1
|
Zhao S, Chen J, Cao S, Wang H, Chen H, Wei Y, Chen Y, Shao X, Xu F. The regulation of Cytochrome f by mannose treatment in broccoli and its relationship with programmed cell death in tobacco BY-2 cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108480. [PMID: 38437751 DOI: 10.1016/j.plaphy.2024.108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/06/2024]
Abstract
It is well established that programmed cell death (PCD) occurred in broccoli during postharvest senescence, but no studies have been conducted on the regulation of broccoli cytochrome f by mannose treatment and its relationship with PCD. In this study, we treated broccoli buds with mannose to investigate the changes in color, total chlorophyll content, gene expression related to chlorophyll metabolism, chloroplast structure, and cytochrome f determination during postharvest storage. In addition, to investigate the effect of cytochrome f on PCD, we extracted cytochrome f from broccoli and treated Nicotiana tabacum L. cv Bright Yellow 2 (BY-2) cells with extracted cytochrome f from broccoli at various concentrations. The results showed that cytochrome f can induce PCD in tobacco BY-2 cells, as evidenced by altered cell morphology, nuclear chromatin disintegration, DNA degradation, decreased cell viability, and increased caspase-3-like protease production. Taken together, our study indicated that mannose could effectively delay senescence of postharvest broccoli by inhibiting the expression of gene encoding cytochrome f which could induce PCD.
Collapse
Affiliation(s)
- Shiyi Zhao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Jiahui Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, 315100, China
| | - Hongfei Wang
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Hangjun Chen
- Food Science Institute, Zhejiang Academy of Agricultural Sciences, Key Laboratory of Postharvest Preservation and Processing of Vegetables (Co-construction By Ministry and Province), Ministry of Agriculture and Rural Affairs, Key Laboratory of Post-Harvest Handling of Fruits, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fruits and Vegetables Postharvest and Processing Technology Research of Zhejiang Province, Hangzhou, 310021, China
| | - Yingying Wei
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Yi Chen
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Xingfeng Shao
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China
| | - Feng Xu
- College of Food Science and Engineering, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, Ningbo University, Ningbo, 315800, China.
| |
Collapse
|
2
|
Veerabadhran M, Manivel N, Sarvalingam B, Seenivasan B, Srinivasan H, Davoodbasha M, Yang F. State-of-the-art review on the ecotoxicology, health hazards, and economic loss of the impact of microcystins and their ultrastructural cellular changes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 256:106417. [PMID: 36805195 DOI: 10.1016/j.aquatox.2023.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/30/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Cyanobacteria are ubiquitously globally present in both freshwater and marine environments. Ample reports have been documented by researchers worldwide for pros and cons of cyanobacterial toxins. The implications of cyanobacterial toxin on health have received much attention in recent decades. Microcystins (MCs) represent the unique class of toxic metabolites produced by cyanobacteria. Although the beneficial aspects of cyanobacterial are numerous, the deleterious effect of MCs overlooked. Several studies on MCs evidently reported that MCs exhibit a plethora of harmful effect on animals, plants, and cell lines. Accordingly, numerous histopathological studies have also found that MCs cause detrimental effects to cells by damaging cellular organelles, including nuclear envelope, Golgi apparatus, endoplasmic reticulum, mitochondria, plastids, flagellum, pilus membrane structures and integrity, vesicle structures, and autolysosomes and autophagosomes. Such ultrastructural cellular damages holistically influence the morphological, biochemical, physiological, and genetic status of the host. Indeed, MCs have also been found to cause the deleterious effect to different animals and plants. Such deleterious effects of MCs have greater impact on agriculture, public health which in turn influences ecotoxicology and economic consequences. The impairments correspond to oxidative stress, organ failure, carcinogenesis, aquaculture loss, with an emphasis for blooms and respective bioaccumulation prospects. The preservation of mortality among life forms is addressed in a critical cellular perspective for multitude benefits. The comprehensive cellular assessment could provide opportunity to develop strategy for therapeutic implications.
Collapse
Affiliation(s)
- Maruthanayagam Veerabadhran
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China; Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Hunan 410078, China
| | - Nagarajan Manivel
- ICAR-Central Marine Fisheries Research Institute, Chennai 600 0028, India
| | - Barathkumar Sarvalingam
- National Centre for Coastal Research (NCCR), Ministry of Earth Science, NIOT Campus, Chennai 600100, India
| | - Boopathi Seenivasan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Hemalatha Srinivasan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India
| | - MubarakAli Davoodbasha
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai 600 0048, India.
| | - Fei Yang
- Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.
| |
Collapse
|
3
|
Microcystin-LR, a Cyanobacterial Toxin, Induces Changes in the Organization of Membrane Compartments in Arabidopsis. Microorganisms 2023; 11:microorganisms11030586. [PMID: 36985160 PMCID: PMC10051171 DOI: 10.3390/microorganisms11030586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
To evaluate the effects of the cyanobacterial toxin microcystin-LR (MCY-LR, a protein phosphatase inhibitor) and diquat (DQ, an oxidative stress inducer) on the organization of tonoplast, the effect of MCY-LR on plastid stromule formation and on mitochondria was investigated in wild-type Arabidopsis. Tonoplast was also studied in PP2A catalytic (c3c4) and regulatory subunit mutants (fass-5 and fass-15). These novel studies were performed by CLSM microscopy. MCY-LR is produced during cyanobacterial blooms. The organization of tonoplast of PP2A mutants of Arabidopsis is much more sensitive to MCY-LR and DQ treatments than that of wild type. In c3c4, fass-5 and fass-15, control and treated plants showed increased vacuole fragmentation that was the strongest when the fass-5 mutant was treated with MCY-LR. It is assumed that both PP2A/C and B” subunits play an important role in normal formation and function of the tonoplast. In wild-type plants, MCY-LR affects mitochondria. Under the influence of MCY-LR, small, round-shaped mitochondria appeared, while long/fused mitochondria were typical in control plants. Presumably, MCY-LR either inhibits the fusion of mitochondria or induces fission. Consequently, PP2A also plays an important role in the fusion of mitochondria. MCY-LR also increased the frequency of stromules appearing on chloroplasts after 1 h treatments. Along the stromules, signals can be transported between plastids and endoplasmic reticulum. It is probable that they promote a faster response to stress.
Collapse
|
4
|
Subcellular Alterations Induced by Cyanotoxins in Vascular Plants-A Review. PLANTS 2021; 10:plants10050984. [PMID: 34069255 PMCID: PMC8157112 DOI: 10.3390/plants10050984] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/08/2021] [Accepted: 05/09/2021] [Indexed: 01/26/2023]
Abstract
Phytotoxicity of cyanobacterial toxins has been confirmed at the subcellular level with consequences on whole plant physiological parameters and thus growth and productivity. Most of the data are available for two groups of these toxins: microcystins (MCs) and cylindrospermopsins (CYNs). Thus, in this review we present a timely survey of subcellular cyanotoxin effects with the main focus on these two cyanotoxins. We provide comparative insights into how peculiar plant cellular structures are affected. We review structural changes and their physiological consequences induced in the plastid system, peculiar plant cytoskeletal organization and chromatin structure, the plant cell wall, the vacuolar system, and in general, endomembrane structures. The cyanotoxins have characteristic dose-and plant genotype-dependent effects on all these structures. Alterations in chloroplast structure will influence the efficiency of photosynthesis and thus plant productivity. Changing of cell wall composition, disruption of the vacuolar membrane (tonoplast) and cytoskeleton, and alterations of chromatin structure (including DNA strand breaks) can ultimately lead to cell death. Finally, we present an integrated view of subcellular alterations. Knowledge on these changes will certainly contribute to a better understanding of cyanotoxin–plant interactions.
Collapse
|
5
|
Pappas D, Panou M, Adamakis IDS, Gkelis S, Panteris E. Beyond Microcystins: Cyanobacterial Extracts Induce Cytoskeletal Alterations in Rice Root Cells. Int J Mol Sci 2020; 21:ijms21249649. [PMID: 33348912 PMCID: PMC7766381 DOI: 10.3390/ijms21249649] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022] Open
Abstract
Microcystins (MCs) are cyanobacterial toxins and potent inhibitors of protein phosphatases 1 (PP1) and 2A (PP2A), which are involved in plant cytoskeleton (microtubules and F-actin) organization. Therefore, studies on the toxicity of cyanobacterial products on plant cells have so far been focused on MCs. In this study, we investigated the effects of extracts from 16 (4 MC-producing and 12 non-MC-producing) cyanobacterial strains from several habitats, on various enzymes (PP1, trypsin, elastase), on the plant cytoskeleton and H2O2 levels in Oryza sativa (rice) root cells. Seedling roots were treated for various time periods (1, 12, and 24 h) with aqueous cyanobacterial extracts and underwent either immunostaining for α-tubulin or staining of F-actin with fluorescent phalloidin. 2,7-dichlorofluorescein diacetate (DCF-DA) staining was performed for H2O2 imaging. The enzyme assays confirmed the bioactivity of the extracts of not only MC-rich (MC+), but also MC-devoid (MC−) extracts, which induced major time-dependent alterations on both components of the plant cytoskeleton. These findings suggest that a broad spectrum of bioactive cyanobacterial compounds, apart from MCs or other known cyanotoxins (such as cylindrospermopsin), can affect plants by disrupting the cytoskeleton.
Collapse
Affiliation(s)
- Dimitris Pappas
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| | - Manthos Panou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | | | - Spyros Gkelis
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (M.P.); (S.G.)
- Correspondence: (D.P.); (E.P.); Tel.: +30-2310-998908 (E.P.)
| |
Collapse
|
6
|
Svobodníková L, Kummerová M, Zezulka Š, Babula P. Possible use of a Nicotiana tabacum 'Bright Yellow 2' cell suspension as a model to assess phytotoxicity of pharmaceuticals (diclofenac). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109369. [PMID: 31238115 DOI: 10.1016/j.ecoenv.2019.109369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/13/2019] [Accepted: 06/18/2019] [Indexed: 05/21/2023]
Abstract
Growth and developmental changes in plants induced by pharmaceuticals reflect changes in processes at the cellular and subcellular levels. Due to their growth and cellular characteristics, plant cell suspension cultures can be a suitable model for assessing toxicity. In this study, 10-1000 μg/L of the non-steroidal anti-inflammatory drug diclofenac (DCF) decreased the viability of Nicotiana tabacum BY-2 cells after 24 h of treatment. Further, 0.1-10 mg/L DCF diminished the density of the cell suspension by 9-46% after 96 h of treatment, but at 1 and 10 μg/L, DCF increased the density by 13% and 5%, respectively, after 120 h. These changes were accompanied by increased production of total reactive oxygen species (ROS) and mitochondrial superoxide (up to 17-fold and 5-fold, respectively), and a decrease in the mitochondrial membrane potential (by ∼64%) especially at 1000 μg/L DCF. The increased ROS production was accompanied by decrease in level of reactive nitrogen species (RNS; by 36%) and total thiols (by 61%). Damage to BY-2 cells was evidenced by accumulation of neutral red in acidic compartments (up to 10-fold at 1000 μg/L DCF), and increase of autophagic vacuole formation (up to 8-fold at 1000 μg/L DCF). Furthermore, irregular or stretched nuclei were observed in nearly 27% and 50% of cells at 100 and 1000 μg/L DCF, respectively. Highest levels of chromatin condensation (11% of cells) and apoptotic DNA fragmentation (7%) were found at 10 μg/L DCF. The results revealed a significant effect of DCF on BY-2 cells after 24 h of exposure. Changes in the growth and viability parameters were indisputably related to ROS and RNS production, changes in mitochondrial function, and possible activation of processes leading to cell death.
Collapse
Affiliation(s)
- Lucie Svobodníková
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Marie Kummerová
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Štěpán Zezulka
- Department of Plant Physiology and Anatomy, Institute of Experimental Biology, Faculty of Science, Masaryk University Brno, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Petr Babula
- Department of Physiology, Faculty of Medicine, Masaryk University Brno, Kamenice 753/5, 625 00, Brno, Czech Republic
| |
Collapse
|
7
|
|
8
|
Spectroscopic approach for the interaction of carbon nanoparticles with cytochrome c and BY-2 cells: Protein structure and mitochondrial function. Int J Biol Macromol 2019; 138:29-36. [PMID: 31302123 DOI: 10.1016/j.ijbiomac.2019.07.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 12/24/2022]
Abstract
In this study, we employed multiple spectroscopic methods to analyze the effects of carbon nanoparticles (CNPs) on structure of cytochrome c (Cyt c) and mitochondrial function in plant cells. The tertiary structures of aromatic amino acid in Cyt c were not changed after addition of CNPs. Cyt c was found to be absorbed on the surfaces of CNPs in a non-linear manner and only bound Cyt c can be reduced. In addition, the binding of Cyt c was found to increase the diameter of CNPs at lower concentrations. The redox potential of Cyt c was almost not affected after treatment with CNPs. There were no obvious differences in cellular ATP after exposure to CNPs, and the mitochondrial membrane potential (MMP) was significantly decreased once the CNPs concentration exceeded 31.25 μg/mL. The levels of reactive oxygen species (ROS) also were increased in BY-2 cells. Taken together, these findings provide basis for the interactions between CNPs and Cyt c, as well as the effect of CNPs treatment on the mitochondria function in plant cells.
Collapse
|
9
|
Sadhu A, Moriyasu Y, Acharya K, Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells. Sci Rep 2019; 9:8973. [PMID: 31222105 PMCID: PMC6586778 DOI: 10.1038/s41598-019-45470-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 05/09/2019] [Indexed: 11/25/2022] Open
Abstract
Synergistic interaction of nitric oxide (NO) and reactive oxygen species (ROS) is essential to initiate cell death mechanisms in plants. Though autophagy is salient in either restricting or promoting hypersensitivity response (HR)-related cell death, the crosstalk between the reactive intermediates and autophagy during hypersensitivity response is paradoxical. In this investigation, the consequences of Alternaria alternata toxin (AaT) in tobacco BY-2 cells were examined. At 3 h, AaT perturbed intracellular ROS homeostasis, altered antioxidant enzyme activities, triggered mitochondrial depolarization and induced autophagy. Suppression of autophagy by 3-Methyladenine caused a decline in cell viability in AaT treated cells, which indicated the vital role of autophagy in cell survival. After 24 h, AaT facilitated Ca2+ influx with an accumulation of reactive oxidant intermediates and NO, to manifest necrotic cell death. Inhibition of NO accumulation by 2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) decreased the level of necrotic cell death, and induced autophagy, which suggests NO accumulation represses autophagy and facilitates necrotic cell death at 24 h. Application of N-acetyl-L-cysteine at 3 h, confirmed ROS to be the key initiator of autophagy, and together with cPTIO for 24 h, revealed the combined effects of NO and ROS is required for necrotic HR cell death.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo 255, Saitama, 338-8570, Japan
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
10
|
Díez-Quijada L, Puerto M, Gutiérrez-Praena D, Llana-Ruiz-Cabello M, Jos A, Cameán AM. Microcystin-RR: Occurrence, content in water and food and toxicological studies. A review. ENVIRONMENTAL RESEARCH 2019; 168:467-489. [PMID: 30399604 DOI: 10.1016/j.envres.2018.07.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/09/2018] [Accepted: 07/09/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) are hepatotoxins, produced by various species of cyanobacteria, whose occurrence is increasing worldwide owing to climate change and anthropogenic activities. More than 100 variants have been reported, and among them MC-LR is the most extensively studied, but there are other MC congeners that deserve to be investigated. The need for data to characterize the toxicological profile of MC variants other than MC-LR has been identified in order to improve risk assessment in humans and wildlife. Accordingly, the aim of this study was to evaluate the information available in the scientific literature dealing with MC-RR, as this congener is the second most common cyanotoxin in the environment. The review focuses on aspects such as occurrence in water and food, and toxicity studies both in vitro and in vivo. It reveals that, although MC-RR is a real hazard with a high exposure potential in some countries, little is known yet about its specific toxicological properties that differ from those of MC-LR, and important aspects such as genotoxicity and chronic effects have not yet been sufficiently addressed.
Collapse
Affiliation(s)
- Leticia Díez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Puerto
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain.
| | - Daniel Gutiérrez-Praena
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - María Llana-Ruiz-Cabello
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| | - Ana M Cameán
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, C/Profesor García González 2, 41012 Sevilla, Spain
| |
Collapse
|
11
|
Sadhu A, Ghosh I, Moriyasu Y, Mukherjee A, Bandyopadhyay M. Role of cerium oxide nanoparticle-induced autophagy as a safeguard to exogenous H2O2-mediated DNA damage in tobacco BY-2 cells. Mutagenesis 2018; 33:161-177. [PMID: 29506140 DOI: 10.1093/mutage/gey004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 02/10/2018] [Indexed: 12/17/2023] Open
Abstract
The effect of cerium oxide nanoparticle (CeNP) in plants has elicited substantial controversy. While some investigators have reported that CeNP possesses antioxidant properties, others observed CeNP to induce reactive oxygen species (ROS). In spite of considerable research carried out on the effects of CeNP in metazoans, fundamental studies that can unveil its intracellular consequences linking ROS production, autophagy and DNA damage are lacking in plants. To elucidate the impact of CeNP within plant cells, tobacco BY-2 cells were treated with 10, 50 and 250 µg ml-1 CeNP (Ce10, Ce50 and Ce250), for 24 h. Results demonstrated concentration-dependent accumulation of Ca2+ and ROS at all CeNP treatment sets. However, significant DNA damage and alteration in antioxidant defence systems were noted prominently at Ce50 and Ce250. Moreover, Ce50 and Ce250 induced DNA damage, analysed by comet assay and DNA diffusion experiments, complied with the concomitant increase in ROS. Furthermore, to evaluate the antioxidant property of CeNP, treated cells were washed after 24 h (to minimise CeNP interference) and challenged with H2O2 for 3 h. Ce10 did not induce genotoxicity and H2O2 exposure to Ce10-treated cells showed lesser DNA breakage than cells treated with H2O2 only. Interestingly, Ce10 provided better protection over N-acetyl-L-cysteine against exogenous H2O2 in BY-2 cells. CeNP exposure to transgenic BY-2 cells expressing GFP-Atg8 fusion protein exhibited formation of autophagosomes at Ce10. Application of vacuolar protease inhibitor E-64c and fluorescent basic dye acridine orange, further demonstrated accumulation of particulate matters in the vacuole and occurrence of acidic compartments, the autophagolysosomes, respectively. BY-2 cells co-treated with CeNP and autophagy inhibitor 3-methyladenine exhibited increased DNA damage in Ce10 and cell death at all assessed treatment sets. Thus, current results substantiate an alternative autophagy-mediated, antioxidant and geno-protective role of CeNP, which will aid in deciphering novel phenomena of plant-nanoparticle interaction at cellular level.
Collapse
Affiliation(s)
- Abhishek Sadhu
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Ilika Ghosh
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Yuji Moriyasu
- Graduate School of Science and Engineering, Saitama University, Shimo-Okubo, Saitama, Japan
| | - Anita Mukherjee
- Cell Biology and Genetic Toxicology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Ballygunge Circular Road, Kolkata, India
| | - Maumita Bandyopadhyay
- Plant Molecular Cytogenetics Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
12
|
Proteomic evidences for microcystin-RR-induced toxicological alterations in mice liver. Sci Rep 2018; 8:1310. [PMID: 29358693 PMCID: PMC5778043 DOI: 10.1038/s41598-018-19299-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 12/29/2017] [Indexed: 02/07/2023] Open
Abstract
This study deals with the isolation and purification of an important variant of microcystins namely microcystin-RR (MCYST-RR) from Microcystis aeruginosa and reports its effects on mice liver protein profile and cellular functions. Protein profiling by 2-dimensional gel electrophoresis revealed changes in the number and accumulation of protein spots in liver of mice treated with different concentrations of MCYST-RR. Untreated (control) mice liver showed 368 protein spots while the number was 355, 348 and 332 in liver of mice treated with 200, 300 and 400 µg kg body wt−1 of MCYST-RR respectively. Altogether 102, 97, and 92 spots were differentially up-accumulated and 93, 91, and 87 spots were down- accumulated respectively with the treatment of 200, 300, 400 µg kg body wt−1. Eighteen differentially accumulated proteins present in all the four conditions were identified by MALDI-TOF MS. Of these eighteen proteins, 12 appeared to be involved in apoptosis/toxicological manifestations. Pathway analysis by Reactome and PANTHER database also mapped the identified proteins to programmed cell death/apoptosis clade. That MCYST-RR induces apoptosis in liver tissues was also confirmed by DNA fragmentation assay. Results of this study elucidate the proteomic basis for the hepatotoxicity of MCYST-RR which is otherwise poorly understood till date.
Collapse
|
13
|
Kuang X, Gu JD, Tie B, Yao B, Shao J. Interactive effects of cadmium and Microcystis aeruginosa (cyanobacterium) on the growth, antioxidative responses and accumulation of cadmium and microcystins in rice seedlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2016; 25:1588-1599. [PMID: 27604787 DOI: 10.1007/s10646-016-1714-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Cadmium pollution and harmful cyanobacterial blooms are two prominent environmental problems. The interactive effects of cadmium(II) and harmful cyanobacteria on rice seedlings remain unknown. In order to elucidate this issue, the interactive effects of cadmium(II) and Microcystis aeruginosa FACHB905 on the growth and antioxidant responses of rice seedling were investigated in this study, as well as the accumulation of cadmium(II) and microcystins. The results showed that the growth of rice seedlings was inhibited by cadmium(II) stress but promoted by inoculation of M. aeruginosa FACHB905. cadmium(II) stress induced oxidative damage on rice seedlings. Inoculation of M. aeruginosa FACHB905 alleviated the toxicity of cadmium(II) on rice seedlings. The accumulation of cadmium(II) in rice seedlings was decreased by M. aeruginosa FACHB905, but the translocation of cadmium(II) from root to shoot was increased by this cyanobacterium. The accumulation of microcystins in rice seedlings was decreased by cadmium(II). Results presented in this study indicated that cadmium(II) and M. aeruginosa had antagonistic toxicity on rice seedlings. The findings of this study throw new light on evaluation of ecological- and public health-risks for the co-contamination of cadmium(II) and harmful cyanobacteria.
Collapse
Affiliation(s)
- Xiaolin Kuang
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Ji-Dong Gu
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, P. R. China
| | - BaiQing Tie
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Bangsong Yao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China
| | - Jihai Shao
- Collaborative Innovation Center of Grain and Oil Crops in South China, Hunan Agricultural University, Changsha, 410128, P. R. China.
- College of Resources and Environment, Hunan Agricultural University, Changsha, 410128, P. R. China.
| |
Collapse
|
14
|
Bhattacharjee A, Basu A, Biswas J, Sen T, Bhattacharya S. Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano-Se) during adjuvant therapy with cyclophosphamide in tumor-bearing mice. Mol Cell Biochem 2016; 424:13-33. [PMID: 27696310 DOI: 10.1007/s11010-016-2839-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/24/2016] [Indexed: 12/26/2022]
Abstract
Cyclophosphamide (CP) is one of the widely used anticancer agents; however, it has serious deleterious effects on normal host cells due to its nonspecific action. The essential trace element Selenium (Se) is suggested to have chemopreventive and chemotherapeutic efficacy and currently used in pharmaceutical formulations. Previous report had shown Nano-Se could protect CP-induced hepatotoxicity and genotoxicity in normal Swiss albino mice; however, its role in cancer management is still not clear. The aim of present study is to investigate the chemoprotective efficacy of Nano-Se against CP-induced toxicity as well as its chemoenhancing capability when used along with CP in Swiss albino mice against Ehrlich's ascites carcinoma (EAC) cells. CP was administered (25 mg/kg b.w., i.p.) and Nano-Se was given (2 mg Se/kg b.w., p.o.) in concomitant and pretreatment schedule. Increase levels of serum hepatic marker, hepatic lipid peroxidation, DNA damage, and chromosomal aberration in CP-treated mice were significantly (P < 0.05) reversed by Nano-Se. The lowered status of various antioxidant enzymes in tumor-bearing mice after CP treatment was also effectively increased by Nano-Se. Administration of Nano-Se along with CP caused a significant reduction in tumor volume, packed cell volume, viable tumor cell count, and increased the survivability of the tumor-bearing hosts. The results suggest that Nano-Se exhibits significant antitumor and antioxidant effects in EAC-bearing mice. The potential for Nano-Se to ameliorate the CP-evoked toxicity as well as to improve the chemotherapeutic effect could have beneficial implications for patients undergoing chemotherapy with CP.
Collapse
Affiliation(s)
- Arin Bhattacharjee
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Abhishek Basu
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Jaydip Biswas
- Department of Translational Research, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India
| | - Tuhinadri Sen
- Division of Pharmacology, Department of Pharmaceutical Technology, Jadavpur University, 188, Raja S. C. Mullick Road, Kolkata, West Bengal, 700032, India
| | - Sudin Bhattacharya
- Department of Cancer Chemoprevention, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata, West Bengal, 700026, India.
| |
Collapse
|
15
|
Ben Hamed-Laouti I, Arbelet-Bonnin D, De Bont L, Biligui B, Gakière B, Abdelly C, Ben Hamed K, Bouteau F. Comparison of NaCl-induced programmed cell death in the obligate halophyte Cakile maritima and the glycophyte Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 247:49-59. [PMID: 27095399 DOI: 10.1016/j.plantsci.2016.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
Salinity represents one of the most important constraints that adversely affect plants growth and productivity. In this study, we aimed at determining possible differences between salt tolerant and salt sensitive species in early salt stress response. To this purpose, we subjected suspension-cultured cells from the halophyte Cakile maritima and the glycophyte Arabidopsis thaliana, two Brassicaceae, to salt stress and compared their behavior. In both species we could observe a time and dose dependent programmed cell death requiring an active metabolism, a dysfunction of mitochondria and caspase-like activation although C. maritima cells appeared less sensitive than A. thaliana cells. This capacity to mitigate salt stress could be due to a higher ascorbate pool that could allow C. maritima reducing the oxidative stress generated in response to NaCl. It further appeared that a higher number of C. maritima cultured cells when compared to A. thaliana could efficiently manage the Na(+) accumulation into the cytoplasm through non selective cation channels allowing also reducing the ROS generation and the subsequent cell death.
Collapse
Affiliation(s)
- Ibtissem Ben Hamed-Laouti
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France; Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Delphine Arbelet-Bonnin
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Linda De Bont
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Bernadette Biligui
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France
| | - Bertrand Gakière
- Institute of Plant Sciences-Paris-Saclay (UMR 9213) Bât. 630, 91405 Orsay, France
| | - Chedly Abdelly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - Karim Ben Hamed
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, University of Carthage-Tunis, BP 901, 2050 Hammam Lif, Tunisia
| | - François Bouteau
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain, Paris, France.
| |
Collapse
|
16
|
Bittencourt-Oliveira MC, Hereman TC, Macedo-Silva I, Cordeiro-Araújo MK, Sasaki FFC, Dias CTS. Sensitivity of salad greens (Lactuca sativa L. and Eruca sativa Mill.) exposed to crude extracts of toxic and non-toxic cyanobacteria. BRAZ J BIOL 2015; 75:273-8. [PMID: 26132007 DOI: 10.1590/1519-6984.08113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 03/12/2014] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effect of crude extracts of the microcystin-producing (MC+) cyanobacteria Microcystis aeruginosa on seed germination and initial development of lettuce and arugula, at concentrations between 0.5 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent, and compared it to crude extracts of the same species without the toxin (MC-). Crude extracts of the cyanobacteria with MC (+) and without MC (-) caused different effects on seed germination and initial development of the salad green seedlings, lettuce being more sensitive to both extracts when compared to arugula. Crude extracts of M. aeruginosa (MC+) caused more evident effects on seed germination and initial development of both species of salad greens than MC-. Concentrations of 75 μg.L(-1) and 100 μg.L(-1) of MC-LR equivalent induced a greater occurrence of abnormal seedlings in lettuce, due to necrosis of the radicle and shortening of this organ in normal seedlings, as well as the reduction in total chlorophyll content and increase in the activity of the antioxidant enzyme peroxidase (POD). The MC- extract caused no harmful effects to seed germination and initial development of seedlings of arugula. However, in lettuce, it caused elevation of POD enzyme activity, decrease in seed germination at concentrations of 75 μg.L(-1) (MC-75) and 100 μg.L(-1) (MC-100), and shortening of the radicle length, suggesting that other compounds present in the cyanobacteria extracts contributed to this result. Crude extracts of M. aeruginosa (MC-) may contain other compounds, besides the cyanotoxins, capable of causing inhibitory or stimulatory effects on seed germination and initial development of salad green seedlings. Arugula was more sensitive to the crude extracts of M. aeruginosa (MC+) and (MC-) and to other possible compounds produced by the cyanobacteria.
Collapse
Affiliation(s)
- M C Bittencourt-Oliveira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - T C Hereman
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - I Macedo-Silva
- Graduating Program on Biological Sciences, Universidade Estadual Paulista "Júlio de Mesquita Filho", Rio Claro, SP, Brazil
| | - M K Cordeiro-Araújo
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - F F C Sasaki
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - C T S Dias
- Department of Exact Sciences, Luiz de Queiroz College of Agriculture, Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Huang W, Li D, Liu Y. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis. J Environ Sci (China) 2014; 26:1930-5. [PMID: 25193844 DOI: 10.1016/j.jes.2014.06.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS.
Collapse
Affiliation(s)
- Wenmin Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, the Chinese Academy of Sciences, Wuhan 430074, China.
| | - Dunhai Li
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Yongding Liu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
18
|
Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl 2014; 29:303-317. [PMID: 24522241 DOI: 10.1177/0885328214523323] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cyclophosphamide (CP) is the most commonly used chemotherapeutic drug for various types of cancer. However, its use causes severe cytotoxicity to normal cells in human. It is well known that the undesirable side effects are caused due to the formation of reactive oxygen species. Selenium is an essential micronutrient for both animals and humans and has antioxidant and membrane stabilizing property, but selenium is also toxic above certain level. Nano selenium has been well proved to be less toxic than inorganic selenium as well as certain organoselenium compounds. The objective of the study is to evaluate the protective role of Nano-Se against CP-induced hepatotoxicity and genotoxicity in Swiss albino mice. CP was administered intraperitoneally (25 mg/kg b.w.) and Nano-Se was given by oral gavages (2 mg Se/kg b.w.) in concomitant and pretreatment scheme. Intraperitoneal administration of CP induced hepatic damage as indicated by the serum marker enzymes aspartate and alanine transaminases and increased the malonaldehyde level, depleted the glutathione content and antioxidant enzyme activity (glutathione peroxidase, glutathione-s-transferase, superoxide dismutase and catalase), and induced DNA damage and chromosomal aberration. Oral administration of Nano-Se caused a significant reduction in malonaldehyde, ROS level and glutathione levels, restoration of antioxidant enzyme activity, reduction in chromosomal aberration in bone marrow, and DNA damage in lymphocytes and also in bone marrow. Moreover, the chemoprotective efficiency of Nano-Se against CP induced toxicity was confirmed by histopathological evaluation. The results support the protective effect of Nano-Se against CP-induced hepatotoxicity and genotoxicity.
Collapse
Affiliation(s)
- Arin Bhattacharjee
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Abhishek Basu
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Prosenjit Ghosh
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| | - Jaydip Biswas
- Chittaranjan National Cancer Institute, Department of Translational Research, Kolkata, West Bengal, India
| | - Sudin Bhattacharya
- Chittaranjan National Cancer Institute, Department of Cancer Chemoprevention, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Máthé C, M-Hamvas M, Vasas G. Microcystin-LR and cylindrospermopsin induced alterations in chromatin organization of plant cells. Mar Drugs 2013; 11:3689-717. [PMID: 24084787 PMCID: PMC3826130 DOI: 10.3390/md11103689] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 01/12/2023] Open
Abstract
Cyanobacteria produce metabolites with diverse bioactivities, structures and pharmacological properties. The effects of microcystins (MCYs), a family of peptide type protein-phosphatase inhibitors and cylindrospermopsin (CYN), an alkaloid type of protein synthesis blocker will be discussed in this review. We are focusing mainly on cyanotoxin-induced changes of chromatin organization and their possible cellular mechanisms. The particularities of plant cells explain the importance of such studies. Preprophase bands (PPBs) are premitotic cytoskeletal structures important in the determination of plant cell division plane. Phragmoplasts are cytoskeletal structures involved in plant cytokinesis. Both cyanotoxins induce the formation of multipolar spindles and disrupted phragmoplasts, leading to abnormal sister chromatid segregation during mitosis. Thus, MCY and CYN are probably inducing alterations of chromosome number. MCY induces programmed cell death: chromatin condensation, nucleus fragmentation, necrosis, alterations of nuclease and protease enzyme activities and patterns. The above effects may be related to elevated reactive oxygen species (ROS) and/or disfunctioning of microtubule associated proteins. Specific effects: MCY-LR induces histone H3 hyperphosphorylation leading to incomplete chromatid segregation and the formation of micronuclei. CYN induces the formation of split or double PPB directly related to protein synthesis inhibition. Cyanotoxins are powerful tools in the study of plant cell organization.
Collapse
Affiliation(s)
- Csaba Máthé
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Debrecen H-4010, Egyetem tér 1, Hungary.
| | | | | |
Collapse
|
20
|
Máthé C, Vasas G, Borbély G, Erdődi F, Beyer D, Kiss A, Surányi G, Gonda S, Jámbrik K, M-Hamvas M. Histological, cytological and biochemical alterations induced by microcystin-LR and cylindrospermopsin in white mustard (Sinapis alba L.) seedlings. ACTA BIOLOGICA HUNGARICA 2013; 64:71-85. [PMID: 23567832 DOI: 10.1556/abiol.64.2013.1.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study compares the histological, cytological and biochemical effects of the cyanobacterial toxins microcystin-LR (MCY-LR) and cylindrospermopsin (CYN) in white mustard (Sinapis alba L.) seedlings, with special regard to the developing root system. Cyanotoxins induced different alterations, indicating their different specific biochemical activities. MCY-LR stimulated mitosis of root tip meristematic cells at lower concentrations (1 μg ml-1) and inhibited it at higher concentrations, while CYN had only inhibitory effects. Low CYN concentrations (0.01 μg ml-1) stimulated lateral root formation, whereas low MCY-LR concentrations increased only the number of lateral root primordia. Both inhibited lateral root development at higher concentrations. They induced lignifications, abnormal cell swelling and inhibited xylem differentiation in roots and shoots. MCY-LR and CYN induced the disruption of metaphase and anaphase spindles, causing altered cell divisions. Similar alterations could be related to decreased protein phosphatase (PP1 and PP2A) activities in shoots and roots. However, in vitro phosphatase assay with purified PP1 catalytic subunit proved that CYN in contrast to MCY-LR, decreased phosphatase activities of mustard in a non-specific way. This study intends to contribute to the understanding of the mechanisms of toxic effects of a protein phosphatase (MCY-LR) and a protein synthesis (CYN) inhibitory cyanotoxin in vascular plants.
Collapse
Affiliation(s)
- C Máthé
- Department of Botany, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Krystofova O, Sochor J, Zitka O, Babula P, Kudrle V, Adam V, Kizek R. Effect of magnetic nanoparticles on tobacco BY-2 cell suspension culture. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 10:47-71. [PMID: 23343980 PMCID: PMC3564130 DOI: 10.3390/ijerph10010047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Revised: 12/06/2012] [Accepted: 12/07/2012] [Indexed: 01/18/2023]
Abstract
Nanomaterials are structures whose exceptionality is based on their large surface, which is closely connected with reactivity and modification possibilities. Due to these properties nanomaterials are used in textile industry (antibacterial textiles with silver nanoparticles), electronics (high-resolution imaging, logical circuits on the molecular level) and medicine. Medicine represents one of the most important fields of application of nanomaterials. They are investigated in connection with targeted therapy (infectious diseases, malignant diseases) or imaging (contrast agents). Nanomaterials including nanoparticles have a great application potential in the targeted transport of pharmaceuticals. However, there are some negative properties of nanoparticles, which must be carefully solved, as hydrophobic properties leading to instability in aqueous environment, and especially their possible toxicity. Data about toxicity of nanomaterials are still scarce. Due to this fact, in this work we focused on studying of the effect of magnetic nanoparticles (NPs) and modified magnetic nanoparticles (MNPs) on tobacco BY-2 plant cell suspension culture. We aimed at examining the effect of NPs and MNPs on growth, proteosynthesis - total protein content, thiols - reduced (GSH) and oxidized (GSSG) glutathione, phytochelatins PC2-5, glutathione S-transferase (GST) activity and antioxidant activity of BY-2 cells. Whereas the effect of NPs and MNPs on growth of cell suspension culture was only moderate, significant changes were detected in all other biochemical parameters. Significant changes in protein content, phytochelatins levels and GST activity were observed in BY-2 cells treated with MNPs nanoparticles treatment. Changes were also clearly evident in the case of application of NPs. Our results demonstrate the ability of MNPs to negatively affect metabolism and induce biosynthesis of protective compounds in a plant cell model represented by BY-2 cell suspension culture. The obtained results are discussed, especially in connection with already published data. Possible mechanisms of NPs' and MNPs' toxicity are introduced.
Collapse
Affiliation(s)
- Olga Krystofova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (J.S.); (O.Z.); (V.A.)
- Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail:
| | - Jiri Sochor
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (J.S.); (O.Z.); (V.A.)
- Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail:
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (J.S.); (O.Z.); (V.A.)
- Karel Englis College, Sujanovo nam. 356/1, CZ-602 00, Brno, Czech Republic
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Petr Babula
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail:
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1-3, CZ-612 42 Brno, Czech Republic
| | - Vit Kudrle
- Department of Physical Electronics, Faculty of Science, Masaryk University, Kotlarska 2, CZ-611 37 Brno, Czech Republic; E-Mail:
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (J.S.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail:
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-Mails: (O.K.); (J.S.); (O.Z.); (V.A.)
- Central European Institute of Technology, Brno University of Technology, Technicka 3058/10, CZ-616 00 Brno, Czech Republic; E-Mail:
| |
Collapse
|
22
|
Jia Y, Li Y, Du S, Huang K. Involvement of MsrB1 in the regulation of redox balance and inhibition of peroxynitrite-induced apoptosis in human lens epithelial cells. Exp Eye Res 2012; 100:7-16. [PMID: 22713178 DOI: 10.1016/j.exer.2012.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 03/23/2012] [Accepted: 04/19/2012] [Indexed: 01/21/2023]
Abstract
Methionine sulfoxide reductases (Msrs) in lens cells are important for the maintenance of lens cell viability and resistance to oxidative stress damage. Peroxynitrite (ONOO(-)), as a strong oxidizing and nitrating agent, occurred in diabetic retinopathy patients and diabetic model animal. In an attempt to shed light on the roles of MsrB1, known as selenoprotein R, in protecting human lens epithelial (HLE) cells against peroxynitrite damage, and contribution of loss of its normal activity to cataract, the influences of MsrB1 gene silencing on peroxynitrite-induced apoptosis in HLE cells were studied. The results showed that both exogenous peroxynitrite and MsrB1 gene silencing by short interfering RNA (siRNA) independently resulted in oxidative stress, endoplasmic reticulum (ER) stress, activation of caspase-3 as well as an increase of apoptosis in HLE cells; moreover, when MsrB1-gene-silenced cells were exposed to 300 μM peroxynitrite, these indexes were further aggravated at the same conditions and DNA strand breaks occurred. The results demonstrate that in HLE cells MsrB1 may play important roles in regulating redox balance and mitigating ER stress as induced by oxidative stress under physiological conditions; MsrB1 may also protect HLE cells against peroxynitrite-induced apoptosis by inhibiting the activation of caspase-3 and oxidative damage of DNA under pathological conditions. Our results imply that loss of its normal activity is likely to contribute to cataract.
Collapse
Affiliation(s)
- Yi Jia
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan, Wuhan, Hubei 430074, People's Republic of China.
| | | | | | | |
Collapse
|
23
|
El Khalloufi F, El Ghazali I, Saqrane S, Oufdou K, Vasconcelos V, Oudra B. Phytotoxic effects of a natural bloom extract containing microcystins on Lycopersicon esculentum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2012; 79:199-205. [PMID: 22285657 DOI: 10.1016/j.ecoenv.2012.01.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/20/2011] [Accepted: 01/03/2012] [Indexed: 05/31/2023]
Abstract
The cyanobacterial toxins microcystins (MC) are known to affect many processes in plants. Their presence in the water used for irrigation may have considerable impact on the survivorship, growth and development of plants. In this study, a crude extract of a toxic cyanobacterial bloom from "Lalla Takerkoust" reservoir (Morocco) was used to study the effects of extract containing MC on tomato plants (Lycopersicon esculentum). Five MC variants: MC-LR, MC-FR, MC-LY, MC-(H4)-YR and DMC-LR were identified by HPLC in the cyanobacterial extract. Exposure of the seeds to the crude extract (containing 22.24 μg MC mL(-1)) caused a reduction of germination up to 85%. Experiments showed that 30 days exposure of plant to the cyanobacterial extract containing MC caused inhibition of L. esculentum growth and productivity, as well as harmful effects on photosystem II activity, measured by Fv/Fm fluorescence. An accumulation of nutrients Na(+), K(+) and Ca(2+) was also registered. The activity of peroxidase and phenolic content indicated that the extract caused an oxidative stress. The tissue necrosis of leaves was also a consequence of MC exposure indicating a disorder in the exposed plant metabolism.
Collapse
Affiliation(s)
- Fatima El Khalloufi
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco
| | - Issam El Ghazali
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco
| | - Sana Saqrane
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco
| | - Khalid Oufdou
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco
| | - Vitor Vasconcelos
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal; CIIMAR/CIMAR Centro Interdisciplinar de Investigação Marinha e Ambiental, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Brahim Oudra
- Laboratory of Biology and Biotechnology of Microorganisms, Environmental Microbiology and Toxicology Unit, Cadi Ayyad University, Faculty of Sciences Semlalia, P.O. Box 2390, Marrakesh, Morocco
| |
Collapse
|
24
|
1-oxoeudesm-11(13)-ene-12,8α-lactone-induced apoptosis via ROS generation and mitochondria activation in MCF-7 cells. Arch Pharm Res 2011; 34:1323-9. [DOI: 10.1007/s12272-011-0812-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2010] [Revised: 01/31/2011] [Accepted: 02/24/2011] [Indexed: 11/26/2022]
|
25
|
M-Hamvas M, Máthé C, Vasas G, Jámbrik K, Papp M, Beyer D, Mészáros I, Borbély G. Cylindrospermopsin and microcystin-LR alter the growth, development and peroxidase enzyme activity of white mustard (Sinapis alba L.) seedlings, a comparative analysis. ACTA BIOLOGICA HUNGARICA 2011; 61 Suppl:35-48. [PMID: 21565763 DOI: 10.1556/abiol.61.2010.suppl.5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This work focuses on the comparative analysis of the effects of two cyanobacterial toxins of different chemical structure cylindrospermopsin (CYN) and microcystin-LR (MC-LR) on the white mustard (Sinapis alba L.) seedlings. Both cyanotoxins reduced significantly the fresh mass and the length of cotyledons, hypocotyls and main roots of seedlings in a concentration dependent manner. For various mustard organs the 50% inhibitory concentration values (IC50) of growth were between 3-5 μg ml(-1) for MC-LR and between 5-10 μg ml-1 for CYN, respectively. Cyanotoxins altered the development of cotyledons, the accumulation of photosynthetically active pigments and anthocyanins. Low MC-LR concentrations (0.01 and 0.1 μg ml(-1)) stimulated anthocyanin formation in the cotyledons but higher than 1 μg ml(-1) MC-LR concentrations strongly inhibited it. The CYN treated chlorotic cotyledons were violet coloured in consequence of high level of anthocyanins, while MC-LR induced chlorosis was accompanied by the appearance of necrotic patches. Necrosis and increases of peroxidase enzyme activity (POD) are general stress responses but these alterations were characteristic only for MC-LR treated mustard plants. These findings provide experimental evidences of developmental alterations induced by protein synthesis and protein phosphatase inhibitory cyanotoxins (CYN and MC-LR) in a model dicotyledonous plant.
Collapse
Affiliation(s)
- Márta M-Hamvas
- Department of Botany, Faculty of Science and Technology, University of Debrecen, Eyetem tér 1 H-4010 Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Jiang J, Gu X, Song R, Wang X, Yang L. Microcystin-LR induced oxidative stress and ultrastructural alterations in mesophyll cells of submerged macrophyte Vallisneria natans (Lour.) Hara. JOURNAL OF HAZARDOUS MATERIALS 2011; 190:188-96. [PMID: 21466917 DOI: 10.1016/j.jhazmat.2011.03.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 03/07/2011] [Accepted: 03/08/2011] [Indexed: 05/06/2023]
Abstract
Microcystins produced by cyanobacteria in the aquatic environment are a potential risk to aquatic plants. In the present study, the uptake of microcystin-LR (MC-LR) and related physiological and biochemical effects on Vallisneria natans (Lour.) Hara were investigated at concentrations of 0.1-25.0 μg L(-1). Results showed that O(2)(-) intensity was significantly induced at 1.0 μg L(-1) and reached a maximum level at 5.0 μg L(-1). Superoxide dismutase (SOD) and peroxidase (POD) were induced with increasing MC-LR concentrations as an antioxidant response. Catalase (CAT) was significantly induced while GSH/GSSG (reduced/oxidized glutathione) ratio was significantly reduced at 0.1 μg L(-1). The induction of glutathione S-transferase (GST) and inhibition of GSH revealed that GSH was involved in the detoxification of MC-LR in plants. Oxidative damage was evidenced by the significant increase of malondialdehyde content at 1.0 μg L(-1). A pigment pattern change and a series of significant ultrastructural alterations were also observed due to MC-LR exposure. The lowest non-effect concentration of MC-LR for V. natans at the subcellular and molecular level is around 0.5 μg L(-1). These results imply that even at relatively low MC-LR concentrations the aquatic plants may still suffer a negative ecological impact.
Collapse
Affiliation(s)
- Jinlin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 22 Hankou Road, Nanjing 210093, PR China
| | | | | | | | | |
Collapse
|
27
|
Jámbrik K, Máthé C, Vasas G, Beyer D, Molnár E, Borbély G, M-Hamvas M. Microcystin-LR induces chromatin alterations and modulates neutral single-strand-preferring nuclease activity in Phragmites australis. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:678-686. [PMID: 21145617 DOI: 10.1016/j.jplph.2010.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Microcystin-LR (MCY-LR), a toxin produced mainly by freshwater cyanobacteria, is a potent inhibitor of type 1 and 2A protein phosphatases. As such, it induces biochemical, cellular and tissue alterations in vascular plants, including cell death. The aim of this study was the analysis of MCY-LR induced changes in the activity of single-strand preferring nuclease (SSP nuclease) isoenzymes that are possibly involved in programmed cell death (PCD) of Phragmites australis (common reed, an aquatic macrophyte) cells. We analyzed both single-stranded DNA (ssDNase) and double-stranded DNA (dsDNase) cleaving activities. Activity gels revealed a number of seven isoenzymes named bands A-G in control reed shoots and roots. Their activity was organ- and age-dependent. We stained nuclei of root tip meristematic cells and found total and marginal chromatin condensations at relatively short-term (2-10 days) cyanotoxin exposure. At 10-20 days of cyanotoxin treatment, the number of cells with condensed chromatin decreased, which coincided with the occurrence of necrotic cell death. In parallel, overall ssDNase activity increased in the short term (five days) and gradually decreased at 10-20 days of MCY-LR treatment. In this context, the most important changes occurred for isoenzyme G of 28-32kDa in roots and isoenzyme F of 35-38kDa in shoots. dsDNase activity of isoenzyme E was decreased by MCY-LR in shoots, but increased in roots at 10 days of exposure. We conclude that the early induction of chromatin condensation and increase of SSP nuclease activities is related to PCD that will lead to necrosis with the cease of all cellular activities, including a decrease in nuclease activity.
Collapse
Affiliation(s)
- Katalin Jámbrik
- Department of Botany, University of Debrecen, Faculty of Science and Technology, P.O. Box 14, H-4010 Debrecen, Hungary
| | | | | | | | | | | | | |
Collapse
|
28
|
Chen J, Dai J, Zhang H, Wang C, Zhou G, Han Z, Liu Z. Bioaccumulation of microcystin and its oxidative stress in the apple (Malus pumila). ECOTOXICOLOGY (LONDON, ENGLAND) 2010; 19:796-803. [PMID: 20052542 DOI: 10.1007/s10646-009-0456-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/17/2009] [Indexed: 05/28/2023]
Abstract
The bioaccumulation and harmful effects of microcystins (MCs) and the activity of peroxidase (POD) and superoxide dismutase (SOD) were examined in the apple (Malus pumila) exposed in vitro with the crude extract of toxic cyanobacterial blooms from Dianchi Lake in southwestern China. The results showed that the growth and proliferation of M. pumila shoots in vitro decreased markedly after exposure to microcystins above 0.3 microg/ml. Recovered microcystins determined by enzyme-linked immunosorbent assay (ELISA) in M. pumila shoot cultures increased with exposure time and concentration. After 14 days exposure to the concentration of 3 microg/ml microcystins, M. pumila shoot cultures accumulated microcystins up to a concentration of 510.23 +/- 141.10 ng MC-LR equiv/g FW (fresh weight), equivalent to an accumulation rate of 36.45 ng/g day. POD activity was significantly increased after 7 days exposure to 3 microg/ml microcystins. After 14 days of exposure, microcystins caused POD to increase significantly at the concentration of 0.3 and 3 microg/ml. The activity of SOD was not affected by microcystins at concentrations up to 3 microg/ml on 7 days. After 14 days exposure to microcystins, SOD activity increased significantly at the concentration of 0.3 and 3 microg/ml in M. pumila shoot cultures.
Collapse
Affiliation(s)
- Jianzhong Chen
- School of Life Science, Huzhou University, 313000, Huzhou, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Huang W, Xing W, Li D, Liu Y. Morphological and ultrastructural changes in tobacco BY-2 cells exposed to microcystin-RR. CHEMOSPHERE 2009; 76:1006-12. [PMID: 19501874 DOI: 10.1016/j.chemosphere.2009.03.074] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 03/03/2009] [Accepted: 03/16/2009] [Indexed: 05/27/2023]
Abstract
Tobacco BY-2 cells were exposed to microcystin-RR (MC-RR) at two concentrations, 60 microg mL(-1) and 120 microg mL(-1), to study the changes in morphology and ultrastructure of cells as a result of the exposure. Exposure to the lower concentration for 5 d led to typical apoptotic morphological changes including condensation of nuclear chromatin, creation of a characteristic 'half moon' structure, and cytoplasm shrinkage and decreased cell volume, as revealed through light microscopy, fluorescence microscopy, and transmission electron microscopy, respectively. Exposure to the higher concentration, on the other hand, led to morphological and ultrastructural changes typical of necrosis, such as rupture of the plasma membrane and the nuclear membrane and a marked swelling of cells. The presence of many vacuoles containing unusual deposits points to the involvement of vacuoles in detoxifying MC-RR. Results of the present study indicate that exposure of tobacco BY-2 cells to MC-RR at a lower concentration (60 microg mL(-1)) results in apoptosis and that to a higher concentration (120 microg mL(-1)), in necrosis.
Collapse
Affiliation(s)
- Wenmin Huang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, The Chinese Academy of Sciences, Wuhan 430072, PR China
| | | | | | | |
Collapse
|
30
|
Saquib Q, Al-Khedhairy AA, Al-Arifi S, Dhawan A, Musarrat J. Assessment of methyl thiophanate–Cu (II) induced DNA damage in human lymphocytes. Toxicol In Vitro 2009; 23:848-54. [DOI: 10.1016/j.tiv.2009.04.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2009] [Revised: 03/28/2009] [Accepted: 04/29/2009] [Indexed: 10/20/2022]
|
31
|
Hsiao YP, Huang HL, Lai WW, Chung JG, Yang JH. Antiproliferative effects of lactic acid via the induction of apoptosis and cell cycle arrest in a human keratinocyte cell line (HaCaT). J Dermatol Sci 2009; 54:175-84. [DOI: 10.1016/j.jdermsci.2009.02.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 02/18/2009] [Accepted: 02/19/2009] [Indexed: 11/29/2022]
|