1
|
Kacar S, Tomsuk O. Morphological analysis and cytotoxicity of acrylamide on SPC212 human mesothelioma cells: Do low doses induce proliferation, while high doses cause toxicity? J Cell Mol Med 2024; 28:e70190. [PMID: 39516185 PMCID: PMC11548975 DOI: 10.1111/jcmm.70190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/11/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Acrylamide is broadly utilized in numerous areas with different purposes including being an additive, flocculating, sealing, dry strength improver and polymerizing agent, and so forth. Furthermore, it forms in certain food products at high temperatures. It poses serious hazard since its readily water-soluble and very reactive nature. Besides in vivo studies, several in vitro studies with various cell lines are carried out to evaluate its toxicity. However, of these cell line studies, there are no mesothelium or mesothelioma cell lines. To fill this lacuna, we aimed at examining various dose range of acrylamide on SPC212 human mesothelioma cell line. First, we executed MTT and neutral red cytotoxicity tests and ascertained IC50 dose. Next, we performed inverted, light (haematoxylin-eosin and May Grünwald), fluorescent (DAPI) and confocal microscope (AO/EB) analyses as well as immunohistochemistry for Bax, Bcl-2 and PCNA proteins. As a result, we found IC50 of acrylamide at 2.65 mM. Starting from 3.13 mM of acrylamide dose, a deep decrease in cell proliferation was observed. Particularly in MTT assay, a proliferative action of acrylamide was detected at 0.39 and 0.78 mM, supported with inverted microscope images. In light microscope analysis, several cellular degenerations, including condensed and kidney-shaped nucleus were evident. In AO/EB staining, cells with apoptotic characteristics augmented dose-dependently, being upheld by a parallel uptick in Bax and a dimunition in Bcl-2 staining. Besides, PCNA decreased at IC50 dose of acrylamide. This is the acrylamide-associated first study conducted on SPC212 mesothelioma cells encompassing advanced morphological analysis. We believe this study to be an incentive for future studies.
Collapse
Affiliation(s)
- Sedat Kacar
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Division of Pulmonary, Critical Care, Sleep and Occupational Medicine, Department of MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Ozlem Tomsuk
- Department of Histology and Embryology, Faculty of MedicineEskisehir Osmangazi UniversityEskisehirTurkey
- Department of Biotechnology and Biosafety, Graduate School of Natural and Applied SciencesEskisehir Osmangazi UniversityEskisehirTurkey
- Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM)Eskişehir Osmangazi UniversityEskişehirTurkey
| |
Collapse
|
2
|
Crudo F, Hong C, Varga E, Del Favero G, Marko D. Genotoxic and Mutagenic Effects of the Alternaria Mycotoxin Alternariol in Combination with the Process Contaminant Acrylamide. Toxins (Basel) 2023; 15:670. [PMID: 38133174 PMCID: PMC10748053 DOI: 10.3390/toxins15120670] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
Humans are constantly exposed to mixtures of different xenobiotics through their diet. One emerging concern is the Alternaria mycotoxin alternariol (AOH), which can occur in foods typically contaminated by the process contaminant acrylamide (AA). AA is a byproduct of the Maillard reaction produced in carbohydrate-rich foods during thermal processing. Given the genotoxic properties of AOH and AA as single compounds, as well as their potential co-occurrence in food, this study aimed to assess the cytotoxic, genotoxic, and mutagenic effects of these compounds in combination. Genotoxicity was assessed in HepG2 cells by quantifying the phosphorylation of the histone γ-H2AX, induced as a response to DNA double-strand breaks (DSBs). Mutagenicity was tested in Salmonella typhimurium strains TA98 and TA100 by applying the Ames microplate format test. Our results showed the ability of AOH and AA to induce DSBs and increase revertant numbers in S. typhimurium TA100, with AOH being more potent than AA. However, no synergistic effects were observed during the combined treatments. Notably, the results of the study suggest that the compounds exert mutagenic effects primarily through base pair substitutions. In summary, the data indicate no immediate cause for concern regarding synergistic health risks associated with the consumption of foods co-contaminated with AOH and AA.
Collapse
Affiliation(s)
- Francesco Crudo
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38–40, 1090 Vienna, Austria; (F.C.); (C.H.); (E.V.); (G.D.F.)
| | - Chenyifan Hong
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38–40, 1090 Vienna, Austria; (F.C.); (C.H.); (E.V.); (G.D.F.)
| | - Elisabeth Varga
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38–40, 1090 Vienna, Austria; (F.C.); (C.H.); (E.V.); (G.D.F.)
| | - Giorgia Del Favero
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38–40, 1090 Vienna, Austria; (F.C.); (C.H.); (E.V.); (G.D.F.)
- Core Facility Multimodal Imaging Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Währinger Str. 38–40, 1090 Vienna, Austria; (F.C.); (C.H.); (E.V.); (G.D.F.)
- Core Facility Multimodal Imaging Faculty of Chemistry, University of Vienna, Währinger Str. 38, 1090 Vienna, Austria
| |
Collapse
|
3
|
Mallepogu V, Mallapu RE, Vadabingi N, Pasala C, Punuri JB, Amineni U, Meriga B, Kedam TR. Acrylamide toxicity inhibits chick embryo hepatic alpha, mu, and pi-glutathione S-transferases: molecular dynamic simulations, substrate specificity, and docking. TOXICOLOGY AND ENVIRONMENTAL HEALTH SCIENCES 2023; 15:289-302. [DOI: 10.1007/s13530-023-00183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 12/25/2024]
|
4
|
Eltayeb HA, Stewart L, Morgem M, Johnson T, Nguyen M, Earl K, Sodipe A, Jackson D, Olufemi SE. Antioxidants Amelioration Is Insufficient to Prevent Acrylamide and Alpha-Solanine Synergistic Toxicity in BEAS-2B Cells. Int J Mol Sci 2023; 24:11956. [PMID: 37569330 PMCID: PMC10418752 DOI: 10.3390/ijms241511956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023] Open
Abstract
Cells produce free radicals and antioxidants when exposed to toxic compounds during cellular metabolism. However, free radicals are deleterious to lipids, proteins, and nucleic acids. Antioxidants neutralize and eliminate free radicals from cells, preventing cell damage. Therefore, the study aims to determine whether the antioxidants butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT) will ameliorate the maximum dose of acrylamide and alpha (α)-solanine synergistic toxic effects in exposed BEAS-2B cells. These toxic compounds are consumed worldwide by eating potato products. BEAS-2B cells were simultaneously treated with BHA 10 μM and BHT 20 μM and incubated in a 5% CO2 humidified incubator for 24 h, followed by individual or combined treatment with acrylamide (3.5 mM) and α-solanine (44 mM) for 48 h, including the controls. Cell morphology, DNA, RNA, and protein were analyzed. The antioxidants did not prevent acrylamide and α-solanine synergistic effects in exposed BEAS-2B cells. However, cell morphology was altered; polymerase chain reaction (PCR) showed reduced RNA constituents but not DNA. In addition, the toxic compounds synergistically inhibited AKT/PKB expression and its downstream genes. The study showed BHA and BHT are not protective against the synergetic toxic effects of acrylamide and α-solanine in exposed BEAS-2B cells.
Collapse
Affiliation(s)
- Hoda Awad Eltayeb
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Leandra Stewart
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Mounira Morgem
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Tommie Johnson
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Michael Nguyen
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Kadeshia Earl
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
- Department of Environmental and Interdisciplinary Sciences, Texas Southern University, Houston, TX 77004, USA
| | - Ayodotun Sodipe
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | - Desirée Jackson
- Department of Biology, Texas Southern University, Houston, TX 77004, USA
| | | |
Collapse
|
5
|
Ozturk I, Elbe H, Bicer Y, Karayakali M, Onal MO, Altinoz E. Therapeutic role of melatonin on acrylamide-induced hepatotoxicity in pinealectomized rats: Effects on oxidative stress, NF-κB signaling pathway, and hepatocellular proliferation. Food Chem Toxicol 2023; 174:113658. [PMID: 36780936 DOI: 10.1016/j.fct.2023.113658] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/13/2023]
Abstract
Acrylamide (AA) is formed in some foods by the cooking process at high temperatures, and it could be a carcinogen in humans and rodents. The purpose of the current study was to reveal the possible protective effects of melatonin against AA-induced hepatic oxidative stress, hepatic inflammation, and hepatocellular proliferation in pinealectomized rats. Hence, the sham and pinealectomized rats were consecutively given AA alone (25 mg/kg) or with melatonin (10 mg/kg) for 21 days. Melatonin acts as an antioxidant, anti-inflammatory, and antiapoptotic agent and introduces as a therapeutic strategy for AA-induced hepatotoxicity. Melatonin supplementation reduced AA-caused liver damage by decreasing the serum AST, ALT, and ALP levels. Melatonin raised the activities of SOD and CAT and levels of GSH and suppressed hepatic inflammation (TNF-α) and hepatic oxidative stress in liver tissues. Moreover, histopathological alterations and the disturbances in immunohistochemical expression of NF-κB and Ki67 were improved after melatonin treatment in AA-induced hepatotoxicity. Overall, our results demonstrate that melatonin supplementation exhibits adequate hepatoprotective effects against hepatotoxicity of AA on pinealectomized rat liver architecture and the tissue function through the equilibration of oxidant/antioxidant status, the regulation of cell proliferation and the suppression of the release of proinflammatory cytokines.
Collapse
Affiliation(s)
- Ipek Ozturk
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Yasemin Bicer
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Karayakali
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Melike Ozgul Onal
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Eyup Altinoz
- Department of Medical Biochemistry, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| |
Collapse
|
6
|
Ahmad MM, Qureshi TM, Mushtaq M, Aqib AI, Mushtaq U, Ibrahim SA, Rehman A, Iqbal MW, Imran T, Siddiqui SA, Javed A, Shamim S, Saleem MH. Influence of baking and frying conditions on acrylamide formation in various prepared bakery, snack, and fried products. Front Nutr 2022; 9:1011384. [PMID: 36532518 PMCID: PMC9749820 DOI: 10.3389/fnut.2022.1011384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/24/2022] [Indexed: 11/22/2023] Open
Abstract
The core objective of the present study was to evaluate the influence of baking/frying times and temperatures on the formation of acrylamide in bakery, snack, and fried products such as biscuits, muffins, pizza, cakes, samosa, paratha rolls, nuggets, and potato cutlets during baking/frying at different times and temperature conditions. First of all, the raw material, especially flour, was tested for its proximate composition and rheological characteristics. The quantification of acrylamide produced during the processing of different products was carried out through the HPLC method. A sensory evaluation of these food samples was also carried out to find out the acceptability differences. The raw material was found to have good rheological properties and proximate composition. The results revealed that different times and temperature regimes influenced the formation of acrylamide in those products. Among the bakery products, the highest concentrations of acrylamide were observed in biscuits (126.52 μg/kg) followed by muffins (84.24 μg/kg), cake (71.21 μg/kg), and pizza (62.42 μg/kg). The higher contents of acrylamide were found in paratha roll (165.92 μg/kg) compared to samosa (100.43 μg/kg), whereas among snacks, potato cutlets (135.71 μg/kg) showed higher concentrations than nuggets (43.04 μg/kg). It was observed that baking or frying all the investigated products at higher temperatures produced slightly more acrylamide concentrations. The prepared products in the present study were also accepted sensorially by the panel of judges. So, it was concluded that baking or frying at higher temperatures resulted in higher concentrations of acrylamide compounds in different products in the present study.
Collapse
Affiliation(s)
| | - Tahir Mahmood Qureshi
- Department of Food Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Maham Mushtaq
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Umair Mushtaq
- Department of Pharmacy, Government College University, Faisalabad, Pakistan
| | - Salam A. Ibrahim
- Department of Food and Nutritional Sciences, North Carolina Agricultural and Technical State University, Greensboro, NC, United States
| | - Abdul Rehman
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Muhammad Waheed Iqbal
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Tabish Imran
- Institute of Food Science and Nutrition, University of Sargodha, Sargodha, Pakistan
| | - Shahida Anusha Siddiqui
- Technical University of Munich Campus Straubing for Biotechnology and Sustainability, Straubing, Germany
- German Institute of Food Technologies (DIL e.V.), Quakenbrück, Germany
| | - Anjum Javed
- Wheat Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Sadaf Shamim
- Wheat Research Institute, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Muhammad Hamzah Saleem
- Office of Academic Research, Office of Vice President (VP) for Research and Graduate Studies, Qatar University, Doha, Qatar
| |
Collapse
|
7
|
Zhang L, Yang L, Luo Y, Dong L, Chen F. Acrylamide induced hepatotoxicity through oxidative stress: Mechanisms and interventions. Antioxid Redox Signal 2022; 38:1122-1137. [PMID: 36322716 DOI: 10.1089/ars.2022.0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
SIGNIFICANCE Acrylamide (AA) widely exists in the environment. Studies have demonstrated that AA has neurotoxicity and potential carcinogenicity in humans, and genotoxicity and severe hepatotoxicity in animals. As the critical metabolism organ for AA, the liver is the primary attacking target of AA. This review summarizes the recent advances in hepatotoxicity mechanism through AA-induced oxidative stress in rodent livers and hepatic cell lines, this is beneficial to assess risks of AA exposure and explore effective intervention methods for AA hepatotoxicity. RECENT ADVANCES Accumulating evidences have indicated that AA-induced oxidative stress is responsible for its hepatotoxicity. The changes in homological and biochemical indexes such as activities of hepatic antioxidant enzymes have been elucidated with the occurrence and development of oxidative stress. Also, the molecular mechanisms underlying AA-induced hepatotoxicity through oxidative stress have been mainly explained by apoptosis, inflammatory and autophagic pathways. CRITICAL ISSUES This review is focusing on the molecular mechanism of hepatotoxicity through AA-induced oxidative stress, this can provide a theoretical basis for the assessment of AA-induced health risk and finding potential intervention targets. FUTURE DIRECTIONS Epigenetic modifications like miRNAs and modulation of the gut microbiome involved in AA toxification pathway must be investigated, and will provide novel insights to unravel the toxification mechanism and intervention strategy for AA hepatotoxicity.
Collapse
Affiliation(s)
- Lujia Zhang
- China Agricultural University, 34752, Beijing, China;
| | - Liuqing Yang
- China Agricultural University, 34752, Beijing, China;
| | - Yinghua Luo
- China Agricultural University, 34752, Beijing, China;
| | - Li Dong
- China Agricultural University, 34752, Beijing, China;
| | - Fang Chen
- China Agricultural University, 34752, College of Food Science and Nutritional Engineering and Safety, Room 116, Food building, China Agricultural University, Haidian District, Beijing, China, 100094;
| |
Collapse
|
8
|
Oláh M, Farkas E, Székács I, Horvath R, Székács A. Cytotoxic effects of Roundup Classic and its components on NE-4C and MC3T3-E1 cell lines determined by biochemical and flow cytometric assays. Toxicol Rep 2022; 9:914-926. [PMID: 35875257 PMCID: PMC9301602 DOI: 10.1016/j.toxrep.2022.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/26/2022] Open
Abstract
Cytotoxic effects of the market leading broad-spectrum, synthetic herbicide product Roundup Classic, its active ingredient glyphosate (in a form of its isopropylamine (IPA) salt) and its formulating surfactant polyethoxylated tallowamine (POE-15) were determined on two murine cell lines, a neuroectodermal stem cell-like (NE-4C) and a high alkaline phosphatase activity osteoblastic cell line (MC3T3-E1). Cytotoxicity, genotoxicity, effects on cell viability and cell cycles were examined in five flow cytometry tests, the two former of which were compared by the enzymatic-assay and the alkaline single cell gel electrophoresis (Comet) assay. All of the tests indicated the NE-4C cells being more sensitive, than the MC3T3-E1 cell line to the treatments with the target compounds. Higher sensitivity differences were detected in the viability test by flow cytometry (7-9-fold), than by the MTT assay (1.5-3-fold); in the genotoxicity test by the Comet assay (3.5-403-fold), than by the DNA-damage test (9.3-158-fold); and in the apoptosis test by the Annexin V dead cell kit (1.1-12.7-fold), than by the Caspase 3/7 kit (1-6.5-fold). Cell cycle assays indicated high count of cells (~70%) in the G0/G1 phase for MC3T3-E1 cells, than in NE-4C cell (~40%) after 24 h. The order of the inhibitory potency of the target substances has unequivocally been POE-15 > Roundup Classic > > glyphosate IPA salt.
Collapse
Affiliation(s)
- Marianna Oláh
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| | - Enikő Farkas
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Inna Székács
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - Robert Horvath
- Nanobiosensorics Laboratory, Institute of Technical Physics and Materials Science, Centre for Energy Research, Konkoly-Thege M. u. 29-33, H-1121 Budapest, Hungary
| | - András Székács
- Agro-Environmental Research Centre, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Herman Ottó u. 15, H-1022 Budapest, Hungary
| |
Collapse
|
9
|
Yedier SK, Şekeroğlu ZA, Şekeroğlu V, Aydın B. Cytotoxic, genotoxic, and carcinogenic effects of acrylamide on human lung cells. Food Chem Toxicol 2022; 161:112852. [DOI: 10.1016/j.fct.2022.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 10/19/2022]
|
10
|
Haidari F, Mohammadshahi M, Abiri B, Guest PC, Zarei M, Fathi M. Testing the Effects of Cinnamon Extract Supplementation on Inflammation and Oxidative Stress Induced by Acrylamide. Methods Mol Biol 2022; 2343:179-190. [PMID: 34473322 DOI: 10.1007/978-1-0716-1558-4_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We investigated the effects of cinnamon water extract supplementation on inflammation and oxidative stress induced by acrylamide in rats. This revealed acrylamide-intoxicated control group had significant higher levels of malondialdehyde, tumor necrosis factor-alpha (TNF-α), high-sensitive C-reactive protein (hs-CRP), leptin and alanine transaminase, and lower levels of total antioxidant capacity compared to the negative control group. In contrast, cinnamon extract administration remedied the levels of total antioxidant capacity, malondialdehyde, TNF-α, hs-CRP, and leptin in the treatment groups. However, there was no significant effect on adiponectin or liver enzymes. This chapter presents a protocol involving production of the acrylamide-induced oxidative stress model, the aqueous extraction of cinnamon powder, and measurement of inflammatory and oxidative stress markers.
Collapse
Affiliation(s)
- Fatemeh Haidari
- Department of Nutrition, Nutrition and Metabolic Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Mohammadshahi
- Department of Nutrition, Hyperlipidemia Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behnaz Abiri
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Mehdi Zarei
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mojdeh Fathi
- Department of Nutrition, Faculty of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
11
|
Yuan J, Che S, Zhang L, Li X, Yang J, Sun X, Ruan Z. Assessing the combinatorial cytotoxicity of the exogenous contamination with BDE-209, bisphenol A, and acrylamide via high-content analysis. CHEMOSPHERE 2021; 284:131346. [PMID: 34217936 DOI: 10.1016/j.chemosphere.2021.131346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 05/25/2023]
Abstract
Food is often exposed to multiple types of contaminants, and the coexistence of contaminants may have antagonistic, additive or synergistic effects. This study investigated the combinatorial toxicity of the three most widespread exogenous contaminants, decabrominated diphenyl ether (BDE-209), bisphenol A (BPA), and acrylamide (ACR) to HepG2 cells. A mathematical model (Chou-Talalay) and high-content analysis (HCA) were used to probe the nature of the contaminants' interactions and their cytotoxicity mechanisms, respectively. The results highlighted that for the individual pollutants, the cytotoxicity order was BDE-209> BPA > ACR, and varying combinations of contaminants exhibited additive/synergistic effects. In general, combining multiple contaminants significantly increased intracellular reactive oxygen species (ROS), Ca2+ flux, DNA damage and Caspase-3, and decreased mitochondrial membrane potential (MMP) and nucleus roundness, indicating that the additive or synergistic mechanism of the combined contaminations was disturbance to multiple organelles. This study emphasizes the complexity of human exposure to food contaminants and provides a scientific basis for formulating strict regulatory standards.
Collapse
Affiliation(s)
- Jinwen Yuan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Siyan Che
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Xiaomin Li
- Institute of Quality Standard and Testing Technology for Agro-Products, The Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Junhua Yang
- Institute for Agri-Food Standards and Testing Technology, Shanghai Academy of Agricultural Sciences, Shanghai, China.
| | - Xiaoming Sun
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science, Nanchang University, Nanchang, China.
| |
Collapse
|
12
|
Acrylamide Induced Oxidative Cellular Senescence in Embryonic Fibroblast Cell Line (NIH 3T3): A Protection by Carvacrol. Jundishapur J Nat Pharm Prod 2021. [DOI: 10.5812/jjnpp.109399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Stress-induced cellular senescence is a perpetual state of cell cycle arrest occurring in proliferating cells in response to stressful conditions. It is believed that oxidative stress plays a unique role in this process. As a reactive chemical compound that can induce oxidative stress, acrylamide is widely applied in several fields. Carvacrol is a liquid phenolic monoterpenoid found in essential oils of some plants and is known for its antioxidant and anticarcinogenic properties. Objectives: The current study aimed to evaluate the effects of carvacrol on oxidative stress and cellular senescence induced by acrylamide in the NIH 3T3 cell line. Methods: NIH 3T3 embryonic fibroblast cells were exposed to different concentrations of acrylamide, carvacrol, and H2O2 in a cell culture medium. The level of β-galactosidase (SA-β-gal) activity, as a marker of cellular senescence, was measured using staining and quantitative assays. Furthermore, to measure oxidative stress parameters, the content of glutathione and lipid peroxidation were determined. Results: Acrylamide could induce premature senescence evident by the elevated lipid peroxidation and SA-β-gal activity and declined cell viability and glutathione. Moreover, carvacrol showed beneficial effects on both acrylamide- and H2O2-induced cellular senescence by significantly reversing or subsiding the effect of oxidative stress and mediating its consequences. Conclusions: It can be concluded that carvacrol has protective effects against oxidative cellular senescence induced by acrylamide in the NIH 3T3 cell line.
Collapse
|
13
|
Wood JJ, White IJ, Samolej J, Mercer J. Acrylamide inhibits vaccinia virus through vimentin-independent anti-viral granule formation. Cell Microbiol 2021; 23:e13334. [PMID: 33792166 PMCID: PMC11478914 DOI: 10.1111/cmi.13334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 11/28/2022]
Abstract
The replication and assembly of vaccinia virus (VACV), the prototypic poxvirus, occurs exclusively in the cytoplasm of host cells. While the role of cellular cytoskeletal components in these processes remains poorly understood, vimentin-a type III intermediate filament-has been shown to associate with viral replication sites and to be incorporated into mature VACV virions. Here, we employed chemical and genetic approaches to further investigate the role of vimentin during the VACV lifecycle. The collapse of vimentin filaments, using acrylamide, was found to inhibit VACV infection at the level of genome replication, intermediate- and late-gene expression. However, we found that CRISPR-mediated knockout of vimentin did not impact VACV replication. Combining these tools, we demonstrate that acrylamide treatment results in the formation of anti-viral granules (AVGs) known to mediate translational inhibition of many viruses. We conclude that vimentin is dispensable for poxvirus replication and assembly and that acrylamide, as a potent inducer of AVGs during VACV infection, serves to bolster cell's anti-viral response to poxvirus infection.
Collapse
Affiliation(s)
- Jennifer J. Wood
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Ian J. White
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
| | - Jerzy Samolej
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| | - Jason Mercer
- MRC Laboratory for Molecular Cell Biology, University College LondonLondonUK
- Institute of Microbiology and Infection, University of BirminghamBirminghamUK
| |
Collapse
|
14
|
Modulatory Effect of Probiotics on Proinflammatory Cytokine Levels in Acrylamide-Treated Rats. Biochem Res Int 2021; 2021:2268770. [PMID: 34336287 PMCID: PMC8318771 DOI: 10.1155/2021/2268770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/15/2021] [Indexed: 01/02/2023] Open
Abstract
The aims of this study are to investigate the effect of acrylamide on the level of proinflammatory cytokines in the blood of acrylamide-treated rats and to find the modulatory impact of probiotics on those cytokines. Thirty-two rats were divided into four groups: rats which received 20 mg acrylamide, acrylamide with 20 mg probiotics, acrylamide with 200 mg probiotics, and standard water and food (groups 1-4, respectively). The serum levels of cytokines were measured on days 0, 15, and 30. Group 1 showed an increased serum level of IL-1β, IL-6, and TNF-α after 15 days, and they decreased in day 30. Serum IL-6 level was significantly decreased on days 15 and 30 in rats in group 2 compared to the controls. TNF-α and IL-1β levels were not statistically different after treated with probiotics. The exposure of rats to acrylamide led to increased systemic inflammation as evidenced by higher levels of proinflammatory cytokines, and probiotics can modulate this inflammation.
Collapse
|
15
|
Antioxidant, Antigenotoxic, and Hepatic Ameliorative Effects of Quercetin/Zinc Complex on Cadmium-Induced Hepatotoxicity and Alterations in Hepatic Tissue Structure. COATINGS 2021. [DOI: 10.3390/coatings11050501] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Applications of medicinal uses of metals and their complexes have been gaining major clinical significance, especially during the COVID-19 pandemic. The ligation behavior of quercetin (Q), a flavonoid, and Zn metal, i.e., the Zn/Q complex, was fully characterized based on molar conductance, infrared (IR) spectra, elemental analysis, electronic spectra, thermogravimetric analysis, proton nuclear magnetic resonance (1H-NMR), and transmission electron microscopy (TEM) in our lab. Hepatotoxicity was induced by cadmium (CdCl2). A total of 40 male albino rats were randomly distributed into the following four groups: Control, hepatotoxic group (CdCl2), Zn/Q-treated group, and group treated with a combination of CdCl2 and Zn/Q. Serum hepatic enzymes (AST, ALT, and LDH), total protein, and enzymatic and nonenzymatic antioxidant levels were determined. Histology and TEM for hepatic tissues, in addition to the gene expression of SOD as an antioxidant enzyme in the hepatic tissues, were evaluated. The Q/Zn treatment demonstrated potent protective effects against CdCl2-induced sever oxidative stress and suppressed hepatic toxicity, genotoxicity, liver enzyme disturbances, and structural alterations. In conclusion, the Zn/Q complex produced a high potent antioxidant effect against the oxidative injury and genotoxicity induced by CdCl2 and could be considered to be a potent ameliorative hepatoprotective agent against CdCl2 hepatotoxicity, which could be beneficial during the COVID-19 pandemic.
Collapse
|
16
|
Salimi A, Baghal E, Ghobadi H, Hashemidanesh N, Khodaparast F, Seydi E. Mitochondrial, lysosomal and DNA damages induced by acrylamide attenuate by ellagic acid in human lymphocyte. PLoS One 2021; 16:e0247776. [PMID: 33635915 PMCID: PMC7909646 DOI: 10.1371/journal.pone.0247776] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/14/2021] [Indexed: 01/10/2023] Open
Abstract
Acrylamide (AA), is an important contaminant formed during food processing under high temperature. Due to its potential neurotoxicity, reproductive toxicity, hepatotoxicity, immunotoxicity, genotoxicity and carcinogenicity effects, this food contaminant has been recognized as a human health concern. Previous studies showed that acrylamide-induced toxicity is associated with active metabolite of acrylamide by cytochrome P450 enzyme, oxidative stress, mitochondrial dysfunction and DNA damage. In the current study, we investigated the role of oxidative stress in acrylamide's genotoxicity and therapeutic potential role of ellagic acid (EA) in human lymphocytes. Human lymphocytes were simultaneously treated with different concentrations of EA (10, 25 and 50 μM) and acrylamide (50 μM) for 4 h at 37°C. After 4 hours of incubation, the toxicity parameters such cytotoxicity, ROS formation, oxidized/reduced glutathione (GSH/GSSG) content, malondialdehyde (MDA) level, lysosomal membrane integrity, mitochondria membrane potential (ΔΨm) collapse and 8-hydroxy-2'-deoxyguanosine (8-OHdG) were analyzed using biochemical and flow cytometry evaluations. It has been found that acrylamide (50 μM) significantly increased cytotoxicity, ROS formation, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage in human lymphocytes. On the other hand, cotreatment with EA (25 and 50 μM) inhibited AA-induced oxidative stress which subsequently led to decreasing of the cytotoxicity, GSH oxidation, lipid peroxidation, MMP collapse, lysosomal and DNA damage. Together, these results suggest that probably the co-exposure of EA with foods containing acrylamide could decrease mitochondrial, lysosomal and DNA damages, and oxidative stress induced by acrylamide in human body.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- * E-mail: , (AS); (ES)
| | - Elahe Baghal
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Hassan Ghobadi
- Faculty of Medicine, Internal Medicine Department (Pulmonary Division), Ardabil University of Medical Sciences, Ardabil, Iran
| | - Niloufar Hashemidanesh
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Farzad Khodaparast
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Enayatollah Seydi
- Department of Occupational Health and Safety Engineering, School of Health, Alborz University of Medical Sciences, Karaj, Iran
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
- * E-mail: , (AS); (ES)
| |
Collapse
|
17
|
Hölzl-Armstrong L, Nævisdal A, Cox JA, Long AS, Chepelev NL, Phillips DH, White PA, Arlt VM. In vitro mutagenicity of selected environmental carcinogens and their metabolites in MutaMouse FE1 lung epithelial cells. Mutagenesis 2020; 35:453-463. [PMID: 33399867 PMCID: PMC7846080 DOI: 10.1093/mutage/geaa032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/21/2020] [Indexed: 11/12/2022] Open
Abstract
Chemicals in commerce or under development must be assessed for genotoxicity; assessment is generally conducted using validated assays (e.g. Tk mouse lymphoma assay) as part of a regulatory process. Currently, the MutaMouse FE1 cell mutagenicity assay is undergoing validation for eventual use as a standard in vitro mammalian mutagenicity assay. FE1 cells have been shown to be metabolically competent with respect to some cytochrome P450 (CYP) isozymes; for instance, they can convert the human carcinogen benzo[a]pyrene into its proximate mutagenic metabolite. However, some contradictory results have been noted for other genotoxic carcinogens that require two-step metabolic activation (e.g. 2-acetylaminofluorene and 2-amino-3-methylimidazo[4,5-f]quinoxaline). Here, we examined three known or suspected human carcinogens, namely acrylamide, 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) and 4-aminobiphenyl (4-ABP), together with their proximate metabolites (i.e. glycidamide, N-OH-PhIP and N-OH-4-ABP), to aid in the validation of the FE1 cell mutagenicity assay. Assessments of the parent compounds were conducted both in the presence and absence of an exogenous metabolic activation mixture S9; assessments of the metabolites were in the absence of S9. The most potent compound was N-OH-PhIP -S9, which elicited a mutant frequency (MF) level 5.3-fold over background at 5 µM. There was a 4.3-fold increase for PhIP +S9 at 5 µM, a 1.7-fold increase for glycidamide -S9 at 3.5 mM and a 1.5-fold increase for acrylamide +S9 at 4 mM. Acrylamide -S9 elicited a marginal 1.4-fold MF increase at 8 mM. Treatment with PhIP -S9, 4-ABP ±S9 and N-OH-4-ABP -S9 failed to elicit significant increases in lacZ MF with any of the treatment conditions tested. Gene expression of key CYP isozymes was quantified by RT-qPCR. Cyp1a1, 1a2 and 1b1 are required to metabolise PhIP and 4-ABP. Results showed that treatment with both compounds induced expression of Cyp1a1 and Cyp1b1 but not Cyp1a2. Cyp2e1, which catalyses the bioactivation of acrylamide to glycidamide, was not induced after acrylamide treatment. Overall, our results confirm that the FE1 cell mutagenicity assay has the potential for use alongside other, more traditional in vitro mutagenicity assays.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Andrea Nævisdal
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Julie A Cox
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nikolai L Chepelev
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King’s College London, London, UK
| |
Collapse
|
18
|
Hadi NSA, Bankoglu EE, Schott L, Leopoldsberger E, Ramge V, Kelber O, Sievers H, Stopper H. Genotoxicity of selected pyrrolizidine alkaloids in human hepatoma cell lines HepG2 and Huh6. Mutat Res 2020; 861-862:503305. [PMID: 33551105 DOI: 10.1016/j.mrgentox.2020.503305] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Pyrrolizidine alkaloids (PAs) are found in many plant species as secondary metabolites which affect humans via contaminated food sources, herbal medicines and dietary supplements. Hundreds of compounds belonging to PAs have been identified. PAs undergo hepatic metabolism, after which they can induce hepatotoxicity and carcinogenicity. Many aspects of their mechanism of carcinogenicity are still unclear and it is important for human risk assessment to investigate this class of compounds further. MATERIAL AND METHODS Human hepatoma cells HepG2 were used to investigate the genotoxicity of different chemical structural classes of PAs, namely europine, lycopsamine, retrorsine, riddelliine, seneciphylline, echimidine and lasiocarpine, in the cytokinesis-block micronucleus (CBMN) assay. The different ester type PAs europine, seneciphylline, and lasiocarpine were also tested in human hepatoma Huh6 cells. Six different PAs were investigated in a crosslink comet assay in HepG2 cells. RESULTS The maximal increase of micronucleus formation was for all PAs in the range of 1.64-2.0 fold. The lowest concentrations at which significant induction of micronuclei were found were 3.2 μM for lasiocarpine and riddelliine, 32 μM for retrorsine and echimidine, and 100 μM for seneciphylline, europine and lycopsamine. Significant induction of micronuclei by lasiocarpine, seneciphylline, and europine were achieved in Huh6 cells at similar concentrations. Reduced tail formation after hydrogen peroxide treatment was found in the crosslink comet assay for all diester type PAs, while an equimolar concentration of the monoesters europine and lycopsamine did not significantly reduce DNA migration. CONCLUSION The widely available human hepatoma cell lines HepG2 and Huh6 were suitable for the assessment of PA-induced genotoxicity. Selected PAs confirmed previously published potency rankings in the micronucleus assay. In HepG2 cells, the crosslinking activity was related to the ester type, which is a first report of PA mediated effects in the comet assay.
Collapse
Affiliation(s)
- Naji Said Aboud Hadi
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany; School of Health and Human Sciences, Pwani University, Kilifi, Kenya
| | - Ezgi Eyluel Bankoglu
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Lea Schott
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Eva Leopoldsberger
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Vanessa Ramge
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | - Olaf Kelber
- Steigerwald Arzneimittelwerk GmbH, Bayer Consumer Health, Darmstadt, Germany
| | | | - Helga Stopper
- Institute of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany.
| |
Collapse
|
19
|
Salimi A, Pashaei R, Bohlooli S, Vaghar-Moussavi M, Pourahmad J. Analysis of the acrylamide in breads and evaluation of mitochondrial/lysosomal protective agents to reduce its toxicity in vitro model. TOXIN REV 2020. [DOI: 10.1080/15569543.2020.1859543] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rafat Pashaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
- Faculty of Pharmacy, Students Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Shahab Bohlooli
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mehrdad Vaghar-Moussavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Alharthi WA, Hamza RZ, Elmahdi MM, Abuelzahab HSH, Saleh H. Selenium and L-Carnitine Ameliorate Reproductive Toxicity Induced by Cadmium in Male Mice. Biol Trace Elem Res 2020; 197:619-627. [PMID: 31863275 DOI: 10.1007/s12011-019-02016-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/15/2019] [Indexed: 01/03/2023]
Abstract
Cadmium (Cd) has been reported to reduce male fertility, impair reproductive capacity, and play a major role in the pathogenesis of infertility. This study was conducted to investigate the possible protective role of Selenium (Se) and L-carnitine (LC) against the adverse effects induced by Cd on the male reproductive system in mice. Animals were randomly divided into seven groups (n = 10); control group and six treated groups, as follows: Cd (0.35 mg/kg), Se (0.87 mg/kg), LC (10 mg/kg), and a combination of either Se or LC and then a combination of both with Cd, and all animals were injected for a period of 30 days. Exposure of Cd showed a significant decrease in enzymatic antioxidant activities, deficiency in reproductive performance, decrease serum testosterone level, severe changes in the histopathological architecture, and higher degree of damages and appearance of unblemished DNA strands. Treatment with Se and LC has the highly synergistic and ameliorates the damaging effect of Cd on the testis through the elevation of the enzymatic antioxidant and diminish histopathological abnormalities and DNA damage.
Collapse
Affiliation(s)
- Wed A Alharthi
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Reham Z Hamza
- Biology Department, Faculty of Science, Taif University, Taif, Saudi Arabia
- Zoology Department, Faculty of Science, Zagzig University, Zagazig, Egypt
| | - Magda M Elmahdi
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt
| | | | - Hanan Saleh
- Zoology Department, Faculty of Science, Cairo University, Giza, 12316, Egypt.
| |
Collapse
|
21
|
Hölzl-Armstrong L, Kucab JE, Moody S, Zwart EP, Loutkotová L, Duffy V, Luijten M, Gamboa da Costa G, Stratton MR, Phillips DH, Arlt VM. Mutagenicity of acrylamide and glycidamide in human TP53 knock-in (Hupki) mouse embryo fibroblasts. Arch Toxicol 2020; 94:4173-4196. [PMID: 32886187 PMCID: PMC7655573 DOI: 10.1007/s00204-020-02878-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/12/2020] [Indexed: 11/30/2022]
Abstract
Acrylamide is a suspected human carcinogen formed during high-temperature cooking of starch-rich foods. It is metabolised by cytochrome P450 2E1 to its reactive metabolite glycidamide, which forms pre-mutagenic DNA adducts. Using the human TP53 knock-in (Hupki) mouse embryo fibroblasts (HUFs) immortalisation assay (HIMA), acrylamide- and glycidamide-induced mutagenesis was studied in the tumour suppressor gene TP53. Selected immortalised HUF clones were also subjected to next-generation sequencing to determine mutations across the whole genome. The TP53-mutant frequency after glycidamide exposure (1.1 mM for 24 h, n = 198) was 9% compared with 0% in cultures treated with acrylamide [1.5 (n = 24) or 3 mM (n = 6) for 48 h] and untreated vehicle (water) controls (n = 36). Most glycidamide-induced mutations occurred at adenines with A > T/T > A and A > G/T > C mutations being the most common types. Mutations induced by glycidamide occurred at specific TP53 codons that have also been found to be mutated in human tumours (i.e., breast, ovary, colorectal, and lung) previously associated with acrylamide exposure. The spectrum of TP53 mutations was further reflected by the mutations detected by whole-genome sequencing (WGS) and a distinct WGS mutational signature was found in HUF clones treated with glycidamide that was again characterised by A > G/T > C and A > T/T > A mutations. The WGS mutational signature showed similarities with COSMIC mutational signatures SBS3 and 25 previously found in human tumours (e.g., breast and ovary), while the adenine component was similar to COSMIC SBS4 found mostly in smokers’ lung cancer. In contrast, in acrylamide-treated HUF clones, only culture-related background WGS mutational signatures were observed. In summary, the results of the present study suggest that glycidamide may be involved in the development of breast, ovarian, and lung cancer.
Collapse
Affiliation(s)
- Lisa Hölzl-Armstrong
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Jill E Kucab
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Sarah Moody
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Edwin P Zwart
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, The Netherlands
| | - Lucie Loutkotová
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.,Covance Inc., Salt Lake City, Utah, 84124, USA
| | - Veronica Duffy
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Mirjam Luijten
- Center for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, 3720, The Netherlands
| | - Gonçalo Gamboa da Costa
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Michael R Stratton
- Cancer, Ageing and Somatic Mutation, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College London, London, SE1 9NH, UK. .,Toxicology Department, GAB Consulting GmbH, 69126, Heidelberg, Germany.
| |
Collapse
|
22
|
Pyo MC, Shin HS, Jeon GY, Lee KW. Synergistic Interaction of Ochratoxin A and Acrylamide Toxins in Human Kidney and Liver Cells. Biol Pharm Bull 2020; 43:1346-1355. [DOI: 10.1248/bpb.b20-00282] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Affiliation(s)
- Min Cheol Pyo
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Hye Soo Shin
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Gyeong Yun Jeon
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| | - Kwang-Won Lee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University
| |
Collapse
|
23
|
Lin Z, Zhang Y, Li F, Tan X, Luo P, Liu H. Preventive Effects of Three Polysaccharides on the Oxidative Stress Induced by Acrylamide in a Saccharomyces cerevisiae Model. Mar Drugs 2020; 18:E395. [PMID: 32731522 PMCID: PMC7459515 DOI: 10.3390/md18080395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Saccharomyces cerevisiae was used as a model to explore the preventive effect of two marine polysaccharides separately derived from Sepia esculenta ink (SIP) and Laminaria japonica (FL) as well as one terrestrial polysaccharides from Eleocharis tuberosa peel (WCPP) on toxic injury induced by acrylamide (AA). The growth of yeast was evaluated by kinetics indexes including doubling time, lag phase and maximum proliferation density. Meanwhile, intracellular redox state was determined by contents of MDA and GSH, and SOD activity. The results showed that AA inhibited yeast growth and destroyed the antioxidant defense system. Supplement with polysaccharides, the oxidative damage of cells was alleviated. According to the growth recovery of yeast, FL and WCPP had similar degree of capacity against AA associated cytotoxicity, while SIP was 1.5~2 folds as strong as FL and WCPP. SIP and FL significantly reduced production of MDA by AA administration. Moreover, SIP, FL and WCPP increased SOD activity and repressed GSH depletion caused by AA.
Collapse
Affiliation(s)
| | | | | | | | | | - Huazhong Liu
- College of Chemistry & Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China; (Z.L.); (Y.Z.); (F.L.); (X.T.); (P.L.)
| |
Collapse
|
24
|
Revisiting the evidence for genotoxicity of acrylamide (AA), key to risk assessment of dietary AA exposure. Arch Toxicol 2020; 94:2939-2950. [PMID: 32494932 PMCID: PMC7415744 DOI: 10.1007/s00204-020-02794-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022]
Abstract
The weight of evidence pro/contra classifying the process-related food contaminant (PRC) acrylamide (AA) as a genotoxic carcinogen is reviewed. Current dietary AA exposure estimates reflect margins of exposure (MOEs) < 500. Several arguments support the view that AA may not act as a genotoxic carcinogen, especially not at consumer-relevant exposure levels: Biotransformation of AA into genotoxic glycidamide (GA) in primary rat hepatocytes is markedly slower than detoxifying coupling to glutathione (GS). Repeated feeding of rats with AA containing foods, bringing about uptake of 100 µg/kg/day of AA, resulted in dose x time-related buildup of AA-hemoglobin (Hb) adducts, whereas GA-Hb adducts remained within the background. Since hepatic oxidative biotransformation of AA into GA was proven by simultaneous urinary mercapturic acid monitoring it can be concluded that at this nutritional intake level any GA formed in the liver from AA is quantitatively coupled to GS to be excreted as mercapturic acid in urine. In an oral single dose–response study in rats, AA induced DNA N7-GA-Gua adducts dose-dependently in the high dose range (> 100 µg/kg b w). At variance, in the dose range below 100 µg/kg b.w. down to levels of average consumers exposure, DNA N7 -Gua lesions were found only sporadically, without dose dependence, and at levels close to the lower bound of similar human background DNA N7-Gua lesions. No DNA damage was detected by the comet assay within this low dose range. GA is a very weak mutagen, known to predominantly induce DNA N7-GA-Gua adducts, especially in the lower dose range. There is consensus that DNA N7-GA-Gua adducts exhibit rather low mutagenic potency. The low mutagenic potential of GA has further been evidenced by comparison to preactivated forms of other process-related contaminants, such as N-Nitroso compounds or polycyclic aromatic hydrocarbons, potent food borne mutagens/carcinogens. Toxicogenomic studies provide no evidence supporting a genotoxic mode of action (MOA), rather indicate effects on calcium signalling and cytoskeletal functions in rodent target organs. Rodent carcinogenicity studies show induction of strain- and species-specific neoplasms, with MOAs not considered likely predictive for human cancer risk. In summary, the overall evidence clearly argues for a nongenotoxic/nonmutagenic MOA underlying the neoplastic effects of AA in rodents. In consequence, a tolerable intake level (TDI) may be defined, guided by mechanistic elucidation of key adverse effects and supported by biomarker-based dosimetry in experimental systems and humans.
Collapse
|
25
|
Hamdy SM, El-Khayat Z, Farrag AR, Sayed ON, El-Sayed MM, Massoud D. Hepatoprotective effect of Raspberry ketone and white tea against acrylamide-induced toxicity in rats. Drug Chem Toxicol 2020; 45:722-730. [PMID: 32482111 DOI: 10.1080/01480545.2020.1772279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The current investigation was accomplished to evaluate the hepatoprotective effect of White tea and Raspberry Ketone against toxicity induced by acrylamide in rats. Sixty adult male rats were divided randomly into group (I) control; group (II) rats received RK with dose (6 mg/kg/day); Group III: rats received 5 ml of WT extract/kg/day; Group IV rats received AA (5 mg/kg/day); Group V: rats administrated with both AA (5 mg/kg/day) and RK (6 mg/kg/day) and Group VI: rats administrated AA (5 mg/kg/day) and 5 ml of WT extract/kg/day. The biochemical assays exhibited a significant increase in serum levels of Adiponectin, AST, ALT, ALP of the group treated with acrylamide if compared to the control group and an improvement in their levels of groups V and VI. The histopathological and immunohistochemical findings confirm the biochemical observations. In conclusion, the present investigation proved that the supplementation of WT and RK enhanced the liver histology, immunohistochemistry and biochemistry against the oxidative stress induced by acrylamide.
Collapse
Affiliation(s)
- Soha M Hamdy
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Zakaria El-Khayat
- Medical Biochemistry Department, Medical Division, National Research Centre Cairo, Cairo, Egypt
| | - Abdel Razik Farrag
- Pathology Department, Medical Division, National Research Centre, Cairo, Egypt
| | - Ola N Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Mervat M El-Sayed
- Chemistry Department, Biochemistry Division, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Diaa Massoud
- Department of Biology, College of Science, Jouf University, Sakakah, Saudi Arabia.,Department of Zoology, Faculty of Science, Fayoum University, Faiyum, Egypt
| |
Collapse
|
26
|
Nowak A, Zakłos-Szyda M, Żyżelewicz D, Koszucka A, Motyl I. Acrylamide Decreases Cell Viability, and Provides Oxidative Stress, DNA Damage, and Apoptosis in Human Colon Adenocarcinoma Cell Line Caco-2. Molecules 2020; 25:molecules25020368. [PMID: 31963203 PMCID: PMC7024287 DOI: 10.3390/molecules25020368] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 11/16/2022] Open
Abstract
Acrylamide (AA) toxicity remains an interesting subject in toxicological research. The aim of the research performed in this paper was to determine mechanisms of cyto- and genotoxic effects of AA on the human colon adenocarcinoma cell line Caco-2, to estimate the inhibitory concentration (IC)50 values in cell viability assays, to measure the basal and oxidative DNA damage as well as the oxidative stress leading to apoptosis, and to assess the morphological changes in cells using microscopic methods. It has been proven that AA induces cytotoxic and genotoxic effects on Caco-2 cells. Higher cytotoxic activity was gained in the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay compared with the PrestoBlue assay, with IC50 values of 5.9 and 8.9 mM after 24 h exposure, respectively. In the single-cell gel electrophoresis assay, the greatest DNA damage was caused by the highest concentration of acrylamide equal to 12.5 mM (89.1% ± 0.9%). AA also induced oxidative DNA damage and generated reactive oxygen species (ROS), which was concentration dependent and correlated with the depletion of mitochondrial membrane potential and apoptosis induction. In the microscopic staining of cells, AA in the dosage close to the IC50 induced morphological changes typical for apoptosis. Taken together, these results demonstrate that AA has a pro-oxidative effect on Caco-2 cells, leading to apoptotic cell death.
Collapse
Affiliation(s)
- Adriana Nowak
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (A.K.); (I.M.)
- Correspondence:
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland;
| | - Dorota Żyżelewicz
- Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 4/10, 90-924 Łódź, Poland;
| | - Agnieszka Koszucka
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (A.K.); (I.M.)
| | - Ilona Motyl
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland; (A.K.); (I.M.)
| |
Collapse
|
27
|
Miranda JF, Scarinci LD, Ramos LF, Silva CM, Gonçalves LR, de Morais PF, Malaspina O, Moraes KCM. The modulatory effect of triclosan on the reversion of the activated phenotype of LX-2 hepatic stellate cells. J Biochem Mol Toxicol 2019; 34:e22413. [PMID: 31714634 DOI: 10.1002/jbt.22413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 09/12/2019] [Accepted: 10/07/2019] [Indexed: 01/03/2023]
Abstract
Hepatic diseases leading to fibrosis affect millions of individuals worldwide and are a major public health challenge. Although, there have been many advances in understanding hepatic fibrogenesis, an effective therapy remains elusive. Studies focus primarily on activation of the hepatic stellate cells (HSCs), the principal fibrogenic cells in the liver; however, fewer numbers of studies have examined molecular mechanisms that deactivate HSC, controlling the profibrogenic phenotype. In the present study, we evaluated cellular and molecular actions of the chemical triclosan (TCS) in reverting activated HSCs to a quiesced phenotype. We demonstrated that the inhibition of the enzyme fatty acid synthase by TCS in activated HSCs promotes survival of the cells and triggers cellular and molecular changes that promote cellular phenotypic reversion, offering potentially new therapeutic directions.
Collapse
Affiliation(s)
- Juliana F Miranda
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia D Scarinci
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia F Ramos
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Caio M Silva
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Letícia R Gonçalves
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Priscila F de Morais
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Osmar Malaspina
- Instituto de Biociências, Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| | - Karen C M Moraes
- Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, São Paulo, Brazil
| |
Collapse
|
28
|
Interactions of preservatives in meat processing: Formation of carcinogenic compounds, analytical methods, and inhibitory agents. Food Res Int 2019; 125:108608. [DOI: 10.1016/j.foodres.2019.108608] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 08/02/2019] [Accepted: 08/04/2019] [Indexed: 12/11/2022]
|
29
|
Mišík M, Nersesyan A, Ropek N, Huber WW, Haslinger E, Knasmueller S. Use of human derived liver cells for the detection of genotoxins in comet assays. MUTATION RESEARCH/GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 845:402995. [DOI: 10.1016/j.mrgentox.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 12/03/2018] [Accepted: 12/09/2018] [Indexed: 04/09/2023]
|
30
|
Allicin alleviates acrylamide-induced oxidative stress in BRL-3A cells. Life Sci 2019; 231:116550. [DOI: 10.1016/j.lfs.2019.116550] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/31/2019] [Accepted: 06/07/2019] [Indexed: 12/22/2022]
|
31
|
El-Zakhem Naous G, Merhi A, Abboud MI, Mroueh M, Taleb RI. Carcinogenic and neurotoxic risks of acrylamide consumed through caffeinated beverages among the lebanese population. CHEMOSPHERE 2018; 208:352-357. [PMID: 29885500 DOI: 10.1016/j.chemosphere.2018.05.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
The present study aims to quantify acrylamide in caffeinated beverages including American coffee, Lebanese coffee, espresso, instant coffee and hot chocolate, and to determine their carcinogenic and neurotoxic risks. A survey was carried for this purpose whereby 78% of the Lebanese population was found to consume at least one type of caffeinated beverages. Gas Chromatography Mass Spectrometry analysis revealed that the average acrylamide level in caffeinated beverages is 29,176 μg/kg sample. The daily consumption of acrylamide from Lebanese coffee (10.9 μg/kg-bw/day), hot chocolate (1.2 μg/kg-bw/day) and Espresso (7.4 μg/kg-bw/day) was found to be higher than the risk intake for carcinogenicity and neurotoxicity as set by World Health Organization (WHO; 0.3-2 μg/kg-bw/day) at both the mean (average consumers) and high (high consumers) dietary exposures. On the other hand, American coffee (0.37 μg/kg-bw/day) was shown to pose no carcinogenic or neurotoxic risks among the Lebanese community for consumers with a mean dietary exposure. The study shows alarming results that call for regulating the caffeinated product industry by setting legislations and standard protocols for product preparation in order to limit the acrylamide content and protect consumers. In order to avoid carcinogenic and neurotoxic risks, we propose that WHO/FAO set acrylamide levels in caffeinated beverages to 7000 μg acrylamide/kg sample, a value which is 4-folds lower than the average acrylamide levels of 29,176 μg/kg sample found in caffeinated beverages sold in the Lebanese market. Alternatively, consumers of caffeinated products, especially Lebanese coffee and espresso, would have to lower their daily consumption to 0.3-0.4 cups/day.
Collapse
Affiliation(s)
- Ghada El-Zakhem Naous
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | - Areej Merhi
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | | | - Mohamad Mroueh
- School of Pharmacy, Department of Pharmaceutical Sciences, Lebanese American University, Byblos Lebanon
| | - Robin I Taleb
- School of Arts and Sciences, Department of Natural Sciences, Lebanese American University, Byblos, Lebanon.
| |
Collapse
|
32
|
Li X, Liu H, Lv L, Yan H, Yuan Y. Antioxidant activity of blueberry anthocyanin extracts and their protective effects against acrylamide‐induced toxicity in HepG2 cells. Int J Food Sci Technol 2017. [DOI: 10.1111/ijfs.13568] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xuenan Li
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Huangyou Liu
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Lingzhu Lv
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Haiyang Yan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| | - Yuan Yuan
- College of Food Science and Engineering Jilin University Changchun 130062 China
| |
Collapse
|
33
|
Chu PL, Lin LY, Chen PC, Su TC, Lin CY. Negative association between acrylamide exposure and body composition in adults: NHANES, 2003-2004. Nutr Diabetes 2017; 7:e246. [PMID: 28287631 PMCID: PMC5380889 DOI: 10.1038/nutd.2016.48] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND/OBJECTIVES Acrylamide is present in mainstream cigarette smoke and in some food prepared at high temperature. Animal studies have shown that acrylamide exposure reduces body weight. Prenatal exposure to acrylamide also has been linked to reduced birth weight in human. Whether acrylamide exposure is associated with altered body compositions in adults is not clear. SUBJECTS/METHODS We selected 3623 subjects (aged ⩾20 years) from a National Health and Nutrition Examination Survey (NHANES) in 2003-2004 to determine the relationship among hemoglobin adducts of acrylamide (HbAA), hemoglobin adducts of glycidamide (HbGA) and body composition (body measures, bioelectrical impedance analysis (BIA), dual energy x-ray absorptiometry (DXA)). Data were adjusted for potential confounding variables. RESULTS The geometric means and 95% CI concentrations of HbAA and HbGA were 60.48 (59.32-61.65) pmol/g Hb and 55.64 (54.40-56.92) pmol/g Hb, respectively. After weighting for sampling strategy, we identified that one-unit increase in natural log-HbAA, but not HbGA, was associated with reduction in body measures (body weight, body mass index (BMI), subscapular/triceps skinfold), parameters of BIA (fat-free mass, fat mass, percent body fat, total body water) and parameters of DXA (android fat mass, android percent fat, gynoid fat/lean mass, gynoid percent mass, android to gynoid ratio). Subgroup analysis showed that these associations were more evident in subjects at younger age, male gender, whites, lower education level, active smokers and those with lower BMI. CONCLUSIONS Higher concentrations of HbAA are associated with a decrease in body composition in the US general population. Further studies are warranted to clarify this association.
Collapse
Affiliation(s)
- P-L Chu
- Department of Internal Medicine, Hsinchu Cathay General Hospital, Hsinchu, Taiwan
- Graduate Institute of Biomedical and Pharmaceutical Science, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - L-Y Lin
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
| | - P-C Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - T-C Su
- Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - C-Y Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| |
Collapse
|
34
|
Xiao D, Wang H, Han D. Single and combined genotoxicity effects of six pollutants on THP-1 cells. Food Chem Toxicol 2016; 95:96-102. [DOI: 10.1016/j.fct.2016.06.029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/31/2016] [Accepted: 06/28/2016] [Indexed: 10/21/2022]
|
35
|
de Lima JP, Silva SN, Rueff J, Pingarilho M. Glycidamide genotoxicity modulated by Caspases genes polymorphisms. Toxicol In Vitro 2016; 34:123-127. [DOI: 10.1016/j.tiv.2016.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 03/18/2016] [Accepted: 03/29/2016] [Indexed: 10/22/2022]
|
36
|
Collí-Dulá RC, Friedman MA, Hansen B, Denslow ND. Transcriptomics analysis and hormonal changes of male and female neonatal rats treated chronically with a low dose of acrylamide in their drinking water. Toxicol Rep 2016; 3:414-426. [PMID: 28959563 PMCID: PMC5615912 DOI: 10.1016/j.toxrep.2016.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/02/2016] [Accepted: 03/16/2016] [Indexed: 12/28/2022] Open
Abstract
Acrylamide is known to produce follicular cell tumors of the thyroid in rats. RccHan Wistar rats were exposed in utero to a carcinogenic dose of acrylamide (3 mg/Kg bw/day) from gestation day 6 to delivery and then through their drinking water to postnatal day 35. In order to identify potential mechanisms of carcinogenesis in the thyroid glands, we used a transcriptomics approach. Thyroid glands were collected from male pups at 10 PM and female pups at 10 AM or 10 PM in order to establish whether active exposure to acrylamide influenced gene expression patterns or pathways that could be related to carcinogenesis. While all animals exposed to acrylamide showed changes in expected target pathways related to carcinogenesis such as DNA repair, DNA replication, chromosome segregation, among others; animals that were sacrificed while actively drinking acrylamide-laced water during their active period at night showed increased changes in pathways related to oxidative stress, detoxification pathways, metabolism, and activation of checkpoint pathways, among others. In addition, thyroid hormones, triiodothyronine (T3) and thyroxine (T4), were increased in acrylamide-treated rats sampled at night, but not in quiescent animals when compared to controls. The data clearly indicate that time of day for sample collection is critical to identifying molecular pathways that are altered by the exposures. These results suggest that carcinogenesis in the thyroids of acrylamide treated rats may ensue from several different mechanisms such as hormonal changes and oxidative stress and not only from direct genotoxicity, as has been assumed to date.
Collapse
Key Words
- ADA, adenosine Deaminase
- ADRB2, adrenergic
- ASF1B, anti-Silencing Function 1B Histone Chaperone
- Acrylamide
- BRIP1, BRCA1 Interacting Protein C-Terminal Helicase 1
- BUB1B, BUB1 Mitotic Checkpoint Serine/Threonine Kinase B
- C1QTNF3, C1q and Tumor Necrosis Factor Related Protein 3
- C5, complement Component 5
- CALCR, calcitonin receptor
- CARD9, caspase recruitment domain family
- CCNA2, cyclin A2
- CCNG1, cyclin G1
- CD45, protein tyrosine phosphatase
- CD46, CD46 molecule
- CDC45, cell division cycle 45
- CDCA2, cell division cycle associated 2
- CDCA5, cell division cycle associated 5
- CENPT, centromere protein T
- CFB, complement factor B
- CGA, glycoprotein hormones
- CTLA4, cytotoxic T-lymphocyte-associated protein 4
- DAD1, defender against cell death 1
- DCTPP1, DCTP pyrophosphatase 1
- DNMT3A, DNA (cytosine-5-)-methyltransferase 3 alpha
- DUOX2, dual oxidase 2
- GCG, glucagon
- GCLC, glutamate-cysteine ligase
- GOLGA3, golgin A3
- GSTM1, glutathione S-transferase Mu 1
- GSTP1, glutathione S-transferase Pi 1
- HPSE, heparanase
- HSPA5, heat shock 70 kDa protein 5
- HSPB1, heat shock 27 KDa protein
- HSPB2, heat shock 27 kDa protein 2
- HSPH1, heat shock 105 kDa/110 kDa protein 1
- HTATIP2, HIV-1 tat interactive protein 2
- ID1, inhibitor of DNA binding 1
- IGF2, Insulin-like growth factor 2 (somatomedin A)
- IL1B, interleukin 1
- INHBA, inhibin
- IYD, iodotyrosine deiodinase
- KIF20B, kinesin family member 20B
- KIF22, kinesin family Member 22
- KLK1, kallikrein 1
- LAMA2, laminin, alpha 2
- MCM8, minichromosome maintenance complex component 8
- MIF, macrophage migration inhibitory factor
- MIS18A, MIS18 kinetochore protein A
- NDC80, NDC80 kinetochore complex component
- NPPC, natriuretic peptide precursor C
- NPY, neuropeptide
- NUBP1, nucleotide binding protein 1
- ORC1, origin recognition complex
- PDE3A, phosphodiesterase 3A
- PINK1, PTEN induced putative kinase 1
- PLCD1, phospholipase C
- PLK1, polo-like kinase 1
- POMC, proopiomelanocortin
- PRKAA2, protein kinase
- PRL, prolactin
- PRODH, proline dehydrogenase
- PTGIS, prostaglandin I2 (prostacyclin) synthase
- PTGS1, prostaglandin-endoperoxide synthase 1
- RAB5A, RAB5A
- RAN, ras-related nuclear protein
- RRM2, ribonucleotide reductase M2
- RccHan Wistar
- SCL5A5, solute carrier family 5 (sodium iodide symporter)
- SELP, selectin P (granule membrane protein 140 kDa
- SPAG8, sperm associated antigen 8
- TACC3, transforming
- TBCB, tubulin folding cofactor B
- TFRC, transferrin receptor
- TOP2A, topoisomerase (DNA) II alpha
- TPO, thyroid peroxidase
- TSHR, thyroid stimulating hormone receptor
- TSN, translin
- Thyroid
- Transcriptomics
- VWF, Von Willebrand Factor
Collapse
Affiliation(s)
- Reyna Cristina Collí-Dulá
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| | | | - Benjamin Hansen
- Laboratory of Pharmacology and Toxicology, D-211134, Hamburg, Germany
| | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
37
|
Friedman M. Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food Funct 2016; 6:1752-72. [PMID: 25989363 DOI: 10.1039/c5fo00320b] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Potentially toxic acrylamide is largely derived from the heat-inducing reactions between the amino group of the amino acid asparagine and carbonyl groups of glucose and fructose in plant-derived foods including cereals, coffees, almonds, olives, potatoes, and sweet potatoes. This review surveys and consolidates the following dietary aspects of acrylamide: distribution in food, exposure and consumption by diverse populations, reduction of the content in different food categories, and mitigation of adverse in vivo effects. Methods to reduce acrylamide levels include selecting commercial food with a low acrylamide content, selecting cereal and potato varieties with low levels of asparagine and reducing sugars, selecting processing conditions that minimize acrylamide formation, adding food-compatible compounds and plant extracts to food formulations before processing that inhibit acrylamide formation during processing of cereal products, coffees, teas, olives, almonds, and potato products, and reducing multiorgan toxicity (antifertility, carcinogenicity, neurotoxicity, teratogenicity). The herein described observations and recommendations are of scientific interest for food chemistry, pharmacology, and toxicology, but also have the potential to benefit nutrition, food safety, and human health.
Collapse
Affiliation(s)
- Mendel Friedman
- Western Regional Research Center, Agricultural Research Service, U.S. Department of Agriculture, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
38
|
Ghorbel I, Khemakhem M, Boudawara O, Marrekchi R, Jamoussi K, Ben Amar R, Boudawara T, Zeghal N, Grati Kamoun N. Effects of dietary extra virgin olive oil and its fractions on antioxidant status and DNA damage in the heart of rats co-exposed to aluminum and acrylamide. Food Funct 2016. [PMID: 26215160 DOI: 10.1039/c5fo00342c] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Oxidative stress generated by an excessive production of free radicals has been linked to the development of several health problems such as cardiovascular diseases. We investigated the protective efficacy of Extra Virgin Olive Oil (EVOO) and its lipophilic fraction (OOLF) and hydrophilic fraction (OOHF) against the cardiotoxicity and DNA damage induced by co-exposure to aluminum (AlCl3) and acrylamide (ACR). Rats were divided into eight groups of six each: controls, AlCl3 (50 mg per kg body weight) administered via drinking water and ACR (20 mg per kg body weight) given by gavage, combined group plus EVOO (300 μl); combined group plus the hydrophilic fraction (1 ml); combined group plus the lipophilic fraction (300 μl); extra virgin olive oil (EVOO) and its fractions were administered daily by gavage for 21 days. Three other groups, considered as positive controls, received either EVOO, OOLF or OOLH. Exposure of rats to both AlCl3 and ACR provoked oxidative stress objectified by an increase in MDA, AOPP and a decrease in GSH, NPSH and vitamin C levels. The activities of CAT, GPx and SOD were also decreased. EVOO and its OOLF fraction exhibited a pronounced enhancement of antioxidant status while a partial recovery in the antioxidant status was obtained with the OOHF fraction. Plasma LDH and CK activities, TC, LDL-C levels, TC/HDL-C and LDL-C/HDL-C ratios were increased, while HDL-C and TG decreased in rats treated with both AlCl3 and ACR. Co-administration of EVOO, OOLF or OOHF to treated rats restored cardiac biomarkers and lipid profile to near-normal values. Histological studies and DNA damage confirmed the biochemical parameters and the beneficial role of EVOO and its two fractions. Our results suggest that extra virgin olive oil and its two fractions can decrease the frequency of cardiac complications and genotoxicity.
Collapse
Affiliation(s)
- Imen Ghorbel
- Animal Physiology Laboratory, Sfax Faculty of Sciences, University of Sfax, 3000 Sfax, BP 1171, Tunisia.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
|
40
|
Chen JH, Lee DC, Chen MS, Ko YC, Chiu IM. Inhibition of Neurosphere Formation in Neural Stem/Progenitor Cells by Acrylamide. Cell Transplant 2015; 24:779-96. [DOI: 10.3727/096368913x676925] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previous studies showed that transplantation of cultured neural stem/progenitor cells (NSPCs) could improve functional recovery for various neurological diseases. This study aims to develop a stem cell-based model for predictive toxicology of development in the neurological system after acrylamide exposure. Treatment of mouse (KT98/F1B-GFP) and human (U-1240 MG/F1B-GFP) NSPCs with 0.5 mM acrylamide resulted in the inhibition of neurosphere formation (definition of self-renewal ability in NSPCs), but not inhibition of cell proliferation. Apoptosis and differentiation of KT98 (a precursor of KT98/F1B-GFP) and KT98/F1B-GFP are not observed in acrylamide-treated neurospheres. Analysis of secondary neurosphere formation and differentiation of neurons and glia illustrated that acrylamide-treated KT98 and KT98/F1B-GFP neurospheres retain the NSPC properties, such as self-renewal and differentiation capacity. Correlation of acrylamide-inhibited neurosphere formation with cell-cell adhesion was observed in mouse NSPCs by live cell image analysis and the presence of acrylamide. Protein expression levels of cell adhesion molecules [neural cell adhesion molecule (NCAM) and N-cadherin] and extracellular signal-regulated kinases (ERK) in acrylamide-treated KT98/F1B-GFP and U-1240 MG/F1B-GFP neurospheres demonstrated that NCAM decreased and phospho-ERK (pERK) increased, whereas expression of N-cadherin remained unchanged. Analysis of AKT (protein kinase B, PKB)/β-catenin pathway showed decrease in phospho-AKT (p-AKT) and cyclin D1 expression in acrylamide-treated neurospheres of KT98/F1B-GFP. Furthermore, PD98059, an ERK phosphorylation inhibitor, attenuated acrylamide-induced ERK phosphorylation, indicating that pERK contributed to the cell proliferation, but not in neurosphere formation in mouse NSPCs. Coimmunoprecipitation results of KT98/F1B-GFP cell lysates showed that the complex of NCAM and fibroblast growth factor receptor 1 (FGFR1) is present in the neurosphere, and the amount of this complex decreases after acrylamide treatment. Our results reveal that acrylamide inhibits neurosphere formation through the disruption of the neurosphere architecture in NSPCs. The downregulation of cell-cell adhesion resulted from decreasing the levels of NCAM as well as the formation of NCAM/ FGFR complex.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Don-Ching Lee
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Mei-Shu Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Ying-Chin Ko
- Environment-Omics-Disease Research Centre, China Medical University Hospital, Taichung, Taiwan
| | - Ing-Ming Chiu
- Institute of Cellular and System Medicine, National Health Research Institutes, Miaoli, Taiwan
- Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Zhang TT, Zhao G, Li X, Xie FW, Liu HM, Xie JP. Genotoxic and oxidative stress effects of 2-amino-9H-pyrido[2,3-b]indole in human hepatoma G2 (HepG2) and human lung alveolar epithelial (A549) cells. Toxicol Mech Methods 2015; 25:212-22. [DOI: 10.3109/15376516.2015.1025345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Kim KH, Park B, Rhee DK, Pyo S. Acrylamide Induces Senescence in Macrophages through a Process Involving ATF3, ROS, p38/JNK, and a Telomerase-Independent Pathway. Chem Res Toxicol 2015; 28:71-86. [PMID: 25531190 DOI: 10.1021/tx500341z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Senescence, which is irreversible cell cycle arrest, is induced by various types of DNA damage, including genotoxic stress. Senescent cells show dysregulation of tumor suppressor genes and other regulators of cellular proliferation. Activating transcription factor 3 (ATF3) plays a pleiotropic role in biological processes through genotoxic stress. In this study, we examined the effects of acrylamide (ACR), a genotoxic carcinogen, on cellular senescence and the molecular mechanisms of ATF3 function in macrophages. Treatment of macrophages with ACR at low concentrations (<1.0 mM) resulted in senescence-like morphology and an increase in senescence-associated β-galactosidase (SA-β-gal) activity. Exposure of macrophages to ACR led to stress-induced, telomerase-independent senescence. In addition, ACR treatment for 1, 3, or 5 days showed a concentration-dependent increase in ATF3 expression and G0/G1 phase arrest. To better understand the role of ATF3 in controlling the senescence response to ACR, SA-β-gal activity was examined using ATF3 knockdown and overexpression. ACR-mediated senescence was significantly decreased by knockdown of ATF3, whereas it was increased with ATF3 overexpression. We found that ATF3 regulated p53 and p21 levels. ATF3 also played an important role in regulating intracellular reactive oxygen species (ROS) production in response to ACR treatment. Moreover, phosphorylation of p38 and JNK kinases, which were activated during ATF3-mediated senescence, was observed in ACR-treated macrophages. Taken together, these results suggest that ATF3 contributes to ACR-induced senescence by enhancing ROS production, activating p38 and JNK kinases, and promoting the ATF3-dependent expression of p53, resulting in regulation of cellular senescence in macrophages.
Collapse
Affiliation(s)
- Kyung-Ho Kim
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Bongkyun Park
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Dong-Kwon Rhee
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| | - Suhkneung Pyo
- School of Pharmacy, Sungkyunkwan University , Suwon, Kyunggi-do, 440-746, Republic of Korea
| |
Collapse
|
43
|
Maronpot RR, Thoolen RJMM, Hansen B. Two-year carcinogenicity study of acrylamide in Wistar Han rats with in utero exposure. ACTA ACUST UNITED AC 2014; 67:189-95. [PMID: 25553597 DOI: 10.1016/j.etp.2014.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 10/30/2014] [Accepted: 11/19/2014] [Indexed: 11/19/2022]
Abstract
Acrylamide is an important chemical with widespread industrial and other uses in addition to generalized population exposure from certain cooked foods. Previous rat studies to assess the carcinogenic potential of acrylamide have been carried out exclusively in the Fischer 344 rat with identification of a number of tumors amongst which mesotheliomas of the tunica vaginalis is an important tumor endpoint in the classification of acrylamide as a 'probably human carcinogen. In a rat carcinogenicity study to determine the human relevance of mesotheliomas Wistar Han rats were exposed to 0, 0.5, 1.5, or 3.0mg acrylamide/kg body weight/day in drinking water starting at gestation day 6. At the end of two years, mammary gland fibroadenomas in females and thyroid follicular cell tumors in both sexes were the only tumors increased in acrylamide treated rats. These tumor endpoints have rat-specific modes of action suggesting less likelihood of human cancer risk than previously estimated. This study demonstrates that tunica vaginalis mesotheliomas are strain specific and not likely of genotoxic origin.
Collapse
Affiliation(s)
- R R Maronpot
- Experimental Pathology Laboratories, Inc., Research Triangle Park, NC, United States.
| | | | - B Hansen
- LPT Laboratory of Pharmacology & Toxicology, Hamburg, Germany
| |
Collapse
|
44
|
Papoušek R, Pataj Z, Nováková P, Lemr K, Barták P. Determination of Acrylamide and Acrolein in Smoke from Tobacco and E-Cigarettes. Chromatographia 2014. [DOI: 10.1007/s10337-014-2729-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
45
|
Fukushima T, Hara-Yamamura H, Urai M, Kasuga I, Kurisu F, Miyoshi T, Kimura K, Watanabe Y, Okabe S. Toxicity assessment of chlorinated wastewater effluents by using transcriptome-based bioassays and Fourier transform mass spectrometry (FT-MS) analysis. WATER RESEARCH 2014; 52:73-82. [PMID: 24462929 DOI: 10.1016/j.watres.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/24/2013] [Accepted: 01/01/2014] [Indexed: 06/03/2023]
Abstract
Effects of chlorination on the toxicity of wastewater effluents treated by activated sludge (AS) and submerged membrane bioreactor (S-MBRB) systems to HepG2 human hepatoblastoma cells were investigated. In addition to the cytotoxicity and genotoxicity assays, the DNA microarray-based transcriptome analysis was performed to evaluate the change in types of biological impacts on HepG2 cells of the effluents by chlorination. Effluent organic matter (EfOM) and disinfection by-products (DBPs) were also characterized by using Fourier transform mass spectrometry (FT-MS). Although no significant induction of genotoxicity was observed by chlorination for both effluents, the chlorination elevated the cytotoxicity of AS effluent but reduced that of S-MBRB effluent. The FT-MS analyses revealed that more DBPs including nitrogenated DBPs (N-DBPs) were formed in the AS effluent than in the S-MBRB effluent by chlorination, supporting the increased cytotoxicity of AS effluent. The lower O/C ratio of S-MBRB EfOM suggests that a large number of organic molecules were detoxified by chlorination, which consequently decreased the cytotoxicity of S-MBRB effluent. Integration of all the results highlights that both cytotoxicity and biological impacts of chlorinated wastewater effluents were clearly dependent on the EfOM characteristics such as DBPs and O/C ratio, namely, on types of treatment systems.
Collapse
Affiliation(s)
- Toshikazu Fukushima
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Hiroe Hara-Yamamura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Makoto Urai
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ikuro Kasuga
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Taro Miyoshi
- Center for Environmental Nano and Bio Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Katsuki Kimura
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan
| | - Yoshimasa Watanabe
- Center for Environmental Nano and Bio Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, North-13, West-8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
46
|
Kommuguri UN, Satyaprasad Pallem PV, Bodiga S, Bodiga VL. Effect of dietary antioxidants on the cytostatic effect of acrylamide during copper-deficiency in Saccharomyces cerevisiae. Food Funct 2014; 5:705-15. [DOI: 10.1039/c3fo60483g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Yeast grown on a copper deficient medium was used to study acrylamide toxicity, obviating the need for genetic manipulation and accompanying compensatory effects.
Collapse
Affiliation(s)
| | | | - Sreedhar Bodiga
- Department of Biochemistry
- Kakatiya University
- Warangal, India
| | | |
Collapse
|
47
|
Chen JH, Lee DC, Chiu IM. Cytotoxic effects of acrylamide in nerve growth factor or fibroblast growth factor 1-induced neurite outgrowth in PC12 cells. Arch Toxicol 2013; 88:769-80. [PMID: 24318646 DOI: 10.1007/s00204-013-1174-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/20/2013] [Indexed: 12/26/2022]
Abstract
Acrylamide is a neurological and reproductive toxicant in humans and laboratory animals; however, the neuron developmental toxicity of acrylamide remains unclear. The aims of this study are to investigate the cytotoxicity and neurite outgrowth inhibition of acrylamide in nerve growth factor (NGF)- or fibroblast growth factor 1 (FGF1)-mediated neural development of PC12 cells. MTS assay showed that acrylamide treatment suppresses NGF- or FGF1-induced PC12 cell proliferation in a time- and dose-dependent manner. Quantification of neurite outgrowth demonstrated that 0.5 mM acrylamide treatment resulted in significant decrease in differentiation of NGF- or FGF1-stimulated PC12 cells. This decrease is accompanied with the reduced expression of growth-associated protein-43, a neuronal marker. Moreover, relative levels of pERK, pAKT, pSTAT3 and pCREB were increased within 5-10 min when PC12 cells were treated with NGF or FGF1. Acrylamide (0.5 mM) decreases the NGF-induced activation of AKT-CREB but not ERK-STAT3 within 20 min. Similarly, acrylamide (0.5 mM) decreases the FGF1-induced activation of AKT-CREB within 20 min. In contrast to the NGF treatment, the ERK-STAT3 activation that was induced by FGF1 was slightly reduced by 0.5 mM acrylamide. We further showed that PI3K inhibitor (LY294002), but not MEK inhibitor (U0126), could synergize with acrylamide (0.5 mM) to reduce the cell viability and neurite outgrowth in NGF- or FGF1-stimulated PC12 cells. Moreover, acrylamide (0.5 mM) increased reactive oxygen species (ROS) activities in NGF- or FGF1-stimulated PC12 cells. This increase was reversed by Trolox (an ROS scavenging agent) co-treatment. Together, our findings reveal that NGF- or FGF1-stimulation of the neuronal differentiation of PC12 cells is attenuated by acrylamide through the inhibition of PI3K-AKT-CREB signaling, along with the production of ROS.
Collapse
Affiliation(s)
- Jong-Hang Chen
- Institute of Cellular and System Medicine, National Health Research Institutes, 35, Keyan Rd, Miaoli, 350, Taiwan
| | | | | |
Collapse
|
48
|
Lin CY, Lee HL, Chen YC, Lien GW, Lin LY, Wen LL, Liao CC, Chien KL, Sung FC, Chen PC, Su TC. Positive association between urinary levels of 8-hydroxydeoxyguanosine and the acrylamide metabolite N-acetyl-S-(propionamide)-cysteine in adolescents and young adults. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:372-377. [PMID: 23959257 DOI: 10.1016/j.jhazmat.2013.06.069] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 06/02/2023]
Abstract
Acrylamide is present in mainstream cigarette smoke and in some foods prepared at high temperatures. Animal studies have shown that acrylamide exposure increases oxidative stress; however, it is not known if this also occurs in humans. We recruited 800 subjects (mean age, 21.3 years, range, 12-30 years) from a population-based sample of Taiwanese adolescents and young adults to determine if urinary levels of the acrylamide metabolite N-acetyl-S-(propionamide)-cysteine (AAMA) and the oxidative stress product 8-hydroxydeoxyguanosine (8-OHdG) are associated. The mean (SD) AAMA and 8-OHdG were 76.54 (76.42)μg/L and 3.48 (2.37)μg/L, respectively. In linear regression analyses, a 1-unit increase in natural log AAMA was significantly associated with an increase in natural log 8-OHdG (μg/g creatinine) (β=0.044, SE=0.019, P=0.020) after controlling for covariates. Subpopulation analyses showed AAMA and 8-OHdG were significantly associated with males, adolescents, non-current smokers, without alcohol consumption, subjects, body mass index ≥ 24, and homeostasis model assessment of insulin resistance score ≥ 0.9. In conclusion, higher urinary AAMA concentrations were associated with increased levels of urinary 8-OHdG in this cohort. Further studies are warranted to determine if there is a causal relationship between acrylamide exposure and oxidative stress.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Larguinho M, Costa PM, Sousa G, Costa MH, Diniz MS, Baptista PV. Histopathological findings onCarassius auratushepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations. J Appl Toxicol 2013; 34:1293-302. [DOI: 10.1002/jat.2936] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/22/2013] [Accepted: 08/22/2013] [Indexed: 01/19/2023]
Affiliation(s)
- Miguel Larguinho
- CIGMH, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Pedro M. Costa
- IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Gonçalo Sousa
- CIGMH, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Maria H. Costa
- IMAR - Instituto do Mar, Departamento de Ciências e Engenharia do Ambiente, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; 2829-516 Caparica Portugal
| | - Mário S. Diniz
- REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| | - Pedro V. Baptista
- CIGMH, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia; Universidade Nova de Lisboa; Campus de Caparica 2829-516 Caparica Portugal
| |
Collapse
|
50
|
Zhang L, Wang E, Chen F, Yan H, Yuan Y. Potential protective effects of oral administration of allicin on acrylamide-induced toxicity in male mice. Food Funct 2013; 4:1229-36. [DOI: 10.1039/c3fo60057b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|