1
|
Nair SR, Nihad M, Shenoy P S, Gupta S, Bose B. Unveiling the effects of micro and nano plastics in embryonic development. Toxicol Rep 2025; 14:101954. [PMID: 40104046 PMCID: PMC11914762 DOI: 10.1016/j.toxrep.2025.101954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/04/2025] [Accepted: 02/05/2025] [Indexed: 03/20/2025] Open
Abstract
The improper disposal and degradation of plastics causes the formation and spread of micro and nano-sized plastic particles in the ecosystem. The widespread presence of these micro and nanoplastics leads to their accumulation in the biotic and abiotic components of the environment, thereby affecting the cellular and metabolic functions of organisms. Despite being classified as xenobiotic agents, information about their sources and exposure related to reproductive health is limited. Micro and nano plastic exposure during early developmental stages can cause abnormal embryonic development. It can trigger neurotoxicity and inflammatory responses as well in the developing embryo. In embryonic development, a comprehensive study of their role in pluripotency, gastrulation, and multi-differentiation potential is scarce. Due to ethical concerns associated with the direct use of human embryos, pluripotent cells and its 3D in vitro models (with cell lines) are an alternative source for effective research. Thus, the 3D Embryoid body (EB) model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Pluripotent stem cells such as embryonic and induced pluripotent stem cells derived embryoid bodies (EBs) serve as a robust 3D in vitro model that mimics characteristics similar to that of human embryos. Thus, the 3D EB model provides a platform for conducting embryotoxicity and multi-differentiation potential research. Accordingly, this review discusses the significance of 3D in vitro models in conducting effective embryotoxicity research. Further, we also evaluated the possible sources/routes of microplastic generation and analyzed their surface chemistry and cytotoxic effects reported till date.
Collapse
Affiliation(s)
- Sanjay R Nair
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Muhammad Nihad
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sudheer Shenoy P
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Sebanti Gupta
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| | - Bipasha Bose
- Stem Cells and Regenerative Medicine Centre, Yenepoya Research Centre, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Muñoz JP. The impact of endocrine-disrupting chemicals on stem cells: Mechanisms and implications for human health. J Environ Sci (China) 2025; 147:294-309. [PMID: 39003048 DOI: 10.1016/j.jes.2023.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 07/15/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are compounds, either natural or man-made, that interfere with the normal functioning of the endocrine system. There is increasing evidence that exposure to EDCs can have profound adverse effects on reproduction, metabolic disorders, neurological alterations, and increased risk of hormone-dependent cancer. Stem cells (SCs) are integral to these pathological processes, and it is therefore crucial to understand how EDCs may influence SC functionality. This review examines the literature on different types of EDCs and their effects on various types of SCs, including embryonic, adult, and cancer SCs. Possible molecular mechanisms through which EDCs may influence the phenotype of SCs are also evaluated. Finally, the possible implications of these effects on human health are discussed. The available literature demonstrates that EDCs can influence the biology of SCs in a variety of ways, including by altering hormonal pathways, DNA damage, epigenetic changes, reactive oxygen species production and alterations in the gene expression patterns. These disruptions may lead to a variety of cell fates and diseases later in adulthood including increased risk of endocrine disorders, obesity, infertility, reproductive abnormalities, and cancer. Therefore, the review emphasizes the importance of raising broader awareness regarding the intricate impact of EDCs on human health.
Collapse
Affiliation(s)
- Juan P Muñoz
- Laboratorio de Bioquímica, Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Arica 1000007, Chile.
| |
Collapse
|
3
|
He B, Xu HM, Li SW, Zhang YF, Tian JW. Emerging regulatory roles of noncoding RNAs induced by bisphenol a (BPA) and its alternatives in human diseases. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124447. [PMID: 38942269 DOI: 10.1016/j.envpol.2024.124447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Bisphenols (BPs), including BPA, BPF, BPS, and BPAF, are synthetic phenolic organic compounds and endocrine-disrupting chemicals. These organics have been broadly utilized to produce epoxy resins, polycarbonate plastics, and other products. Mounting evidence has shown that BPs, especially BPA, may enter into the human body and participate in the development of human diseases mediated by nuclear hormone receptors. Moreover, BPA may negatively affect human health at the epigenetic level through processes such as DNA methylation and histone acetylation. Recent studies have demonstrated that, as part of epigenetics, noncoding RNAs (ncRNAs), including microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), and small nucleolar RNAs (snoRNAs), have vital impacts on BP-related diseases, such as reproductive system diseases, nervous system diseases, digestive system diseases, endocrine system diseases, and other diseases. Moreover, based on the bioinformatic analysis, changes in ncRNAs may be relevant to normal activities and functions and BP-induced diseases. Thus, we conducted a meta-analysis to identify more promising ncRNAs as biomarkers and therapeutic targets for BP exposure and relevant human diseases. In this review, we summarize the regulatory functions of ncRNAs induced by BPs in human diseases and latent molecular mechanisms, as well as identify prospective biomarkers and therapeutic targets for BP exposure and upper diseases.
Collapse
Affiliation(s)
- Bo He
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China
| | - Hai-Ming Xu
- Department of Occupational and Environmental Medicine, School of Public Health and Management, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shu-Wei Li
- Department of Neurology, Qingdao Huangdao District Central Hospital, Qingdao 266555, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Deng Zhou Road 38, Qingdao 266021, China.
| | - Jia-Wei Tian
- Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, Shandong, China.
| |
Collapse
|
4
|
Rebuzzini P, Rustichelli S, Fassina L, Canobbio I, Zuccotti M, Garagna S. BPA Exposure Affects Mouse Gastruloids Axial Elongation by Perturbing the Wnt/β-Catenin Pathway. Int J Mol Sci 2024; 25:7924. [PMID: 39063166 PMCID: PMC11276681 DOI: 10.3390/ijms25147924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Mammalian embryos are very vulnerable to environmental toxicants (ETs) exposure. Bisphenol A (BPA), one of the most diffused ETs, exerts endocrine-disrupting effects through estro-gen-mimicking and hormone-like properties, with detrimental health effects, including on reproduction. However, its impact during the peri-implantation stages is still unclear. This study, using gastruloids as a 3D stem cell-based in vitro model of embryonic development, showed that BPA exposure arrests their axial elongation when present during the Wnt/β-catenin pathway activation period by β-catenin protein reduction. Gastruloid reshaping might have been impeded by the downregulation of Snail, Slug and Twist, known to suppress E-cadherin expression and to activate the N-cadherin gene, and by the low expression of the N-cadherin protein. Also, the lack of gastruloids elongation might be related to altered exit of BPA-exposed cells from the pluripotency condition and their following differentiation. In conclusion, here we show that the inhibition of gastruloids' axial elongation by BPA might be the result of the concomitant Wnt/β-catenin perturbation, reduced N-cadherin expression and Oct4, T/Bra and Cdx2 altered patter expression, which all together concur in the impaired development of mouse gastruloids.
Collapse
Affiliation(s)
- Paola Rebuzzini
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
| | - Serena Rustichelli
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
- University School for Advanced Studies Pavia (IUSS), 27100 Pavia, Italy
| | - Lorenzo Fassina
- Department of Electrical, Computer and Biomedical Engineering (DIII), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy;
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Ilaria Canobbio
- Laboratory of Biochemistry, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Bassi 21, 27100 Pavia, Italy; (S.R.); (I.C.)
| | - Maurizio Zuccotti
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| | - Silvia Garagna
- Laboratory of Biology and Biotechnology of Reproduction, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy; (M.Z.); (S.G.)
- Centre for Health Technologies (CHT), University of Pavia, Via Ferrata 5, 27100 Pavia, Italy
| |
Collapse
|
5
|
Ren Z, Yang X, Ku T, Liu QS, Liang J, Zhou Q, Faiola F, Jiang G. Perfluorinated iodine alkanes promote the differentiation of mouse embryonic stem cells by regulating estrogen receptor signaling. J Environ Sci (China) 2024; 137:443-454. [PMID: 37980029 DOI: 10.1016/j.jes.2023.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 02/09/2023] [Accepted: 02/13/2023] [Indexed: 11/20/2023]
Abstract
Investigating the development toxicity of perfluorinated iodine alkanes (PFIs) is critical, given their estrogenic effects through binding with estrogen receptors (ERs). In the present study, two PFIs, including dodecafluoro-1,6-diiodohexane (PFHxDI) and tridecafluorohexyl iodide (PFHxI), with binding preference to ERα and ERβ, respectively, were selected to evaluate their effects on proliferation and differentiation of the mouse embryonic stem cells (mESCs). The results revealed that, similar to E2, 50 µmol/L PFHxDI accelerated the cell proliferation of the mESCs. The PFI stimulation at the exposure concentrations of 2-50 µmol/L promoted the differentiation of the mESCs as characterized by the upregulation of differentiation-related biomarkers (i.e., Otx2 and Dnmt3β) and downregulation of pluripotency genes (i.e., Oct4, Nanog, Sox2, Prdm14 and Rex1). Comparatively, PFHxDI exhibited higher induction effect on the differentiation of the mESCs than did PFHxI. The tests on ER signaling indicated that both PFI compounds induced exposure concentration-dependent expressions of ER signaling-related biomarkers (i.e., ERα, ERβ and Caveolin-1) in the mESCs, and the downstream ER responsive genes (i.e., c-fos, c-myc and c-jun) well responded to PFHxI stimulation. The role of ER in PFI-induced effects on the mESCs was further validated by the antagonistic experiments using an ER inhibitor (ICI). The findings demonstrated that PFIs triggered ER signaling, and perturbed the differentiation program of the mESCs, causing the potential health risk during early stage of development.
Collapse
Affiliation(s)
- Zhihua Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiefeng Liang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Sino-Danish, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Ku T, Tan X, Liu Y, Wang R, Fan L, Ren Z, Ning X, Li G, Sang N. Triazole fungicides exert neural differentiation alteration through H3K27me3 modifications: In vitro and in silico study. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132225. [PMID: 37557044 DOI: 10.1016/j.jhazmat.2023.132225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Abstract
Considering that humans are unavoidably exposed to triazole fungicides through the esophagus, respiratory tract, and skin contact, revealing the developmental toxicity of triazole fungicides is vital for health risk assessment. This study aimed to screen and discriminate neural developmental disorder chemicals in commonly used triazole fungicides, and explore the underlying harmful impacts on neurogenesis associated with histone modification abnormality in mouse embryonic stem cells (mESCs). The triploblastic and neural differentiation models were constructed based on mESCs to expose six typical triazole fungicides (myclobutanil, tebuconazole, hexaconazole, propiconazole, difenoconazole, and flusilazole). The result demonstrated that although no cytotoxicity was observed, different triazole fungicides exhibited varying degrees of alterations in neural differentiation, including increased ectodermal differentiation, promoted neurogenesis, increased intracellular calcium ion levels, and disturbance of neurotransmitters. Molecular docking, cluster analysis, and multiple linear regressions demonstrated that the binding affinities between triazole fungicides and the Kdm6b-ligand binding domain were the dominant determinants of the neurodevelopmental response. This partially resulted in the reduced enrichment of H3K27me3 at the promoter region of the serotonin receptor 2 C gene, finally leading to disturbed neural differentiation. The data suggested potential adverse outcomes of triazole fungicides on embryonic neurogenesis even under sublethal doses through interfering histone modification, providing substantial evidence on the safety control of fungicides.
Collapse
Affiliation(s)
- Tingting Ku
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xin Tan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Rui Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, China.
| |
Collapse
|
7
|
Besaratinia A. The State of Research and Weight of Evidence on the Epigenetic Effects of Bisphenol A. Int J Mol Sci 2023; 24:7951. [PMID: 37175656 PMCID: PMC10178030 DOI: 10.3390/ijms24097951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a high-production-volume chemical with numerous industrial and consumer applications. BPA is extensively used in the manufacture of polycarbonate plastics and epoxy resins. The widespread utilities of BPA include its use as internal coating for food and beverage cans, bottles, and food-packaging materials, and as a building block for countless goods of common use. BPA can be released into the environment and enter the human body at any stage during its production, or in the process of manufacture, use, or disposal of materials made from this chemical. While the general population is predominantly exposed to BPA through contaminated food and drinking water, non-dietary exposures through the respiratory system, integumentary system, and vertical transmission, as well as other routes of exposure, also exist. BPA is often classified as an endocrine-disrupting chemical as it can act as a xenoestrogen. Exposure to BPA has been associated with developmental, reproductive, cardiovascular, neurological, metabolic, or immune effects, as well as oncogenic effects. BPA can disrupt the synthesis or clearance of hormones by binding and interfering with biological receptors. BPA can also interact with key transcription factors to modulate regulation of gene expression. Over the past 17 years, an epigenetic mechanism of action for BPA has emerged. This article summarizes the current state of research on the epigenetic effects of BPA by analyzing the findings from various studies in model systems and human populations. It evaluates the weight of evidence on the ability of BPA to alter the epigenome, while also discussing the direction of future research.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population and Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| |
Collapse
|
8
|
Li M, Li T, Yin J, Xie C, Zhu J. Evaluation of toxicological effects of bisphenol S with an in vitro human bone marrow mesenchymal stem cell: Implications for bone health. Toxicology 2023; 484:153408. [PMID: 36565802 DOI: 10.1016/j.tox.2022.153408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
As the use of bisphenol A (BPA) has been restricted in consumer products, bisphenol S (BPS) is one major alternative to BPA for various materials, leading to growing concerns about its health risks in human beings. However, little is known about the toxic effects of BPS on bone health. We employed human bone marrow mesenchymal stem cells (hBMSCs) for the in vitro assessment of BPS on cell proliferation, differentiation, and self-renewal. Our study revealed that BPS at concentrations of 10-10-10-7 M increased cell viability but induced the morphological changes of hBMSCs. Moreover, BPS decreased ROS generation and increased Nrf2 expression. Furthermore, BPS not only activated ERα/β expression but also increased β-catenin expression and induced the replicative senescence of hBMSCs. Furthermore, we found that the upregulation of β-catenin induced by BPS was mediated, in part, by ER signaling. Overall, our results suggested BPS exposure caused the homeostatic imbalance of hBMSCs.
Collapse
Affiliation(s)
- Mei Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China; School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Tenglong Li
- The Laboratory Center for Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Juan Yin
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China
| | - Chunfeng Xie
- Department of Nutrition and Food Safety, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jianyun Zhu
- Department of Laboratory, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou 215008, China.
| |
Collapse
|
9
|
Rezg R, Oral R, Tez S, Mornagui B, Pagano G, Trifuoggi M. Cytogenetic and developmental toxicity of bisphenol A and bisphenol S in Arbacia lixula sea urchin embryos. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1087-1095. [PMID: 35838932 PMCID: PMC9458557 DOI: 10.1007/s10646-022-02568-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/28/2022] [Indexed: 06/02/2023]
Abstract
Bisphenol S (BP-S) is one of the most important substitutes of bisphenol A (BP-A), and its environmental occurrence is predicted to intensify in the future. Both BP-A and BP-S were tested for adverse effects on early life stages of Arbacia lixula sea urchins at 0.1 up to 100 µM test concentrations, by evaluating cytogenetic and developmental toxicity endpoints. Embryonic malformations and/or mortality were scored to determine embryotoxicity (72 h post-fertilization). It has been reported in academic dataset that bisphenols concentration reached μg/L in aquatic environment of heavily polluted areas. We have chosen concentrations ranging from 0.1-100 μM in order to highlight, in particular, BP-S effects. Attention should be paid to this range of concentrations in the context of the evaluation of the toxicity and the ecological risk of BP-S as emerging pollutant. Cytogenetic toxicity was measured, using mitotic activity and chromosome aberrations score in embryos (6 h post-fertilization). Both BP-A and BP-S exposures induced embryotoxic effects from 2.5 to 100 µM test concentrations as compared to controls. Malformed embryo percentages following BP-A exposure were significantly higher than in BP-S-exposed embryos from 0.25 to 100 µM (with a ~5-fold difference). BP-A, not BP-S exhibited cytogenetic toxicity at 25 and 100 µM. Our results indicate an embryotoxic potential of bisphenols during critical periods of development with a potent rank order to BP-A vs. BP-S. Thus, we show that BP-A alternative induce similar toxic effects to BP-A with lower severity.
Collapse
Affiliation(s)
- Raja Rezg
- University of Monastir, ISBM, Biolival LR-14ES06, TN-5000, Monastir, Tunisia
| | - Rahime Oral
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Serkan Tez
- Faculty of Fisheries, Ege University, TR-35100, İzmir, Turkey
| | - Bessem Mornagui
- Faculty of Sciences of Gabes, LR-18ES36, University of Gabes, TN-6072, Zrig, Gabes, Tunisia
| | - Giovanni Pagano
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy.
| | - Marco Trifuoggi
- Department of Chemical Sciences, Federico II Naples University, I-80126, Naples, Italy
| |
Collapse
|
10
|
Wang Y, Wei T, Wang Q, Zhang C, Li K, Deng J. Resveratrol's neural protective effects for the injured embryoid body and cerebral organoid. BMC Pharmacol Toxicol 2022; 23:47. [PMID: 35820950 PMCID: PMC9275253 DOI: 10.1186/s40360-022-00593-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/06/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE Resveratrol (RSV) is a polyphenol compound found in grapes, veratrum and other plants. It has been reported that RSV has anti-inflammatory, anti-oxidant, anti-cancer and other pharmacological effects. However, the impacts of RSV on development of nervous system are not understood well. The study aims to investigate RSV's neuroprotective effect during development and to provide a health care for pregnant women and their fetuses with RSV supplementation. METHODS In this study, we induced human induced pluripotent stem cells (hiPSCs) to form the embryoid bodies (EBs) and cerebral organoids (COs) with 3 dimensional (3D) culture. In the meantime, D-galactose (D-gal, 5 mg/ml) was used to make nervous injury model, and on the other hand, RSV with various doses, such as 2 μm/L, 10 μm/L, 50 μm/L, were applied to understand its neuroprotection. Therefore, the cultures were divided into control group, D-gal nervous injury group and RSV intervention groups. After that, the diameters of EBs and COs were measured regularly under a reverted microscope. In the meantime, the neural proliferation, cell apoptosis and the differentiation of germ layers were detected via immunofluorescence. RESULTS (1) D-gal could delay the development of EBs and COs; (2) RSV could rescue the atrophy of EBs and COs caused by D-gal; (3) RSV showed its neuroprotection, through promoting the neural cell proliferation, inhibiting apoptosis and accelerating the differentiation of germ layers. CONCLUSION RSV has a neuroprotective effect on the development of the nervous system, suggesting RSV supplementation may be necessary during the health care of pregnancy and childhood.
Collapse
Affiliation(s)
- Yanli Wang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Tingting Wei
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Qiang Wang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Chaonan Zhang
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Keyan Li
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China
| | - Jinbo Deng
- NHC Key Laboratory of Birth Defects Prevention, Henan Key Laboratory of Population Defects Prevention, Henan Institute of Reproduction Health Science and Technology, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
11
|
Sahu C, Singla S, Jena G. Studies on male gonadal toxicity of bisphenol A in diabetic rats: An example of exacerbation effect. J Biochem Mol Toxicol 2022; 36:e22996. [DOI: 10.1002/jbt.22996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 12/07/2021] [Accepted: 01/04/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Chittaranjan Sahu
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Shivani Singla
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| | - Gopabandhu Jena
- Department of Pharmacology and Toxicology, Facility for Risk Assessment and Intervention Studies National Institute of Pharmaceutical Education and Research, S.A.S Nagar Sahibzada Ajit Singh Nagar Punjab India
| |
Collapse
|
12
|
Ren F, Ning H, Ge Y, Yin Z, Chen L, Hu D, Shen S, Wang X, Wang S, Li R, He J. Bisphenol A Induces Apoptosis in Response to DNA Damage through c-Abl/YAPY357/ p73 Pathway in P19 Embryonal Carcinoma Stem Cells. Toxicology 2022; 470:153138. [DOI: 10.1016/j.tox.2022.153138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/16/2022] [Accepted: 02/22/2022] [Indexed: 12/22/2022]
|
13
|
Zhou R, Xia M, Zhang L, Cheng W, Yan J, Sun Y, Wang Y, Jiang H. Individual and combined effects of BPA, BPS and BPAF on the cardiomyocyte differentiation of embryonic stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 220:112366. [PMID: 34058679 DOI: 10.1016/j.ecoenv.2021.112366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Exposure to many kinds of bisphenols (BPs) is common, and the effects of BP mixtures may differ from those of individual BPs. Therefore, evaluating combined exposure effects is necessary. Our study evaluated the individual and combined exposure effects of bisphenol A (BPA), bisphenol S (BPS) and bisphenol AF (BPAF) on embryonic development using an embryonic stem cell test (EST) and a concentration additive (CA) model at relatively high doses to uncover the interaction model of the three BPs. Environmentally relevant concentrations were then used to evaluate the possible effects of the individual and combined BPs at actual human exposure levels. Exposure to relatively high-dose BPA, BPS and BPAF inhibited embryonic stem cell differentiation into cardiomyocytes and exhibited weak embryo toxicity. Individually, BPA, BPS and BPAF inhibited endoderm, mesoderm and ectoderm marker expression but enhanced pluripotency marker expression. Combined exposure to BPs had an additive effect on cardiomyocyte differentiation and embryonic stem cell proliferation based on the CA model. Environmentally relevant individual or combined BP doses (10 ng/ml individual BPA, BPS and BPAF doses or 1 ng/ml and 10 ng/ml BP mixture doses) failed to cause oxidative stress, DNA damage or apoptosis changes in stem cell differentiation. The cardiomyocyte differentiation ratio also did not change significantly. Individual and combined exposure to environmentally relevant BP doses led to a significant increase in collagen expression. BPAF and the combination of BPs increased the type 1 collagen level, while the combination also increased the type 3 collagen level, which may be related to p38 pathway activation. The p38 pathway inhibitor SB203580 inhibited the increase in collagen during cardiomyocyte differentiation caused by low-dose BPs. These results suggest that relatively high-dose BPs in combination have an additive effect on cardiomyocyte differentiation. Low-dose BPs individually and in combination may affect cardiomyocyte collagen through the p38 pathway.
Collapse
Affiliation(s)
- Ren Zhou
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| | - Ming Xia
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Lei Zhang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Wei Cheng
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Jia Yan
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yu Sun
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Yan Wang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China; School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Hong Jiang
- The Ninth People's Hospital of Shanghai, Jiao Tong University School of Medicine, Shanghai 200011, PR China.
| |
Collapse
|
14
|
Cao F, Shi M, Yu B, Cheng X, Li X, Jia X. Epigenetic Mechanism of Enrichment of A549 Lung Cancer Stem Cells with 5-Fu. Onco Targets Ther 2021; 14:3783-3794. [PMID: 34168463 PMCID: PMC8218937 DOI: 10.2147/ott.s233129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 05/14/2021] [Indexed: 11/23/2022] Open
Abstract
Background The influence of 5-fluorouracil (5-Fu) and cisplatin (CDDP) on the A549 and NCI-H226 cells was studied, and the epigenetic mechanism of enrichment of A549 lung cancer stem cells with 5-Fu was explored. Materials and Methods The cell proliferation of both A549 and NCI-H226 was detected by BrdU assay, and apoptosis condition was measured by flow cytometric analysis. The expressions of OCT3/4 and Nanog in cells treated with 5-Fu or CDDP were measured by immunofluorescence, Western blot and qPCR. qPCR was also performed to determine the relative expression of methyltransferase genes and miRNA. Sequencing after bisulfite treatment (BSP) was employed to detect the methylation of OCT3/4 promoter in A549 cells. And ChIP was conducted to detect the expression of H3K9Me3 and H3K9Ace. Results Both 5-Fu and CDDP result in the apoptosis of A549 and NCI-H226 cells and improve the expressions of has-miR-134 and has-miR-296. However, 5-Fu enhances the expression of OCT3/4 in A549 cells, and the change of methyltransferase genes and BSP results suggested some genetic differences between CDDP and 5-Fu treatment in A549 cells. ChIP assay showed that the expression of H3K9Me3 significantly decreased and H3K9Ace significantly increased in A549 cells. Conclusion The enrichment effect of CDDP on A549 and NCI-H226 carcinoma stem cells is inconsistent with the enrichment effect of 5-Fu. The enrichment of A549 lung cancer stem cells with 5-Fu might be related to the methylation of OCT3/4 promoter and the expression of H3K9Me3 and H3K9Ace.
Collapse
Affiliation(s)
- Fangyuan Cao
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China.,Department of Pediatrics, The Fifth Affiliated Hospital of Harbin Medical University, Daqing, Heilongjiang, 163319, People's Republic of China
| | - Mumu Shi
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Bo Yu
- Department of Pathology, Science and Education Department of the Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Xiangrong Cheng
- Department of Nuclear Medicine, The Fifth People's Hospital of Qinghai, Xining, Qinhai, 810000, People's Republic of China
| | - Xin Li
- Department of Physiology, College of Life Science and Biopharmaceutics of Shenyang Pharmaceutical University, Shenyang, Liaoning, 110001, People's Republic of China
| | - Xinshan Jia
- Department of Pathology, College of Basic Medical Sciences, China Medical University, Shenyang, Liaoning, 110001, People's Republic of China
| |
Collapse
|
15
|
Harnett KG, Chin A, Schuh SM. BPA and BPA alternatives BPS, BPAF, and TMBPF, induce cytotoxicity and apoptosis in rat and human stem cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 216:112210. [PMID: 33866271 DOI: 10.1016/j.ecoenv.2021.112210] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/22/2021] [Accepted: 03/29/2021] [Indexed: 05/25/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical found in everyday plastic products and materials. Due to scientific findings on the reproductive, developmental, and cellular defects caused by BPA and heightened public awareness, manufacturers have begun to use new chemicals in place of BPA in "BPA-free" products. These alternatives are chemical analogs of BPA and include dozens of new compounds that have undergone relatively little testing and oversight, including: bisphenol S (BPS), bisphenol AF (BPAF), and the recently developed tetramethyl bisphenol F (TMBPF; the monomer of valPure V70). Here, we used adult female rat adipose-derived stem cells (rASCs) and human mesenchymal stem cells (hMSCs) to compare the toxicities and potencies of these BPA alternatives in vitro. Rat and human stem cells were exposed to BPA (1-10 μM), 17β-estradiol (E2; 10 μM), BPS (1-100 μM), BPAF (3×10-4-30 μM), TMBPF (0.01-50 μM), or control media alone (with 0.01% ethanol) for varying time intervals from 10 min to 24 h. We found significantly decreased cell viability and massive apoptosis in rat and human stem cells treated with each BPA analog, as early as 10 min of exposure, and at low, physiologically relevant doses. BPAF showed extreme cytotoxicity in a dose-dependent manner (LC50 =0.014 μM (rASCs) and 0.009 μM (hMSCs)), whereas TMBPF showed a bimodal response, with low and high concentrations being the most toxic (LC50 =0.88 μM (rASCs) and 0.06 μM (hMSCs)). Activated caspase-6 levels increased in nearly all cells treated with the BPA analogs indicating the majority of cell death was due to caspase-6-mediated apoptosis. These results in both rat and human stem cells underscore the toxicity and potency of these BPA analogs, and establish a rank order of potency of: BPAF>TMBPF>BPA>BPS. Further, these and other recent findings indicate that these newer BPA analogs may be 'regrettable substitutions,' being worse than the original parent compound and lacking proper testing and regulation. This work brings to light the need for further toxicological characterization, better regulation, greater public awareness, and the development of safer, more sustainable chemicals and non-plastic products.
Collapse
Affiliation(s)
- Kristen G Harnett
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Ashley Chin
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA
| | - Sonya M Schuh
- Saint Mary's College of California, Department of Biology, Moraga, CA, USA.
| |
Collapse
|
16
|
Yi JK, Park S, Ha JJ, Kim DH, Huang H, Park SJ, Lee MH, Ryoo ZY, Kim SH, Kim MO. Effects of Dimethyl Sulfoxide on the Pluripotency and Differentiation Capacity of Mouse Embryonic Stem Cells. Cell Reprogram 2020; 22:244-253. [DOI: 10.1089/cell.2020.0006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Affiliation(s)
- Jun-Koo Yi
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Song Park
- Core Protein Resources Center, DGIST, Daegu, Republic of Korea
| | - Jae-Jung Ha
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Dae-Hyun Kim
- Department of Embryo Transfer Research, Gyeongbuk Livestock Research Institute, Yeongju, Korea
| | - Hai Huang
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| | - Si-Jun Park
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo, Korea
- China-US (Henan) Hormel Cancer Institute, No. 127 Dongming Road, Zhengzhou, Henan, China
| | - Zae-Young Ryoo
- Department of Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Kyungpook National University, Daegu, Korea
| | - Sung-Hyun Kim
- Life Medicine Analysis Korea Polytechnics Institute, Nonsan, Korea
| | - Myoung-Ok Kim
- Department of Animal Science and Biotechnology, Kyungpook National University, Sangju, Korea
| |
Collapse
|
17
|
Sahu C, Charaya A, Singla S, Dwivedi DK, Jena G. Zinc deficient diet increases the toxicity of bisphenol A in rat testis. J Biochem Mol Toxicol 2020; 34:e22549. [PMID: 32609952 DOI: 10.1002/jbt.22549] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Zinc (Zn) plays an important role in maintaining the process of spermatogenesis and reproductive health. Bisphenol A (BPA), an endocrine disrupting chemical is known to be a reproductive toxicant in different animal models. The present study was designed to study the effect of two of the utmost determinative factors (Zn deficient condition and influence of toxicant BPA) on germ cell growth and overall male reproductive health in the testis, epididymis, and sperm using (a) biochemical, (b) antioxidant, (c) cellular damage, (d) apoptosis, and (e) protein expression measurements. Rats were divided into Control (normal feed and water), BPA (100 mg/kg/d), zinc deficient diet (ZDD; fed with ZDD), and BPA + ZDD for 8 weeks. Body and organ weights, sperm motility and counts, and sperm head morphology were evaluated. The histology of testes, epididymides, and prostate was investigated. Testicular deoxyribonucleic acid (DNA) damage was evaluated by Halo and Comet assay, apoptosis of sperm and testes were quantified by TUNEL assay. Serum protein electrophoretic patterns and testicular protein expressions such as Nrf-2, catalase, PCNA, and Keap1 were analyzed by Western blot analysis. The results showed that BPA significantly increased the testicular, epididymal, and prostrate toxicity in dietary Zn deficient condition due to testicular hypozincemia, hypogonadism, increased cellular and DNA damage, apoptosis, as well as perturbations in protein expression.
Collapse
Affiliation(s)
- Chittaranjan Sahu
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Aarzoo Charaya
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Durgesh K Dwivedi
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| |
Collapse
|
18
|
Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol 2020; 37:101580. [PMID: 32723695 PMCID: PMC7767735 DOI: 10.1016/j.redox.2020.101580] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/10/2020] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
Environmental risk factors, including physicochemical agents, noise and mental stress, have a considerable impact on human health. This environmental exposure may lead to epigenetic reprogramming, including changes in non-coding RNAs (ncRNAs) signatures, which can contribute to the pathophysiology state. Oxidative stress is one of the results of this environmental disturbance by modifying cellular processes such as apoptosis, signal transduction cascades, and DNA repair mechanisms. In this review, we delineate environmental risk factors and their influence on (ncRNAs) in connection to disease. We focus on well-studied miRNAs and analyze the novel roles of long-non-coding-RNAs (lncRNAs). We discuss commonly regulated lncRNAs after exposure to different stressors, such as UV, heavy metals and pesticides among others, and the potential role of these lncRNA as exposure biomarkers, epigenetic regulators and potential therapeutic targets to diminish the deleterious secondary response to environmental agents. Environmental stressors induce epigenetic changes that lead to long-lasting gene expression changes and pathology development. NcRNAs, miRNAs and lncRNAs, are epigenetic modifiers susceptible to changes in expression after environmental insults . LncRNAs influence cell function partnering with other biomolecules such as proteins, DNA, RNA or other ncRNAs. LncRNA dysregulation affects cell development, carcinogenesis, vascular disease and neurodegenerative disorders. ncRNA signatures can be potentially used as biomarkers to identify exposure to specific environmental stressors.
Collapse
Affiliation(s)
- Verónica Miguel
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Programme of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Madrid, Spain
| | - Cristina Espinosa-Diez
- Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, University of Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Farahani M, Rezaei-Tavirani M, Arjmand B. A systematic review of microRNA expression studies with exposure to bisphenol A. J Appl Toxicol 2020; 41:4-19. [PMID: 32662106 DOI: 10.1002/jat.4025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 12/13/2022]
Abstract
Bisphenol A (BPA), as a common industrial component, is generally consumed in the synthesis of polymeric materials. To gain a deeper understanding of the detrimental effects of BPA, BPA-induced microRNA (miRNA) alterations were investigated. A systematic search was performed in the PubMed, SCOPUS and Web of Science databases to evoke relevant published data up to August 10, 2019. We identified altered miRNAs that have been repeated in at least three studies. Moreover, miRNA homology analysis between human and nonhuman species was performed to determine the toxicity signatures of BPA in human exposure. In addition, to reflect the effects of environmental exposure levels of BPA, the study designs were categorized into two groups, including low and high doses according to the previous definitions. In total, 28 studies encountered our criteria and 17 miRNAs were identified that were differentially expressed in at least three independent studies. Upregulating miR-146a and downregulating miR-192, miR-134, miR-27b and miR-324 were found in three studies. MiR-122 and miR-29a were upregulated in four studies after BPA exposure, and miR-21 was upregulated in six studies. The results indicate that BPA at low-level exposures can also alter miRNA expression in response to toxicity. Finally, the miRNA-related pathways showed that BPA seriously can affect human health through various cell signaling pathways, which were predictable and consistent with existing studies. Overall, our findings suggest that further studies should be conducted to examine the role of miRNA level changes in human BPA exposure.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Metabolomics and Genomics Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
20
|
Liang X, Yin N, Liang S, Yang R, Liu S, Lu Y, Jiang L, Zhou Q, Jiang G, Faiola F. Bisphenol A and several derivatives exert neural toxicity in human neuron-like cells by decreasing neurite length. Food Chem Toxicol 2020; 135:111015. [DOI: 10.1016/j.fct.2019.111015] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/28/2019] [Accepted: 11/30/2019] [Indexed: 02/06/2023]
|
21
|
Yang X, Ku T, Sun Z, Liu QS, Yin N, Zhou Q, Faiola F, Liao C, Jiang G. Assessment of the carcinogenic effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin using mouse embryonic stem cells to form teratoma in vivo. Toxicol Lett 2019; 312:139-147. [PMID: 31082521 DOI: 10.1016/j.toxlet.2019.05.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 03/21/2019] [Accepted: 05/09/2019] [Indexed: 12/26/2022]
Abstract
As the most toxic dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) has gained lots of concerns, due to its diverse deleterious effects. However, the knowledge on carcinogenic risk of TCDD during early stage of development remains scarce. The in vivo teratoma formation model based on the transplantation of embryonic stem cells (ESCs) in immunodeficient mice is appealing for studying pluripotency and tumorigenicity in developmental biology, and also shows promise in environmental toxicology, especially in carcinogenesis researches. In this study, the malignant transformation of mouse embryonic stem cells (mESCs) pretreated with TCDD was investigated during their in vivo differentiation using teratoma formation model. Based on characterization of the pluripotency and differentiation capabilities of mESCs, evil changes in teratomas derived from TCDD-exposed mESCs were systematically studied. The results showed that TCDD significantly up-regulated CYP1A1 transcriptional levels in mESCs, elevated the incidence of malignant change in mESC-derived teratomas, and caused indefinite proliferation capabilities in sequential cultures of tumor tissues. The findings suggested that TCDD could exert carcinogenic effect on mESCs during their differentiation into teratoma in vivo, and more attention should be paid to the adverse health effects of this chemical during gestation or early developmental period.
Collapse
Affiliation(s)
- Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tingting Ku
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, 030006, China
| | - Zhendong Sun
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Li M, Huo X, Davuljigari CB, Dai Q, Xu X. MicroRNAs and their role in environmental chemical carcinogenesis. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2019; 41:225-247. [PMID: 30171477 DOI: 10.1007/s10653-018-0179-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 08/23/2018] [Indexed: 02/05/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, noncoding RNA species that play crucial roles across many biological processes and in the pathogenesis of major diseases, including cancer. Recent studies suggest that the expression of miRNA is altered by certain environmental chemicals, including metals, organic pollutants, cigarette smoke, pesticides and carcinogenic drugs. In addition, extensive studies have indicated the existence and importance of miRNA in different cancers, suggesting that cancer-related miRNAs could serve as potential markers for chemically induced cancers. The altered expression of miRNA was considered to be a vital pathogenic role in xenobiotic-induced cancer development. However, the significance of miRNA in the etiology of cancer and the exact mechanisms by which environmental factors alter miRNA expression remain relatively unexplored. Hence, understanding the interaction of miRNAs with environmental chemicals will provide important information on mechanisms underlying the pathogenesis of chemically induced cancers, and effectively diagnose and treat human cancers resulting from chronic or acute carcinogen exposure. This study presents the current evidence that the miRNA deregulation induced by various chemical carcinogens, different cancers caused by environmental carcinogens and the potentially related genes in the onset or progression of cancer. For each carcinogen, the specifically expressed miRNA may be considered as the early biomarkers of the cancer process. In this review, we also summarize various target genes of the altered miRNA, oncogenes or anti-oncogenes, and the existing evidence regarding the gene regulation mechanisms of cancer caused by environmentally induced miRNA alteration. The future perspective of miRNA may become attractive targets for the diagnosis and treatment of carcinogen-induced cancer.
Collapse
Affiliation(s)
- Minghui Li
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Chand Basha Davuljigari
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China
| | - Qingyuan Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511486, Guangdong, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, and Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou, 515041, Guangdong, China.
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, 515041, Guangdong, China.
| |
Collapse
|
23
|
Miguel V, Cui JY, Daimiel L, Espinosa-Díez C, Fernández-Hernando C, Kavanagh TJ, Lamas S. The Role of MicroRNAs in Environmental Risk Factors, Noise-Induced Hearing Loss, and Mental Stress. Antioxid Redox Signal 2018; 28:773-796. [PMID: 28562070 PMCID: PMC5911706 DOI: 10.1089/ars.2017.7175] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE MicroRNAs (miRNAs) are important regulators of gene expression and define part of the epigenetic signature. Their influence on every realm of biomedicine is established and progressively increasing. The impact of environment on human health is enormous. Among environmental risk factors impinging on quality of life are those of chemical nature (toxic chemicals, heavy metals, pollutants, and pesticides) as well as those related to everyday life such as exposure to noise or mental and psychosocial stress. Recent Advances: This review elaborates on the relationship between miRNAs and these environmental risk factors. CRITICAL ISSUES The most relevant facts underlying the role of miRNAs in the response to these environmental stressors, including redox regulatory changes and oxidative stress, are highlighted and discussed. In the cases wherein miRNA mutations are relevant for this response, the pertinent literature is also reviewed. FUTURE DIRECTIONS We conclude that, even though in some cases important advances have been made regarding close correlations between specific miRNAs and biological responses to environmental risk factors, a need for prospective large-cohort studies is likely necessary to establish causative roles. Antioxid. Redox Signal. 28, 773-796.
Collapse
Affiliation(s)
- Verónica Miguel
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| | - Julia Yue Cui
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Lidia Daimiel
- 3 Instituto Madrileño de Estudios Avanzados-Alimentación (IMDEA-Food) , Madrid, Spain
| | - Cristina Espinosa-Díez
- 4 Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University , Portland, Oregon
| | | | - Terrance J Kavanagh
- 2 Department of Environmental and Occupational Health Sciences, University of Washington , Seattle, Washington
| | - Santiago Lamas
- 1 Department of Cell Biology and Immunology, Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM) , Madrid, Spain
| |
Collapse
|
24
|
An on-line solid-phase extraction disc packed with a phytic acid induced 3D graphene-based foam for the sensitive HPLC-PDA determination of bisphenol A migration in disposable syringes. Talanta 2018; 179:153-158. [DOI: 10.1016/j.talanta.2017.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 10/28/2017] [Accepted: 11/03/2017] [Indexed: 12/11/2022]
|
25
|
Patkin E, Grudinina N, Sasina L, Noniashvili E, Pavlinova L, Suchkova I, Kustova M, Kolmakov N, Van Truong T, Sofronov G. Asymmetric DNA methylation between sister chromatids of metaphase chromosomes in mouse embryos upon bisphenol A action. Reprod Toxicol 2017; 74:1-9. [DOI: 10.1016/j.reprotox.2017.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/24/2017] [Accepted: 08/18/2017] [Indexed: 12/17/2022]
|
26
|
Tomza-Marciniak A, Stępkowska P, Kuba J, Pilarczyk B. Effect of bisphenol A on reproductive processes: A review of in vitro, in vivo and epidemiological studies. J Appl Toxicol 2017; 38:51-80. [PMID: 28608465 DOI: 10.1002/jat.3480] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/22/2017] [Accepted: 03/24/2017] [Indexed: 12/23/2022]
Abstract
As bisphenol A (BPA) is characterized by a pronounced influence on human hormonal regulation, particular attention has been aimed at understanding its role in reproductive processes in males and females, as well as on fetal development. Owing to the increasing number of alarming reports on the negative consequences of the presence of BPA in human surroundings, more and more studies are being undertaken to clarify the negative effects of BPA on human reproductive processes. The aim of this work was to collect and summarize data on the influence of BPA exposure on reproductive health. Based on an analysis of selected publications it was stated that there is strong proof confirming that BPA is an ovarian, uterine and prostate toxicant at a level below the lowest observed adverse effect level (50 mg kg-1 bodyweight) as well as a level below the proposed safe level (4 μg kg-1 bodyweight). It seems there is also reliable evidence in relation to the negative effect of BPA on sperm quality and motility. Limited evidence also pertains to the case of the potential of BPA to affect polycystic ovary syndrome occurrence. Although in epidemiological studies this disease was common, in studies on animal models such results were still not confirmed. No unambiguous results of epidemiological studies and with animal models were obtained in relation to the evaluation of associations between BPA and implantation failure in women, evaluation of associations between BPA and sexual dysfunction in men, and impact of BPA on birth rate, birth weight and length of gestation. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Agnieszka Tomza-Marciniak
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Paulina Stępkowska
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Jarosław Kuba
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| | - Bogumiła Pilarczyk
- Department of Animal Reproduction Biotechnology and Environmental Hygiene, West Pomeranian University of Technology in Szczecin, Janickiego 29, 71-270, Szczecin, Poland
| |
Collapse
|
27
|
Yao X, Yin N, Faiola F. Stem cell toxicology: a powerful tool to assess pollution effects on human health. Natl Sci Rev 2016. [DOI: 10.1093/nsr/nww089] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AbstractEnvironmental pollution is a global problem; the lack of comprehensive toxicological assessments may lead to increased health risks. To fully understand the health effects of pollution, it is paramount to implement fast, efficient and specific toxicity screening that relies on human models rather than on time-consuming, expensive and often inaccurate tests involving live animals. Human stem cell toxicology represents a valid alternative to traditional toxicity assays because it takes advantage of the ability of stem cells to differentiate into multiple cell types and tissues of the human body. Thus, this branch of toxicology provides a possibility to assess cellular, embryonic, developmental, reproductive and functional toxicity in vitro within a single system highly relevant to human physiology. In this review, we describe the development, performance and future perspectives of stem cell toxicology, with an emphasis on how it can meet the increasing challenges posed by environmental pollution in the modern world.
Collapse
Affiliation(s)
- Xinglei Yao
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- Stake Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Brieño-Enríquez MA, Larriba E, Del Mazo J. Endocrine disrupters, microRNAs, and primordial germ cells: a dangerous cocktail. Fertil Steril 2016; 106:871-9. [PMID: 27521771 DOI: 10.1016/j.fertnstert.2016.07.1100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/15/2016] [Accepted: 07/18/2016] [Indexed: 12/23/2022]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental pollutants that may change the homeostasis of the endocrine system, altering the differentiation of germ cells with consequences for reproduction. In mammals, germ cell differentiation begins with primordial germ cells (PGCs) during embryogenesis. Primordial germ cell development and gametogenesis are genetically regulated processes, in which the posttranscriptional gene regulation could be mediated by small noncoding RNAs (sncRNAs) such as microRNAs (miRNAs). Here, we review the deleterious effects of exposure during fetal life to EDCs mediated by deregulation of ncRNAs, and specifically miRNAs on PGC differentiation. Moreover, the environmental stress induced by exposure to some EDCs during the embryonic window of development could trigger reproductive dysfunctions transgenerationally transmitted by epigenetic mechanisms with the involvement of miRNAs expressed in germ line cells.
Collapse
Affiliation(s)
| | - Eduardo Larriba
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain
| | - Jesús Del Mazo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Madrid, Spain.
| |
Collapse
|
29
|
Rezvanfar MA, Hodjat M, Abdollahi M. Growing knowledge of using embryonic stem cells as a novel tool in developmental risk assessment of environmental toxicants. Life Sci 2016; 158:137-160. [DOI: 10.1016/j.lfs.2016.05.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/27/2016] [Accepted: 05/17/2016] [Indexed: 12/19/2022]
|
30
|
Wang Q, Yang J, Zhang D, Zhang L. Ionic liquid @LiFe5O8/MWCNTs magnetic nanohybrid as enhanced sensing platform for highly sensitive detection of estrogenic disrupting compound bisphenol AP. J APPL ELECTROCHEM 2016. [DOI: 10.1007/s10800-016-0992-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Mohseni P, Hahn NA, Frank RA, Hewitt LM, Hajibabaei M, Van Der Kraak G. Naphthenic Acid Mixtures from Oil Sands Process-Affected Water Enhance Differentiation of Mouse Embryonic Stem Cells and Affect Development of the Heart. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10165-10172. [PMID: 26182351 DOI: 10.1021/acs.est.5b02267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Extraction of petrochemicals from the surface mining of oil sand deposits results in generation of large volumes of oil sands process-affected water (OSPW). Naphthenic acids (NA) are generally considered to be among the most toxic components of OSPW. Previous studies have shown that NAs are toxic to aquatic organisms, however knowledge of their effects on mammalian health and development is limited. In the present study, we evaluated the developmental effects of an NA extract prepared from fresh OSPW on differentiating mouse embryonic stem cells (ESC). We found that treatment of differentiating cells with the NA extract at noncytotoxic concentrations alters expression of various lineage specification markers and development of the heart. Notably, expression of cardiac specific markers such as Nkx2.5, Gata4, and Mef2c were significantly up-regulated. Moreover, exposure to the NA extract enhanced differentiation of embryoid bodies and resulted in the early appearance of spontaneously beating clusters. Interestingly, exposure of undifferentiated mouse ESCs to the NA extract did not change the expression level of pluripotency markers (i.e., Oct4, Nanog, and Sox2). Altogether, these data identify some of the molecular pathways affected by components within this NA extract during differentiation of mammalian cells.
Collapse
Affiliation(s)
- Paria Mohseni
- †Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Noah A Hahn
- †Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Richard A Frank
- ‡Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7S 1A1, Canada
| | - L Mark Hewitt
- ‡Water Science and Technology Directorate, Environment Canada, Burlington, Ontario L7S 1A1, Canada
| | - Mehrdad Hajibabaei
- †Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
- §Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Glen Van Der Kraak
- †Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
32
|
Couleau N, Falla J, Beillerot A, Battaglia E, D’Innocenzo M, Plançon S, Laval-Gilly P, Bennasroune A. Effects of Endocrine Disruptor Compounds, Alone or in Combination, on Human Macrophage-Like THP-1 Cell Response. PLoS One 2015; 10:e0131428. [PMID: 26133781 PMCID: PMC4489735 DOI: 10.1371/journal.pone.0131428] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/01/2015] [Indexed: 12/21/2022] Open
Abstract
The aim of the present study was to evaluate the immunological effects on human macrophages of four endocrine disruptor compounds (EDCs) using the differentiated human THP-1 cell line as a model. We studied first the effects of these EDCs, including Bisphenol A (BPA), di-ethylhexyl-phthalate (DEHP), dibutyl phthalate (DBP) and 4-tert-octylphenol (4-OP), either alone or in combination, on cytokine secretion, and phagocytosis. We then determined whether or not these effects were mediated by estrogen receptors via MAPK pathways. It was found that all four EDCs studied reduced strongly the phagocytosis of the differentiated THP-1 cells and that several of these EDCs disturbed also TNF-α, IL-1 β and IL-8 cytokine secretions. Furthermore, relative to control treatment, decreased ERK 1/2 phosphorylation was always associated with EDCs treatments-either alone or in certain combinations (at 0.1 μM for each condition). Lastly, as treatments by an estrogen receptor antagonist suppressed the negative effects on ERK 1/2 phosphorylation observed in cells treated either alone with BPA, DEHP, 4-OP or with the combined treatment of BPA and DEHP, we suggested that estrogen receptor-dependent pathway is involved in mediating the effects of EDCs on human immune system. Altogether, these results advocate that EDCs can disturb human immune response at very low concentrations.
Collapse
Affiliation(s)
- N. Couleau
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), IUT Thionville-Yutz, Espace Cormontaigne, Yutz, France
| | - J. Falla
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), IUT Thionville-Yutz, Espace Cormontaigne, Yutz, France
| | - A. Beillerot
- IUT Thionville-Yutz, Impasse Alfred Kastler Espace Cormontaigne, Yutz, France
| | - E. Battaglia
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Campus Bridoux—8, Metz, France
| | - M. D’Innocenzo
- IUT Thionville-Yutz, Impasse Alfred Kastler Espace Cormontaigne, Yutz, France
| | - S. Plançon
- Calcium Signaling and Inflammation Group, Life Sciences Research Unit, University of Luxembourg, Luxembourg, Luxembourg
| | - P. Laval-Gilly
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), IUT Thionville-Yutz, Espace Cormontaigne, Yutz, France
| | - A. Bennasroune
- Université de Lorraine, CNRS UMR 7360, Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), IUT Thionville-Yutz, Espace Cormontaigne, Yutz, France
| |
Collapse
|
33
|
Xu B, Ji X, Chen X, Yao M, Han X, Chen M, Tang W, Xia Y. Effect of perfluorooctane sulfonate on pluripotency and differentiation factors in mouse embryoid bodies. Toxicology 2015; 328:160-167. [PMID: 25510869 DOI: 10.1016/j.tox.2014.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/10/2014] [Accepted: 12/10/2014] [Indexed: 11/15/2022]
Abstract
Perfluorooctane sulfonate (PFOS) poses potential risks to early development, but the molecular mechanisms how PFOS affects embryonic development are still unclear. Mouse embryoid bodies (mEBs) provide ideal models for testing safety or toxicity of chemicals in vitro. In this study, mEBs were exposed to PFOS up to 6 days and then their pluripotency and differentiation markers were evaluated. Our data showed that the mRNA and protein levels of pluripotency markers (Oct4, Sox2, Nanog) in mEBs were significantly increased following exposure to PFOS. Meanwhile, the expressions of miR-134, miR-145, miR-490-3p were decreased accordingly. PFOS reduced the mRNA levels of endodermal markers (Sox17, FOXA2), mesodermal markers (SMA, Brachyury) and ectodermal markers (Nestin, Fgf5) in mEBs. Meanwhile, PFOS increased the mRNA and protein levels of polycomb group (PcG) family members (Cbx4, Cbx7, Ezh2). Overall, our results showed that PFOS could increase the expression levels of pluripotency factors and decrease the differentiation markers.
Collapse
Affiliation(s)
- Bo Xu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Xiaoli Ji
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaojiao Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; State Key Laboratory of Reproductive Medicine, Nanjing Maternity and Child Health Hospital, Nanjing Medical University, Nanjing 210029, China
| | - Mengmeng Yao
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wei Tang
- Department of Endocrinology, The Affiliated Jiangyin People's Hospital of Wuxi Clinical School of Medicine, Nanjing Medical University, Jiangyin 214400, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
34
|
Khan D, Ahmed SA. Epigenetic Regulation of Non-Lymphoid Cells by Bisphenol A, a Model Endocrine Disrupter: Potential Implications for Immunoregulation. Front Endocrinol (Lausanne) 2015; 6:91. [PMID: 26097467 PMCID: PMC4456948 DOI: 10.3389/fendo.2015.00091] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/16/2015] [Indexed: 02/06/2023] Open
Abstract
Endocrine disrupting chemicals (EDC) abound in the environment since many compounds are released from chemical, agricultural, pharmaceutical, and consumer product industries. Many of the EDCs such as Bisphenol A (BPA) have estrogenic activity or interfere with endogenous sex hormones. Experimental studies have reported a positive correlation of BPA with reproductive toxicity, altered growth, and immune dysregulation. Although the precise relevance of these studies to the environmental levels is unclear, nevertheless, their potential health implications remain a concern. One possible mechanism by which BPA can alter genes is by regulating epigenetics, including microRNA, alteration of methylation, and histone acetylation. There is now wealth of information on BPA effects on non-lymphoid cells and by comparison, paucity of data on effects of BPA on the immune system. In this mini review, we will highlight the BPA regulation of estrogen receptor-mediated immune cell functions and in different inflammatory conditions. In addition, BPA-mediated epigenetic regulation of non-lymphoid cells is emphasized. We recognize that most of these studies are on non-lymphoid cells, and given that BPA also affects the immune system, it is plausible that BPA could have similar epigenetic regulation in immune cells. It is hoped that this review will stimulate studies in this area to ascertain whether or not BPA epigenetically regulates the cells of the immune system.
Collapse
Affiliation(s)
- Deena Khan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- Present address: Deena Khan, Division of Experimental Hematology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - S. Ansar Ahmed
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, USA
- *Correspondence: S. Ansar Ahmed, Department of Biomedical Sciences and Pathobiology, VMCVM, Virginia Tech, Phase II, Duck Pond Drive, Blacksburg, VA 24060, USA,
| |
Collapse
|
35
|
Helmestam M, Davey E, Stavreus-Evers A, Olovsson M. Bisphenol A affects human endometrial endothelial cell angiogenic activity in vitro. Reprod Toxicol 2014; 46:69-76. [PMID: 24632125 DOI: 10.1016/j.reprotox.2014.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/21/2022]
Abstract
The widespread Bisphenol A (BPA) is classified as an endocrine-disrupting chemical (EDC) with estrogenic properties. Human endometrial endothelial cells (HEECs) play a key role in the endometrial angiogenesis that is under the control of estradiol. The hypothesis was that BPA may affect endometrial angiogenesis by disturbing some functional properties of the HEEC. To study this, primary HEECs were exposed to environmentally relevant doses of BPA. The HEECs were co-cultured with primary endometrial stromal cells to create conditions as similar to the in vivo situation as possible. The effects of BPA were evaluated by proliferation and viability assays, tube-formation assays, quantitative PCRs, Western blots and ELISAs. BPA slightly increased HEEC tube formation and VEGF-D protein expression compared with vehicle, without affecting HEEC viability or proliferation. Bisphenol A thus caused changes in HEEC activities in vitro, and may therefore have disturbing effects on endometrial angiogenesis.
Collapse
Affiliation(s)
- Malin Helmestam
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden.
| | - Eva Davey
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| | - Anneli Stavreus-Evers
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| | - Matts Olovsson
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
36
|
Izzotti A, Pulliero A. The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 2014; 217:601-27. [PMID: 24560354 DOI: 10.1016/j.ijheh.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino - IST National Research Cancer Institute, Genoa, Italy.
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|