1
|
Feijó M, Carvalho TMA, Fonseca LRS, Vaz CV, Pereira BJ, Cavaco JEB, Maia CJ, Duarte AP, Kiss-Toth E, Correia S, Socorro S. Endocrine-disrupting chemicals as prostate carcinogens. Nat Rev Urol 2025:10.1038/s41585-025-01031-9. [PMID: 40379948 DOI: 10.1038/s41585-025-01031-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2025] [Indexed: 05/19/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are natural or synthetic compounds that are ubiquitous in the environment and in daily-usage products and interfere with the normal function of the endocrine system leading to adverse health effects in humans. Exposure to these chemicals might elevate the risk of metabolic disorders, developmental and reproductive defects, and endocrine-related cancers. Prostate cancer is the most common hormone-dependent cancer in men, and the fifth leading cause of cancer-related mortality, partly owing to a lack of knowledge about the mechanisms that lead to aggressive castration-resistant forms. In addition to the dependence of early-stage prostate cancer on androgen actions, the prostate is a target of oestrogenic regulation. This hormone dependence, along with the fact that exogenous influences are major risk factors for prostate cancer, make the prostate a likely target of harmful actions from EDCs. Various sources of EDCs and their different modes of action might explain their role in prostate carcinogenesis.
Collapse
Affiliation(s)
- Mariana Feijó
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Tiago M A Carvalho
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Lara R S Fonseca
- RISE-Health, Department of Chemistry, Faculty of Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cátia V Vaz
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Bruno J Pereira
- Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
- Instituto Português de Oncologia de Coimbra, Coimbra, Portugal
| | - José Eduardo B Cavaco
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Cláudio J Maia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Ana P Duarte
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal
| | - Endre Kiss-Toth
- School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Sara Correia
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| | - Sílvia Socorro
- RISE-Health, Department of Medical Sciences, Faculty of Health Sciences, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
2
|
Mhaouty-Kodja S, Zalko D, Tait S, Testai E, Viguié C, Corsini E, Grova N, Buratti FM, Cabaton NJ, Coppola L, De la Vieja A, Dusinska M, El Yamani N, Galbiati V, Iglesias-Hernández P, Kohl Y, Maddalon A, Marcon F, Naulé L, Rundén-Pran E, Salani F, Santori N, Torres-Ruiz M, Turner JD, Adamovsky O, Aiello-Holden K, Dirven H, Louro H, Silva MJ. A critical review to identify data gaps and improve risk assessment of bisphenol A alternatives for human health. Crit Rev Toxicol 2024; 54:696-753. [PMID: 39436315 DOI: 10.1080/10408444.2024.2388712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 10/23/2024]
Abstract
Bisphenol A (BPA), a synthetic chemical widely used in the production of polycarbonate plastic and epoxy resins, has been associated with a variety of adverse effects in humans including metabolic, immunological, reproductive, and neurodevelopmental effects, raising concern about its health impact. In the EU, it has been classified as toxic to reproduction and as an endocrine disruptor and was thus included in the candidate list of substances of very high concern (SVHC). On this basis, its use has been banned or restricted in some products. As a consequence, industries turned to bisphenol alternatives, such as bisphenol S (BPS) and bisphenol F (BPF), which are now found in various consumer products, as well as in human matrices at a global scale. However, due to their toxicity, these two bisphenols are in the process of being regulated. Other BPA alternatives, whose potential toxicity remains largely unknown due to a knowledge gap, have also started to be used in manufacturing processes. The gradual restriction of the use of BPA underscores the importance of understanding the potential risks associated with its alternatives to avoid regrettable substitutions. This review aims to summarize the current knowledge on the potential hazards related to BPA alternatives prioritized by European Regulatory Agencies based on their regulatory relevance and selected to be studied under the European Partnership for the Assessment of Risks from Chemicals (PARC): BPE, BPAP, BPP, BPZ, BPS-MAE, and TCBPA. The focus is on data related to toxicokinetic, endocrine disruption, immunotoxicity, developmental neurotoxicity, and genotoxicity/carcinogenicity, which were considered the most relevant endpoints to assess the hazard related to those substances. The goal here is to identify the data gaps in BPA alternatives toxicology and hence formulate the future directions that will be taken in the frame of the PARC project, which seeks also to enhance chemical risk assessment methodologies using new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Daniel Zalko
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Sabrina Tait
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Testai
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Catherine Viguié
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Emanuela Corsini
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Nathalie Grova
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Franca Maria Buratti
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicolas J Cabaton
- INRAE, UMR1331 Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UT3, Toulouse, France
| | - Lucia Coppola
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Antonio De la Vieja
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Maria Dusinska
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Naouale El Yamani
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Valentina Galbiati
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Patricia Iglesias-Hernández
- Endocrine Tumor Unit from Chronic Disease Program (UFIEC), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Yvonne Kohl
- Fraunhofer Institute for Biomedical Engineering IBMT, Sulzbach, Germany
| | - Ambra Maddalon
- Department of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano - School of Pharmacy, Milan, Italy
| | - Francesca Marcon
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Lydie Naulé
- CNRS UMR 8246, INSERM U1130, Neuroscience Paris Seine - Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Elise Rundén-Pran
- Department for Environmental Chemistry, Health Effects Laboratory, NILU-Norwegian Institute for Air Research, Kjeller, Norway
| | - Francesca Salani
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Nicoletta Santori
- Department of Environment and Health, Mechanisms, Biomarkers and Models Unit, Istituto Superiore di Sanità, Rome, Italy
| | - Mónica Torres-Ruiz
- National Center for Environmental Health (CNSA), Instituto de Salud Carlos III (ISCIII), Majadahonda, Madrid, Spain
| | - Jonathan D Turner
- Department of Infection and Immunity, Immune Endocrine Epigenetics Research Group, Luxembourg Institute of Health, Esch-Sur-Alzette, Luxembourg
| | - Ondrej Adamovsky
- Faculty of Science, Masaryk University, RECETOX, Brno, Czech Republic
| | | | - Hubert Dirven
- Department of Chemical Toxicology - Division of Climate and the Environment, Norwegian Institute of Public Health, Oslo, Norway
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health, Nova Medical School, Universidade Nova de Lisboa, Lisbon, Portugal
| |
Collapse
|
3
|
Afridi MN, Zafar Z, Khan IA, Ali I, Bacha AUR, Maitlo HA, Qasim M, Nawaz M, Qi F, Sillanpää M, Lee KH, Asif MB. Advances in MXene-based technologies for the remediation of toxic phenols: A comprehensive review. Adv Colloid Interface Sci 2024; 332:103250. [PMID: 39047647 DOI: 10.1016/j.cis.2024.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/08/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
The pressing global issue of organic pollutants, particularly phenolic compounds derived primarily from industrial wastes, poses a significant threat to the environment. Although progress has been made in the development of low-cost materials for phenolic compound removal, their effectiveness remains limited. Thus, there is an urgent need for novel technologies to comprehensively address this issue. In this context, MXenes, known for their exceptional physicochemical properties, have emerged as highly promising candidates for the remediation of phenolic pollutants. This review aims to provide a comprehensive and critical evaluation of MXene-based technologies for the removal of phenolic pollutants, focusing on the following key aspects: (1) The classification and categorization of phenolic pollutants, highlighting their adverse environmental impacts, and emphasizing the crucial need for their removal. (2) An in-depth discussion on the synthesis methods and properties of MXene-based composites, emphasizing their suitability for environmental remediation. (3) A detailed analysis of MXene-based adsorption, catalysis, photocatalysis, and hybrid processes, showcasing current advancements in MXene modification and functionalization to enhance removal efficiency. (4) A thorough examination of the removal mechanisms and stability of MXene-based technologies, elucidating their operating conditions and stability in pollutant removal scenarios. (5) Finally, this review concludes by outlining future challenges and opportunities for MXene-based technologies in water treatment, facilitating their potential applications. This comprehensive review provides valuable insights and innovative ideas for the development of versatile MXene-based technologies tailored to combat water pollution effectively.
Collapse
Affiliation(s)
- Muhammad Naveed Afridi
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Zulakha Zafar
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Imtiaz Afzal Khan
- Interdisciplinary Research Center for Membranes and Water Security, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Imran Ali
- Department of Environmental Sciences, Sindh Madressatul Islam University, Aiwan-e-Tijarat Road, Karachi 74000, Pakistan
| | - Aziz-Ur-Rahim Bacha
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, PR China
| | - Hubdar Ali Maitlo
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Muhammad Qasim
- Department of Civil Engineering, The University of Lahore, 1Km, Defense Road, Lahore, Punjab, Pakistan
| | - Muhammad Nawaz
- Shenzhen Key Laboratory of Food Nutrition and Health, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fei Qi
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein, South Africa; Sustainability Cluster, School of Advanced Engineering, UPES, Bidholi, Dehradun, Uttarakhand, India; Adnan Kassar School of Business, Lebanese American University, Beirut, Lebanon
| | - Kang Hoon Lee
- Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon, Republic of Korea.
| | - Muhammad Bilal Asif
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
4
|
Fu Q, Yuan X. Relationship between mixed exposure to phenyl hydroxides, polycyclic aromatic hydrocarbons, and phthalates and the risk of arthritis. BMC Public Health 2024; 24:2446. [PMID: 39251954 PMCID: PMC11382499 DOI: 10.1186/s12889-024-19971-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND To determine the relationship between mixed exposure to three types of endocrine-disrupting chemicals (EDCs), namely phenyl hydroxides, polycyclic aromatic hydrocarbons (PAHs), and phthalates (PAEs), and risk of arthritis. METHODS Participants were selected from National Health and Nutrition Examination Survey (NHANES). The relationships between the urinary concentrations of phenyl hydroxides, PAHs, and PAEs and the risk of arthritis were analyzed by generalized linear regression model. The mixed exposure to these EDCs and the risk of arthritis was analyzed by weighted quantile sums (WQSs) and Bayesian kernel machine regression (BKMR) model. RESULTS Our analysis showed that participants with urinary benzophenone-3 and methylparaben concentrations in the highest quartile (Q4) had an increased risk of arthritis compared with those in Q1. For each one-unit increase in the natural logarithm-converted urinary concentrations of 1-hydroxynapthalene and 2-hydroxynapthalene, the risk of arthritis increased by 5% and 8%, respectively. Chemical mixing index coefficients were significantly associated with risk of arthritis in both WQS positive- and negative-constraint models. In the BKMR model, there was a significant positive correlation between mixed exposure and the risk of arthritis. CONCLUSION Mixed exposure to phenyl hydroxides, PAHs, and PAEs increased the risk of arthritis, with exposure to PAHs being the key factor.
Collapse
Affiliation(s)
- Qingsong Fu
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China
| | - Xinhua Yuan
- Department of Orthopedics, Ningbo No.2 Hospital, No. 41 Northwest Street, Haishu Distrist, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
5
|
Zhu Q, Liu H, Pan K, Zhu W, Qiao Y, Li Q, Hu J, Zhang M, Qiu J, Yan X, Ge J, Hong Q. The novel hydrolase IpcH initiates the degradation of isoprocarb in a newly isolated strain Rhodococcus sp. D-6. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135045. [PMID: 38944990 DOI: 10.1016/j.jhazmat.2024.135045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/02/2024]
Abstract
Isoprocarb (IPC), a representative monocyclic carbamate insecticide, poses risks of environmental contamination and harm to non-target organisms. However, its degradation mechanism has not been reported. In this study, a newly IPC-degrading strain D-6 was isolated from the genus Rhodococcus, and its degradation characteristics and pathway of IPC were analyzed. A novel hydrolase IpcH, responsible for hydrolyzing IPC to 2-isopropylphenol (IPP), was identified. IpcH exhibited low similarity (< 27 %) with other reported hydrolases, including previously characterized carbamate insecticides hydrolases, indicating its novelty. The Km and kcat values of IpcH towards IPC were 69.99 ± 8.33 μM and 95.96 ± 4.02 s-1, respectively. Also, IpcH exhibited catalytic activity towards various types of carbamate insecticides, including monocyclic carbamates (IPC, fenobucarb and propoxur), bicyclic carbamates (carbaryl and carbofuran), and linear carbamates (oxamyl and aldicarb). The molecular docking and site-directed mutagenesis revealed that His254, His256, His329 and His376 were essential for IpcH activity. Strain D-6 can effectively reduce the toxicity of IPC and IPP towards sensitive organisms through its degradation ability. This study presents the initial report on IPC degradation pathway and molecular mechanism of IPC degradation, and provides a good potential strain for bioremediating IPC and IPP-contaminated environments.
Collapse
Affiliation(s)
- Qian Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Hongfei Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kaihua Pan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wanhe Zhu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yihui Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Qian Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Junqiang Hu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Mingliang Zhang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jiguo Qiu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Xin Yan
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Jing Ge
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Qing Hong
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China.
| |
Collapse
|
6
|
Jeong DH, Jung DW, Lee HS. Confirmation of the steroid hormone receptor-mediated endocrine disrupting potential of fenvalerate following the Organization for Economic Cooperation and Development test guidelines, and its estrogen receptor α-dependent effects on lipid accumulation. Comp Biochem Physiol C Toxicol Pharmacol 2024; 283:109955. [PMID: 38844189 DOI: 10.1016/j.cbpc.2024.109955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/17/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
In this study, we focused on confirming the steroid hormone receptor-mediated endocrine-disrupting potential of the pyrethroid insecticide fenvalerate and unraveling the underlying mechanisms. Therefore, we assessed estrogen receptor-α (ERα)- and androgen receptor (AR)-mediated responses in vitro using a hormone response element-dependent transcription activation assay with a luciferase reporter following the Organization for Economic Cooperation and Development (OECD) test guidelines. We observed that fenvalerate acted as estrogen by inducing the translocation of cytosolic ERα to the nucleus via ERα dimerization, whereas it exhibited no AR-mediated androgen response element-dependent luciferase activity. Furthermore, we confirmed that fenvalerate-induced activation of ERα caused lipid accumulation, promoted in a fenvalerate-dependent manner in 3 T3-L1 adipocytes. Moreover, fenvalerate-induced lipid accumulation was inhibited in the presence of an ERα-selective antagonist, whereas it remained unaffected in the presence of a glucocorticoid receptor (GR)-specific inhibitor. In addition, fenvalerate was found to stimulate the expression of transcription factors that promote lipid accumulation in 3 T1-L1 adipocytes, and co-treatment with an ERα-selective antagonist suppressed adipogenic/ lipogenic transcription factors at both mRNA and protein levels. These findings suggest that fenvalerate exposure may lead to lipid accumulation by interfering with ERα activation-dependent processes, thus causing an ERα-mediated endocrine-disrupting effect.
Collapse
Affiliation(s)
- Da-Hyun Jeong
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Woon Jung
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- GreenTech-based Food Safety Research Group, BK21 Four, Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
7
|
EFSA Panel on Contaminants in the Food Chain (CONTAM), Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
8
|
Park CG, Adnan KM, Cho H, Ryu CS, Yoon J, Kim YJ. A combined in vitro-in silico method for assessing the androgenic activities of bisphenol A and its analogues. Toxicol In Vitro 2024; 98:105838. [PMID: 38710238 DOI: 10.1016/j.tiv.2024.105838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/29/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Interactions between endocrine-disruptor chemicals (EDCs) and androgen receptor (AR) have adverse effects on the endocrine system, leading to human reproductive dysfunction. Bisphenol A (BPA) is an EDC that can damage both the environment and human health. Although numerous BPA analogues have been produced as substitutes for BPA, few studies have evaluated their endocrine-disrupting abilities. We assessed the (anti)-androgenic activities of BPA and its analogues using a yeast-based reporter assay. The BPA analogues tested were bisphenol S (BPS), 4-phenylphenol (4PP), 4,4'-(9-fluorenyliden)-diphenol (BPFL), tetramethyl bisphenol F (TMBPF), and tetramethyl bisphenol A (TMBPA). We also conducted molecular docking and dynamics simulations to assess the interactions of BPA and its analogues with the ligand-binding domain of human AR (AR-LBD). Neither BPA nor its analogues had androgenic activity; however, all except BPFL exerted robust anti-androgenic effects. Consistent with the in vitro results, anti-androgenic analogues of BPA formed hydrogen bonding patterns with key residues that differed from the patterns of endogenous hormones, indicating that the analogues display in inappropriate orientations when interacting with the binding pocket of AR-LBD. Our findings indicate that BPA and its analogues disrupt androgen signaling by interacting with the AR-LBD. Overall, BPA and its analogues display endocrine-disrupting activity, which is mediated by AR.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Division of Experimental Neurosurgery, Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Karim Md Adnan
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Hyunki Cho
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany; Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany
| | - Juyong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology (KIST) Europe, Saarbrucken 66123, Germany.
| |
Collapse
|
9
|
Liu S, Liu J. An Integrated Approach of Bioassays and Non-Target Screening for the Assessment of Endocrine-Disrupting Activities in Tap Water and Identification of Novel Endocrine-Disrupting Chemicals. TOXICS 2024; 12:247. [PMID: 38668470 PMCID: PMC11054029 DOI: 10.3390/toxics12040247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/29/2024]
Abstract
The safety of drinking water is a significant environmental issue of great concern for human health since numerous contaminants are often detected in drinking water and its sources. Boiling is a common household method used to produce relatively high-quality drinking water in some countries and regions. In this study, with the aid of an integrated approach of in vitro bioassays and non-target analysis based on high-resolution mass spectrometry coupled with liquid chromatography, alterations in endocrine-disrupting activities in tap water samples without and with boiling were revealed, as well as the potential endocrine-disrupting chemicals (EDCs) contributing to these alterations were identified. The organic extracts of tap water had no significant (ant)agonistic activities against an estrogen receptor (ER), progesterone receptor (PR), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) at enrichment concentrations of ≤10 times, posing no immediate or acute health risk to humans. However, the presence of agonistic activities against PR and MR and antagonistic activities against ER, PR, GR, and MR in OEs of tap water at relatively higher enrichment concentrations still raise potential health concerns. Boiling effectively reduced antagonistic activities against these steroid hormone receptors (SHRs) but increased estrogenic and glucocorticoid activities in drinking water. Four novel potential EDCs, including one UV filter (phenylbenzimidazole sulfonic acid, PBSA) and three natural metabolites of organisms (beta-hydroxymyristic acid, 12-hydroxyoctadecanoic acid, and isorosmanol) were identified in drinking water samples, each of which showed (ant)agonistic activities against different SHRs. Given the widespread use of UV filters in sunscreens to prevent skin cancer, the health risks posed by PBSA as an identified novel EDC are of concern. Although boiling has been thought to reduce the health risk of drinking water contamination, our findings suggest that boiling may have a more complex effect on the endocrine-disrupting activities of drinking water and, therefore, a more comprehensive assessment is needed.
Collapse
Affiliation(s)
- Siyuan Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Weiss V, Gobec M, Jakopin Ž. Halogenation of common phenolic household and personal care product ingredients enhances their AhR-modulating capacity. CHEMOSPHERE 2024; 350:141116. [PMID: 38182088 DOI: 10.1016/j.chemosphere.2024.141116] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/07/2024]
Abstract
The Aryl Hydrocarbon Receptor (AhR), a ligand-activated transcription factor, orchestrates responses to numerous structurally diverse endogenous and exogenous ligands. In addition to binding various xenobiotics, AhR also recognizes endocrine disruptors, particularly those featuring chlorinated or brominated aromatic structures. There is limited data available on the impact of common household and personal care product ingredients let alone their halogenated transformation products. Herein we bridge this knowledge gap by preparing a library of chlorinated and brominated parabens, bisphenols, UV filters, and nonylphenols. An evaluation of total of 125 compounds for agonistic and antagonistic activity on AhR unveiled a low micromolar agonist, Cl2BPAF with an EC50 of 13 μM. Moreover, our study identified several AhR antagonists, with BrBzP emerging as the most potent with an IC50 of 8.9 μM. To further investigate the functional implications of these compounds, we subjected the most potent agonist and antagonist to a functional assay involving cytokine secretion from peripheral blood mononuclear cells and compared their activity with the commercially available AhR agonist and antagonist. Cl2BPAF exhibited an overall immunosuppressive effect by reducing the secretion of proinflammatory cytokines, including IL-6, IFN-γ, and TNF-α, while BrBzP displayed opposite effects, leading to an increase of those cytokines. Notably, the immunomodulatory effects of Cl2BPAF surpassed those of ITE, a bona fide AhR agonist, while the impact of BrBzP exceeded that of CH223191, a bona fide AhR antagonist. In summary, our study underscores the potential influence of halogenated transformation products on the AhR pathway and, consequently, their role in shaping the immune responses.
Collapse
Affiliation(s)
- Veronika Weiss
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
11
|
Jung DW, Jeong DH, Lee HS. Stimulation of estrogen receptor-alpha by hydroxyanilide fungicide, fenhexamid promotes lipid accumulation in 3 T3-L1 adipocyte. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 199:105757. [PMID: 38458660 DOI: 10.1016/j.pestbp.2023.105757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 03/10/2024]
Abstract
Fenhexamid are fungicides that act against plant pathogens by inhibiting sterol biosynthesis. Nonetheless, it can trigger endocrine disruption and promote breast cancer cell growth. In a recent study, we investigated the mechanism underlying the lipid accumulation induced by fenhexamid hydroxyanilide fungicides in 3 T3-L1 adipocytes. To examine the estrogen receptor alpha (ERα)-agonistic effect, ER transactivation assay using the ERα-HeLa-9903 cell line was applied, and fenhexamid-induced ERα agonist effect was confirmed. Further confirmation that ERα-dependent lipid accumulation occurred was provided by treating 3 T3-L1 adipocytes with Methyl-piperidino-pyrazole hydrate (MPP), an ERα-selective antagonist. Fenhexamid mimicked the actions of ERα agonists and impacted lipid metabolism, and its mechanism involves upregulation of the expression of transcription factors that facilitate adipogenesis and lipogenesis. Additionally, it stimulated the expression of peroxisome proliferator-activated receptor (PPARγ), CCAAT/enhancer-binding protein α (C/EBPα), fatty acid synthase (FAS), and sterol regulatory element-binding protein 1 (SREBP1) and significantly elevated the expression of fatty acid-binding protein 4 (FABP4). In contrast, in combination with an ERα-selective antagonist, fenhexamid suppressed the expression of adipogenic/lipogenic transcription factors. These results suggest that fenhexamid affects the endocrine system and leads to lipid accumulation by interfering with processes influenced by ERα activation.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Da-Hyun Jeong
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
12
|
Liu L, Guo F, Cui H, Ji L, Yang Y, Jiao L, Huang Y, Wan Y. Alkylphenols disrupt estrogen homeostasis via diradical cross-coupling reactions: A novel pathway of endocrine disruption. ENVIRONMENT INTERNATIONAL 2024; 183:108428. [PMID: 38217901 DOI: 10.1016/j.envint.2024.108428] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/07/2023] [Accepted: 01/04/2024] [Indexed: 01/15/2024]
Abstract
Estrogen, being an essential class of sex hormone, is an important target of endocrine disruption chemicals. It is well known that environmental disruptors could activate or inhibit estrogen receptors, acting as agonists or antagonists, and thus affect the circulating estrogen concentrations. Here, we report enzyme-mediated diradical cross-coupling reactions between alkylphenols (e.g., 2,4-di-tert-butylphenol [DBP], 4-nonylphenol [4-NP], and 4-tert-octylphenol [4-t-OP]) and estrogens (e.g., estradiol [E2]) that generate coupling metabolites and disrupt estrogen homeostasis. Among the phenolic xenobiotics, the screening of metabolic products revealed that alkylphenols had the highest reaction activities and generated coupling metabolites with high abundances (DBP-O-E2, 4-t-OP-O-E2, and 4-NP-O-E2). The coupling reactions were catalyzed by cytochrome P450 3A4 (CYP3A4) and verified by the detection of the coupling products in general populations. In vitro and in vivo exposures together with CYP3A4 inhibition demonstrated that cross-coupling reactions of phenols and E2 significantly reduced the normal levels of E2. We further established a unique spin-trapping-based high-throughput screening method to show the existence of diradicals in the coupling reaction. Density functional theory calculations revealed that spin aromatic delocalization was the fundamental cause of the high rebound barrier and sufficient lifetime of phenoxy radicals that enabled phenolic cross-coupling triggered by cytochrome P450. The identified mechanistic details for diradical cross-coupling reactions provide a novel pathway for phenolic chemicals to disrupt estrogen homeostasis.
Collapse
Affiliation(s)
- Liu Liu
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fangjie Guo
- Quality and Safety Engineering Institute of Food and Drug, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hongyang Cui
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China
| | - Yi Yang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ling Jiao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yixuan Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Yadav S, Kumar S, Haritash AK. A comprehensive review of chlorophenols: Fate, toxicology and its treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118254. [PMID: 37295147 DOI: 10.1016/j.jenvman.2023.118254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/28/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
Chlorophenols represent one of the most abundant families of toxic pollutants emerging from various industrial manufacturing units. The toxicity of these chloroderivatives is proportional to the number and position of chlorine atoms on the benzene ring. In the aquatic environment, these pollutants accumulate in the tissues of living organisms, primarily in fishes, inducing mortality at an early embryonic stage. Contemplating the behaviour of such xenobiotics and their prevalence in different environmental components, it is crucial to understand the methods used to remove/degrade the chlorophenol from contaminated environment. The current review describes the different treatment methods and their mechanism towards the degradation of these pollutants. Both abiotic and biotic methods are investigated for the removal of chlorophenols. Chlorophenols are either degraded through photochemical reactions in the natural environment, or microbes, the most diverse communities on earth, perform various metabolic functions to detoxify the environment. Biological treatment is a slow process because of the more complex and stable structure of pollutants. Advanced Oxidation Processes are effective in degrading such organics with enhanced rate and efficiency. Based on their ability to generate hydroxyl radicals, source of energy, catalyst type, etc., different processes such as sonication, ozonation, photocatalysis, and Fenton's process are discussed for the treatment or remediation efficiency towards the degradation of chlorophenols. The review entails both advantages and limitations of treatment methods. The study also focuses on reclamation of chlorophenol-contaminated sites. Different remediation methods are discussed to restore the degraded ecosystem back in its natural condition.
Collapse
Affiliation(s)
- Shivani Yadav
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India.
| | - Sunil Kumar
- Solaris Chemtech Industries, Bhuj, Gujarat, India
| | - A K Haritash
- Department of Environmental Engineering, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| |
Collapse
|
14
|
Shoorei H, Seify M, Talebi SF, Majidpoor J, Dehaghi YK, Shokoohi M. Different types of bisphenols alter ovarian steroidogenesis: Special attention to BPA. Heliyon 2023; 9:e16848. [PMID: 37303564 PMCID: PMC10250808 DOI: 10.1016/j.heliyon.2023.e16848] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/27/2023] [Accepted: 05/31/2023] [Indexed: 06/13/2023] Open
Abstract
Endocrine disruptors such as bisphenol A (BPA) and some of its analogues, including BPS, BPAF, and BPE, are used extensively in the manufacture of plastics. These synthetic chemicals could seriously alter the functionality of the female reproductive system. Although the number of studies conducted on other types of bisphenols is smaller than the number of studies on BPA, the purpose of this review study was to evaluate the effects of bisphenol compounds, particularly BPA, on hormone production and on genes involved in ovarian steroidogenesis in both in vitro (human and animal cell lines) and in vivo (animal models) studies. The current data show that exposure to bisphenol compounds has adverse effects on ovarian steroidogenesis. For example, BPA, BPS, and BPAF can alter the normal function of the hypothalamic-pituitary-gonadal (HPG) axis by targeting kisspeptin neurons involved in steroid feedback signals to gonadotropin-releasing hormone (GnRH) cells, resulting in abnormal production of LH and FSH. Exposure to BPA, BPS, BPF, and BPB had adverse effects on the release of some hormones, namely 17-β-estradiol (E2), progesterone (P4), and testosterone (T). BPA, BPE, BPS, BPF, and BPAF are also capable of negatively altering the transcription of a number of genes involved in ovarian steroidogenesis, such as the steroidogenic acute regulatory protein (StAR, involved in the transfer of cholesterol from the outer to the inner mitochondrial membrane, where the steroidogenesis process begins), cytochrome P450 family 17 subfamily A member 1 (Cyp17a1, which is involved in the biosynthesis of androgens such as testosterone), 3 beta-hydroxysteroid dehydrogenase enzyme (3β-HSD, involved in the biosynthesis of P4), and cytochrome P450 family 19 subfamily A member 1 (Cyp19a1, involved in the biosynthesis of E2). Exposure to BPA, BPB, BPF, and BPS at prenatal or prepubertal stages could decrease the number of antral follicles by activating apoptosis and autophagy pathways, resulting in decreased production of E2 and P4 by granulosa cells (GCs) and theca cells (TCs), respectively. BPA and BPS impair ovarian steroidogenesis by reducing the function of some important cell receptors such as estrogens (ERs, including ERα and ERβ), progesterone (PgR), the orphan estrogen receptor gamma (ERRγ), the androgen receptor (AR), the G protein-coupled estrogen receptor (GPER), the FSHR (follicle-stimulating hormone receptor), and the LHCGR (luteinizing hormone/choriogonadotropin receptor). In animal models, the effects of bisphenol compounds depend on the type of animals, their age, and the duration and dose of bisphenols, while in cell line studies the duration and doses of bisphenols are the matter.
Collapse
Affiliation(s)
- Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Seify
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyedeh Fahimeh Talebi
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
- Department of Pharmacology, Birjand University of Medical Sciences, Birjand, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Yeganeh Koohestani Dehaghi
- Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Majid Shokoohi
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Jala A, Dutta R, Josyula JVN, Mutheneni SR, Borkar RM. Environmental phenol exposure associates with urine metabolome alteration in young Northeast Indian females. CHEMOSPHERE 2023; 317:137830. [PMID: 36640981 DOI: 10.1016/j.chemosphere.2023.137830] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/12/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Urinary biomonitoring delivers the most accurate environmental phenols exposure assessment. However, environmental phenol exposure-related biomarkers are required to improve risk assessment to understand the internal processes perturbed, which may link exposure to specific health outcomes. This study aimed to investigate the association between environmental phenols exposure and the metabolome of young adult females from India. Urinary metabolomics was performed using liquid chromatography-mass spectrometry. Environmental phenols-related metabolic biomarkers were investigated by comparing the low and high exposure of environmental phenols. Seven potential biomarkers, namely histidine, cysteine-s-sulfate, 12-KETE, malonic acid, p-hydroxybenzoic acid, PE (36:2), and PS (36:0), were identified, revealing that environmental phenol exposure altered the metabolic pathways such as histidine metabolism, beta-Alanine metabolism, glycerophospholipid metabolism, and other pathways. This study also conceived an innovative strategy for the early prediction of diseases by combining urinary metabolomics with machine learning (ML) algorithms. The differential metabolites predictive accuracy by ML models was >80%. This is the first mass spectrometry-based metabolomics study on young adult females from India with environmental phenols exposure. The study is valuable in demonstrating multiple urine metabolic changes linked to environmental phenol exposure and a better understanding of the mechanisms behind environmental phenol-induced effects in young female adults.
Collapse
Affiliation(s)
- Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India
| | - Ratul Dutta
- Down Town Hospital, Guwahati, Assam, 781106, India
| | | | - Srinivasa Rao Mutheneni
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad, 500007, Telangana, India
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Guwahati, 781101, Assam, India.
| |
Collapse
|
16
|
Nowak K, Jakopin Ž. In silico profiling of endocrine-disrupting potential of bisphenol analogues and their halogenated transformation products. Food Chem Toxicol 2023; 173:113623. [PMID: 36657698 DOI: 10.1016/j.fct.2023.113623] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/10/2023] [Accepted: 01/14/2023] [Indexed: 01/18/2023]
Abstract
Due to its endocrine-disrupting properties, bisphenol A (BPA) is being phased out from plastics, thermal paper and epoxy resins, and its replacements are being introduced into the market. Bisphenols are released into the environment, where they can undergo halogenation. Unlike BPA, the endocrine-disrupting potential of BPA analogues and their halogenated transformation products has not been extensively studied. The aim of this study was to evaluate the endocrine-disrupting potential of 18 BPA analogues and their halogenated derivatives by calculating affinities for 14 human nuclear receptors utilizing the Endocrine Disruptome and VirtualToxLab™ in silico tools. Our simulations identified AR, ERs, and GR as the most favorable targets of bisphenols and their derivatives. Several BPA analogues displayed a higher predicted potential for endocrine disruption than BPA. Our models highlighted BPZ and BPPH as the most hazardous in terms of predicted endocrine activities. Halogenation, in general, was predicted to increase the binding affinity of bisphenols for AR, ERβ, MR, GR, PPARγ, and TRβ. Notably, mono- or 2,2'-di-halogenated bisphenols exhibited the highest potential for endocrine disruption. In vitro corroboration of the obtained results should be the next milestone in evaluating the safety of BPA substitutes and their halogenated transformation products.
Collapse
Affiliation(s)
- Karolina Nowak
- Department of Immunology, Medical University of Bialystok, Poland
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, University of Ljubljana, Slovenia.
| |
Collapse
|
17
|
Liang J, Shao Y, Huang D, Yang C, Liu T, Zeng X, Li C, Tang Z, Juan JTH, Song Y, Liu S, Qiu X. Effects of prenatal exposure to bisphenols on newborn leucocyte telomere length: a prospective birth cohort study in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25013-25023. [PMID: 34031828 DOI: 10.1007/s11356-021-14496-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/17/2021] [Indexed: 06/12/2023]
Abstract
Telomere length (TL) at birth is related to diseases that may arise in the future and long-term health. Bisphenols exhibit toxic effects and can cross the placenta barrier. However, the effects of prenatal exposure to bisphenols on newborn TL remain unknown. We aimed to explore the effects of prenatal exposure to bisphenols (i.e., bisphenol A [BPA], bisphenol B [BPB], bisphenol F [BPF], bisphenol S [BPS] and tetrabromobisphenol A [TBBPA]) on relative TL in newborns. A total of 801 mother-infant pairs were extracted from the Guangxi Zhuang Birth Cohort. The relationship between bisphenol levels in maternal serum and relative TL in cord blood was examined by generalized linear models and restricted cubic spline (RCS) models. After adjusting for confounders, we observed a 3.19% (95% CI: -6.08%, -0.21%; P = 0.037) reduction in relative cord blood TL among mothers ≥ 28 years old, with each onefold increase in BPS. However, in each onefold increase of TBBPA, we observed a 3.31% (95% CI: 0.67%, 6.01%; P = 0.014) increase in relative cord blood TL among mothers < 28 years old. The adjusted RCS models revealed similar results (P overall < 0.05, P non-linear > 0.05). This study was the first to establish a positive association between serum TBBPA levels and relative TL in newborns born to young mothers. However, BPS levels were inversely correlated with TL in fetus born to old mothers. The results suggested that the fetus of old pregnant women may be more sensitive to BPS exposure. Moreover, BPS exposure early in life may accelerate aging or increase the risk of developing BPS-related diseases in later life.
Collapse
Affiliation(s)
- Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Yantao Shao
- The Third Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunxiu Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Chunling Li
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhenghua Tang
- Department of mental health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jennifer Tan Hui Juan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Yanye Song
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shun Liu
- Department of Child and Adolescent Health & Maternal and Child Health, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, 530021, Guangxi, China.
| |
Collapse
|
18
|
Jung DW, Jeong DH, Lee HS. Azole pesticide products and their hepatic metabolites cause endocrine disrupting potential by suppressing the homo-dimerization of human estrogen receptor alpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120894. [PMID: 36549450 DOI: 10.1016/j.envpol.2022.120894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/12/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
We selected azole pesticides products that are managed by setting maximum residue limits (MRLs) in the Republic of Korea and describe the estrogen receptor (ER) α-related negative effect to endocrine system using in vitro Organization for Economic Cooperation and Development performance-based test guideline. No azoles were found to be an ERα agonist. Conversely, three azoles (bitertanol, cafenstrole, and tebufenpyrad) were determined to be ERα antagonists. In addition, the ERα antagonistic activities of bitertanol, cafenstrole, and tebufenpyrad were not significantly perturbed in the existence of phase I (hydroxylation, dealkylation, oxidation or reduction) and phase II (conjugation). Regarding the mechanism underlying their ERα-mediated endocrine disrupting potentials, ERα proteins cannot be translocated to the nucleus by suppressing the dimerization of ERα in the cytoplasm by bitertanol, cafenstrole, and tebufenpyrad. These data indicated that azole pesticide products show the capability to interfere the ERα-related human endocrine system. Furthermore, we identified the mechanism of ERα-mediated endocrine disrupting by azole insecticide products through this study.
Collapse
Affiliation(s)
- Da-Woon Jung
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Da-Hyun Jeong
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea; Department of Food Safety and Regulatory Science, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
19
|
Smollich E, Büter M, Schertzinger G, Dopp E, Sures B. Photolytic degradation of novel polymeric and monomeric brominated flame retardants: Investigation of endocrine disruption, physiological and ecotoxicological effects. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120317. [PMID: 36191796 DOI: 10.1016/j.envpol.2022.120317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/24/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Ecotoxicological effects of photolytic degradation mixtures of the two brominated flame retardants PolymericFR and Tetrabromobisphenol A-bis (2,3-dibrom-2-methyl-propyl) Ether (TBBPA-BDBMPE) have been studied in vitro and in vivo. Both substances were experimentally degraded separately by exposure to artificial UV-light and the resulting degradation mixtures from different time points during the UV-exposure were applied in ecotoxicological tests. The in vitro investigation showed no effects of the degraded flame retardants on the estrogenic and androgenic receptors via the CALUX (chemically activated luciferase gene expression) assay. Short-term exposures (up to 96 h) of Lumbriculus variegatus lead to temporary physiological reactions of the annelid. The exposure to degraded PolymericFR lead to an increased activity of Catalase, while the degradation mixture of TBBPA-BDBMPE caused increases of Glutathione-S-transferase and Acetylcholine esterase activities. Following a chronic exposure (28 d) of L. variegatus, no effects on the growth, reproduction, fragmentation and energy storage of the annelid were detected. The results indicate that the experimental degradation of the two flame retardants causes changes in their ecotoxicological potential. This might lead to acute physiological effects on aquatic annelids, which, however, do not affect the animals chronically according to our results.
Collapse
Affiliation(s)
- Esther Smollich
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany.
| | - Malte Büter
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
| | | | - Elke Dopp
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| | - Bernd Sures
- Faculty of Biology, Aquatic Ecology, University of Duisburg-Essen, Universitätsstraße 5, 45141, Essen, Germany; Centre for Water and Environmental Research (ZWU), Universitätsstraße 5, 45141, Essen, Germany
| |
Collapse
|
20
|
Planar chromatography-bioassays for the parallel and sensitive detection of androgenicity, anti-androgenicity and cytotoxicity. J Chromatogr A 2022; 1684:463582. [DOI: 10.1016/j.chroma.2022.463582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/24/2022]
|
21
|
Yang R, Liu S, Yin N, Zhang Y, Faiola F. Tox21-Based Comparative Analyses for the Identification of Potential Toxic Effects of Environmental Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14668-14679. [PMID: 36178254 DOI: 10.1021/acs.est.2c04467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemical pollution has become a prominent environmental problem. In recent years, quantitative high-throughput screening (qHTS) assays have been developed for the fast assessment of chemicals' toxic effects. Toxicology in the 21st Century (Tox21) is a well-known and continuously developing qHTS project. Recent reports utilizing Tox21 data have mainly focused on setting up mathematical models for in vivo toxicity predictions, with less attention to intuitive qHTS data visualization. In this study, we attempted to reveal and summarize the toxic effects of environmental pollutants by analyzing and visualizing Tox21 qHTS data. Via PubMed text mining, toxicity/structure clustering, and manual classification, we detected a total of 158 chemicals of environmental concern (COECs) from the Tox21 library that we classified into 13 COEC groups based on structure and activity similarities. By visualizing these COEC groups' bioactivities, we demonstrated that COECs frequently displayed androgen and progesterone antagonistic effects, xenobiotic receptor agonistic roles, and mitochondrial toxicity. We also revealed many other potential targets of the 13 COEC groups, which were not well illustrated yet, and that current Tox21 assays may not correctly classify known teratogens. In conclusion, we provide a feasible method to intuitively understand qHTS data.
Collapse
Affiliation(s)
- Renjun Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuyu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Wellcome Trust/CRUK Gurdon Institute, Department of Pathology, University of Cambridge, Cambridge CB2 1QN, U.K
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhang
- Department of Pharmacy, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
22
|
Park CG, Singh N, Ryu CS, Yoon JY, Esterhuizen M, Kim YJ. Species Differences in Response to Binding Interactions of Bisphenol A and its Analogs with the Modeled Estrogen Receptor 1 and In Vitro Reporter Gene Assay in Human and Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2431-2443. [PMID: 35876442 DOI: 10.1002/etc.5433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/12/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Adverse impacts associated with the interactions of numerous endocrine-disruptor chemicals (EDCs) with estrogen receptor 1 play a pivotal role in reproductive dysfunction. The predictive studies on these interactions thus are crucial in the risk assessment of EDCs but rely heavily on the accuracy of specific protein structure in three dimensions. As the three-dimensional (3D) structure of zebrafish estrogen receptor 1 (zEsr1) is not available, the 3D structure of zEsr1 ligand-binding domain (zEsr1-LBD) was generated using MODELLER and its quality was assessed by the PROCHECK, ERRAT, ProSA, and Verify-3D tools. After the generated model was verified as reliable, bisphenol A and its analogs were docked on the zEsr1-LBD and human estrogen receptor 1 ligand-binding domain (hESR1-LBD) using the Discovery Studio and Autodock Vina programs. The molecular dynamics followed by molecular docking were simulated using the Nanoscale Molecular Dynamics program and compared to those of the in vitro reporter gene assays. Some chemicals were bound with an orientation similar to that of 17β-estradiol in both models and in silico binding energies showed moderate or high correlations with in vitro results (0.33 ≤ r2 ≤ 0.71). Notably, hydrogen bond occupancy during molecular dynamics simulations exhibited a high correlation with in vitro results (r2 ≥ 0.81) in both complexes. These results show that the combined in silico and in vitro approaches is a valuable tool for identifying EDCs in different species, facilitating the assessment of EDC-induced reproductive toxicity. Environ Toxicol Chem 2022;41:2431-2443. © 2022 SETAC.
Collapse
Affiliation(s)
- Chang Gyun Park
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Nancy Singh
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
- Universität des Saarlandes, Saarbrücken, Germany
| | - Chang Seon Ryu
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Ju Yong Yoon
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| | - Maranda Esterhuizen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
- Helsinki Institute of Sustainability Science, Fabianinkatu, Helsinki, Finland
| | - Young Jun Kim
- Environmental Safety Group, Korea Institute of Science and Technology Europe, Saarbrucken, Germany
| |
Collapse
|
23
|
Wang L, Qie Y, Yang Y, Zhao Q. Binding and Activation of Estrogen-Related Receptor γ: A Novel Molecular Mechanism for the Estrogenic Disruption Effects of DDT and Its Metabolites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12358-12367. [PMID: 35947429 DOI: 10.1021/acs.est.1c08624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
DDT and its metabolites (DDTs) can induce estrogenic effects. Previous mechanistic investigations mainly concentrated on activating the genomic transcription of estrogen receptor (ER) pathways. Here, we identified whether estrogen-related receptor γ (ERRγ), an orphan nuclear receptor, is a potential target of DDTs by receptor binding, transcriptional activity, and receptor-mediated pathway assays. Fluorescence polarization-based binding assays showed that all eight DDTs bound to ERRγ directly, with Kd values ranging from 0.73-168.82 μM. Among them, 2,2-bis(4-chlorophenyl)ethanol (4,4'-DDOH) exhibited the highest binding affinity, which was 2.5-fold stronger than GSK4716, a well-known ERRγ agonist. Eight DDTs exhibited agonistic activity toward the ERRγ pathway, with 4,4'-DDOH showing the strongest potency. In silico studies revealed that DDTs tended to bind with ERRγ in the agonistic conformation. Using a SKBR3 breast cancer cell model, we further found that nanomolar or micromolar levels of DDTs significantly activated the ERRγ pathway in cells and induced cell proliferation through the ERRγ-modulated cell cycle. These results indicated that the binding and activation of DDTs to ERRγ might serve as molecular initiating events for subsequent ERRγ-mediated signaling pathways and adverse outcomes. Overall, our results demonstrated that ERRγ might be a crucial pathway involved in the estrogenic disruption effects of DDTs.
Collapse
Affiliation(s)
- Li Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Qie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Yu Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| | - Qiang Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing100085, China
- University of Chinese Academy of Sciences, Beijing100049, China
| |
Collapse
|
24
|
Klančič V, Gobec M, Jakopin Ž. Halogenated ingredients of household and personal care products as emerging endocrine disruptors. CHEMOSPHERE 2022; 303:134824. [PMID: 35525453 DOI: 10.1016/j.chemosphere.2022.134824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
The everyday use of household and personal care products (HPCPs) generates an enormous amount of chemicals, of which several groups warrant additional attention, including: (i) parabens, which are widely used as preservatives; (ii) bisphenols, which are used in the manufacture of plastics; (iii) UV filters, which are essential components of many cosmetic products; and (iv) alkylphenol ethoxylates, which are used extensively as non-ionic surfactants. These chemicals are released continuously into the environment, thus contaminating soil, water, plants and animals. Wastewater treatment and water disinfection procedures can convert these chemicals into halogenated transformation products, which end up in the environment and pose a potential threat to humans and wildlife. Indeed, while certain parent HPCP ingredients have been confirmed as endocrine disruptors, less is known about the endocrine activities of their halogenated derivatives. The aim of this review is first to examine the sources and occurrence of halogenated transformation products in the environment, and second to compare their endocrine-disrupting properties to those of their parent compounds (i.e., parabens, bisphenols, UV filters, alkylphenol ethoxylates). Albeit previous reports have focused individually on selected classes of such substances, none have considered the problem of their halogenated transformation products. This review therefore summarizes the available research on these halogenated compounds, highlights the potential exposure pathways, and underlines the existing knowledge gaps within their toxicological profiles.
Collapse
Affiliation(s)
- Veronika Klančič
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Martina Gobec
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia
| | - Žiga Jakopin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, SI-1000, Ljubljana, Slovenia.
| |
Collapse
|
25
|
Xu H, Su J, Ku T, Liu QS, Liang J, Ren Z, Zhou Q, Jiang G. Constructing an MCF-7 breast cancer cell-based transient transfection assay for screening RARα (Ant)agonistic activities of emerging phenolic compounds. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129024. [PMID: 35523094 DOI: 10.1016/j.jhazmat.2022.129024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/23/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
The screening of compounds with endocrine disrupting effects has been attracting increasing attention due to the continuous release of emerging chemicals into the environment. Testing the (ant)agonistic activities of these chemicals on the retinoic acid receptor α (RARα), a vital nuclear receptor, is necessary to explain their perturbation in the endocrine system in vivo. In the present study, MCF-7 breast carcinoma cells were transiently transfected with a RARα expression vector (pEF1α-RARα-RFP) and a reporter vector containing a retinoic acid reaction element (pRARE-TA-Luc). Under optimized conditions, the performance of the newly constructed system was evaluated for its feasibility in screening the (ant)agonistic effects of emerging phenolic compounds on RARα. The results showed that this transient transfection cell model responded well to stimulation with (ant)agonists of RARα, and the EC50 and IC50 values were 0.87 nM and 2.67 μM for AM580 and Ro41-5253, respectively. Its application in testing several emerging phenolic compounds revealed that triclosan (TCS) and tetrabromobisphenol A (TBBPA) exerted notable RARα antagonistic activities. This newly developed bioassay based on MCF-7 is promising in identifying the agonistic or antagonistic activities of xenobiotics on RARα and has good potential for studying RARα signaling-involved toxicological effects of emerging chemicals of concern.
Collapse
Affiliation(s)
- Hanqing Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, Wenzhou University, Wenzhou 325035, China
| | - Jiahui Su
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
26
|
Ecotoxicological Estimation of 4-Cumylphenol, 4- t-Octylphenol, Nonylphenol, and Volatile Leachate Phenol Degradation by the Microscopic Fungus Umbelopsis isabellina Using a Battery of Biotests. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19074093. [PMID: 35409777 PMCID: PMC8998573 DOI: 10.3390/ijerph19074093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 03/28/2022] [Indexed: 02/04/2023]
Abstract
The phenolic xenobiotics nonylphenol (NP), 4-tert-octylphenol (4-t-OP), and 4-cumylphenol (4-CP) have the potential to seriously disrupt the endocrine system. Volatile phenols (VPs), especially those present in landfill leachate, also adversely affect the health of numerous organisms. Microbial degradation of xenobiotics can result in the formation of intermediates with higher toxicity than the precursor substrates. Therefore, the main aim of this study was to assess the changes in environmental ecotoxicity during the biotransformation of nonylphenol, 4-tert-octylphenol, 4-cumylphenol and volatile phenols by Umbelopsis isabellina using a battery of biotests. The application of bioindicators belonging to different taxonomic groups and diverse trophic levels (producers, consumers, and reducers) indicated a significant reduction in toxicity during the cultivation of fungus cultures both for nonylphenol, 4-tert-octylphenol, 4-cumylphenol and volatile phenols. The rate of toxicity decline was correlated with the degree of xenobiotic biotransformation. Removal of 4-cumylphenol and 4-tert-octylphenol also led to a decrease in the anti-androgenic potential. Moreover, this is the first report demonstrating the anti-androgenic properties of 4-cumylphenol. The results showed that U. isabellina is an attractive tool for the bioremediation and detoxification of contaminated environments.
Collapse
|
27
|
Liu J, Yu L, Castro L, Yan Y, Clayton NP, Bushel P, Flagler ND, Scappini E, Dixon D. Short-term tetrabromobisphenol A exposure promotes fibrosis of human uterine fibroid cells in a 3D culture system through TGF-beta signaling. FASEB J 2022; 36:e22101. [PMID: 35032343 PMCID: PMC8852695 DOI: 10.1096/fj.202101262r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/12/2021] [Accepted: 11/30/2021] [Indexed: 11/13/2022]
Abstract
Tetrabromobisphenol A (TBBPA), a derivative of BPA, is a ubiquitous environmental contaminant with weak estrogenic properties. In women, uterine fibroids are highly prevalent estrogen-responsive tumors often with excessive accumulation of extracellular matrix (ECM) and may be the target of environmental estrogens. We have found that BPA has profibrotic effects in vitro, in addition to previous reports of the in vivo fibrotic effects of BPA in mouse uterus. However, the role of TBBPA in fibrosis is unclear. To investigate the effects of TBBPA on uterine fibrosis, we developed a 3D human uterine leiomyoma (ht-UtLM) spheroid culture model. Cell proliferation was evaluated in 3D ht-UtLM spheroids following TBBPA (10-6 -200 µM) administration at 48 h. Fibrosis was assessed using a Masson's Trichrome stain and light microscopy at 7 days of TBBPA (10-3 µM) treatment. Differential expression of ECM and fibrosis genes were determined using RT² Profiler™ PCR arrays. Network and pathway analyses were conducted using Ingenuity Pathway Analysis. The activation of pathway proteins was analyzed by a transforming growth factor-beta (TGFB) protein array. We found that TBBPA increased cell proliferation and promoted fibrosis in 3D ht-UtLM spheroids with increased deposition of collagens. TBBPA upregulated the expression of profibrotic genes and corresponding proteins associated with the TGFB pathway. TBBPA activated TGFB signaling through phosphorylation of TGFBR1 and downstream effectors-small mothers against decapentaplegic -2 and -3 proteins (SMAD2 and SMAD3). The 3D ht-UtLM spheroid model is an effective system for studying environmental agents on human uterine fibrosis. TBBPA can promote fibrosis in uterine fibroid through TGFB/SMAD signaling.
Collapse
Affiliation(s)
- Jingli Liu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Linda Yu
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Lysandra Castro
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Yitang Yan
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| | - Natasha P. Clayton
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Pierre Bushel
- Biostatistics & Computational Biology Branch, Division of Intramural Research (DIR)NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Norris D. Flagler
- Cellular & Molecular Pathogenesis BranchDNTP NIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Erica Scappini
- Signal Transduction Laboratory, DIRNIEHS, NIHResearch Triangle ParkNorth CarolinaUSA
| | - Darlene Dixon
- Mechanistic Toxicology Branch (MTB)Division of the National Toxicology Program (DNTP)National Institute of Environmental Health Sciences (NIEHS), NIHResearch Triangle ParkNorth CarolinaUSA
| |
Collapse
|
28
|
Zhang J, Dang X, Dai J, Hu Y, Chen H. Simultaneous detection of eight phenols in food contact materials after electrochemical assistance solid-phase microextraction based on amino functionalized carbon nanotube/polypyrrole composite. Anal Chim Acta 2021; 1183:338981. [PMID: 34627510 DOI: 10.1016/j.aca.2021.338981] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
An electrochemical assistance solid-phase microextraction (EA-SPME) was developed based on amino functionalized multi-walled carbon nanotube/polypyrrole (MWCNTs-NH2/PPy) composite coating. It was applied for the extraction of eight phenols in food contact material, including 2-chlorophenol, o-cresol, m-cresol, 2,4-dichlorophenol, 4-tert-butylphenol, 4-chlorophenol, 4-tertoctylphenol and alpha-naphthol. MWCNTs-NH2/PPy coating was characterized by scanning electron microscopy, transmission electron microscope, X-ray energy spectrometer, X-ray diffraction, Fourier transform infrared and thermogravimetric analysis. The adsorption mechanism of phenols on the composite coatings was investigated. The coating modified steel-wire as an extraction fiber has good electroconductibility, reproducibility and long service life. A determination method for the eight phenols was established by EA-SPME coupled with gas chromatography-flame ionization detection. Under the optimal experimental conditions (extraction temperature: 40 °C; extraction time: 30 min; stirring rate: 600 rpm; NaCl concentration: 0.15 g mL-1; desorption temperature: 250 °C and desorption time: 4 min), the detection linear range was 0.005-50 μg L-1 (R2>0.99), and the detection limit was 0.001-0.1 μg L-1 (S/N = 3). For the quintuple analysis of 50 μg L-1 phenols, the single fiber RSDs were 2.2-12.4%, and the fiber-to-fiber RSDs were 1.9-10.5%. The method was used to detect the migration quantity of the eight phenols from five canned packaging materials, which showed satisfactory recovery 87.3-118.9%.
Collapse
Affiliation(s)
- Jiayang Zhang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Xueping Dang
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China.
| | - Jiahuan Dai
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| | - Yuling Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, PR China.
| | - Huaixia Chen
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, PR China
| |
Collapse
|
29
|
Yang X, Ou W, Zhao S, Wang L, Chen J, Kusko R, Hong H, Liu H. Human transthyretin binding affinity of halogenated thiophenols and halogenated phenols: An in vitro and in silico study. CHEMOSPHERE 2021; 280:130627. [PMID: 33964751 DOI: 10.1016/j.chemosphere.2021.130627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Serious harmful effects have been reported for thiophenols, which are widely used industrial materials. To date, little information is available on whether such chemicals can elicit endocrine-related detrimental effects. Herein the potential binding affinity and underlying mechanism of action between human transthyretin (hTTR) and seven halogenated-thiophenols were examined experimentally and computationally. Experimental results indicated that the halogenated-thiophenols, except for pentafluorothiophenol, were powerful hTTR binders. The differentiated hTTR binding affinity of halogenated-thiophenols and halogenated-phenols were observed. The hTTR binding affinity of mono- and di-halo-thiophenols was higher than that of corresponding phenols; while the opposite relationship was observed for tri- and penta-halo-thiophenols and phenols. Our results also confirmed that the binding interactions were influenced by the degree of ligand dissociation. Molecular modeling results implied that the dominant noncovalent interactions in the molecular recognition processes between hTTR and halogenated-thiophenols were ionic pair, hydrogen bonds and hydrophobic interactions. Finally, a model with acceptable predictive ability was developed, which can be used to computationally predict the potential hTTR binding affinity of other halogenated-thiophenols and phenols. Taken together, our results highlighted that more research is needed to determine their potential endocrine-related harmful effects and appropriate management actions should be taken to promote their sustainable use.
Collapse
Affiliation(s)
- Xianhai Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Wang Ou
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Songshan Zhao
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Rebeca Kusko
- Immuneering Corporation, Cambridge, MA, 02142, USA
| | - Huixiao Hong
- National Center for Toxicological Research US Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huihui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
30
|
Park Y, Park J, Lee HS. Endocrine disrupting potential of veterinary drugs by in vitro stably transfected human androgen receptor transcriptional activation assays. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117201. [PMID: 33965802 DOI: 10.1016/j.envpol.2021.117201] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/31/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
We describe the androgen receptor (AR) agonistic/antagonistic effects of 140 veterinary drugs regulated in Republic of Korea, by setting maximum residue limits. It was conducted using two in vitro test guidelines of the Organization for Economic Cooperation and Development (OECD)-the AR-EcoScreen AR transactivation (TA) assay and the 22Rv1/MMTV_GR-KO AR TA assay. These were performed alongside the AR binding affinity assay to confirm whether their AR agonistic/antagonistic effects are based on the binding affinity to AR. Prior to conducting the AR TA assay, the proficiency test was passed the proficiency performance criterion for the AR agonist and AR antagonist assays. Among the veterinary drugs tested, four veterinary drugs (dexamethasone, trenbolone, altrenogest, and nandrolone) and six veterinary drugs (cymiazole, dexamethasone, zeranol, phenothiazine, bromopropylate, and isoeugenol) were determined as AR agonist and AR antagonist, respectively in both in vitro AR TA assays. Zeranol exhibited weak AR agonistic effects with a PC10 value only in the 22Rv1/MMTV_GR-KO AR TA assay. Regarding changing the AR agonistic/antagonistic effects through metabolism, the AR antagonistic activities of zeranol, phenothiazine, and isoeugenol decreased significantly in the presence of phase I + II enzymes. These data indicate that various veterinary drugs could have the potential to disrupt AR-mediated human endocrine system. Furthermore, this is the first report providing information on AR agonistic/antagonistic effects of veterinary drugs using in vitro OECD AR TA assays.
Collapse
Affiliation(s)
- Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University, Goyang, 10326, Republic of Korea
| | - Juhee Park
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
31
|
Kim JT, Lee HJ, Lee HS. Organophosphorus pesticides exert estrogen receptor agonistic effect determined using Organization for Economic Cooperation and Development PBTG455, and induce estrogen receptor-dependent adipogenesis of 3T3-L1 adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117090. [PMID: 33872936 DOI: 10.1016/j.envpol.2021.117090] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Various chemicals containing pesticides can induce adipogenesis and cause obesity. Organophosphorus pesticides have been used for pest control. Here, we investigated the estrogen receptor (ER)-dependent adipogenesis-inducing effect of representative organophosphorus pesticides (OPs), diazinon, phoxim, terbufos and tolclofos-methyl in 3T3-L1 adipocytes. Four OPs exhibited ER agonistic effect, determined using the OECD Performance Based Test Guideline No. 455; in vitro ER stably transfected transactivation assay using ERα-HeLa-9903 cell line, through binding affinity to ERα. Additionally, they increased lipid droplet accumulation in a dose-dependent manner, which was suppressed by ICI182,780, a well-known ER antagonist. Four OPs treatment induced peroxisome proliferator-activated receptor gamma (PPARγ), CCAAT/enhancer-binding protein alpha (C/EBPα), and perilipin expression. Furthermore, PPARγ, C/EBPα and perilipin expression was inhibited by co-treatment with ICI182,780. The increased mRNA expression of lipoprotein lipase and fatty acid synthase by four OPs was suppressed by co-treatment with ICI182,780. These results indicated that diazinon, phoxim, terbufos, and tolclofos-methyl might have adipogenesis-inducing effect mediated by interacting with ER.
Collapse
Affiliation(s)
- Jin Tae Kim
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hong Jin Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Hee-Seok Lee
- Department of Food Science and Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
32
|
Bell AM, Keltsch N, Schweyen P, Reifferscheid G, Ternes T, Buchinger S. UV aged epoxy coatings - Ecotoxicological effects and released compounds. WATER RESEARCH X 2021; 12:100105. [PMID: 34189451 PMCID: PMC8219897 DOI: 10.1016/j.wroa.2021.100105] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Organic coatings can guarantee long-term protection of steel structures due to causing a physical barrier against water and oxygen. Because of their mechanical properties and resistances to heat and chemicals, epoxy resin-based coatings are widely used for corrosion protection. Despite of the aromatic backbone and the resulting susceptibility to UV degradation, epoxy resins are frequently used as binding agent in top layers of anti-corrosion coating systems. Consequently, these organic polymers are directly exposed to sunlight and thus UV radiation. The present study was designed to investigate if toxic effects of epoxy resin-based-coatings are changed by UV-A irradiation. For this purpose, two epoxide-based top coatings were examined with and without UV aging for their bacterial toxicity and estrogenicity. In addition, chemical analyses were performed to identify released compounds as well as photolytic degradation products and to assign toxic effects to individual substances. UV-A irradiation of epoxy resin based top coatings resulted in an overall decrease of acute and specific ecotoxicological effects but as well to the formation of toxic transformation products. Both, in leachates of untreated and UV-A irradiated coatings, 4tBP was identified as the main driver of estrogenicity and toxicity to luminescent bacteria. BPA and structural analogs contributing to estrogenic effects in leachates were formed by UV-A irradiation. The combination of HPTLC coupled bioassays and LC-MS analyses supported the identification of bioactive compounds in terms of an effect-directed analysis. The present findings indicate that epoxide-based coatings are less suitable for the application as top coatings and more UV stable coatings like aliphatic polyurethanes should be preferred.
Collapse
Affiliation(s)
| | | | | | | | | | - Sebastian Buchinger
- Corresponding author at: Federal Institute of Hydrology, Department G3 - Biochemistry, Ecotoxicology, Am Mainzer Tor 1, 56068 Koblenz, Germany.
| |
Collapse
|
33
|
Pollock T, Arbuckle TE, Guth M, Bouchard MF, St-Amand A. Associations among urinary triclosan and bisphenol A concentrations and serum sex steroid hormone measures in the Canadian and U.S. Populations. ENVIRONMENT INTERNATIONAL 2021; 146:106229. [PMID: 33161203 DOI: 10.1016/j.envint.2020.106229] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 10/18/2020] [Accepted: 10/19/2020] [Indexed: 06/11/2023]
Abstract
Exposure to triclosan, an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics, is widespread. Endocrine-disrupting impacts of these chemicals have been demonstrated in in vitro studies, rodent toxicology studies, and some human observational studies. Here we compared urinary concentrations of triclosan and BPA in the Canadian and U.S. populations using nationally-representative data from the 2012-2015 Canadian Health Measures Survey (CHMS) and the 2013-2016 National Health and Nutrition Examination Survey (NHANES). We then examined the cross-sectional associations of urinary triclosan or BPA with serum sex steroid hormones, including estradiol (E2), progesterone (P4), and testosterone (T), using multivariable regression. We observed differences in creatinine-standardized chemical concentrations between countries; urinary triclosan was higher in Canadian females aged 12-19 years, while BPA was higher in U.S. females aged 20-49 years. We also found significant associations among urinary chemicals and serum E2 and T, but not P4. Increasing triclosan was associated with higher levels of E2 in 6-11-year-old girls, but with lower levels of E2 and T in adolescent boys aged 12-19 years. Increasing BPA was associated with lower levels of E2 in 6-11-year-old boys and in adolescents aged 12-19 years of either sex. We observed a U-shaped association between urinary triclosan and E2 in male adults aged 50-79 years; no associations between BPA and hormones were detected in adults. These results, in accordance with the in vitro and animal literature, suggest that triclosan and BPA exposures may be cross-sectionally associated with altered reproductive hormone levels, especially in children and adolescents. Further research and prospective studies are necessary to elucidate country-specific differences in chemical exposures and the potential public health significance of these findings.
Collapse
Affiliation(s)
- Tyler Pollock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| | - Tye E Arbuckle
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Margot Guth
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal & Research Centre of the Sainte-Justine University Hospital, Montréal, Québec, Canada
| | - Maryse F Bouchard
- Department of Environmental and Occupational Health, School of Public Health, Université de Montréal & Research Centre of the Sainte-Justine University Hospital, Montréal, Québec, Canada
| | - Annie St-Amand
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
34
|
Zhang X, Kang H, Peng L, Song D, Jiang X, Li Y, Chen H, Zeng X. Pentachlorophenol inhibits CatSper function to compromise progesterone's action on human sperm. CHEMOSPHERE 2020; 259:127493. [PMID: 32622245 DOI: 10.1016/j.chemosphere.2020.127493] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/29/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Pentachlorophenol (PCP), a highly toxic contaminant of chlorophenols, is common in a variety of environments and presents serious risks to animal and human health. However, the reproductive toxicity and potential actions of PCP have not been investigated thoroughly, especially in humans. Here, human spermatozoa were used to evaluate the effect of PCP on cell function and to explore the underlying mechanisms. PCP had no substantive effects on sperm viability or motility, nor on the ability to penetrate viscous medium, sperm hyperactivation or spontaneous acrosome reactions. However, PCP significantly inhibited these properties induced by progesterone (P4). Consistent with the functional observations, although PCP itself did not affect the basal intracellular Ca2+ concentrations and CatSper current, PCP dose-dependently inhibited increases of intracellular Ca2+ concentrations caused by P4. In addition, the activation of CatSper induced by P4 was largely suppressed by PCP. This is the first report showing that PCP may serves as an antagonist of the P4 membrane receptor to interfere with Ca2+ signaling by compromising the action of P4 on regulating sperm function. These findings suggest that the reproductive toxicity of PCP should also be a matter of concern as a mammalian health risk.
Collapse
Affiliation(s)
- Xiaoning Zhang
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Hang Kang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Lizhong Peng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China
| | - Dandan Song
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Xin Jiang
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Yanting Li
- Institute of Life Science, Nanchang University, Nanchang, 330031, PR China
| | - Houyang Chen
- Reproductive Medical Center, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, PR China
| | - Xuhui Zeng
- Medical School, Institute of Reproductive Medicine, Nantong University, Nantong, 226019, PR China; Institute of Life Science, Nanchang University, Nanchang, 330031, PR China.
| |
Collapse
|
35
|
Wang H, Li S, Li J, Zhong L, Cheng H, Ma Q. Immobilized polyphenol oxidase: Preparation, optimization and oxidation of phenolic compounds. Int J Biol Macromol 2020; 160:233-244. [DOI: 10.1016/j.ijbiomac.2020.05.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/12/2020] [Accepted: 05/12/2020] [Indexed: 02/08/2023]
|
36
|
Ji X, Li N, Ma M, Rao K, Wang Z. In vitro estrogen-disrupting effects of organophosphate flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138484. [PMID: 32330712 DOI: 10.1016/j.scitotenv.2020.138484] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Organophosphate flame retardants (OPFRs), as substitutes for polybrominated diphenyl ethers (PBDEs), are frequently detected in the environment and biota due to their widespread use. Thus, there is a need to investigate their potential estrogen-disrupting effects and possible mechanisms of action in an effort to obtain a better risk assessment. In this study, we characterized the activities on estrogen receptor α (ERα) and the estrogen-disrupting potential of fourteen OPFRs, TMP, TEP, TPP, TnBP, TiBP, THP, TPhP, TCP, DPK, MDPP, IDPP, CDP, IPPDP and MPhP, using three in vitro assays representing different specific modes of action (MoAs). In the yeast two-hybrid assay, no OPFRs induced agonistic activity, but TiBP, DPK, TPhP, MDPP, CDP and IPPDP were shown to be hydrophobicity-dependent antagonists and to compete with E2 for binding to ERα. In the MVLN cell assay, TPhP was the only OPFR among the 14 tested that was able to activate ERα-estrogen responsive element (ERE) pathways. The results from the E-SCREEN assay showed that all tested OPFRs except TMP had estrogenic properties, and G protein-coupled receptor 30 (GPR30) was involved in the estrogenicity of eight OPFRs, TiBP, THP, TPhP, TCP, MDPP, IPPDP, CDP and MPhP. It was also found that in the E-SCREEN assay, the estrogenicity of alkyl-OPFRs but not aryl-OPFRs was closely correlated to hydrophobicity. Our research suggested that most OPFRs were estrogen disruptors, but their related mechanisms were complex and might involve ERα-mediated and/or ERα-independent pathways. Further in vitro studies concerning the estrogenic effects and involved mechanisms of OPFRs, as well as comprehensive evaluations of OPFRs including health and ecological assessments are needed to determine whether they are safe substitutes for PBDEs.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
37
|
Wang X, Luo N, Xu Z, Zheng X, Huang B, Pan X. The estrogenic proliferative effects of two alkylphenols and a preliminary mechanism exploration in MCF-7 breast cancer cells. ENVIRONMENTAL TOXICOLOGY 2020; 35:628-638. [PMID: 31916403 DOI: 10.1002/tox.22898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 05/23/2023]
Abstract
Bisphenol A (BPA) and 4-cumylphenol (4-CP), as estrogen-like chemicals, are ubiquitous in the environment media and associated with the occurrence and development of hormone-dependent tumors. However, the combinatorial effects of these two structurally similar alkylphenols are not well informed. In the present study, the classic breast cancer cell line MCF-7 was used as in vitro model to estimate the estrogenic proliferative effects of BPA and 4-CP. MTT assay, reactive oxygen species, cell apoptosis, cell cycle, and real-time fluorescent quantitative Step One Plus Real-time PCR System (Applied Biosystems, CA, USA) were applied to explore their proliferative mechanisms. MTT results showed that both BPA and 4-CP ranging from 10-9 to 10-5 M stimulated cell proliferation in a nonmonotonic dose-response manner. Along with the proliferative effects, cell cycle was progressed from G0/G1 to S and G2/M phase. Meanwhile, the expression levels of ERα, pS2, and Bcl-2 mRNA were also upregulated. In contrast, 4-CP and BPA at high dose (10-4 M) obviously displayed antiproliferative effects in MCF-7 cells via inducing cell apoptosis and blocking cell cycle in G0/G1 phase. As expected, the relative expression levels of ERα, pS2, and Bcl-2 mRNA were decreased, whereas Bax mRNA was increased. Interestingly, the proliferative or antiproliferative effects of 4-CP were higher than that of BPA. Moreover, coexposure of lower concentrations BPA and 4-CP significantly induced cell proliferation in a synergistic manner. These findings indicated that the potential environmental risks of coexposure of BPA and 4-CP were greater than either of them.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Nao Luo
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Zhixiang Xu
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xianyao Zheng
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
38
|
Li A, Zhuang T, Shi W, Liang Y, Liao C, Song M, Jiang G. Serum concentration of bisphenol analogues in pregnant women in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:136100. [PMID: 31863985 DOI: 10.1016/j.scitotenv.2019.136100] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/09/2019] [Accepted: 12/11/2019] [Indexed: 06/10/2023]
Abstract
There is increasing concern regarding human exposure to bisphenol analogues (BPs) due to their widespread use and potentially adverse effects. Nevertheless, information on the occurrence of BPs in pregnant women is limited. In this study, BPs were detected in 181 serum samples from pregnant Chinese women. Ten BPs, including bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), bisphenol B (BPB), bisphenol P (BPP), bisphenol Z (BPZ), bisphenol AP (BPAP), tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), and tetrachlorobisphenol A (TCBPA), were positively identified and quantified in serum samples with total BP concentrations (sum of bisphenols: ∑BPs) of 0-144 ng/mL. Concentrations of the two frequently detected compounds, TBBPS and BPS, were 0.593 and 0.113 ng/mL, respectively. The results were also compared with the geographic distributions of the BPs. To our knowledge, this is the first time that TBBPS and TCBPA have been detected in serum samples of pregnant women. These findings suggest that additional studies are urgently needed to identify the risk of maternal and fetal exposure to these compounds.
Collapse
Affiliation(s)
- Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Taifeng Zhuang
- Department of Pediatrics, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100026, PR China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, PR China
| | - Yong Liang
- Institute of Environment and Health, Jianghan University, Wuhan 430056, PR China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, PR China
| |
Collapse
|
39
|
Toporova L, Balaguer P. Nuclear receptors are the major targets of endocrine disrupting chemicals. Mol Cell Endocrinol 2020; 502:110665. [PMID: 31760044 DOI: 10.1016/j.mce.2019.110665] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Endocrine disrupting chemicals (EDCs) are exogenous substances that are suspected to cause adverse effects in the endocrine system mainly by acting through their interaction with nuclear receptors such as the estrogen receptors α and β (ERα and ERβ), the androgen receptor (AR), the pregnan X receptor (PXR), the peroxisome proliferator activated receptors α and γ (PPARα, PPARγ) and the thyroid receptors α and β (TRα and TRβ). More recently, the retinoid X receptors (RXRα, RXRβ and RXRγ), the constitutive androstane receptor (CAR) and the estrogen related receptor γ (ERRγ) have also been identified as targets of EDCs. Finally, nuclear receptors still poorly studied for their interaction with environmental ligands such as the progesterone receptor (PR), the mineralocorticoid receptor (MR), the glucocorticoid receptor (GR), the retinoic acid receptors (RAR α, RARβ and RARγ), the farnesoid X receptor (FXR) and the liver X receptors α and β (LXRα and LXβ) as well are suspected targets of EDCs. Humans are generally exposed to low doses of pollutants, therefore the aim of current research is to identify the targets of EDCs at environmental concentrations. In this review, we analyze recent works referring that nuclear receptors are targets of EDCs and we highlight which EDCs are able to act at low concentrations.
Collapse
Affiliation(s)
- Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ Montpellier, 34090, Montpellier, France.
| |
Collapse
|
40
|
Thyroid-Disrupting Activities of Groundwater from a Riverbank Filtration System in Wuchang City, China: Seasonal Distribution and Human Health Risk Assessment. J CHEM-NY 2020. [DOI: 10.1155/2020/2437082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The recombinant thyroid hormone receptor (TR) gene yeast assay was used to evaluate thyroid disruption caused by groundwater from the riverbank filtration (RBF) system in Wuchang City, China. To investigate seasonal fluctuations, groundwater was collected during three seasons. Although no TR agonistic activity was found, many water samples exhibited TR antagonistic activity. The bioassay-derived amiodarone hydrochloride (AH) equivalents ranged from 2.99 to 274.40 μg/L. Water samples collected from the riverbank filtration system during the dry season had higher TR antagonistic activity. All samples presented adverse 3,3′,5-triiodo-L-thyronine (T3) equivalent levels, ranging from −2.00 to −2.12 μg/kg. Following exposure to water samples with substantial TR antagonist activity, predicted hormonal changes in humans of different gender and age ranged from 0.65 to 1.48 μg/kg of T3, being 47% to 231% of normal. No obvious difference was found between genders or among age groups. Overall, the results revealed that the RBF system could remove the thyroid-disrupting chemicals in the river water to some extent. Considering the varying degrees of risk to human health, further treatment is needed to remove the potential thyroid-disrupting chemicals in pumping water after riverbank filtration to ensure drinking water safety.
Collapse
|
41
|
Rasdi FLM, Rahim NY, Hasim FW, Prabu S, Jumbri K, Manan NSA, Mohamad S. Influence of degree of substitution on the host-guest inclusion complex between ionic liquid substituted β-cyclodextrins with 2,4-dichlorophenol: An electrochemical, NMR and molecular docking studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111334] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Cui S, Zhang X, Liu J, Zhou L, Shang Y, Zhang C, Liu W, Zhuang S. Natural sunlight-driven aquatic toxicity enhancement of 2,6-di-tert-butylphenol toward Photobacterium phosphoreum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:66-71. [PMID: 31071634 DOI: 10.1016/j.envpol.2019.04.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/03/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The tert-butylphenols (TBPs) are one group of alkylated phenolic compounds with wide applications in UV absorbers and antioxidants. They are becoming contaminants of emerging concern with residues frequently detected in natural surface water or drinking water. The direct sunlight may photolyze TBPs in waters and affect their aquatic toxicities; however, such data are very limited. In the present study, we investigate the photodegradation of 2,6-DTBP by direct sunlight in water and compare the aquatic toxicities of 2,6-DTBP with that of its product toward Photobacterium phosphoreum. 2,6-DTBP is photodegraded by 71.31 ± 2.64% under simulated sunlight following a pseudo-first-order kinetics with rate constant (k) of 0.061 h-1. Density functional theory simulations at M06-2X/def2-SVP level reveal that the photodegradation occurred sequentially through oxidation, photo-isomerization and hydrogenation. The degradation product 2,5-DTBP is toxic to P. phosphoreum (EC50 3.389 × 10-5 mol/L) whereas 2,6-DTBP is not harmful (EC50 3.917 × 10-3 mol/L) as designated by the European Union Standard, indicating the enhanced toxicities driven by the direct sunlight photodegradation. We demonstrate the enhanced toxicities of 2,6-DTBP by natural sunlight, suggesting that negligence of photodegradation of TBPs-related contaminants will underestimate the comprehensive risk of these emerging contaminant in natural waters.
Collapse
Affiliation(s)
- Shixuan Cui
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofang Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou, 310005, China
| | - Lihong Zhou
- Institute of Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Yukun Shang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, TX, 77058, USA
| | - Weiping Liu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Ji X, Li N, Yuan S, Zhou X, Ding F, Rao K, Ma M, Wang Z. A comparison of endocrine disruption potential of nonylphenol ethoxylate, vanillin ethoxylate, 4-n-nonylphenol and vanillin in vitro. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 175:208-214. [PMID: 30901638 DOI: 10.1016/j.ecoenv.2019.03.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 05/24/2023]
Abstract
The widely used surfactant nonylphenol ethoxylate (NPEO) and its raw material 4-n-nonylphenol (4-n-NP), as well as its degradation products, are recognized as endocrine disrupting chemicals. The USA Environmental Protection Agency (EPA) released an assessment that looked for safe alternatives to NPEO. Vanillin ethoxylate (VAEO) is a novel substitute for NPEO and is quite similar to NPEO in structure; there is a risk that it has similar endocrine disrupting effects to NPEO. However, their effects on various nuclear hormone receptors have not been thoroughly examined. In this study, the effects of NPEO, VAEO, 4-n-NP and Vanillin on the estrogen receptor α (ERα), androgen receptor (AR), thyroid hormone receptor (TR), retinoic X receptor β (RXRβ) and estrogen-related receptor γ (ERRγ) were determined and compared using a battery of recombined yeast strains expressing β-galactosidase. The results showed that NPEO and 4-n-NP acted as significant antagonists of ER, AR, TR and ERRγ. In addition, 4-n-NP also had antagonistic activity toward RXRβ. Moreover, VAEO was shown to be a very weak antagonist of TR and ERRγ, and Vanillin had no interaction with any nuclear receptors. For the first time, it was found that NPEO had AR, TR and ERRγ antagonistic effects and that 4-n-NP was an antagonist of RXRβ. The in vitro data indicated that NPEO, 4-n-NP and VAEO have the potential to act as endocrine disruptors involving more than one nuclear hormone receptor, but VAEO has much lower endocrine disrupting potential than NPEO. Thus, it is critical to find safe substitutes for NPEO and a substitute of NPEO with structural analogues should be carried out with caution. Furthermore, to look for preferable alternatives for NPEO, more in vivo and in vitro studies of the alternatives concerning endocrine disruption are needed, especially in vitro studies need to involve various target points, not only focus on their effects on ER but also take other nuclear hormone receptor pathways into consideration.
Collapse
Affiliation(s)
- Xiaoya Ji
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shengwu Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiaohong Zhou
- Center for Sensor Technology of Environment and Health, State Key Joint Laboratory of ESPC, School of Environment, Tsinghua University, 100084, Beijing, China
| | - Fengmei Ding
- Institute of Chemical and Biological Engineering, Donghua University, 201620, Shanghai, China
| | - Kaifeng Rao
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Mei Ma
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Zijian Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| |
Collapse
|
44
|
Grimaldi M, Boulahtouf A, Toporova L, Balaguer P. Functional profiling of bisphenols for nuclear receptors. Toxicology 2019; 420:39-45. [PMID: 30951782 DOI: 10.1016/j.tox.2019.04.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022]
Abstract
Bisphenol-A (BPA) is one of the most abundant chemicals produced worldwide. Exposure to BPA has been associated with various physiological dysregulations, involving reproduction, development, metabolism, as well as genesis and progression of hormone-dependent cancers. It has been well published that BPA along with its analogs bind and activate estrogen receptors (ER) α and β, estrogen related receptor (ERR) γ and pregnan X receptor (PXR). BPA has been also characterized as an inhibitor of the androgen (AR) and progesterone (PR) receptor. Thus, the need for safer alternatives to BPA among bisphenols is rising. In this regard, we used reporter cell lines to analyze the effects of 24 bisphenols on the selected nuclear receptors (NRs), known and potential targets of BPA. We showed that bisphenols differently modulated the activities of NRs. ERs, ERRγ and PXR were generally activated by bisphenols, whereas many compounds of this family acted as AR, PR, GR and MR antagonists. On the other hand, some bisphenols such as BPA, BPC and BPE modulated the activity of several NRs, but others lacked the activity of other NRs. Altogether, these data provide the guidelines for development of safer BPA substitutes with reduced hormonal activity.
Collapse
Affiliation(s)
- Marina Grimaldi
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Abdelhay Boulahtouf
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Lucia Toporova
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France
| | - Patrick Balaguer
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, ICM, Univ. Montpellier, 34090, Montpellier, France.
| |
Collapse
|
45
|
Yu C, Wang C, Lu Z, Zhang C, Dai W, Yu S, Lin S, Zhang Q. The endocrine-disrupting potential of four chlorophenols by in vitro and in silico assay. CHEMOSPHERE 2019; 218:941-947. [PMID: 30609499 DOI: 10.1016/j.chemosphere.2018.11.199] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 06/09/2023]
Abstract
Chlorophenols (CPs) have mainly been used as a biocide, wood treatment agent and a byproduct of bleaching in paper mills. They have been a topic of concern due to their wide spread and potential effects on human and wildlife. However, data on the thresholds and effects of the number of chlorine atoms on the endocrine-disrupting potential of CPs remain scarce. In this study, we adopted two in vitro models (reporter gene assays and H295R cell line) to investigate the endocrine-disrupting effects of four CPs (pentachlorophenol (PCP), 2,4,6-trichlorophenol (2,4,6-TCP), 2,4-dichlorophenol (2,4-DCP) and 2-chlorophenol (2-CP)). The molecular docking platform was adopted to further confirm the results of the in vitro assessment. Our results revealed that PCP exhibited oestrogen receptor alpha (ERα) agonistic activity at the concentration of 10-5 M and the value of REC20 was 1.9 × 10-6 M. PCP and 2, 4, 6-TCP showed anti-oestrogenic activities with a RIC20 value of 2.8 × 10-7and 2.9 × 10-6 M, respectively. Notably, only PCP exhibited thyroid hormone receptor beta (TRβ) antagonistic activity occurred at the concentration of 10-5 M, with a RIC20 value of 1.3 × 10-6 M. The oestrogenic and thyroid hormone effects of CPs may be dependent on the number of chlorine atoms. A higher number of chlorine atoms indicated the higher effect of four CPs. The results of molecular docking were consistent with the reporter gene assay. For H295R cell line assay, PCP induced the StAR upregulation, while CYP17 was downregulated in a concentration-dependent manner by PCP and 2, 4, 6-TCP.
Collapse
Affiliation(s)
- Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chi Wang
- Longyou Huashui Drinking Water Industry Company, Quzhou, Zhejiang, 324400, China
| | - Zhengbiao Lu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Chen Zhang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, China
| | - Wei Dai
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shuqing Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Shu Lin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| |
Collapse
|
46
|
Pouzaud F, Thierry-Mieg M, Burga K, Vérines-Jouin L, Fiore K, Beausoleil C, Michel C, Rousselle C, Pasquier E. Concerns related to ED-mediated effects of Bisphenol A and their regulatory consideration. Mol Cell Endocrinol 2018; 475:92-106. [PMID: 29428396 DOI: 10.1016/j.mce.2018.02.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
The extensive database on BPA provides strong evidence of its adverse effects on reproductive, neurobehavioural, metabolic functions and mammary gland. Disruption of estrogenic pathway is central in the mediation of these effects although other modes of action may be involved. BPA has a weak affinity for ERα/β but interaction with extranuclearly located pathways activated by estrogens such as ERRγ and GPER reveals how BPA can act at low doses. The effects are observed later in life after developmental exposure and are associated with pathologies of major societal concern in terms of severity, incidence, impact on quality of life, burden on public health system. The complexity of the dose response raise uncertainties on the possibility to establish safe levels and the scope of ED-mediated effects of BPA may be wider. These concerns fulfill the requirements for ED identification under REACH regulation.
Collapse
Affiliation(s)
| | | | - Karen Burga
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Karine Fiore
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | - Cécile Michel
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | | | | |
Collapse
|
47
|
Pahigian JM, Zuo Y. Occurrence, endocrine-related bioeffects and fate of bisphenol A chemical degradation intermediates and impurities: A review. CHEMOSPHERE 2018; 207:469-480. [PMID: 29807346 DOI: 10.1016/j.chemosphere.2018.05.117] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
In recent decades, increasing attention has been directed toward the effects of bisphenol A (BPA) as an environmental pollutant, primarily due to its demonstrated endocrine-disruptive effects. A growing body of evidence indicates that many BPA derivatives also exhibit endocrine activity and other adverse biological properties. A review of the published literature was performed to identify BPA degradation intermediates resulting from chemical degradation processes of BPA, as well as BPA's associated co-pollutants. Products of biological metabolism were not included in this study. Seventy-nine chemicals were identified. Of these chemicals, a subset - those containing two 6-membered aromatic rings connected by a central ring-linking carbon - was identified, and a further literature review was conducted to identify demonstrated biological effects associated with the chemicals in this subset. The objectives of this review were to assess the potential risks to human and environmental health associated with BPA derivatives, characterize our current understanding of BPA's degradation intermediates and co-pollutants, and aid in the identification of compounds of interest that have received insufficient scrutiny.
Collapse
Affiliation(s)
- Jamie M Pahigian
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth and University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA
| | - Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth and University of Massachusetts Graduate School of Marine Sciences and Technology, 285 Old Westport Road, North Dartmouth, MA 02747, USA.
| |
Collapse
|
48
|
Huang S, Cao S, Zhou T, Kong L, Liang G. 4-tert-octylphenol injures motility and viability of human sperm by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 62:234-243. [PMID: 30098580 DOI: 10.1016/j.etap.2018.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 07/14/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
4-tert-octylphenol (4t-OP) is a well-known xenoestrogen. Our objective was to explore the effects and molecular mechanisms of 4t-OP on human sperm. Sperm samples were exposed to 0, 0.1, or 0.3 mM 4t-OP for two hours. Results showed that both sperm viability and motility were significantly injured by 0.3 mM 4t-OP. We applied comparative proteomics to explore the molecular targets affected by 4t-OP. 81 differentially expressed (DE) proteins were identified. Bioinformatic analysis showed that these proteins were highly associated with motility and apoptosis, and were mostly enriched in cAMP-PKA/PKC-phosphorylation-associated pathway. We further verified that 0.1 mM and 0.3 mM 4t-OP significantly decreased cAMP activity of sperm. Expression of RACK1 and PRDX6 were detected by western blot (WB) to verify their tendencies in gels; antiapoptotic factor BCL2 was also detected by WB. The data indicated that 4-tert-octylphenol injures the motility and viability of human sperm probably by affecting cAMP-PKA/PKC-tyrosine phosphorylation signals.
Collapse
Affiliation(s)
- Shaoping Huang
- Department of Histology and Embryology, Medical School, Southeast University, Nanjing 210009, Jiangsu, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Senyang Cao
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Center of Reproductive Medicine, Yancheng Maternity and Child Health Care Hospital, Yancheng 224002, Jiangsu, China
| | - Tao Zhou
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China; Central Laboratory, Wuxi Maternity and Child Health Care Hospital affiliated to Nanjing Medical University 214002, Jiangsu, China
| | - Lu Kong
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| | - Geyu Liang
- School of Public Health, Southeast University, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
49
|
Wang J, Wang J, Liu J, Li J, Zhou L, Zhang H, Sun J, Zhuang S. The evaluation of endocrine disrupting effects of tert-butylphenols towards estrogenic receptor α, androgen receptor and thyroid hormone receptor β and aquatic toxicities towards freshwater organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:396-402. [PMID: 29753247 DOI: 10.1016/j.envpol.2018.04.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 05/24/2023]
Abstract
The phenolic compounds have posed public concern for potential threats to human health and ecosystem. Tert-butylphenols (TBPs), as one group of emerging contaminants, showed potential endocrine disrupting effects and aquatic toxicities. In the present study, we detected concentrations of 2,4-DTBP ranging from <0.001 to 0.057 μg/L (detection limit: 0.001 μg/L) in drinking water source from the Qiantang River in East China in April 2016. The endocrine disrupting effects of 2-TBP, 2,4-DTBP and 2,6-DTBP toward human estrogen receptor α (ERα), androgen receptor (AR) and thyroid hormone receptor β (TRβ) were evaluated using human recombinant two-hybrid yeast bioassay. Their aquatic toxicities were investigated with indicator organisms including Photobacterium phosphoreum, Vibrio fischeri and freshwater green alga Chlamydomonas reinhardtii. 2-TBP and 2,4-DTBP exhibited moderate antagonistic effects toward human ERα and AR in a concentration-dependent manner. 2-TBP significantly inhibited the light emission of P. phosphoreum. 2-TBP, 2,4-DTBP and 2,6-DTBP significantly inhibited the growth of C. reinhardtii and reduced the chlorophyll content. Our results suggest the potential adverse effects of TBPs on human health and aquatic organisms. The data will facilitate further risk assessment of TBPs and related contaminants.
Collapse
Affiliation(s)
- Jiaying Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jingpeng Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China
| | - Jinsong Liu
- Zhejiang Province Environmental Monitoring Center, Hangzhou, 310005, China
| | - Jianzhi Li
- Shandong Solid Waste and Hazardous Chemicals Pollution Control Center, Ji'nan, 250117, China
| | - Lihong Zhou
- College of Environment, Chengdu University of Technology, Chengdu, 610059, China
| | - Huanxin Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Jianteng Sun
- Department of Environmental Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
50
|
Cao LY, Zheng Z, Ren XM, Andersson PL, Guo LH. Structure-Dependent Activity of Polybrominated Diphenyl Ethers and Their Hydroxylated Metabolites on Estrogen Related Receptor γ: in Vitro and in Silico Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8894-8902. [PMID: 30005570 DOI: 10.1021/acs.est.8b02509] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Estrogen-related receptor γ (ERRγ) is an orphan nuclear receptor having functional cross-talk with classical estrogen receptors. Here, we investigated whether ERRγ is a potential target of polybrominated diphenyl ethers (PBDEs) and their hydroxylated metabolites (OH-PBDEs). By using a fluorescence competitive binding method established in our laboratory, the binding potencies of 30 PBDEs/OH-PBDEs with ERRγ were determined for the first time. All of the tested OH-PBDEs and some PBDEs bound to ERRγ with Kd values ranging from 0.13-13.61 μM. The OH-PBDEs showed much higher binding potency than their parent PBDEs. A quantitative structure-activity relationship (QSAR) model was developed to analyze the chemical binding potencies in relation to their structural and chemical characteristics. The QSAR model indicated that the molecular size, relative ratios of aromatic atoms, and hydrogen bond donors and acceptors were crucial factors for PBDEs/OH-PBDEs binding. By using a reporter gene assay, we found that most of the low-brominated PBDEs/OH-PBDEs exerted agonistic activity toward ERRγ, while high-brominated PBDEs/OH-PBDEs had no effect on the basal ERRγ activity. The docking results showed that the low-brominated PBDEs/OH-PBDEs tended to take an agonistic binding mode while the high-brominated ones tended to take an antagonistic binding mode. Overall, our results suggest ERRγ to be a potential novel target for PBDEs/OH-PBDEs.
Collapse
Affiliation(s)
- Lin-Ying Cao
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , P.O. Box 2871, Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , People's Republic of China
| | - Ziye Zheng
- Department of Chemistry , Umeå University , SE-901 87 Umeå , Sweden
| | - Xiao-Min Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , P.O. Box 2871, Beijing 100085 , China
| | | | - Liang-Hong Guo
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-environmental Sciences , Chinese Academy of Sciences , 18 Shuangqing Road , P.O. Box 2871, Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100039 , People's Republic of China
| |
Collapse
|