1
|
Froetschl R, Corton JC, Li H, Aubrecht J, Auerbach SS, Caiment F, Doktorova TY, Fujita Y, Jennen D, Koyama N, Meier MJ, Mezencev R, Recio L, Suzuki T, Yauk CL. Consensus findings of an International Workshops on Genotoxicity Testing workshop on using transcriptomic biomarkers to predict genotoxicity. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2025. [PMID: 39757731 DOI: 10.1002/em.22645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025]
Abstract
Gene expression biomarkers have the potential to identify genotoxic and non-genotoxic carcinogens, providing opportunities for integrated testing and reducing animal use. In August 2022, an International Workshops on Genotoxicity Testing (IWGT) workshop was held to critically review current methods to identify genotoxicants using transcriptomic profiling. Here, we summarize the findings of the workgroup on the state of the science regarding the use of transcriptomic biomarkers to identify genotoxic chemicals in vitro and in vivo. A total of 1341 papers were examined to identify the biomarkers that show the most promise for identifying genotoxicants. This analysis revealed two independently derived in vivo biomarkers and three in vitro biomarkers that, when used in conjunction with standard computational techniques, can identify genotoxic chemicals in vivo (rat or mouse liver) or in human cells in culture using different gene expression profiling platforms, with predictive accuracies of ≥92%. These biomarkers have been validated to differing degrees but typically show high reproducibility across transcriptomic platforms and model systems. They offer several advantages for applications in different contexts of use in genotoxicity testing including: early signal detection, moderate-to-high-throughput screening capacity, adaptability to different cell types and tissues, and insights on mechanistic information on DNA-damage response. Workshop participants agreed on consensus statements to advance the regulatory adoption of transcriptomic biomarkers for genotoxicity. The participants agreed that transcriptomic biomarkers have the potential to be used in conjunction with other biomarkers in integrated test strategies in vitro and using short-term rodent exposures to identify genotoxic and non-genotoxic chemicals that may cause cancer and heritable genetic effects. Following are the consensus statements from the workgroup. Transcriptomic biomarkers for genotoxicity can be used in Weight of Evidence (WoE) evaluation to: determine potential genotoxic mechanisms and hazards; identify misleading positives from in vitro genotoxicity assays; serve as new approach methodologies (NAMs) integrated into the standard battery of genotoxicity tests. Several transcriptomic biomarkers have been developed from sufficiently robust training data sets, validated with external test sets, and have demonstrated performance in multiple laboratories. These transcriptomic biomarkers can be used following established study designs and models designated through existing validation exercises in WoE evaluation. Bridging studies using a selection of training and test chemicals are needed to deviate from the established protocols to confirm performance when a transcriptomic biomarker is being applied in other: tissues, cell models, or gene expression platforms. Top dose selection and time of gene expression analysis are critical and should be established during transcriptomic biomarker development. These conditions are the only ones suited for transcriptomic biomarker use unless additional bridging or pharmacokinetic studies are conducted. Temporal effects for genotoxicants that operate via distinct mechanisms should be considered in data interpretation. Fixed transcriptomic biomarker gene sets and analytical processes do not need to be independently rederived in biomarker validation. Validation should focus on the performance of the gene set in external test sets. Robust external testing should ensure a minimum of additional chemicals spanning genotoxic and non-genotoxic modes of action. Genes in the transcriptomic biomarker do not need to be known to be mechanistically involved in genotoxicity responses. Existing frameworks described for NAMs could be applied for validation of transcriptomic biomarkers. Reproducibility of bioinformatic analysis is critical for the regulatory application of transcriptomic biomarkers. A bioinformatics expert should be involved with creating reproducible methods for the qualification and application of each transcriptomic biomarker.
Collapse
Affiliation(s)
| | - J Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Durham, North Carolina, USA
| | - Henghong Li
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Jiri Aubrecht
- Department of Oncology, Georgetown University Medical Center, Washington, DC, USA
| | - Scott S Auerbach
- Division of the Translational Toxicology, National Institute of Environmental Health Sciences (NIEHS), Research Triangle Park, Durham, North Carolina, USA
| | - Florian Caiment
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Tatyana Y Doktorova
- F. Hoffmann-La Roche Ltd, Roche Pharma Research and Early Development, Basel, Switzerland
| | - Yurika Fujita
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Danyel Jennen
- Department of Translational Genomics, GROW Research Institute for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands
| | - Naoki Koyama
- Translational Research Division, Safety and Bioscience Research Department, Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Matthew J Meier
- Environmental Health, Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Roman Mezencev
- Center for Public Health and Environmental Assessment, Office of Research and Development, US EPA, Washington, District of Columbia, USA
| | | | - Takayoshi Suzuki
- Division of Genome Safety Science, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Cao Y, Xi J, You X, Liu W, Luan Y. Dose-response genotoxicity of triclosan in mice: an estimate of acceptable daily intake based on organ toxicity. Toxicol Res (Camb) 2021; 10:1153-1161. [PMID: 34956618 PMCID: PMC8692727 DOI: 10.1093/toxres/tfab098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/23/2021] [Accepted: 10/10/2021] [Indexed: 11/13/2022] Open
Abstract
Triclosan (TCS) is widely used and it bioaccumulates in humans. We found that TCS induced DNA damage in TK6 cell in our previous work. Herein, we performed a pilot assay of the TK6 cell/TK gene (TK+/-) mutation assay without metabolic activation for 24 h and found that TCS significantly induced mutation frequency. We further investigated the dose-response toxicity and genotoxicity of TCS. We combined the newly developed Pig-a gene mutation assay with bone marrow micronucleus (MN) test in a 19-day short-term study. ICR mice were administered orally with TCS at six dose levels from 0 to1000 mg/kg/day. We quantitatively assessed the dose-response relationships for the Pig-a assay, MN test, and organ coefficient data for possible points of departure (PoDs) by estimating the benchmark dose using PROAST software. We did not observe elevated Pig-a mutant frequency or MN frequency in TCS-treated mice. But a dose-dependent and statistically significant increase in liver organ coefficient data was observed. The PoD and acceptable daily intake based on organ toxicity were further developed and no greater than 1.82 and 0.00182 mg/kg/day, respectively, indicating that the toxicity of TCS may has been underestimated in previous studies and greater attention should be paid to low-level TCS exposure.
Collapse
Affiliation(s)
- Yiyi Cao
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Jing Xi
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Xinyue You
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Weiying Liu
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| | - Yang Luan
- School of Public Health, Shanghai Jiaotong University School of Medicine, Shanghai 200025, People’s Republic of China
| |
Collapse
|
3
|
Fritsche E, Haarmann-Stemmann T, Kapr J, Galanjuk S, Hartmann J, Mertens PR, Kämpfer AAM, Schins RPF, Tigges J, Koch K. Stem Cells for Next Level Toxicity Testing in the 21st Century. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006252. [PMID: 33354870 DOI: 10.1002/smll.202006252] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/13/2020] [Indexed: 06/12/2023]
Abstract
The call for a paradigm change in toxicology from the United States National Research Council in 2007 initiates awareness for the invention and use of human-relevant alternative methods for toxicological hazard assessment. Simple 2D in vitro systems may serve as first screening tools, however, recent developments infer the need for more complex, multicellular organotypic models, which are superior in mimicking the complexity of human organs. In this review article most critical organs for toxicity assessment, i.e., skin, brain, thyroid system, lung, heart, liver, kidney, and intestine are discussed with regards to their functions in health and disease. Embracing the manifold modes-of-action how xenobiotic compounds can interfere with physiological organ functions and cause toxicity, the need for translation of such multifaceted organ features into the dish seems obvious. Currently used in vitro methods for toxicological applications and ongoing developments not yet arrived in toxicity testing are discussed, especially highlighting the potential of models based on embryonic stem cells and induced pluripotent stem cells of human origin. Finally, the application of innovative technologies like organs-on-a-chip and genome editing point toward a toxicological paradigm change moves into action.
Collapse
Affiliation(s)
- Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
- Medical Faculty, Heinrich-Heine University Düsseldorf, Düsseldorf, 40225, Germany
| | | | - Julia Kapr
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Saskia Galanjuk
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Hartmann
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Peter R Mertens
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke-University Magdeburg, Magdeburg, 39106, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Julia Tigges
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| | - Katharina Koch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany
| |
Collapse
|
4
|
Gao L, Schäfer C, O'Reardon K, Gorgus E, Schulte-Hubbert R, Schrenk D. The mutagenic potency of onion juice vs. its contents of quercetin and rutin. Food Chem Toxicol 2020; 148:111923. [PMID: 33316355 DOI: 10.1016/j.fct.2020.111923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 12/06/2020] [Accepted: 12/08/2020] [Indexed: 10/22/2022]
Abstract
In spite of its considerable value as a predictor of in vivo genotoxicity and even for carcinogenicity, false positive cases were reported for the Ames test, e.g., with a number of natural food constituents. Here we analyzed the effects of juice of Allium cepa, the common onion, a staple food and traditional remedy used in many civilizations, in the Ames fluctuation assay. We could find mild mutagenicity with an onion juice extract in Salmonella typhimurium strains TA98 and TA100, the latter being less sensitive towards the extract. Mutagenicity was not influenced markedly by the presence of rat liver S9 mix. Onion juice also exerted some toxicity to the bacteria in the same concentration range. Comparative studies with quercetin and rutin, major flavonoid glycosides in onions, revealed a mutagenic potency of quercetin with an EC50-value of 4 μM in TA98. The contents of quercetin and rutin in onion juice were determined as 0.71 ± 0.20, and 0.71 ± 0.21 mg/kg. Calculations of quercetin and rutin concentrations in mutagenic dilutions revealed that both compounds are highly unlikely to cause the mutagenic effects of onion juice and that other yet undefined constituents must be responsible for these effects.
Collapse
Affiliation(s)
- Lan Gao
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Christine Schäfer
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Katja O'Reardon
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Eva Gorgus
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Ruth Schulte-Hubbert
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany
| | - Dieter Schrenk
- Food Chemistry and Toxicology, University of Kaiserslautern, 67663, Kaiserslautern, Germany.
| |
Collapse
|
5
|
Leroy K, Pieters A, Tabernilla A, Cooreman A, Van Campenhout R, Cogliati B, Vinken M. Targeting gap junctional intercellular communication by hepatocarcinogenic compounds. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2020; 23:255-275. [PMID: 32568623 DOI: 10.1080/10937404.2020.1781010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Gap junctions in liver, as in other organs, play a critical role in tissue homeostasis. Inherently, these cellular constituents are major targets for systemic toxicity and diseases, including cancer. This review provides an overview of chemicals that compromise liver gap junctions, in particular biological toxins, organic solvents, pesticides, pharmaceuticals, peroxides, metals and phthalates. The focus in this review is placed upon the mechanistic scenarios that underlie these adverse effects. Further, the potential use of gap junctional activity as an in vitro biomarker to identify non-genotoxic hepatocarcinogenic chemicals is discussed.
Collapse
Affiliation(s)
- Kaat Leroy
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Alanah Pieters
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Andrés Tabernilla
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Axelle Cooreman
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Raf Van Campenhout
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, Cidade Universitária , São Paulo, Brazil
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel , Brussels, Belgium
| |
Collapse
|
6
|
Wilde S, Queisser N, Sutter A. Image analysis of mechanistic protein biomarkers for the characterization of genotoxicants: Aneugens, clastogens, and reactive oxygen species inducers. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:534-550. [PMID: 32297368 DOI: 10.1002/em.22374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/01/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
The early detection of genotoxicity contributes to cutting-edge drug discovery and development, requiring effective identification of genotoxic hazards posed by drugs while providing mode of action (MoA) information in a high throughput manner. In other words, there is a need to complement standard genotoxicity testing according to the test battery given in ICH S2(R1) with new in vitro tools, thereby contributing to a more in-depth analysis of genotoxic effects. Here, we report on a proof-of-concept MoA approach based on post-translational modifications of proteins (PTMs) indicative of clastogenic and aneugenic effects in TK6 cells using imaging technology (with automated analysis). Cells were exposed in a 96-well plate format with a panel of reference (geno)toxic compounds and subsequently analyzed at 4 and 24 hr to detect dose-dependent changes in PTMs, relevant for mechanistic analysis. All tested compounds that interfere with the spindle apparatus yielded a BubR1 (S640) (3/3) and phospho-histone H3 (S28) (7/9) positive dose-response reflecting aneugenicity, whereas compounds inducing DNA double-strand-breaks were associated with positive FANCD2 (S1404) and 53BP1 (S1778) responses pointing to clastogenicity (2/3). The biomarker p53 (K373) was able to distinguish genotoxicants from non-genotoxicants (2/4), while the induction of reactive oxygen species (ROS), potentially causing DNA damage, was associated with a positive Nrf2 (S40) response (2/2). This work demonstrates that genotoxicants and non-genotoxicants induce different biomarker responses in TK6 cells which can be used for reliable classification into MoA groups (aneugens/clastogens/non-genotoxicants/ROS inducers), supporting a more in-depth safety assessment of drug candidates.
Collapse
Affiliation(s)
- Sabrina Wilde
- Fraunhofer ITEM, Preclinical Pharmacology and In Vitro Toxicology, Hannover, Germany
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | - Nina Queisser
- Bayer AG, Investigational Toxicology, Berlin, Germany
| | | |
Collapse
|
7
|
Doktorova TY, Oki NO, Mohorič T, Exner TE, Hardy B. A semi-automated workflow for adverse outcome pathway hypothesis generation: The use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 2020; 114:104652. [PMID: 32251711 DOI: 10.1016/j.yrtph.2020.104652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
The utility of the Adverse Outcome Pathway (AOP) concept has been largely recognized by scientists, however, the AOP generation is still mainly done manually by screening through evidence and extracting probable associations. To accelerate this process and increase the reliability, we have developed an semi-automated workflow for AOP hypothesis generation. In brief, association mining methods were applied to high-throughput screening, gene expression, in vivo and disease data present in ToxCast and Comparative Toxicogenomics Database. This was supplemented by pathway mapping using Reactome to fill in gaps and identify events occurring at the cellular/tissue levels. Furthermore, in vivo data from TG-Gates was integrated to finally derive a gene, pathway, biochemical, histopathological and disease network from which specific disease sub-networks can be queried. To test the workflow, non-genotoxic-induced hepatocellular carcinoma (HCC) was selected as a case study. The implementation resulted in the identification of several non-genotoxic-specific HCC-connected genes belonging to cell proliferation, endoplasmic reticulum stress and early apoptosis. Biochemical findings revealed non-genotoxic-specific alkaline phosphatase increase. The explored non-genotoxic-specific histopathology was associated with early stages of hepatic steatosis, transforming into cirrhosis. This work illustrates the utility of computationally predicted constructs in supporting development by using pre-existing knowledge in a fast and unbiased manner.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland.
| | - Noffisat O Oki
- American Association for the Advancement of Science, Science & Technology Policy Fellow, USA; National Institutes of Health, Rockville, MD, USA
| | - Tomaž Mohorič
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Thomas E Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Barry Hardy
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| |
Collapse
|
8
|
Triclosan: An Update on Biochemical and Molecular Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1607304. [PMID: 31191794 PMCID: PMC6525925 DOI: 10.1155/2019/1607304] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/28/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
Abstract
Triclosan (TCS) is a synthetic, chlorinated phenolic antimicrobial agent commonly used in commercial and healthcare products. Items made with TCS include soaps, deodorants, shampoos, cosmetics, textiles, plastics, surgical sutures, and prosthetics. A wealth of information obtained from in vitro and in vivo studies has demonstrated the therapeutic effects of TCS, particularly against inflammatory skin conditions. Nevertheless, extensive investigations on the molecular aspects of TCS action have identified numerous adversaries associated with the disinfectant including oxidative injury and influence of physiological lifespan and longevity. This review presents a summary of the biochemical alterations pertaining to TCS exposure, with special emphasis on the diverse molecular pathways responsive to TCS that have been elucidated during the present decade.
Collapse
|
9
|
Ates G, Mertens B, Heymans A, Verschaeve L, Milushev D, Vanparys P, Roosens NHC, De Keersmaecker SCJ, Rogiers V, Doktorova TY. A novel genotoxin-specific qPCR array based on the metabolically competent human HepaRG™ cell line as a rapid and reliable tool for improved in vitro hazard assessment. Arch Toxicol 2018; 92:1593-1608. [DOI: 10.1007/s00204-018-2172-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 01/31/2018] [Indexed: 02/01/2023]
|
10
|
Wang F, Xu R, Zheng F, Liu H. Effects of triclosan on acute toxicity, genetic toxicity and oxidative stress in goldfish (Carassius auratus). Exp Anim 2017; 67:219-227. [PMID: 29269611 PMCID: PMC5955753 DOI: 10.1538/expanim.17-0101] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Triclosan (TCS) is used as an antimicrobial agent and has been widely dispersed and
detected in the aquatic environment. However, it remains uncertain whether TCS is
genotoxic or not. In this study, the acute toxicity of TCS in goldfish (Carassius
auratus) was studied. Then, based on the results for acute toxicity, other
goldfish were exposed to various concentrations of TCS (control, DMSO control, and 1/4,
1/2, and 1/8 LC50) for 14 days, and the effects on genetic toxicity were
evaluated using micronucleus (MN) and nuclear abnormalities (NA) frequencies in peripheral
blood and the comet assay in the liver of the goldfish. In addition, malondialdehyde
(MDA), reduced glutathione (GSH), catalase (CAT), and total antioxidant capacity (T-AOC)
in the liver were assayed to evaluate oxidative stress and the possible mechanism of
genotoxicity. The 96 h median lethal concentration of TCS was 1111.9
µg/l. After 14 days of exposure, the MN and NA frequencies were
significantly increased in peripheral blood of the TCS-treated groups compared with the
solvent control, and the comet tail moment and MDA in the liver in the highest dose of TCS
groups were also significantly high. Meanwhile, an evident change in GSH, CAT, and T-AOC
of the liver was found as the TCS exposure concentration increased. The results showed
that TCS caused oxidative stress and a genotoxic response in goldfish, suggesting that it
presents a potential ecotoxicological risk to aquatic ecosystems.
Collapse
Affiliation(s)
- Fan Wang
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471022, P.R. China.,Cold Water Fish Breeding Engineering Technology Research Center of Henan Province, No. 6 Jinqing Road, Yinbin District, Luoyang 471022, P.R. China
| | - Ruijie Xu
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471022, P.R. China
| | - Fangfang Zheng
- School of Biological Science, Luoyang Normal University, No. 6 Jinqing Road, Yinbin District, Luoyang 471022, P.R. China
| | - Haifang Liu
- School of Energy and Environment Engineering, Zhongyuan University of Technology, No. 41 Zhongyuanzhong Road, Zhongyuan District, Zhengzhou 450007, P.R. China
| |
Collapse
|
11
|
Wilde S, Dambowsky M, Hempt C, Sutter A, Queisser N. Classification of in vitro genotoxicants using a novel multiplexed biomarker assay compared to the flow cytometric micronucleus test. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:662-677. [PMID: 28940655 DOI: 10.1002/em.22130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 06/07/2023]
Abstract
Regulatory in vitro genotoxicity testing exhibits shortcomings in specificity and mode of action (MoA) information. Thus, the aim of this work was to evaluate the performance of the novel MultiFlow® assay composed of mechanistic biomarkers quantified in TK6 cells after treatment (4 and 24 hr): γH2AX (DNA double strand breaks), phosphorylated H3 (mitotic cells), translocated p53 (genotoxicity), and cleaved PARP1 (apoptosis). A reference dataset of 31 compounds with well-established MoA was studied using the MicroFlow® micronucleus assay. A positive call was raised following the earlier published criteria from Litron Laboratories. In the light of our data, these evaluation criteria should probably be adjusted since only 8/11 (73%) nongenotoxicants and 18/20 (90%) genotoxicants were correctly identified. Moreover, there is a need for new in vitro tools to delineate the predominant MoA as in the MicroFlow® assay only 5/9 (56%) aneugens and 4/11 (36%) clastogens were correctly classified. In contrast, the MultiFlow® assay provides more in-depth information about the MoA and therefore reliably discriminates clastogens, aneugens, and nongenotoxicants. By using a lab-specific, practical threshold for the aforementioned biomarkers, 10/11 (91%) nongenotoxicants and 19/20 genotoxicants (95%), 9/11 (82%) clastogens, and 8/9 (89%) aneugens were correctly categorized, suggesting a clear improvement over the MicroFlow® . Furthermore, the MultiFlow markers were benchmarked against established methods to assess the validity of the data. Altogether, these findings demonstrated good agreement between the MultiFlow® assay and the benchmarking methods. Finally, p21 may improve class discrimination given the correct identification of 4/4 (100%) aneugens and 2/5 (40%) clastogens. Environ. Mol. Mutagen. 58:662-677, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sabrina Wilde
- Investigational Toxicology, Bayer AG, Berlin, Germany
| | | | - Claudia Hempt
- Investigational Toxicology, Bayer AG, Berlin, Germany
| | | | - Nina Queisser
- Investigational Toxicology, Bayer AG, Berlin, Germany
| |
Collapse
|
12
|
Lv Y, Rui C, Dai Y, Pang Q, Li Y, Fan R, Lu S. Exposure of children to BPA through dust and the association of urinary BPA and triclosan with oxidative stress in Guangzhou, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1492-1499. [PMID: 27808329 DOI: 10.1039/c6em00472e] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Both bisphenol A (BPA) and triclosan (TCS) are phenolic compounds widely used in a variety of household applications. These compounds could be released into the environment, enter the human body and cause a series of potential health hazards. Children are sensitive and susceptible to these contaminants. To investigate the potential oxidative DNA damage from exposure to BPA and TCS, ninety six urine samples of children (aged 3-6) and 57 dust samples were collected from a kindergarten in Guangzhou, China. The concentrations of urinary BPA, TCS and 8-hydroxy-2'-deoxyguanosine (8-OHdG, a biomarker of oxidative DNA damage) in urine were determined using a liquid chromatography tandem mass spectrometer. The geometric mean concentrations of urinary BPA, TCS and 8-OHdG were 1.08 μg L-1, 1.34 μg L-1 and 1.90 μg L-1, respectively. The results showed that both BPA and TCS exposures were associated with oxidative damage. Significant dose-effects existed between the urinary BPA, TCS levels and the 8-OHdG concentrations. Multiple linear regression analysis showed that one percent increase in BPA and in TCS could generate 0.15% and 0.081% increase in 8-OHdG in urine for children in Guangzhou. We also determined the concentrations of BPA in dust using high performance liquid chromatography. The mean concentration of BPA was 2.86 μg g-1 in indoor dust and 3.23 μg g-1 in outdoor dust. The dust contributes approximately 9.23% to the urinary BPA exposure for the children. In conclusion, BPA and TCS exposure correlates with oxidative DNA damage.
Collapse
Affiliation(s)
- Yanshan Lv
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Caiyan Rui
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yanyan Dai
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Qihua Pang
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yanru Li
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Ruifang Fan
- Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitoring, School of Life Science, South China Normal University, Guangzhou 510631, China. and Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shaoyou Lu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| |
Collapse
|
13
|
The Vitotox and ToxTracker assays: A two-test combination for quick and reliable assessment of genotoxic hazards. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2016; 810:13-21. [DOI: 10.1016/j.mrgentox.2016.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 12/14/2022]
|
14
|
Huang CL, Abass OK, Yu CP. Triclosan: A review on systematic risk assessment and control from the perspective of substance flow analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 566-567:771-785. [PMID: 27239720 DOI: 10.1016/j.scitotenv.2016.05.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 05/01/2016] [Accepted: 05/02/2016] [Indexed: 05/27/2023]
Abstract
Triclosan (TCS) is a broad spectrum antibacterial agent mainly used in Pharmaceutical and Personal Care Products. Its increasing use over recent decades have raised its concentration in the environment, with commonly detectable levels found along the food web-from aquatic organisms to humans in the ecosystem. To date, there is shortage of information on how to investigate TCS's systematic risk on exposed organisms including humans, due to the paucity of systematic information on TCS flows in the anthroposphere. Therefore, a more holistic approach to mass flow balancing is required, such that the systematic risk of TCS in all environmental matrices are evaluated. From the perspective of Substance Flow Analysis (SFA), this review critically summarizes the current state of knowledge on TCS production, consumption, discharge, occurrence in built and natural environments, its exposure and metabolism in humans, and also the negative effects of TCS on biota and humans. Recent risk concerns have mainly focused on TCS removal efficiencies and metabolism, but less attention is given to the effect of mass flows from source to fate during risk exposure. However, available data for TCS SFA is limited but SFA can derive logical systematic information from limited data currently available for systematic risk assessment and reduction, based on mass flow analysis. In other words, SFA tool can be used to develop a comprehensive flow chart and indicator system for the risk assessment and reduction of TCS flows in the anthroposphere, thereby bridging knowledge gaps to streamline uncertainties related to policy-making on exposure pathways within TCS flow-lines. In the final analysis, specifics on systematic TCS risk assessment via SFA, and areas of improvement on human adaptation to risks posed by emerging contaminants are identified and directions for future research are suggested.
Collapse
Affiliation(s)
- Chu-Long Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Department of Resources and Environmental Sciences, Quanzhou Normal University, 398, Donghai Street, Quanzhou 362000, China; Xiamen Key Lab of Urban Metabolism, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Olusegun K Abass
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China
| | - Chang-Ping Yu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799, Jimei Road, Xiamen 361021, China; Graduate Institute of Environmental Engineering, National Taiwan University, 71, Chou-Shan Road, Taipei 106, Taiwan.
| |
Collapse
|
15
|
Corvi R, Madia F. In vitro genotoxicity testing-Can the performance be enhanced? Food Chem Toxicol 2016; 106:600-608. [PMID: 27554597 DOI: 10.1016/j.fct.2016.08.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/16/2022]
Abstract
The assessment of genotoxicity represents an essential component of the safety assessment of all types of substances. Several in vitro tests are available at different stages of development and acceptance, yet they are not considered at present sufficient to fully replace animal tests needed to evaluate the safety of substances. For an overall improvement of the traditional genotoxicity testing paradigm, several recent activities have taken place. These include the improvement of existing tests, the development of novel tests, as well as, the establishment and exploration of approaches to optimise in vitro testing accuracy. Furthermore, useful tools, such as databases or reference chemical lists have been developed to support advances in this field.
Collapse
Affiliation(s)
- Raffaella Corvi
- European Commission, Joint Research Centre (JRC), Directorate Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, EURL ECVAM, Via E. Fermi 2749, I-21027, Ispra, Varese, Italy.
| | - Federica Madia
- European Commission, Joint Research Centre (JRC), Directorate Health, Consumers and Reference Materials, Chemicals Safety and Alternative Methods Unit, EURL ECVAM, Via E. Fermi 2749, I-21027, Ispra, Varese, Italy.
| |
Collapse
|
16
|
Ates G, Raitano G, Heymans A, Van Bossuyt M, Vanparys P, Mertens B, Chesne C, Roncaglioni A, Milushev D, Benfenati E, Rogiers V, Doktorova TY. In silico tools and transcriptomics analyses in the mutagenicity assessment of cosmetic ingredients: a proof-of-principle on how to add weight to the evidence. Mutagenesis 2016; 31:453-61. [PMID: 26980085 DOI: 10.1093/mutage/gew008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Prior to the downstream development of chemical substances, including pharmaceuticals and cosmetics, their influence on the genetic apparatus has to be tested. Several in vitro and in vivo assays have been developed to test for genotoxicity. In a first tier, a battery of two to three in vitro tests is recommended to cover mutagenicity, clastogenicity and aneugenicity as main endpoints. This regulatory in vitro test battery is known to have a high sensitivity, which is at the expense of the specificity. The high number of false positive in vitro results leads to excessive in vivo follow-up studies. In the case of cosmetics it may even induce the ban of the particular compound since in Europe the use of experimental animals is no longer allowed for cosmetics. In this article, an alternative approach to derisk a misleading positive Ames test is explored. Hereto we first tested the performance of five existing computational tools to predict the potential mutagenicity of a data set of 132 cosmetic compounds with a known genotoxicity profile. Furthermore, we present, as a proof-of-principle, a strategy in which a combination of computational tools and mechanistic information derived from in vitro transcriptomics analyses is used to derisk a misleading positive Ames test result. Our data shows that this strategy may represent a valuable tool in a weight-of-evidence approach to further evaluate a positive outcome in an Ames test.
Collapse
Affiliation(s)
| | - Giuseppa Raitano
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | | | - Melissa Van Bossuyt
- Unit of Toxicology, Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, B-1050, Brussels, Belgium
| | | | - Birgit Mertens
- Unit of Toxicology, Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, B-1050, Brussels, Belgium
| | - Christophe Chesne
- Biopredic International, Parc d'activité de la Bretèche Bâtiment A4, 35760 Saint Grégoire, France and
| | - Alessandra Roncaglioni
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | | | - Emilio Benfenati
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milan, Italy
| | | | - Tatyana Y Doktorova
- Unit of Toxicology, Scientific Institute of Public Health (WIV-ISP), Juliette Wytsmanstraat 14, B-1050, Brussels, Belgium
| |
Collapse
|
17
|
Verbist BMP, Verheyen GR, Vervoort L, Crabbe M, Beerens D, Bosmans C, Jaensch S, Osselaer S, Talloen W, Van den Wyngaert I, Van Hecke G, Wuyts D, Van Goethem F, Göhlmann HWH. Integrating High-Dimensional Transcriptomics and Image Analysis Tools into Early Safety Screening: Proof of Concept for a New Early Drug Development Strategy. Chem Res Toxicol 2015; 28:1914-25. [DOI: 10.1021/acs.chemrestox.5b00103] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Dirk Wuyts
- Janssen R&D, Turnhoutseweg 30, 2340 Beerse, Belgium
| | | | | | | |
Collapse
|