON, M5S 3M2, Canada
| | | |
Collapse
|
25
|
Li HZ, Liu KG, Zeng NX, Wu XF, Lu WJ, Xu HF, Yan C, Wu LL. Luteolin Enhances Choroid Plexus 5-MTHF Brain Transport to Promote Hippocampal Neurogenesis in LOD Rats. Front Pharmacol 2022; 13:826568. [PMID: 35401160 PMCID: PMC8993213 DOI: 10.3389/fphar.2022.826568] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022] Open
Abstract
Folates, provided by food, are commonly used antidepressant synergists in late-onset depression (LOD). However, increased intake of folic acid in the elderly population might lead to the accumulation of unmetabolized folic acid in the systemic circulation, leading to enhanced deterioration of the central nervous system function. In addition, folates cannot access the brain directly because of the blood-brain barrier. Choroid plexus (CP) 5-methyltetrahydrofolate (5-MTHF) brain transport plays a critical role in regulating the cerebrospinal fluid (CSF) 5-MTHF content. Luteolin is a natural flavonoid that has antidepressant effects and is involved in the anti-folate resistance pathway. It remains unclear whether the antidepressant effects of luteolin are associated with the CP 5-MTHF brain transport. In this study, 20-21-month-old Wistar rats were exposed to the chronic unpredictable mild stress (CUMS) protocol for 6 consecutive weeks to explore the long-term effects of luteolin on behavior, 5-MTHF levels, hippocampal neurogenesis, and folate brain transport of the CP. In vitro primary hippocampal neural stem cells (NSCs) cultured in media containing 10% CSF from each group of rats and choroid plexus epithelial cells (CPECs) cultured in media containing 20 μM luteolin were treated with 100 μM corticosterone and 40 mg/ml D-galactose. We found that aged rats exposed to CUMS showed a significantly reduced sucrose preference, decreased locomotion activity in the open field test and accuracy of the Morris water maze test, increased immobility time in the forced swimming test, accelerated dysfunctional neurogenesis and neuronal loss in the dentate gyrus of LOD rats, as well as decreased CSF and hippocampus 5-MTHF levels, and zona occludens protein 1 (ZO-1), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC) protein levels. In vitro assays showed media containing 10% aged CSF or LOD+ Luteolin-CSF significantly increased the viability of CORT + D-gal-injured NSCs and alleviated dysfunctional neurogenesis and neuronal loss compared with the CORT + D-gal medium. However, media containing 10% LOD-CSF had no such effect. In the meantime, induction of CORT + D-gal significantly decreased the ZO-1, PCFT, RFC, and folate receptor alpha (FR-α) protein levels and transepithelial electrical resistance in rat CPECs. As expected, luteolin treatment was effective in improving these abnormal changes. These findings suggested that luteolin could ameliorate CUMS-induced LOD-like behaviors by enhancing the folate brain transport.
Collapse
Affiliation(s)
- Hui-Zhen Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Kai-Ge Liu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ning-Xi Zeng
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiao-Feng Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wen-Jun Lu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Han-Fang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Li-Li Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
26
|
Hou Z, Gangjee A, Matherly LH. The evolving biology of the proton‐coupled folate transporter: New insights into regulation, structure, and mechanism. FASEB J 2022; 36:e22164. [PMID: 35061292 PMCID: PMC8978580 DOI: 10.1096/fj.202101704r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 01/03/2022] [Indexed: 01/19/2023]
Abstract
The human proton‐coupled folate transporter (PCFT; SLC46A1) or hPCFT was identified in 2006 as the principal folate transporter involved in the intestinal absorption of dietary folates. A rare autosomal recessive hereditary folate malabsorption syndrome is attributable to human SLC46A1 variants. The recognition that hPCFT was highly expressed in many tumors stimulated substantial interest in its potential for cytotoxic drug targeting, taking advantage of its high‐level transport activity under acidic pH conditions that characterize many tumors and its modest expression in most normal tissues. To better understand the basis for variations in hPCFT levels between tissues including human tumors, studies have examined the transcriptional regulation of hPCFT including the roles of CpG hypermethylation and critical transcription factors and cis elements. Additional focus involved identifying key structural and functional determinants of hPCFT transport that, combined with homology models based on structural homologies to the bacterial transporters GlpT and LacY, have enabled new structural and mechanistic insights. Recently, cryo‐electron microscopy structures of chicken PCFT in a substrate‐free state and in complex with the antifolate pemetrexed were reported, providing further structural insights into determinants of (anti)folate recognition and the mechanism of pH‐regulated (anti)folate transport by PCFT. Like many major facilitator proteins, hPCFT exists as a homo‐oligomer, and evidence suggests that homo‐oligomerization of hPCFT monomeric proteins may be important for its intracellular trafficking and/or transport function. Better understanding of the structure, function and regulation of hPCFT should facilitate the rational development of new therapeutic strategies for conditions associated with folate deficiency, as well as cancer.
Collapse
Affiliation(s)
- Zhanjun Hou
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
| | - Aleem Gangjee
- Division of Medicinal Chemistry Graduate School of Pharmaceutical Sciences Duquesne University Pittsburgh Pennsylvania USA
| | - Larry H. Matherly
- Molecular Therapeutics Program Barbara Ann Karmanos Cancer Institute Detroit Michigan USA
- Department of Oncology Wayne State University School of Medicine Detroit Michigan USA
- Department of Pharmacology Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
27
|
Lionaki E, Ploumi C, Tavernarakis N. One-Carbon Metabolism: Pulling the Strings behind Aging and Neurodegeneration. Cells 2022; 11:cells11020214. [PMID: 35053330 PMCID: PMC8773781 DOI: 10.3390/cells11020214] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
One-carbon metabolism (OCM) is a network of biochemical reactions delivering one-carbon units to various biosynthetic pathways. The folate cycle and methionine cycle are the two key modules of this network that regulate purine and thymidine synthesis, amino acid homeostasis, and epigenetic mechanisms. Intersection with the transsulfuration pathway supports glutathione production and regulation of the cellular redox state. Dietary intake of micronutrients, such as folates and amino acids, directly contributes to OCM, thereby adapting the cellular metabolic state to environmental inputs. The contribution of OCM to cellular proliferation during development and in adult proliferative tissues is well established. Nevertheless, accumulating evidence reveals the pivotal role of OCM in cellular homeostasis of non-proliferative tissues and in coordination of signaling cascades that regulate energy homeostasis and longevity. In this review, we summarize the current knowledge on OCM and related pathways and discuss how this metabolic network may impact longevity and neurodegeneration across species.
Collapse
Affiliation(s)
- Eirini Lionaki
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
| | - Christina Ploumi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
| | - Nektarios Tavernarakis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, 70013 Heraklion, Crete, Greece; (E.L.); (C.P.)
- Department of Basic Sciences, Faculty of Medicine, University of Crete, 70013 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810-391069
| |
Collapse
|
28
|
The potential use of folate and its derivatives in treating psychiatric disorders: A systematic review. Biomed Pharmacother 2021; 146:112541. [PMID: 34953391 DOI: 10.1016/j.biopha.2021.112541] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES To examine the strengths and limitations of existing data to provide guidance for the use of folate supplements as treatment, with or without other psychotropic medications, in various psychiatric disorders. To identify area for further research in terms of the biosynthesis of mechanism of folate and genetic variants in metabolic pathway in human. METHODS A systematic review of published literature following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, to assess whether folate supplements are beneficial in certain psychiatric disorders (depression, bipolar disorder, schizophrenia, autism spectrum disorder, and attention deficit hyperactivity disorder). Methodology of this review is registered with Prospero (Registration number CRD 42021266605). DATA SOURCES Eligible studies were identified using a systematic search of four electronic databases: Embase, Pubmed, PsycINFO, and Cochrane. The search strategy covered the time period from 1974 to August 16th, 2021. Therefore, this review examines randomized control trials or open-label trials completed during this period. RESULTS We identified 23 studies of folate supplements in various psychiatric disorders for critical review. Of these, 9 studies investigated the efficacy of folate supplements in major depressive disorders, 5 studies in schizophrenia, 6 studies in autism spectrum disorder, 2 studies in bipolar affective disorder and 1 study in attention deficit hyperactive disorder. The most consistent finding association of oral levomefolic acid or 5-methylfolate with improvement in clinical outcomes in mental health conditions as mentioned above, especially in major depressive disorder (including postpartum and post-menopausal depression), schizophrenia, autism spectrum disorder, attention deficit hyperactivity disorder and bipolar affective disorder. Folate supplements were well tolerated. LIMITATION Our results are not representative of all types of studies such as case reports or case series studies, nor are they representative of the studies conducted in languages that are not in English or not translated in English. CONCLUSION Increasing evidence from clinical trials consistently demonstrate folate supplements, especially levomefolic acid or 5-methylfolate, may improve clinical outcomes for certain psychiatric diseases, especially as an adjunct pharmacotherapy with minimal side effects.
Collapse
|
29
|
Okada M, Suzuki S, Togashi K, Sugai A, Yamamoto M, Kitanaka C. Targeting Folate Metabolism Is Selectively Cytotoxic to Glioma Stem Cells and Effectively Cooperates with Differentiation Therapy to Eliminate Tumor-Initiating Cells in Glioma Xenografts. Int J Mol Sci 2021; 22:ijms222111633. [PMID: 34769063 PMCID: PMC8583947 DOI: 10.3390/ijms222111633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (GBM) is one of the deadliest of all human cancers. Developing therapies targeting GBM cancer stem cells or glioma stem cells (GSCs), which are deemed responsible for the malignancy of GBM due to their therapy resistance and tumor-initiating capacity, is considered key to improving the dismal prognosis of GBM patients. In this study, we found that folate antagonists, such as methotrexate (MTX) and pemetrexed, are selectively cytotoxic to GSCs, but not to their differentiated counterparts, normal fibroblasts, or neural stem cells in vitro, and that the high sensitivity of GCSs to anti-folates may be due to the increased expression of RFC-1/SLC19A1, the reduced folate carrier that transports MTX into cells, in GSCs. Of note, in an in vivo serial transplantation model, MTX alone failed to exhibit anti-GSC effects but promoted the anti-GSC effects of CEP1347, an inducer of GSC differentiation. This suggests that folate metabolism, which plays an essential role specifically in GSCs, is a promising target of anti-GSC therapy, and that the combination of cytotoxic and differentiation therapies may be a novel and promising approach to effectively eliminate cancer stem cells.
Collapse
Affiliation(s)
- Masashi Okada
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Correspondence: (M.O.); (C.K.); Tel.: +81-23-628-5214 (M.O.)
| | - Shuhei Suzuki
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Department of Clinical Oncology, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Keita Togashi
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Department of Ophthalmology and Visual Sciences, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan
| | - Asuka Sugai
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
| | - Masahiro Yamamoto
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
| | - Chifumi Kitanaka
- Department of Molecular Cancer Science, School of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata 990-9585, Japan; (S.S.); (K.T.); (A.S.); (M.Y.)
- Research Institute for Promotion of Medical Sciences, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
- Correspondence: (M.O.); (C.K.); Tel.: +81-23-628-5214 (M.O.)
| |
Collapse
|
30
|
Folate Receptor Alpha Autoantibodies in Autism Spectrum Disorders: Diagnosis, Treatment and Prevention. J Pers Med 2021; 11:jpm11080710. [PMID: 34442354 PMCID: PMC8398778 DOI: 10.3390/jpm11080710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022] Open
Abstract
Folate deficiency and folate receptor autoimmune disorder are major contributors to infertility, pregnancy related complications and abnormal fetal development including structural and functional abnormalities of the brain. Food fortification and prenatal folic acid supplementation has reduced the incidence of neural tube defect (NTD) pregnancies but is unlikely to prevent pregnancy-related complications in the presence of folate receptor autoantibodies (FRAb). In pregnancy, these autoantibodies can block folate transport to the fetus and in young children, folate transport to the brain. These antibodies are prevalent in neural tube defect pregnancies and in developmental disorders such as cerebral folate deficiency (CFD) syndrome and autism spectrum disorder (ASD). In the latter conditions, folinic acid treatment has shown clinical improvement in some of the core ASD deficits. Early testing for folate receptor autoantibodies and intervention is likely to result in a positive outcome. This review discusses the first identification of FRAb in women with a history of neural tube defect pregnancy and FRAb’s association with sub-fertility and preterm birth. Autoantibodies against folate receptor alpha (FRα) are present in about 70% of the children with a diagnosis of ASD, and a significant number of these children respond to oral folinic acid with overall improvements in speech, language and social interaction. The diagnosis of folate receptor autoimmune disorder by measuring autoantibodies against FRα in the serum provides a marker with the potential for treatment and perhaps preventing the pathologic consequences of folate receptor autoimmune disorder.
Collapse
|
31
|
Li WR, Zeng TH, Yao JW, Zhu LP, Zhang ZQ, Xie XB, Shi QS. Diallyl sulfide from garlic suppresses quorum-sensing systems of Pseudomonas aeruginosa and enhances biosynthesis of three B vitamins through its thioether group. Microb Biotechnol 2020; 14:677-691. [PMID: 33377615 PMCID: PMC7936293 DOI: 10.1111/1751-7915.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/18/2020] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
Diallyl sulfide (DAS) and diallyl disulfide (DADS), two constituents of garlic, can inhibit quorum sensing (QS) systems of Pseudomonas aeruginosa. However, the differences in the mechanism of QS inhibition between DAS and DADS, and the functional chemical groups of these sulfides that contribute in QS inhibition have not been elucidated yet. We assumed that the sulfide group might play a key role in QS inhibition. To prove this hypothesis and to clarify these unsolved problems, in this study, we synthesized diallyl ether (DAE), and compared and investigated the effects of DAS and DAE on the growth and production of virulence factors, including Pseudomonas quinolone signal (PQS), elastase and pyocyanin, of P. aeruginosa PAO1. Transcriptome analysis and qRT‐PCR were used to compare and analyse the differentially expressed genes between the different treatment groups (DAS, DAE and control). The results indicated that DAS did not affect the growth dynamics of P. aeruginosa PAO1; however, DAS inhibited transcription of most of the QS system genes, including lasR, rhlI/rhlR and pqsABCDE/pqsR; thus, biosynthesis of the signal molecules C4‐HSL (encoded by rhlI) and PQS (encoded by pqsABCDE) was inhibited. Furthermore, DAS inhibited the transcription of virulence genes regulated by the QS systems, including rhlABC, lasA, lasB, lecA and phzAB, phzDEFG, phzM and phzS that encode for rhamnolipid, exoprotease, elastase, lectin and pyocyanin biosynthesis respectively. DAS also enhanced the expression of the key genes involved in the biosynthesis of three B vitamins: folate, thiamine and riboflavin. In conclusion, DAS suppressed the production of some virulence factors toxic to the host and enhanced the production of some nutrition factors beneficial to the host. These actions of DAS may be due to its thioether group. These findings would be significant for development of an effective drug to control the virulence and pathogenesis of the opportunistic pathogen P. aeruginosa.
Collapse
Affiliation(s)
- Wen-Ru Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Tao-Hua Zeng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Jun-Wei Yao
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Li-Ping Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhi-Qing Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Xiao-Bao Xie
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Qing-Shan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| |
Collapse
|
32
|
Rose J, Brian C, Pappa A, Panayiotidis MI, Franco R. Mitochondrial Metabolism in Astrocytes Regulates Brain Bioenergetics, Neurotransmission and Redox Balance. Front Neurosci 2020; 14:536682. [PMID: 33224019 PMCID: PMC7674659 DOI: 10.3389/fnins.2020.536682] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/14/2020] [Indexed: 01/17/2023] Open
Abstract
In the brain, mitochondrial metabolism has been largely associated with energy production, and its dysfunction is linked to neuronal cell loss. However, the functional role of mitochondria in glial cells has been poorly studied. Recent reports have demonstrated unequivocally that astrocytes do not require mitochondria to meet their bioenergetics demands. Then, the question remaining is, what is the functional role of mitochondria in astrocytes? In this work, we review current evidence demonstrating that mitochondrial central carbon metabolism in astrocytes regulates overall brain bioenergetics, neurotransmitter homeostasis and redox balance. Emphasis is placed in detailing carbon source utilization (glucose and fatty acids), anaplerotic inputs and cataplerotic outputs, as well as carbon shuttles to neurons, which highlight the metabolic specialization of astrocytic mitochondria and its relevance to brain function.
Collapse
Affiliation(s)
- Jordan Rose
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Christian Brian
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - Mihalis I Panayiotidis
- Department of Electron Microscopy & Molecular Pathology, Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, United States.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| |
Collapse
|
33
|
Li H, Wang D, Wu H, Shen H, Lv D, Zhang Y, Lu H, Yang J, Tang Y, Li M. SLC46A1 contributes to hepatic iron metabolism by importing heme in hepatocytes. Metabolism 2020; 110:154306. [PMID: 32621820 DOI: 10.1016/j.metabol.2020.154306] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Iron is finely regulated due to its vital roles in organisms and the peroxidase reactivity if excess. Solute Carrier Family 46 Member 1 (SLC46A1), also named PCFT or HCP1, is the main importer of heme‑iron in the intestine, but has a high abundance in the liver. Since the liver has a central role in iron homeostasis, whether SLC46A1 regulates hepatic iron metabolism is of interest to be identified. METHODS The recombinant adeno-associated virus vectors were used to hepatic-specifically inhibit SLC46A1 expression to observe its effects on hepatic iron metabolism. Then the abilities of SLC46A1 in importing heme and folate, and consequent alterations of iron content in hepatocytes were determined. Furthermore, effects of iron on SLC46A1 expression were investigated both in vitro and in vivo. RESULTS The hepatocyte-specific inhibition of SLC46A1 decreases iron content in the liver and increases iron content in serum. Expressions of iron-related molecules, transferrin receptor 1, hepcidin and ferroportin, are correspondingly altered. Interestingly, free heme concentration in serum is increased, indicating a decreased import of heme by the liver. In hepatocytes, SLC46A1 is capable of importing hemin, increasing intracellular iron content. The import of hemin by SLC46A1 is unaffected by its other substrate, folate. Instead, hemin treatment decreases SLC46A1 expression, reducing the import of folate. In addition, SLC46A1 itself shows to be iron-responsive both in vivo and in vitro, making it available for regulating iron metabolism. CONCLUSION The results elucidate that SLC46A1 regulates iron metabolism in the liver through a folate-independent manner of importing heme. The iron-responsive characters of SLC46A1 give us a new clue to link heme or iron overload with folate deficiency diseases.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Dongyao Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China; Faculty of Pharmacy, Shanghai University, Shanghai, China
| | - Huiwen Wu
- Department of Nutrition, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shen
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Diya Lv
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - Yinyin Zhang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Hongtao Lu
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Jianxin Yang
- Department of Nutrition, Second Military Medical University, Shanghai, China
| | - Yuxiao Tang
- Department of Nutrition, Second Military Medical University, Shanghai, China.
| | - Min Li
- Department of Nutrition, Second Military Medical University, Shanghai, China; Institute of International Medical Science and Technology, Sanda University, Shanghai, China.
| |
Collapse
|
34
|
Alam C, Hoque MT, Sangha V, Bendayan R. Nuclear respiratory factor 1 (NRF-1) upregulates the expression and function of reduced folate carrier (RFC) at the blood-brain barrier. FASEB J 2020; 34:10516-10530. [PMID: 32543769 DOI: 10.1096/fj.202000239rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 01/10/2023]
Abstract
Folates are important for neurodevelopment and cognitive function. Folate transport across biological membranes is mediated by three major pathways: folate receptor alpha (FRα), proton-coupled folate transporter (PCFT), and reduced folate carrier (RFC). Brain folate transport primarily occurs at the choroid plexus through FRα and PCFT; inactivation of these transport systems results in suboptimal folate levels in the cerebrospinal fluid (CSF) causing childhood neurological disorders. Our group has reported that upregulation of RFC at the blood-brain barrier (BBB) through interactions with specific transcription factors, that is, vitamin D receptor (VDR) could increase brain folate delivery. This study investigates the role of nuclear respiratory factor 1 (NRF-1) in the regulation of RFC at the BBB. Activation of NRF-1/PGC-1α signaling through treatment with its specific ligand, pyrroloquinoline quinone (PQQ), significantly induced RFC expression and transport activity in hCMEC/D3 cells. In contrast, transfection with NRF-1 or PGC-1α targeting siRNA downregulated RFC functional expression in the same cell system. Applying chromatin immunoprecipitation (ChIP) assay, we further demonstrated that PQQ treatment increased NRF-1 binding to putative NRF-1 binding sites within the SLC19A1 promoter, which encodes for RFC. Additionally, in vivo treatment of wild type mice with PQQ-induced RFC expression in isolated mouse brain capillaries. Together, these findings demonstrate that NRF-1/PGC-1α activation by PQQ upregulates RFC functional expression at the BBB and could potentially enhance brain folate uptake.
Collapse
Affiliation(s)
- Camille Alam
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Md Tozammel Hoque
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Vishal Sangha
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Reina Bendayan
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|