1
|
Alhosani F, Islayem D, Almansoori S, Zaka A, Nayfeh L, Rezk A, Yousef AF, Pappa AM, Nayfeh A. Antibiofilm activity of ZnO-Ag nanoparticles against Pseudomonas aeruginosa. Sci Rep 2025; 15:17321. [PMID: 40389571 PMCID: PMC12089420 DOI: 10.1038/s41598-025-02372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025] Open
Abstract
Biofilm-related infections remain a major concern in clinical settings due to the increasing challenge of antimicrobial resistance to conventional antimicrobial treatments. Surface coatings of nanomaterials that can effectively prevent biofilm formation and disrupt established biofilms are essential to addressing this challenge. In this study, a ZnO-Ag nanocomposite was synthesized via a dry chemical method and characterized using XRD, XPS, TEM, SEM-EDX, and AFM, confirming the presence of highly crystalline and pure ZnO and Ag nanoparticles with sharp nanoscale features. The nanocomposite demonstrated potent antibiofilm activity against Pseudomonas aeruginosa, a common Gram-negative biofilm-forming pathogen. Surface-coated glass slides prevented initial biofilm formation, while treatment with higher nanocomposite concentrations (≥ 0.25 g/L) significantly disrupted pre-formed biofilms and altered biofilm architecture, as shown by SEM and crystal violet assays. Mechanistic investigations suggested that nanoparticle surface sharpness may contribute to membrane disruption, and EPR analysis confirmed the generation of reactive oxygen species (ROS), particularly superoxide and methyl radicals, under light exposure. These results highlight the composite's strong potential for integration into surfaces prone to bacterial colonization, offering a practical approach for reducing biofilm-related complications.
Collapse
Affiliation(s)
- Fatima Alhosani
- Department of Electrical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Deema Islayem
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Shamma Almansoori
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Awais Zaka
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Laith Nayfeh
- Department of Electrical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ayman Rezk
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ahmed F Yousef
- Department of Biological Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
- Biotechnology Center (BTC), Khalifa University, Abu Dhabi, United Arab Emirates
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University, Abu Dhabi, United Arab Emirates
| | - Anna Maria Pappa
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Ammar Nayfeh
- Department of Electrical Engineering, Khalifa University, Abu Dhabi, United Arab Emirates.
- Research and Innovation Center for Graphene and 2D Materials (RIC-2D), Khalifa University, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
2
|
Trieu QA, Ai Ung QN, Thai PN, Mai TM, Nguyen DV. Harnessing nature for dual action: silver nanoparticles synthesized from guava leaf extract for photocatalytic degradation of methyl red and antibacterial applications. RSC Adv 2025; 15:13353-13363. [PMID: 40290746 PMCID: PMC12024704 DOI: 10.1039/d5ra02503f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025] Open
Abstract
This study revealed novel insights into key parameters affecting the biogenic synthesis of silver nanoparticles (AgNPs) with a dual-faceted application via a green route utilizing aqueous guava (Psidium guajava L.) leaf extract as both a reducing and stabilizing agent. The formation of AgNPs was visually confirmed by a color change of the reaction mixture from pale yellow to reddish-brown. Characterization of the synthesized AgNPs revealed a surface plasmon resonance band at 415-420 nm in the Ultraviolet-Visible (UV-Vis) spectra, confirming the presence of AgNPs. Dynamic light scattering (DLS) analysis indicated an average particle size of approximately 29 nm, while X-ray diffraction (XRD) analysis confirmed the crystalline nature and high purity of the synthesized AgNPs. Transmission electron microscopy (TEM) images displayed a primarily spherical morphology with an average size of about 12 nm. Fourier transform infrared (FTIR) spectroscopic analysis further supported the role of phytochemicals, such as phenolic acids and flavonoids, in the bioreduction and stabilization of the AgNPs. The synthesized AgNPs exhibited significant antibacterial activity against Gram-positive (S. aureus, E. faecalis) and Gram-negative (P. aeruginosa) bacterial strains, as demonstrated by the disc diffusion method. Furthermore, the AgNPs demonstrated promising photocatalytic activity, achieving approximately 95-96% degradation of methyl red (MR) within 72 hours under sunlight exposure. The dual functionality of the as-synthesized AgNPs opens up exciting avenues in both environmental remediation and biomedical fields.
Collapse
Affiliation(s)
- Quoc-An Trieu
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 331 National Highway 1A, An Phu Dong Ward, District 12 Ho Chi Minh City 700000 Vietnam
- Faculty of Applied Science and Technology (FAST), Nguyen Tat Thanh University 331 National Highway 1A, An Phu Dong Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | - Quynh Nu Ai Ung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 331 National Highway 1A, An Phu Dong Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | - Phung Ngoc Thai
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 331 National Highway 1A, An Phu Dong Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | - Tam Minh Mai
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 331 National Highway 1A, An Phu Dong Ward, District 12 Ho Chi Minh City 700000 Vietnam
| | - Dong Van Nguyen
- Faculty of Chemistry, University of Science 227 Nguyen Van Cu Street, Ward 4 District 5 Ho Chi Minh City Vietnam
- Vietnam National University Ho Chi Minh City (VNU-HCM) Linh Trung Ward, Thu Duc Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
Casals E, Gusta MF, Bastus N, Rello J, Puntes V. Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections. Microorganisms 2025; 13:952. [PMID: 40284788 PMCID: PMC12029289 DOI: 10.3390/microorganisms13040952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025] Open
Abstract
The escalating threat of antibiotic resistance demands innovative strategies against multidrug-resistant (MDR) microorganisms, particularly in hospital settings where such infections represent a major global health challenge. Since the rapid growth of nanotechnology interdisciplinary research and funding programs in the 2000s, silver ions have re-emerged as potent antimicrobial agents, offering a promising complement to conventional therapies. This therapeutic potential is nowadays explored through the use of silver nanoparticles (AgNPs) as sources for silver ions release. Recent studies have shown that controlled silver ion release enhances the efficacy of common antibiotics. This can be attributed to the energetically demanding nature of the bacterial response to silver, which weakens bacterial metabolism and, in turn, overwhelms bacterial defenses and increases antibiotic effectiveness. Herein, historical insights into the use of colloidal silver and AgNPs are combined with a review of recent research on the exploitation of the synergistic effect between AgNPs and antibiotics as a promising strategy against MDR pathogens.
Collapse
Affiliation(s)
- Eudald Casals
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
- Premium Research SL, 19003 Guadalajara, Spain
| | - Muriel F. Gusta
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Spain; (M.F.G.); (N.B.)
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Neus Bastus
- Catalan Institute of Nanoscience & Nanotechnology (ICN2), Consejo Superior de Investigaciones Científicas (CSIC), The Barcelona Institute of Science and Technology (BIST), Campus UAB, 08193 Bellaterra, Spain; (M.F.G.); (N.B.)
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - Jordi Rello
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Formation, Recherche, Evaluation (FOREVA) Research Unit, CHU Nîmes, 30029 Nîmes, France
| | - Victor Puntes
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain;
- Networking Research Centre for Bioengineering Biomaterials, and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
4
|
Wang C, Wei X, Zhong L, Chan CL, Li H, Sun H. Metal-Based Approaches for the Fight against Antimicrobial Resistance: Mechanisms, Opportunities, and Challenges. J Am Chem Soc 2025; 147:12361-12380. [PMID: 40063057 PMCID: PMC12007004 DOI: 10.1021/jacs.4c16035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/17/2025]
Abstract
The rapid emergency and spread of antimicrobial-resistant (AMR) bacteria and the lack of new antibiotics being developed pose serious threats to the global healthcare system. Therefore, the development of more effective therapies to overcome AMR is highly desirable. Metal ions have a long history of serving as antimicrobial agents, and metal-based compounds are now attracting more interest from scientific communities in the fight against AMR owing to their unique mechanism. Moreover, they may also serve as antibiotic adjuvants to enhance the efficacy of clinically used antibiotics. In this perspective, we highlight important showcase studies in the last 10 years on the development of metal-based strategies to overcome the AMR crisis. Specifically, we categorize these metallo-antimicrobials into five classes based on their modes of action (i.e., metallo-enzymes and metal-binding enzyme inhibitors, membrane perturbants, uptake/efflux system inhibitors/regulators, persisters inhibitors, and oxidative stress inducers). The significant advantages of metallo-antimicrobials over traditional antibiotics lie in their multitargeted mechanisms, which render less likelihood to generate resistance. However, we notice that such modes of action of metallo-antimicrobials may also raise concern over their potential side effects owing to the low selectivity toward pathogens and host, which appears to be the biggest obstacle for downstream translational research. We anticipate that combination therapy through repurposing (metallo)drugs with antibiotics and the optimization of their absorption route through formulation to achieve a target-oriented delivery will be a powerful way to combat AMR. Despite significant challenges, metallo-antimicrobials hold great opportunities for the therapeutic intervention of infection by resistant bacteria.
Collapse
Affiliation(s)
- Chenyuan Wang
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Xueying Wei
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- Department
of Microbiology, The University of Hong
Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Liang Zhong
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Chun-Lung Chan
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Hongyan Li
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| | - Hongzhe Sun
- Department
of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- CAS-HKU
Joint Laboratory of Metallomics for Health and Environment, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
- State
Key Laboratory of Synthetic Chemistry, The
University of Hong Kong, Pokfulam Road, Hong Kong SAR, PR China
| |
Collapse
|
5
|
Zhang D, Kukkar D, Bhatt P, Kim KH, Kaur K, Wang J. Novel nanomaterials-based combating strategies against drug-resistant bacteria. Colloids Surf B Biointerfaces 2025; 248:114478. [PMID: 39778220 DOI: 10.1016/j.colsurfb.2024.114478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Numerous types of contemporary antibiotic treatment regimens have become ineffective with the increasing incidence of drug tolerance. As a result, it is pertinent to seek novel and innovative solutions such as antibacterial nanomaterials (NMs) for the prohibition and treatment of hazardous microbial infections. Unlike traditional antibiotics (e.g., penicillin and tetracycline), the unique physicochemical characteristics (e.g., size dependency) of NMs endow them with bacteriostatic and bactericidal potential. However, it is yet difficult to mechanistically predict or decipher the networks of molecular interaction (e.g., between NMs and the biological systems) and the subsequent immune responses. In light of such research gap, this review outlines various mechanisms accountable for the inception of drug tolerance in bacteria. It also delineates the primary factors governing the NMs-induced molecular mechanisms against microbes, specifically drug-resistant bacteria along with the various NM-based mechanisms of antibacterial activity. The review also explores future directions and prospects for NMs in combating drug-resistant bacteria, while addressing challenges to their commercial viability within the healthcare industry.
Collapse
Affiliation(s)
- Daohong Zhang
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| | - Deepak Kukkar
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India.
| | - Poornima Bhatt
- Department of Biotechnology, Chandigarh University, Gharuan, Mohali 140413, India; University Center for Research and Development, Chandigarh University, Gharuan, Mohali 140413, India
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, South Korea.
| | - Kamalpreet Kaur
- Department of Chemistry, Mata Gujri College, Fatehgarh Sahib, Punjab 140406, India
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Sevinc-Sasmaz C, Erci F, Torlak E, Yöntem M. Characterization of Silver Nanoparticles Synthesized Using Hypericum perforatum L. and Their Effects on Staphylococcus aureus. Microsc Res Tech 2025. [PMID: 40121669 DOI: 10.1002/jemt.24862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/12/2025] [Accepted: 03/16/2025] [Indexed: 03/25/2025]
Abstract
This study investigates the synthesis of silver nanoparticles (AgNPs) using Hypericum perforatum L. and evaluates their antibacterial and antibiofilm activities against Staphylococcus aureus. The synthesized AgNPs were characterized by UV-Vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). UV-Vis spectroscopy showed a maximum absorption peak at 448 nm, which indicates that nanoparticles have been formed successfully. TEM analysis showed that the AgNPs were spherical, with an average size of 35 ± 2.7 nm. FTIR confirmed the presence of functional groups on the surface of AgNP that may be contributing to its biological activity. The AgNPs exhibited significant antibacterial activity, with a minimum inhibitory concentration (MIC) of 75 μg/mL and an inhibition zone of 13 ± 0.13 mm at this concentration. They were also highly effective in inhibiting biofilm formation even at a concentration of 25 μg/mL, reducing biofilm formation by 47.25% ± 3.51%. At increased concentrations, nanoparticles have been shown to compromise bacterial membranes, leading to significant membrane disruption. This disruption subsequently results in a reduction of cellular respiration, with observed decreases of approximately twofold when compared to controls. Additionally, nanoparticles facilitate the production of superoxide anions, which can rise by about threefold, consequently enhancing the overall effectiveness of bacterial inactivation. Field emission scanning electron microscopy (FE-SEM) revealed structural damage to bacterial cells treated with AgNPs, supporting their antimicrobial effects. These findings suggest that AgNPs synthesized from H. perforatum could serve as effective antimicrobial agents against S. aureus. Their ability to disrupt bacterial cell membranes, inhibit respiration, and induce oxidative stress makes them promising candidates for antimicrobial and antibiofilm applications, particularly given the increasing concern over bacterial resistance to conventional antibiotics.
Collapse
Affiliation(s)
- Canan Sevinc-Sasmaz
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Fatih Erci
- Department of Biotechnology, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Emrah Torlak
- Department of Molecular Biology and Genetics, Faculty of Science, Necmettin Erbakan University, Konya, Turkey
| | - Mustafa Yöntem
- Department of Nursing, Faculty of Health Sciences, Karamanoglu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
7
|
Thapliyal D, Verros GD, Arya RK. Nanoparticle-Doped Antibacterial and Antifungal Coatings. Polymers (Basel) 2025; 17:247. [PMID: 39861318 PMCID: PMC11768809 DOI: 10.3390/polym17020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs. Copper NPs and silver NPs exhibit antibacterial and antifungal properties. So, when present in coatings, they will release metal ions with the combined effect of having bacteriostatic/bactericidal properties, preventing the growth of pathogens on surfaces covered by these nano-enhanced films. In addition, metal oxide NPs such as titanium dioxide NPs (TiO2 NPs) and zinc oxide NPs (ZnONPs) are used as NPs in antimicrobial polymeric coatings. Under UV irradiation, these NPs show photocatalytic properties that lead to the production of reactive oxygen species (ROS) when exposed to UV radiation. After various forms of nano-carbon materials were successfully developed over the past decade, they and their derivatives from graphite/nanotubes, and composite sheets have been receiving more attention because they share an extremely large surface area, excellent mechanical strength, etc. These NPs not only show the ability to cause oxidative stress but also have the ability to release antimicrobial chemicals under control, resulting in long-lasting antibacterial action. The effectiveness and life spans of the antifouling performance of a variety of polymeric materials have been improved by adding nano-sized particles to those coatings.
Collapse
Affiliation(s)
- Devyani Thapliyal
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| | - George D. Verros
- Department of Chemistry, Aristotle University of Thessaloniki, Plagiari Thes., P.O. Box 454, 57500 Epanomi, Greece;
| | - Raj Kumar Arya
- Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India;
| |
Collapse
|
8
|
Gheorghe-Barbu I, Czobor Barbu I, Dragomir RI, Marinaș IC, Stan MS, Pericleanu R, Dumbravă AȘ, Rotaru LI, Paraschiv S, Bănică LM, Pecete I, Oțelea D, Cristea VC, Popa MI, Țânțu MM, Surleac M. Emerging Resistance and Virulence Patterns in Salmonella enterica: Insights into Silver Nanoparticles as an Antimicrobial Strategy. Antibiotics (Basel) 2025; 14:46. [PMID: 39858332 PMCID: PMC11762817 DOI: 10.3390/antibiotics14010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/20/2024] [Accepted: 01/01/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES This study aims to characterize antibiotic resistance (AR) and virulence markers in Salmonella spp. isolated from Romanian outpatients' stool samples. METHODS In 2019, community-acquired Salmonella strains were collected and identified using MALDI-TOF mass spectrometry, antibiotic susceptibility profiles have been determined with the MicroScan system, and soluble virulence factors were evaluated using specific culture media, while biofilm formation was quantified in 96-well plates. Molecular analysis targeted resistance genes for β-lactams (e.g., blaTEM and blaSHV); tetracyclines (e.g., tet(A)); sulphonamides; and quinolones, as well as virulence genes (e.g., invA, spvC, pldA, and held). Whole-genome sequencing (WGS) was performed on 19 selected isolates. A silver nanoparticles (AgNPsol) alternative to conventional antibiotics was tested for effectiveness against multidrug-resistant (MDR) isolates. RESULTS From the total of 309 Salmonella isolates (65.05% from children under 4 years of age) belonging to four subtypes and four serovars, 27.86% showed resistance to at least one antibiotic, most frequently to tetracycline, ampicillin, and piperacillin. The strains frequently expressed haemolysin (67%), aesculinase (65%), and gelatinase (62%). Resistance to trimethoprim-sulfamethoxazole was encoded by the sul1 gene in 44.83% of the strains and to tetracyclines by the tet(A) gene (59.52%). The ESBL genes blaTEM, blaSHV, and blaCTX-M were detected by PCR in 16.18%, 2.91%, and 0.65% of the strains, respectively. Additionally, 98.63% of the strains carried the invA marker, with notable positive associations between blaSHV, qnrB, and sul1 with spvC. CONCLUSIONS The present findings revealed significant patterns in Salmonella isolates, subtypes, serovars, AR, and virulence, emphasising the need for continuous surveillance of Salmonella infections. Additionally, the potential of AgNPs as an alternative treatment option was demonstrated, particularly for paediatric S. enterica infections.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ilda Czobor Barbu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Rareș-Ionuț Dragomir
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Ioana Cristina Marinaș
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Miruna Silvia Stan
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
| | - Radu Pericleanu
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Andreea Ștefania Dumbravă
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
| | - Liviu-Iulian Rotaru
- Department of Botany and Microbiology, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania; (I.G.-B.); (R.-I.D.); (R.P.); (A.Ș.D.); (L.-I.R.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Simona Paraschiv
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Leontina Mirela Bănică
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Ionuț Pecete
- Synevo Central Lab Romania, 021408 Bucharest, Romania;
| | - Dan Oțelea
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| | - Violeta Corina Cristea
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
| | - Mircea Ioan Popa
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (V.C.C.); (M.I.P.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Marilena Monica Țânțu
- National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania;
- Department of Medical Assistance and Physiotherapy, Faculty of Sciences, Physical Education and Informatics, University of Pitești, 110040 Pitesti, Romania
| | - Marius Surleac
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania; (I.C.M.); (M.S.S.); (M.S.)
- National Institute for Infectious Diseases Prof. Dr. Matei Bals, 021105 Bucharest, Romania; (S.P.); (L.M.B.); (D.O.)
| |
Collapse
|
9
|
Ma X, Poma A. Clinical translation and envisioned impact of nanotech for infection control: Economy, government policy and public awareness. NANOTECHNOLOGY TOOLS FOR INFECTION CONTROL 2025:299-392. [DOI: 10.1016/b978-0-12-823994-0.00004-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Jakubczak M, Bury D, Montes-García V, Ciesielski A, Naguib M, Jastrzębska AM. Bacterial Responses and Material-Cell Interplays With Novel MoAlB@MBene. Adv Healthc Mater 2025; 14:e2402323. [PMID: 39460417 DOI: 10.1002/adhm.202402323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/08/2024] [Indexed: 10/28/2024]
Abstract
Developing efficient antibacterial nanomaterials has potential across diverse fields, but it requires a deeper understanding of material-bacteria interactions. In this study, a novel 2D core-shell MoAlB@MBene structure is synthesized using a mild wet-chemical etching approach. The growth of E. coli, S. aureus, and B. subtilis bacteria in the presence of MoAlB@MBene decreased in a concentration-dependent manner, with a prolonged lag phase in the initial 6 h of incubation. Even under dark conditions, MoAlB@MBene triggered the formation of intercellular reactive oxygen species (ROS) and singlet oxygen (1O2) in bacteria, while the bacteria protected themselves by forming biofilm and altering cell morphology. The MoAlB@MBene shows consistent light absorption across the visible range, along with a distinctive UV absorption edge. Two types of band gaps are identified: direct (1.67 eV) and indirect (0.74 eV), which facilitate complex light interactions with MoAlB@MBene. Exposure to simulated white light led to decreased viability rates of E. coli (20.6%), S. aureus (22.9%), and B. subtilis (21.4%). Altogether, the presented study enhances the understanding of bacteria responses in the presence of light-activated 2D nanomaterials.
Collapse
Affiliation(s)
- Michał Jakubczak
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| | - Dominika Bury
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| | - Verónica Montes-García
- Institut de Science et d'Ingénierie Supramoléculaires (I.S.I.S.), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
| | - Artur Ciesielski
- Institut de Science et d'Ingénierie Supramoléculaires (I.S.I.S.), Université de Strasbourg & CNRS, 8 allée Gaspard Monge, Strasbourg, 67000, France
- Center for Advanced Technologies, Adam Mickiewicz University, Uniwersytetu Poznańskiego 10, Poznań, 61-614, Poland
| | - Michael Naguib
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA, 70118, USA
- Department of Chemistry, Tulane University, New Orleans, LA, 70118, USA
| | - Agnieszka M Jastrzębska
- Faculty of Mechatronics, Warsaw University of Technology, św. Andrzeja Boboli 8, Warsaw, 02-525, Poland
| |
Collapse
|
11
|
Lange A, Kutwin M, Zawadzka K, Ostrowska A, Strojny-Cieślak B, Nasiłowska B, Bombalska A, Jaworski S. Impaired Biofilm Development on Graphene Oxide-Metal Nanoparticle Composites. Nanotechnol Sci Appl 2024; 17:303-320. [PMID: 39734361 PMCID: PMC11681909 DOI: 10.2147/nsa.s485841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
Purpose Biofilms are one of the main threats related to bacteria. Owing to their complex structure, in which bacteria are embedded in the extracellular matrix, they are extremely challenging to eradicate, especially since they can inhabit both biotic and abiotic surfaces. This study aimed to create an effective antibiofilm nanofilm based on graphene oxide-metal nanoparticles (GOM-NPs). Methods To create nanofilms, physicochemical analysis was performed, including zeta potential (Zp) (and the nanocomposites stability in time) and size distribution measurements, scanning transmission electron microscopy (STEM), energy dispersive X-ray analysis (EDX), and atomic force microscopy (AFM) of the nanofilm surfaces. During biological analysis, reactive oxygen species (ROS) and antioxidant capacity were measured in planktonic cells treated with the nanocomposites. Thereafter, biofilm formation was checked via crystal violet staining, biofilm thickness was assessed by confocal microscopy using double fluorescent staining, and biofilm structure was analyzed by scanning electron microscopy. Results The results showed that two of the three nanocomposites were effective in reducing biofilm formation (GOAg and GOZnO), although the nanofilms were characterized by the roughest surface, indicating that high surface roughness is unfavorable for biofilm formation by the tested bacterial species (Staphylococcus aureus (ATCC 25923), Salmonella enterica (ATCC 13076), Pseudomonas aeruginosa (ATCC 27853)). Conclusion The performed analysis indicated that graphene oxide may be a platform for metal nanoparticles that enhances their properties (eg colloidal stability, which is maintained over time). Nanocomposites based on graphene oxide with silver nanoparticles and other types of nanocomposites with zinc oxide were effective against biofilms, contributing to changes throughout the biofilm structure, causing a significant reduction in the thickness of the structure, and affecting cell distribution. A nanocomposite consisting of graphene oxide with copper nanoparticles inhibited the biofilm, but to a lesser extent.
Collapse
Affiliation(s)
- Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Katarzyna Zawadzka
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Strojny-Cieślak
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| | - Barbara Nasiłowska
- Center for Biomedical Engineering, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Aneta Bombalska
- Department of Optoelectronic Technologies, Institute of Optoelectronics, Military University of Technology, Warsaw, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, Poland
| |
Collapse
|
12
|
Zhong W, Handschuh-Wang S, Uthappa UT, Shen J, Qiu M, Du S, Wang B. Miniature Robots for Battling Bacterial Infection. ACS NANO 2024; 18:32335-32363. [PMID: 39527542 DOI: 10.1021/acsnano.4c11430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Micro/nanorobots have shown great promise for minimally invasive bacterial infection therapy. However, bacterial infections usually form biofilms inside the body by aggregation and adhesion, preventing antibiotic penetration and increasing the likelihood of recurrence. Moreover, a substantial portion of the infection happens in those hard-to-access regions, making delivery of antibiotics to infected sites or tissues difficult and exacerbating the challenge of addressing bacterial infections. Micro/nanorobots feature exceptional mobility and controllability, are able to deliver drugs to specific sites (targeted delivery), and enhance drug penetration. In particular, the emergence of bioinspired microrobot surface design strategies have provided effective alternatives for treating infections, thereby preventing the possible development of bacterial resistance. In this paper, we review the recent advances in design, mechanism, and actuation modalities of micro/nanorobots with exceptional antimicrobial features, highlighting active therapy strategies for bacterial infections and derived complications at various organs, from the laboratory bench to in vivo applications. The current challenges and future research directions in this field are summarized. Those breakthroughs in micro/nanorobots offer a huge potential for clinical translation for bacterial infection therapy.
Collapse
Affiliation(s)
- Weijie Zhong
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| | - Stephan Handschuh-Wang
- College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, P. R. China
| | - U T Uthappa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 602105, India
| | - Jie Shen
- Shenzhen Key Laboratory of Spine Surgery, Department of Spine Surgery, Peking University Shenzhen Hospital, Shenzhen 518036, P. R. China
| | - Ming Qiu
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Shiwei Du
- Department of Neurosurgery, South China Hospital of Shenzhen University, Shenzhen 518111, P.R. China
| | - Ben Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China
| |
Collapse
|
13
|
Kerdsomboon K, Techo T, Mhuantong W, Limcharoensuk T, Luangkamchorn ST, Laoburin P, Auesukaree C. Genomic and transcriptomic analyses reveal insights into cadmium resistance mechanisms of Cupriavidus nantongensis strain E324. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175915. [PMID: 39216765 DOI: 10.1016/j.scitotenv.2024.175915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The cadmium-resistant Cupriavidus sp. strain E324 has been previously shown to have a high potential for use in cadmium (Cd) remediation, due to its high capacity for cadmium bioaccumulation. According to the comparative genomic analysis, the strain E324 was most closely related to C. nantongensis X1T, indicating that the strain E324 should be re-identified as C. nantongensis. To unravel the Cd tolerance mechanisms of C. nantongensis strain E324, the transcriptional response of this strain to acute Cd exposure was assessed using RNA-seq-based transcriptome analysis, followed by validation through qRT-PCR. The results showed that the upregulated Differentially Expressed Genes (DEGs) were significantly enriched in categories related to metal binding and transport, phosphate transport, and oxidative stress response. Consistently, we observed significant increases in both the cell wall and intracellular contents of certain essential metals (Cu, Fe, Mn, and Zn) upon Cd exposure. Among these, only the Zn pretreatment resulting in high Zn accumulation in the cell walls could enhance bacterial growth under Cd stress conditions through its role in inhibiting Cd accumulation. Additionally, the promotion of catalase activity and glutathione metabolism upon Cd exposure to cope with Cd-induced oxidative stress was demonstrated. Meanwhile, the upregulation of phosphate transport-related genes upon Cd treatment seems to be the bacterial response to Cd-induced phosphate depletion. Altogether, our findings suggest that these adaptive responses are critical mechanisms contributing to increased Cd tolerance in C. nantongensis strain E324 via the enhancement of metal-chelating and antioxidant capacities of the cells.
Collapse
Affiliation(s)
- Kittikhun Kerdsomboon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Todsapol Techo
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park, Pathum Thani 12120, Thailand
| | - Tossapol Limcharoensuk
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Supinda Tatip Luangkamchorn
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Analytical Sciences and National Doping Test Institute, Mahidol University, Bangkok 10400, Thailand
| | - Patcharee Laoburin
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
14
|
Thomas S, Gonsalves RA, Jose J, Zyoud SH, Prasad AR, Garvasis J. Plant-based synthesis, characterization approaches, applications and toxicity of silver nanoparticles: A comprehensive review. J Biotechnol 2024; 394:135-149. [PMID: 39159752 DOI: 10.1016/j.jbiotec.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/03/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
The development of an environmentally benign method for the synthesis of nanoparticles has been facilitated by green chemistry. "Green synthesis" uses a range of biological elements like microbes, plants, and other biodegradable materials to produce NPs. Active biomolecules that are secreted by natural strains and present in the plant extracts serve as both reducing and capping/stabilizing agents. Microorganisms' intracellular enzymes can reduce metal ions, which explains how NPs might potentially nucleate. Plant-based synthesis of nanomaterials is particularly promising owing to abundant resources, simplicity of synthesis, and low cost. Silver nanoparticles (AgNPs) are attracting great attention in the research community due to their wide variety of applications in chemistry, food technology, microbiology, and biomedicine. Recent years have seen a large amount of research on the bio-genic synthesis of AgNPs employing biomaterials like plant extract and bacteria as reducing agents. Herein we discuss a thorough overview of the plant-based synthesis of silver nanoparticles (AgNPs), characterization approaches, applications, and toxicity. The review covers the green chemistry and nanotechnology elements of producing AgNPs, including a thorough discussion of the plant extract mediated synthesis, detailed formation mechanism, and a well-balanced emphasis on hazards and advantages. Based on current developments, the optimisation strategies, applications, and interdisciplinary characteristics are also covered in detail.
Collapse
Affiliation(s)
- Shijith Thomas
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Richard A Gonsalves
- Department of Chemistry, St. Aloysius College (Autonomous), Mangalore 575003, India.
| | - Jomy Jose
- Department of Applied Science and Humanities, Vimal Jyothi Engineering College, Kannur 670632, India.
| | - Samer H Zyoud
- Department of Mathematics and Sciences, Center of Medical and Bio-Allied Health Science Research, Ajman University, P.O.Box: 346, United Arab Emirates.
| | - Anupama R Prasad
- Department of Chemistry, Christ College (Autonomous), Thrissur 680125, India.
| | - Julia Garvasis
- Department of Chemistry, University of Calicut, Malappuram 680566, India.
| |
Collapse
|
15
|
Xiao R, Liang H, Tian B, Li X, Song T. A fluorescent sensor for rapid and quantitative aquatic bacteria detection based on bacterial reactive oxygen species using Ag@carbon dots composites. Mikrochim Acta 2024; 191:699. [PMID: 39455470 DOI: 10.1007/s00604-024-06783-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024]
Abstract
A novel fluorescent sensor based on silver nanoparticle-carbon dot composites (Ag@CDs) has been developed for the rapid and quantitative detection of aquatic bacteria. The sensor operates on the principle of plasmon-enhanced resonance energy transfer, where the fluorescence of CDs is quenched by Ag nanoparticles and restored upon bacterial interaction due to the generation of reactive oxygen species. The Ag@CDs exhibit a linear response to bacterial concentration over the range 7 × 104 ~ 4 × 107 CFU·mL-1, with a low detection limit of 4 × 104 CFU·mL-1. The fluorescence recovery is rapid, reaching maximum intensity within 5 min. The method demonstrates high selectivity, with minimal interference from common ions and compounds found in municipal and industrial wastewater. The Ag@CDs-based 96-well plate assay for quantitative measurement of bacteria was developed. The assay's performance was further validated through the analysis of real water samples, showing a recovery of 94.0 ~ 102% for domestic wastewater and 97.6 ~ 106% for industrial wastewater. Also, Ag@CDs-based test strips assay for semi-quantitation were developed for rapid in-field aquatic bacteria detection. Ag@CDs can be conveniently integrated into 96-well plates and test strips, providing rapid on-site aquatic bacteria testing.
Collapse
Affiliation(s)
- Ruilin Xiao
- Taiyuan University of Technology, 209 University Street, Jinzhong, 030600, Shanxi, China
| | - Haixia Liang
- Taiyuan University of Technology, 209 University Street, Jinzhong, 030600, Shanxi, China
| | - Baohua Tian
- Taiyuan University of Technology, 209 University Street, Jinzhong, 030600, Shanxi, China
| | - Xinxin Li
- Taiyuan University of Technology, 209 University Street, Jinzhong, 030600, Shanxi, China.
| | - Tingshan Song
- Taiyuan University of Technology, 209 University Street, Jinzhong, 030600, Shanxi, China.
| |
Collapse
|
16
|
Reyes-Guzmán VL, Villarreal-Gómez LJ, Vázquez-Mora R, Méndez-Ramírez YI, Paz-González JA, Zizumbo-López A, Borbón H, Lizarraga-Medina EG, Cornejo-Bravo JM, Pérez-González GL, Ontiveros-Zepeda AS, Pérez-Sánchez A, Chavira-Martínez E, Huirache-Acuña R, Estévez-Martínez Y. Integrating an antimicrobial nanocomposite to bioactive electrospun fibers for improved wound dressing materials. Sci Rep 2024; 14:25118. [PMID: 39443526 PMCID: PMC11499993 DOI: 10.1038/s41598-024-75814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 10/08/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the fabrication and characterization of electrospun poly (ε-caprolactone)/poly (vinyl pyrrolidone) (PCL/PVP) fibers integrated with a nanocomposite of chitosan, silver nanocrystals, and graphene oxide (ChAgG), aimed at developing advanced wound dressing materials. The ChAgG nanocomposite, recognized for its antimicrobial and biocompatible properties, was incorporated into PCL/PVP fibers through electrospinning techniques. We assessed the resultant fibers' morphological, physicochemical, and mechanical properties, which exhibited significant enhancements in mechanical strength and demonstrated effective antimicrobial activity against common bacterial pathogens. The findings suggest that the PCL/PVP-ChAgG fibers maintain biocompatibility and facilitate controlled therapeutic delivery, positioning them as a promising solution for managing chronic and burn-related wounds. This study underscores the potential of these advanced materials to improve healing outcomes cost-effectively, particularly in settings plagued by high incidences of burn injuries. Further clinical investigations are recommended to explore these innovative fibers' full potential and real-world applicability.
Collapse
Affiliation(s)
- Victoria Leonor Reyes-Guzmán
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Luis Jesús Villarreal-Gómez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México.
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México.
| | - Rubi Vázquez-Mora
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Yesica Itzel Méndez-Ramírez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México
| | - Juan Antonio Paz-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Zizumbo-López
- Tecnológico Nacional de México, Campus Tijuana, Blvd. Alberto Limón Padilla y Av. ITR Tijuana S/N, Colonia Mesa de Otay, Tijuana, C.P. 22500, Baja California, México
| | - Hugo Borbón
- Centro de Nanociencias y Nanotecnología, Universidad Nacional Autónoma de México, Carr. Tijuana-Ensenada km107, C.I.C.E.S.E, Ensenada, 22860, Baja California, México
| | - Eder Germán Lizarraga-Medina
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - José Manuel Cornejo-Bravo
- Facultad de Ciencias Química e Ingeniería, Universidad Autónoma de Baja California, Universidad #14418, UABC, Parque Internacional Industrial Tijuana, Tijuana, 22424, Baja California, México
| | - Graciela Lizeth Pérez-González
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Arturo Sinue Ontiveros-Zepeda
- Facultad de Ciencias de la Ingeniería, Administrativas y Sociales, Universidad Autónoma de Baja California, Blvrd Universidad 1, San Fernando, Tecate, 21460, Baja California, México
| | - Armando Pérez-Sánchez
- Facultad de Ciencias de la Ingeniería y Tecnología, Universidad Autónoma de Baja California, Blvd. Universitario, #1000. Unidad Valle de las Palmas. Tijuana, Baja, Tijuana, CP. 21500, Baja California, México
| | - Elizabeth Chavira-Martínez
- Instituto de Investigaciones en Materiales, Circuito Exterior S/N Circuito de la Investigación Científica, C.U, Ciudad de México, 04510, México.
| | - Rafael Huirache-Acuña
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán, 58060, Morelia, Mexico
| | - Yoxkin Estévez-Martínez
- Tecnológico Nacional de México, Unidad Tecnológica Acatlán, Campús Acatlán de Osorio, Carretera Acatlán - San Juan Ixcaquistla kilómetro 5.5, Del Maestro, Acatlán, 74949, Puebla, México.
| |
Collapse
|
17
|
Corciovă A, Mircea C, Fifere A, Turin-Moleavin IA, Roşca I, Macovei I, Ivănescu B, Vlase AM, Hăncianu M, Burlec AF. Biogenic Synthesis of Silver Nanoparticles Mediated by Aronia melanocarpa and Their Biological Evaluation. Life (Basel) 2024; 14:1211. [PMID: 39337993 PMCID: PMC11433241 DOI: 10.3390/life14091211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/07/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024] Open
Abstract
In the present study, two A. melanocarpa berry extracts were used for the synthesis of silver nanoparticles (AgNPs). After the optimization of synthesis, the AgNPs were characterized using UV-Vis, FTIR, EDX, DLS, and STEM analyses. The stability in different media, phytotoxicity, as well as antimicrobial and antioxidant activities were also evaluated. The ideal synthesis conditions were represented by a 3 mM AgNO3 concentration, 1:9 extract:AgNO3 volume ratio, alkaline medium, and stirring at 40 °C for 120 min. The synthesis was confirmed by the surface plasmon resonance (SPR) peak at 403 nm, and the strong signal at 3 keV from the EDX spectra. FTIR analysis indicated that polyphenols, polysaccharides, and amino acids could be the compounds responsible for synthesis. Stability tests and the negative zeta potential values showed that phytocompounds also play a role in the stabilization and capping of AgNPs. The preliminary phytotoxicity studies on T. aestivum showed that both the extracts and their corresponding AgNPs had an impact on the growth of roots and shoots as well as on the microscopic structure of leaves. The synthesized AgNPs presented antimicrobial activity against S. aureus, E. coli, and C. albicans. Moreover, considering the results obtained in the lipoxygenase inhibition, the DPPH and hydroxyl scavenging activities, and the ferrous ion chelating assay, AgNPs exhibit promising antioxidant activity.
Collapse
Affiliation(s)
- Andreia Corciovă
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Cornelia Mircea
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Adrian Fifere
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Ioana-Andreea Turin-Moleavin
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Roşca
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania; (A.F.); (I.-A.T.-M.); (I.R.)
| | - Irina Macovei
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Bianca Ivănescu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana-Maria Vlase
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Iuliu Hațieganu University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania;
| | - Monica Hăncianu
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| | - Ana Flavia Burlec
- Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.C.); (C.M.); (M.H.); (A.F.B.)
| |
Collapse
|
18
|
Aguilar-Garay R, Lara-Ortiz LF, Campos-López M, Gonzalez-Rodriguez DE, Gamboa-Lugo MM, Mendoza-Pérez JA, Anzueto-Ríos Á, Nicolás-Álvarez DE. A Comprehensive Review of Silver and Gold Nanoparticles as Effective Antibacterial Agents. Pharmaceuticals (Basel) 2024; 17:1134. [PMID: 39338299 PMCID: PMC11434858 DOI: 10.3390/ph17091134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing threat from antibiotic-resistant bacteria has necessitated the development of novel methods to counter bacterial infections. In this context, the application of metallic nanoparticles (NPs), especially gold (Au) and silver (Ag), has emerged as a promising strategy due to their remarkable antibacterial properties. This review examines research published between 2006 and 2023, focusing on leading journals in nanotechnology, materials science, and biomedical research. The primary applications explored are the efficacy of Ag and Au NPs as antibacterial agents, their synthesis methods, morphological properties, and mechanisms of action. An extensive review of the literature on NPs synthesis, morphology, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and effectiveness against various Gram(+/-) bacteria confirms the antibacterial efficacy of Au and Ag NPs. The synthesis methods and characteristics of NPs, such as size, shape, and surface charge, are crucial in determining their antibacterial activity, as these factors influence their interactions with bacterial cells. Furthermore, this review underscores the urgent necessity of standardizing synthesis techniques, MICs, and reporting protocols to enhance the comparability and reproducibility of future studies. Standardization is essential for ensuring the reliability of research findings and accelerating the clinical application of NP-based antimicrobial approaches. This review aims to propel NP-based antimicrobial strategies by elucidating the properties that enhance the antibacterial activity of Ag and Au NPs. By highlighting their inhibitory effects against various bacterial strains and relatively low cytotoxicity, this work positions Ag and Au NPs as promising materials for developing antibacterial agents, making a significant contribution to global efforts to combat antibiotic-resistant pathogens.
Collapse
Affiliation(s)
- Ricardo Aguilar-Garay
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Luis F. Lara-Ortiz
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| | - Maximiliano Campos-López
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Dafne E. Gonzalez-Rodriguez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Margoth M. Gamboa-Lugo
- Faculty of Chemical and Biological Sciences, Universidad Autónoma de Sinaloa, Culiacan 80013, Mexico;
| | - Jorge A. Mendoza-Pérez
- Clean Technologies, Environmental Process Development and Green Engineering Laboratory, Department of Environmental Systems Engineering, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico; (R.A.-G.); (M.C.-L.); (D.E.G.-R.); (J.A.M.-P.)
| | - Álvaro Anzueto-Ríos
- Bionic Academy, Unidad Profesional Interdisciplinaria en Ingeniería y Tecnologías Avanzadas, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Dulce E. Nicolás-Álvarez
- Hormones and Behavior Laboratory, Department of Physiology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City 07738, Mexico;
| |
Collapse
|
19
|
Shi Y, Wang L, Song S, Liu M, Zhang P, Zhong D, Wang Y, Niu Y, Xu Y. Controllable Silver Release for Efficient Treatment of Drug-Resistant Bacterial-Infected Wounds. Chembiochem 2024; 25:e202400406. [PMID: 38850275 DOI: 10.1002/cbic.202400406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/10/2024]
Abstract
The use of traditional Ag-based antibacterial agents is usually accompanied by uncontrollable silver release, which makes it difficult to find a balance between antibacterial performance and biosafety. Herein, we prepared a core-shell system of ZIF-8-derived amorphous carbon-coated Ag nanoparticles (Ag@C) as an ideal research model to reveal the synergistic effect and structure-activity relationship of the structural transformation of carbon shell and Ag core on the regulation of silver release behavior. It is found that Ag@C prepared at 600 °C (AC6) exhibits the best ion release kinetics due to the combination of relatively simple shell structure and lower crystallinity of the Ag core, thereby exerting stronger antibacterial properties (>99.999 %) at trace doses (20 μg mL-1) compared with most other Ag-based materials. Meanwhile, the carbon shell prevents the metal Ag from being directly exposed to the organism and thus endows AC6 with excellent biocompatibility. In animal experiments, AC6 can effectively promote wound healing by inactivating drug-resistant bacteria while regulating the expression of TNF-α and CD31. This work provides theoretical support for the scientific design and clinical application of controllable ion-releasing antibacterial agents.
Collapse
Affiliation(s)
- Yanfeng Shi
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Lupeng Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Siqi Song
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Miao Liu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Pengfei Zhang
- Department of Urology, Key Laboratory of Urinary System Diseases, The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Di Zhong
- Department of Genetics and Cell Biology, Basic Medical School, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yanjing Wang
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yusheng Niu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| | - Yuanhong Xu
- Institute of Biomedical Engineering, College of Life Sciences, Qingdao University, Qingdao, 266071, Shandong, China
| |
Collapse
|
20
|
Corbu VM, Georgescu AM, Marinas IC, Pericleanu R, Mogos DV, Dumbravă AȘ, Marinescu L, Pecete I, Vassu-Dimov T, Czobor Barbu I, Csutak O, Ficai D, Gheorghe-Barbu I. Phenotypic and Genotypic Characterization of Resistance and Virulence Markers in Candida spp. Isolated from Community-Acquired Infections in Bucharest, and the Impact of AgNPs on the Highly Resistant Isolates. J Fungi (Basel) 2024; 10:563. [PMID: 39194889 DOI: 10.3390/jof10080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/04/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND This study aimed to determine, at the phenotypic and molecular levels, resistance and virulence markers in Candida spp. isolated from community-acquired infections in Bucharest outpatients during 2021, and to demonstrate the efficiency of alternative solutions against them based on silver nanoparticles (AgNPs). METHODS A total of 62 Candida spp. strains were isolated from dermatomycoses and identified using chromogenic culture media and MALDI-TOF MS, and then investigated for their antimicrobial resistance and virulence markers (VMs), as well as for metabolic enzymes using enzymatic tests for the expression of soluble virulence factors, their biofilm formation and adherence capacity on HeLa cells, and PCR assays for the detection of virulence markers and the antimicrobial activity of alternative solutions based on AgNPs. RESULTS Of the total of 62 strains, 45.16% were Candida parapsilosis; 29.03% Candida albicans; 9.67% Candida guilliermondii; 3.22% Candida lusitaniae, Candia pararugosa, and Candida tropicalis; and 1.66% Candida kefyr, Candida famata, Candida haemulonii, and Candida metapsilosis. Aesculin hydrolysis, caseinase, and amylase production were detected in the analyzed strains. The strains exhibited different indices of adherence to HeLa cells and were positive in decreasing frequency order for the LIP1, HWP1, and ALS1,3 genes (C. tropicalis/C. albicans). An inhibitory effect on microbial growth, adherence capacity, and on the production of virulence factors was obtained using AgNPs. CONCLUSIONS The obtained results in C. albicans and Candida non-albicans circulating in Bucharest outpatients were characterized by moderate-to-high potential to produce VMs, necessitating epidemiological surveillance measures to minimize the chances of severe invasive infections.
Collapse
Affiliation(s)
- Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ana-Maria Georgescu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | | | - Radu Pericleanu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Denisa Vasilica Mogos
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania
| | - Tatiana Vassu-Dimov
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Ortansa Csutak
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| | - Denisa Ficai
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politechnica of Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov Street, 050045 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intrarea Portocalelor No. 1-3, 060101 Bucharest, Romania
- The Research Institute of the University of Bucharest (ICUB), 050095 Bucharest, Romania
| |
Collapse
|
21
|
Hassan PB, Mohammed Ameen SS, Mohammed L, Muhammed Ameen SM, Omer KM. Enhanced antibacterial activity of a novel silver-based metal organic framework towards multidrug-resistant Klebsiella pneumonia. NANOSCALE ADVANCES 2024; 6:3801-3808. [PMID: 39050964 PMCID: PMC11265599 DOI: 10.1039/d4na00037d] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/21/2024] [Indexed: 07/27/2024]
Abstract
The growth and spread of multidrug-resistant bacterial species, such as Klebsiella pneumoniae, pose a serious threat to human health and require the development of innovative antibacterial agents. The search for an acceptable, safe, and efficient antibacterial is a matter of significant concern. In the present work, silver-based metal-organic frameworks (Ag-MOFs) showed efficient antibacterial activity against multidrug-resistant K. pneumoniae (KBP 11) with a minimum inhibitory concentration and minimum bactericidal concentration of 10 μg mL-1. Moreover, the Ag-MOF showed enhanced antibacterial activity compared to silver ions and silver nanoparticles. Our experimental investigation showed that the antibacterial efficacy is attributed to the production of reactive oxygen species and the release of cellular constituents, such as K+ ions and proteins. The MOF scaffold enhances the stability and controlled release of silver ions, enabling sustained antibacterial activity and minimizing the risk of bacterial resistance development. Additionally, the MOF class, due to the high surface area and porous nature, enhances the transfer of bacteria into and on the surface of the MOF.
Collapse
Affiliation(s)
- Payam B Hassan
- Department of Biology, College of Science, University of Sulaimani Sulaymaniyah 46002 Kurdistan Region Iraq
| | | | - Lana Mohammed
- Department of Medical Laboratory, College of Health and Medical Technology, Sulaimani Polytechnic University Sulaymaniyah Iraq
| | - Sirwan M Muhammed Ameen
- Department of Biology, College of Science, University of Sulaimani Sulaymaniyah 46002 Kurdistan Region Iraq
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani Qliasan St. 46002 Sulaymaniyah Kurdistan Region Iraq
| |
Collapse
|
22
|
Khan M, Alkhathlan HZ, Adil SF, Shaik MR, Siddiqui MRH, Khan M, Khan ST. Secondary metabolite profile of Streptomyces spp. changes when grown with the sub-lethal concentration of silver nanoparticles: possible implication in novel compound discovery. Antonie Van Leeuwenhoek 2024; 117:95. [PMID: 38967683 DOI: 10.1007/s10482-024-01991-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
The decline of new antibiotics and the emergence of multidrug resistance in pathogens necessitates a revisit of strategies used for lead compound discovery. This study proposes to induce the production of bioactive compounds with sub-lethal concentrations of silver nanoparticles (Ag-NPs). A total of Forty-two Actinobacteria isolates from four Saudi soil samples were grown with and without sub-lethal concentration of Ag-NPs (50 µg ml-1). The spent broth grown with Ag-NPs, or without Ag-NPs were screened for antimicrobial activity against four bacteria. Interestingly, out of 42 strains, broths of three strains grown with sub-lethal concentration of Ag-NPs exhibit antimicrobial activity against Staphylococcus aureus and Micrococcus luteus. Among these, two strains S4-4 and S4-21 identified as Streptomyces labedae and Streptomyces tirandamycinicus based on 16S rRNA gene sequence were selected for detailed study. The change in the secondary metabolites profile in the presence of Ag-NPs was evaluated using GC-MS and LC-MS analyses. Butanol extracts of spent broth grown with Ag-NPs exhibit strong antimicrobial activity against M. luteus and S. aureus. While the extracts of the controls with the same concentration of Ag-NPs do not show any activity. GC-analysis revealed a clear change in the secondary metabolite profile when grown with Ag-NPs. Similarly, the LC-MS patterns also differ significantly. Results of this study, strongly suggest that sub-lethal concentrations of Ag-NPs influence the production of secondary metabolites by Streptomyces. Besides, LC-MS results identified possible secondary metabolites, associated with oxidative stress and antimicrobial activities. This strategy can be used to possibly induce cryptic biosynthetic gene clusters for the discovery of new lead compounds.
Collapse
Affiliation(s)
- Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Hamad Z Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | | | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia.
| | - Shams Tabrez Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Science, Aligarh Muslim University, Aligarh, U.P., 202002, India.
| |
Collapse
|
23
|
Lima AKO, Souza LMDS, Reis GF, Junior AGT, Araújo VHS, dos Santos LC, da Silva VRP, Chorilli M, Braga HDC, Tada DB, Ribeiro JADA, Rodrigues CM, Nakazato G, Muehlmann LA, Garcia MP. Synthesis of Silver Nanoparticles Using Extracts from Different Parts of the Paullinia cupana Kunth Plant: Characterization and In Vitro Antimicrobial Activity. Pharmaceuticals (Basel) 2024; 17:869. [PMID: 39065720 PMCID: PMC11279972 DOI: 10.3390/ph17070869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
The green synthesis of silver nanoparticles (AgNPs) can be developed using safe and environmentally friendly routes, can replace potentially toxic chemical methods, and can increase the scale of production. This study aimed to synthesize AgNPs from aqueous extracts of guarana (Paullinia cupana) leaves and flowers, collected in different seasons of the year, as a source of active biomolecules capable of reducing silver ions (Ag+) and promoting the stabilization of colloidal silver (Ag0). The plant aqueous extracts were characterized regarding their metabolic composition by liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS/MS), phenolic compound content, and antioxidant potential against free radicals. The synthesized AgNPs were characterized by UV/Vis spectrophotometry, dynamic light scattering (DLS), nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and scanning electron microscopy coupled to energy-dispersive X-ray spectrometry (EDX). The results demonstrated that the chemical characterization indicated the presence of secondary metabolites of many classes of compounds in the studied aqueous extracts studied, but alkaloids and flavonoids were predominant, which are widely recognized for their antioxidant capabilities. It was possible to notice subtle changes in the properties of the nanostructures depending on parameters such as seasonality and the part of the plant used, with the AgNPs showing surface plasmon resonance bands between 410 and 420 nm using the leaf extract and between 440 and 460 nm when prepared using the flower extract. Overall, the average hydrodynamic diameters of the AgNPs were similar among the samples (61.98 to 101.6 nm). Polydispersity index remained in the range of 0.2 to 0.4, indicating that colloidal stability did not change with storage time. Zeta potential was above -30 mV after one month of analysis, which is adequate for biological applications. TEM images showed AgNPs with diameters between 40.72 to 48.85 nm and particles of different morphologies. EDX indicated silver content by weight between 24.06 and 28.81%. The synthesized AgNPs exhibited antimicrobial efficacy against various pathogenic microorganisms of clinical and environmental interest, with MIC values between 2.12 and 21.25 µg/mL, which is close to those described for MBC values. Therefore, our results revealed the potential use of a native species of plant from Brazilian biodiversity combined with nanotechnology to produce antimicrobial agents.
Collapse
Affiliation(s)
- Alan Kelbis Oliveira Lima
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Lucas Marcelino dos Santos Souza
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | - Guilherme Fonseca Reis
- Postgraduate Studies in Bioprocess Engineering and Biotechnology, Federal University of Paraná (UFPR), Palotina 85950-000, PR, Brazil;
| | - Alberto Gomes Tavares Junior
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Victor Hugo Sousa Araújo
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Lucas Carvalho dos Santos
- Laboratory for the Isolation and Transformation of Organic Molecules, Institute of Chemistry, University of Brasília (UnB), Brasilia 70910-900, DF, Brazil;
| | - Vitória Regina Pereira da Silva
- Post-Graduate Program in Pharmaceuticals Sciences, Faculty of Health Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil;
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-901, SP, Brazil; (A.G.T.J.); (V.H.S.A.); (M.C.)
| | - Hugo de Campos Braga
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - Dayane Batista Tada
- Institute of Science and Technology, Federal University of São Paulo (UNIFESP), São Jose dos Campos 12231-280, SP, Brazil; (H.d.C.B.); (D.B.T.)
| | - José Antônio de Aquino Ribeiro
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Clenilson Martins Rodrigues
- Brazilian Agricultural Research Corporation (EMBRAPA), Embrapa Agroenergy, Brasilia 70770-901, DF, Brazil; (J.A.d.A.R.); (C.M.R.)
| | - Gerson Nakazato
- Basic and Applied Bacteriology Laboratory, State University of Londrina (UEL), Londrina 86057-970, PR, Brazil; (L.M.d.S.S.); (G.N.)
| | | | - Mônica Pereira Garcia
- Nanobiotechnology Laboratory, Institute of Biological Sciences, University of Brasilia (UnB), Brasilia 70910-900, DF, Brazil; (A.K.O.L.); (M.P.G.)
| |
Collapse
|
24
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
25
|
Puišo J, Žvirgždas J, Paškevičius A, Arslonova S, Adlienė D. Antimicrobial Properties of Newly Developed Silver-Enriched Red Onion-Polymer Composites. Antibiotics (Basel) 2024; 13:441. [PMID: 38786169 PMCID: PMC11117916 DOI: 10.3390/antibiotics13050441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Simple low-cost, nontoxic, environmentally friendly plant-extract-based polymer films play an important role in their application in medicine, the food industry, and agriculture. The addition of silver nanoparticles to the composition of these films enhances their antimicrobial capabilities and makes them suitable for the treatment and prevention of infections. In this study, polymer-based gels and films (AgRonPVA) containing silver nanoparticles (AgNPs) were produced at room temperature from fresh red onion peel extract ("Ron"), silver nitrate, and polyvinyl alcohol (PVA). Silver nanoparticles were synthesized directly in a polymer matrix, which was irradiated by UV light. The presence of nanoparticles was approved by analyzing characteristic local surface plasmon resonance peaks occurring in UV-Vis absorbance spectra of irradiated experimental samples. The proof of evidence was supported by the results of XRD and EDX measurements. The diffusion-based method was applied to investigate the antimicrobial activity of several types of microbes located in the environment of the produced samples. Bacteria Staphylococcus aureus ATCC 29213, Acinetobacter baumannii ATCC BAA 747, and Pseudomonas aeruginosa ATCC 15442; yeasts Candida parapsilosis CBS 8836 and Candida albicans ATCC 90028; and microscopic fungi assays Aspergillus flavus BTL G-33 and Aspergillus fumigatus BTL G-38 were used in this investigation. The greatest effect was observed on Staphylococcus aureus, Acinetobacter baumannii, and Pseudomonas aeruginosa bacteria, defining these films as potential candidates for antimicrobial applications. The antimicrobial features of the films were less effective against fungi and the weakest against yeasts.
Collapse
Affiliation(s)
- Judita Puišo
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| | - Jonas Žvirgždas
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Algimantas Paškevičius
- Laboratory of Biodeterioration Research, Institute of Botany, Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania; (J.Ž.); (A.P.)
| | - Shirin Arslonova
- Tashkent City Branch of Republican Specialized Scientific—Practical Medical Centre of Oncology and Radiology, Boguston Str. 1, Tashkent P.O. Box 100070, Uzbekistan;
| | - Diana Adlienė
- Department of Physics, Kaunas University of Technology, Studentų Str. 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
26
|
Li H, Xu H. Mechanisms of bacterial resistance to environmental silver and antimicrobial strategies for silver: A review. ENVIRONMENTAL RESEARCH 2024; 248:118313. [PMID: 38280527 DOI: 10.1016/j.envres.2024.118313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
The good antimicrobial properties of silver make it widely used in food, medicine, and environmental applications. However, the release and accumulation of silver-based antimicrobial agents in the environment is increasing with the extensive use of silver-based antimicrobials, and the prevalence of silver-resistant bacteria is increasing. To prevent the emergence of superbugs, it is necessary to exercise rational and strict control over drug use. The mechanism of bacterial resistance to silver has not been fully elucidated, and this article provides a review of the progress of research on the mechanism of bacterial resistance to silver. The results indicate that bacterial resistance to silver can occur through inducing silver particles aggregation and Ag+ reduction, inhibiting silver contact with and entry into cells, efflux of silver particles and Ag+ in cells, and activation of damage repair mechanisms. We propose that the bacterial mechanism of silver resistance involves a combination of interrelated systems. Finally, we discuss how this information can be used to develop the next generation of silver-based antimicrobials and antimicrobial therapies. And some antimicrobial strategies are proposed such as the "Trojan Horse" - camouflage, using efflux pump inhibitors to reduce silver efflux, working with "minesweeper", immobilization of silver particles.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Hengyi Xu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
27
|
Liu J, Zhang N, Shen B, Zhang L, Zhang Z, Zhu L, Jiang L. Deinococcus wulumuqiensis R12 synthesized silver nanoparticles with peroxidase-like activity for synergistic antibacterial application. Biotechnol J 2024; 19:e2300584. [PMID: 38651247 DOI: 10.1002/biot.202300584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/05/2024] [Accepted: 03/21/2024] [Indexed: 04/25/2024]
Abstract
The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.
Collapse
Affiliation(s)
- Jingjia Liu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Nan Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Bowen Shen
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Liling Zhang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhidong Zhang
- Xinjiang Key Laboratory of Special Environmental Microbiology, Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi, P.R. China
| | - Liying Zhu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, P.R. China
| | - Ling Jiang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, P.R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
28
|
Soni D, Gandhi D. Toxicity evaluation of silver nanoparticles synthesized from naringin flavonoid on human promyelocytic leukemic cells and human blood cells. Toxicol Ind Health 2024; 40:125-133. [PMID: 38243157 DOI: 10.1177/07482337241227244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Increasing applications of silver nanoparticles (AgNPs) in multiple products like cosmetics, medicines, drugs, paints, and other new materials have raised concern for their toxic effects on living beings and the surrounding environment. In the present study, cytotoxicity and genotoxicity of AgNPs synthesized using plant flavonoid (Naringin) as a reducing agent were investigated on human promyelocytic leukemic (HL-60) cells and human blood as an in vitro model. The LC50 of AgNPs was found to be 4.85 µM. Dose-dependent increase in cell death and caspase activity was observed in the presence of AgNPs. The comet assay showed a 60%-70% (p < .05) increase in tail DNA at 0.48 and 0.96 µM AgNPs. CBMN in PBMCs also confirmed the genotoxic potential of AgNPs-induced DNA damage. AgNPs resulted in 1.5-1.54 fold (p < .05) increase in the level of ROS in HL-60 cells after 12 h of exposure. AgNP showed toxicity in human cells through ROS generation and cellular damage through membrane dysfunction, caspase activation, apoptosis, and DNA damage.
Collapse
Affiliation(s)
- Deepika Soni
- National Institute of Pathology, New Delhi, India
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, India
| | - Deepa Gandhi
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, India
- All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
29
|
Marinas IC, Ignat L, Maurușa IE, Gaboreanu MD, Adina C, Popa M, Chifiriuc MC, Angheloiu M, Georgescu M, Iacobescu A, Pircalabioru GG, Stan M, Pinteala M. Insights into the physico-chemical and biological characterization of sodium lignosulfonate - silver nanosystems designed for wound management. Heliyon 2024; 10:e26047. [PMID: 38384565 PMCID: PMC10878957 DOI: 10.1016/j.heliyon.2024.e26047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
Chronic wounds represent one of the complications that might occur from the disruption of wound healing process. Recently, there has been a rise in interest in employing nanotechnology to develop novel strategies for accelerating wound healing. The aim of the present study was to use a green synthesis method to obtain AgNPs/NaLS systems useful for wounds management and perform an in-depth investigation of their behavior during and post-synthesis as well as of their biological properties. The colloids obtained from silver nanoparticles (AgNPs) and commercial sodium lignosulfonate (NaLS) in a single-pot aqueous procedure have been fully characterized by UV-Vis, FT-IR, DLS, TEM, XRD, and XPS to evaluate the synthesis efficiency and to provide new insights in the process of AgNPs formation and NaLS behavior in aqueous solutions. The effects of various concentrations of NaLS (0-16 mg/mL) and AgNO3 (0-20 mM) and of two different temperatures on AgNPs formation have been analyzed. Although the room temperature is feasible for AgNPs synthesis, the short mixing at 70 °C significantly increases the speed of nanoparticle formation and storage stability. In all experimental conditions AgNPs of 20-40 nm in size have been obtained. The antimicrobial activity assessed quantitatively on clinical and reference bacterial strains, both in suspension and biofilm growth state, revealed a broad antimicrobial spectrum, the most intensive inhibitory effect being noticed against Pseudomonas aeruginosa and Escherichia coli strains. The AgNP/NaLS enhanced the NO extracellular release, potentially contributing to the microbicidal and anti-adherence activity by protein oxidation. Both AgNP/NaLS and NaLS were non-hemolytic (hemolytic index<5%, 2.26 ± 0.13% hemolysis) and biocompatible (102.17 ± 3.43 % HaCaT cells viability). The presence of AgNPs increased the antioxidative activity and induced a significant cytotoxicity on non-melanoma skin cancer cells (62.86 ± 8.27% Cal-27 cells viability). Taken together, all these features suggest the multivalent potential of these colloids for the development of novel strategies for wound management, acting by preventing infection-associated complications and supporting the tissue regeneration.
Collapse
Affiliation(s)
- Ioana C. Marinas
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Leonard Ignat
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Ignat E. Maurușa
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Madalina D. Gaboreanu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Coroabă Adina
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Marcela Popa
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Mariana C. Chifiriuc
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
- Romanian Academy of Scientists, 54 Spl. Independentei St., District 5, 50085, Bucharest, Romania
- The Romanian Academy, 25, Calea Victoriei, Sector 1, District 1, 010071, Bucharest, Romania
| | - Marian Angheloiu
- Research and Development Department of SC Sanimed International Impex SRL, 6 Bucharest -Giurgiu Street, 087040, Giurgiu, Romania
| | - Mihaela Georgescu
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
| | - Alexandra Iacobescu
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| | - Gratiela Gradisteanu Pircalabioru
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Botany and Microbiology, University of Bucharest, 1-3 Portocalelor Street, 060101, Bucharest, Romania
| | - Miruna Stan
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050095, Bucharest, Romania
- Faculty of Biology, Department of Biochemistry and Molecular Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095, Bucharest, Romania
| | - Mariana Pinteala
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular Chemistry, Gr. Ghica Voda Alley 41A, Iasi, 700487, Romania
| |
Collapse
|
30
|
Ferreyra Maillard APV, Bordón A, Cutro AC, Dalmasso PR, Hollmann A. Green One-Step Synthesis of Silver Nanoparticles Obtained from Schinus areira Leaf Extract: Characterization and Antibacterial Mechanism Analysis. Appl Biochem Biotechnol 2024; 196:1104-1121. [PMID: 37335458 DOI: 10.1007/s12010-023-04591-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/21/2023]
Abstract
The increased emergence of antibiotic-resistant bacteria is a serious health problem worldwide. In this sense, silver nanoparticles (AgNPs) have received increasing attention for their antimicrobial activity. In this context, the goal of this study was to produce AgNPs by a green synthesis protocol using an aqueous leaf extract of Schinus areira as biocomposite to later characterize their antimicrobial action. The nanomaterials obtained were characterized by UV‒vis spectroscopy, DLS, TEM, and Raman, confirming the presence of quasi-spherical AgNPs with a negative surface charge and diameter around 11 nm. Afterward, the minimum inhibitory and bactericidal concentration of the AgNPs against Staphylococcus aureus and Escherichia coli were obtained, showing high antibacterial activity. In both of the examined bacteria, the AgNPs were able to raise intracellular ROS levels. In E. coli, the AgNPs can harm the bacterial membrane as well. Overall, it can be concluded that it was possible to obtain AgNPs with colloidal stability and antibacterial activity against Gram-positive and Gram-negative bacteria. Our findings point to at least two separate mechanisms that can cause cell death, one of which involves bacterial membrane damage and the other of which involves intracellular ROS induction.
Collapse
Affiliation(s)
- Anike P V Ferreyra Maillard
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
| | - Anahí Bordón
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
| | - Andrea C Cutro
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas, Universidad Nacional de Santiago del Estero, Calle Reforma del 18 N° 1234, 4200, Santiago del Estero, Argentina
| | - Pablo R Dalmasso
- CIQA, CONICET, Departamento de Ingeniería Química, Facultad Regional Córdoba, Universidad Tecnológica Nacional, Maestro López Esq. Cruz Roja Argentina, 5016, Córdoba, Argentina.
| | - Axel Hollmann
- Laboratorio de Compuestos Bioactivos, Centro de Investigación en Biofísica Aplicada y Alimentos (CIBAAL), CONICET, Universidad Nacional de Santiago del Estero, RN 9 Km 1125, 4206, Santiago del Estero, Argentina.
- Laboratorio de Microbiología Molecular, Instituto de Microbiología Básica y Aplicada, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876BXD, Bernal, Argentina.
| |
Collapse
|
31
|
Mohammadi S, Jabbari F, Cidonio G, Babaeipour V. Revolutionizing agriculture: Harnessing nano-innovations for sustainable farming and environmental preservation. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105722. [PMID: 38225077 DOI: 10.1016/j.pestbp.2023.105722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/23/2023] [Accepted: 12/02/2023] [Indexed: 01/17/2024]
Abstract
The agricultural sector is currently confronted with a significant crisis stemming from the rapid changes in climate patterns, declining soil fertility, insufficient availability of essential macro and micronutrients, excessive reliance on chemical fertilizers and pesticides, and the presence of heavy metals in soil. These numerous challenges pose a considerable threat to the agriculture industry. Furthermore, the exponential growth of the global population has led to a substantial increase in food consumption, further straining agricultural systems worldwide. Nanotechnology holds great promise in revolutionizing the food and agriculture industry, decreasing the harmful effects of agricultural practices on the environment, and improving productivity. Nanomaterials such as inorganic, lipid, and polymeric nanoparticles have been developed for increasing productivity due to their unique properties. Various strategies can enhance product quality, such as the use of nano-clays, nano zeolites, and hydrogel-based materials to regulate water absorption and release, effectively mitigating water scarcity. The production of nanoparticles can be achieved through various methods, each of which has its own unique benefits and limitations. Among these methods, chemical synthesis is widely favored due to the impact that various factors such as concentration, particle size, and shape have on product quality and efficiency. This review provides a detailed examination of the roles of nanotechnology and nanoparticles in sustainable agriculture, including their synthetic methods, and presents an analysis of their associated advantages and disadvantages. To date, there are serious concerns and awareness about healthy agriculture and the production of healthy products, therefore the development of nanotech-enabled devices that act as preventive and early warning systems to identify health issues, offering remedial measures is necessary.
Collapse
Affiliation(s)
- Sajad Mohammadi
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy; Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Italy
| | - Farzaneh Jabbari
- Nanotechnology and Advanced Materials Department, Materials and Energy Research Center, Tehran 14155-4777, Iran
| | - Gianluca Cidonio
- Center for Life Nano & Neuro-Science (CLN(2)S), Italian Institute of Technology (IIT), 00161 Rome, Italy
| | - Valiollah Babaeipour
- Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology, Tehran 14155-4777, Iran.
| |
Collapse
|
32
|
Gottardo B, Zoccal ARM, Maschio-Lima T, Lemes TH, Paziani MH, Von Zeska Kress MR, Perfecto TM, Almeida MTG, Volanti DP. Antifungal Activity of Nontoxic Nanocomposite Based on Silver and Reduced Graphene Oxide against Dermatophytes and Candida spp. ACS Biomater Sci Eng 2023; 9:6870-6879. [PMID: 37943794 DOI: 10.1021/acsbiomaterials.3c00390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Dermatomycoses are typical hair, skin, or nail infections caused mainly by dermatophytes and nondermatophytes: Trichophyton, Microsporum, Epidermophyton, and Candida. In addition to the esthetical impact, pain, and nail deformity, these mycoses can be a source of severe disease. The high cost of treatment, toxicity, and the emergence of resistant infectious agents justifies research into new drugs. This work evaluates the fungicidal activity of nanocomposites (NCs) based on reduced graphene oxide (rGO) loaded with silver (Ag) nanoparticles (rGO/Ag) against clinical isolates of dermatophytes and Candida species. This is an unprecedented study in which, for the first time, hybrid nanocompounds based on Ag/rGO were tested against Epidermophytom, Microsporum, and Trichophyton species (dermatophytes agents). In this paper, we synthesize rGO using different concentrations of Ag by hydrolysis of metal salt AgNO3 and follow the growth of nanocrystals on sheets of rGO provided by the NaBH4. The NCs were analyzed by X-ray diffraction analysis, and the NC morphology, silver distribution on the rGO surface, and crystalline information were investigated by transmission electron microscopy. Antifungal susceptibility assay was performed by the microdilution method based on modified Clinical and Laboratory Standards Institute (CLSI) protocol. Time-kill kinetics was conducted to monitor the effect of the composite to inhibit fungal cells or promote structural changes, avoiding germination. The toxicological evaluation of the NCs was born in an in vivo model based on Galleria mellonella (G. mellonella). Minimum inhibitory concentration (MIC) values of the rGO/Ag NCs ranged from 1.9 to 125 μg/mL. The best inhibitory activity was obtained for rGO/Ag12%, mainly against Candida spp. and Epidermophyton floccosum. In the presence of sorbitol, MIC values of rGO/Ag NCs were higher (ranging from 15.6 to 250 μg/mL), indicating the action mechanism on the cell wall. Both yeast and dermatophytes clinical isolates were inhibited at a minimum of 6 and 24 h, respectively, but after 2 and 12 h, they had initial antifungal interference. All hybrid formulations of rGO/Ag NCs were not toxic for G. mellonella. This study provides insights into an alternative therapeutic strategy for controlling dermatomycoses.
Collapse
Affiliation(s)
- Bianca Gottardo
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Andreza R M Zoccal
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Taiza Maschio-Lima
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Thiago H Lemes
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Mario H Paziani
- Barão de Mauá University Center (BMUC), Rua. Ramos de Azevedo 423, Ribeirão Preto, Sao Paulo 14090-062, Brazil
| | - Marcia R Von Zeska Kress
- School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Av. do Café s/n, Ribeirão Preto, Sao Paulo 14040-903, Brazil
| | - Tarcísio M Perfecto
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| | - Margarete T G Almeida
- São José do Rio Preto Medical School (FAMERP), Av. Brigadeiro Faria Lima 5416, São José do Rio Preto, Sao Paulo 15090-000, Brazil
| | - Diogo P Volanti
- Institute of Biosciences, Humanities, and Exact Sciences, São Paulo State University (UNESP), R. Cristóvão Colombo 2265, São José do Rio Preto, Sao Paulo 15054-000, Brazil
| |
Collapse
|
33
|
Patel TA, Kevadiya BD, Bajwa N, Singh PA, Zheng H, Kirabo A, Li YL, Patel KP. Role of Nanoparticle-Conjugates and Nanotheranostics in Abrogating Oxidative Stress and Ameliorating Neuroinflammation. Antioxidants (Basel) 2023; 12:1877. [PMID: 37891956 PMCID: PMC10604131 DOI: 10.3390/antiox12101877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress is a deteriorating condition that arises due to an imbalance between the reactive oxygen species and the antioxidant system or defense of the body. The key reasons for the development of such conditions are malfunctioning of various cell organelles, such as mitochondria, endoplasmic reticulum, and Golgi complex, as well as physical and mental disturbances. The nervous system has a relatively high utilization of oxygen, thus making it particularly vulnerable to oxidative stress, which eventually leads to neuronal atrophy and death. This advances the development of neuroinflammation and neurodegeneration-associated disorders such as Alzheimer's disease, Parkinson's disease, epilepsy, dementia, and other memory disorders. It is imperative to treat such conditions as early as possible before they worsen and progress to irreversible damage. Oxidative damage can be negated by two mechanisms: improving the cellular defense system or providing exogenous antioxidants. Natural antioxidants can normally handle such oxidative stress, but they have limited efficacy. The valuable features of nanoparticles and/or nanomaterials, in combination with antioxidant features, offer innovative nanotheranostic tools as potential therapeutic modalities. Hence, this review aims to represent novel therapeutic approaches like utilizing nanoparticles with antioxidant properties and nanotheranostics as delivery systems for potential therapeutic applications in various neuroinflammation- and neurodegeneration-associated disease conditions.
Collapse
Affiliation(s)
- Tapan A. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Bhavesh D. Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Neha Bajwa
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Preet Amol Singh
- University Institute of Pharma Sciences (UIPS), Chandigarh University, Mohali 140413, Punjab, India; (N.B.); (P.A.S.)
| | - Hong Zheng
- Division of Basic Biomedical Sciences, Sanford School of Medicine of the University of South Dakota, Vermillion, SD 57069, USA;
| | - Annet Kirabo
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, Nashville, TN 37232, USA;
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA;
| |
Collapse
|
34
|
Gheorghe-Barbu I, Corbu VM, Vrancianu CO, Marinas IC, Popa M, Dumbravă AȘ, Niță-Lazăr M, Pecete I, Muntean AA, Popa MI, Marinescu L, Ficai D, Ficai A, Czobor Barbu I. Phenotypic and Genotypic Characterization of Recently Isolated Multidrug-Resistant Acinetobacter baumannii Clinical and Aquatic Strains and Demonstration of Silver Nanoparticle Potency. Microorganisms 2023; 11:2439. [PMID: 37894097 PMCID: PMC10609299 DOI: 10.3390/microorganisms11102439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/22/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
This study aims to demonstrate the effectiveness of silver nanoparticles (Ag NPs) on multidrug-resistant (MDR) Acinetobacter baumannii (AB) strains isolated from the clinical and aquatic environment. Three types of Ag NPs were investigated for their antimicrobial, antibiofilm, and antivirulence properties on a total number of 132 AB strains isolated in the same temporal sequence from intra-hospital infections (IHIs), wastewater (WW), and surface water (SW) samples between 2019 and 2022 from different Romanian locations and characterized at the phenotypic and genotypic levels. The comparative analysis of the antimicrobial resistance (AR) profiles according to the isolation source and the geographical location demonstrated a decrease in MDR level in AB recovered from WW samples in 2022 from north-eastern/central/southern regions (N-E/C-W/analyzed strains S): 87.5/60/32.5%. The AB strains were lecithinase, caseinase, amylase, and lipase producers, had variable biofilm formation ability, and belonged to six genotypes associated with the presence of different virulence genes (ompA, csuE, bap, and bfmS). The Ag NPs synthesized with the solvothermal method exhibited an inhibitory effect on microbial growth, the adherence capacity to the inert substratum, and on the production of soluble virulence factors. We report here the first description of a powerful antibacterial agent against MDR AB strains circulating between hospitals and anthropically polluted water in Romania.
Collapse
Affiliation(s)
- Irina Gheorghe-Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Viorica Maria Corbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, 060031 Bucharest, Romania
| | - Ioana Cristina Marinas
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
| | - Marcela Popa
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Andreea Ștefania Dumbravă
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| | - Mihai Niță-Lazăr
- National Research and Development Institute for Industrial Ecology (INCD ECOIND), 050663 Bucharest, Romania;
| | - Ionut Pecete
- Central Reference Synevo-Medicover Laboratory, 021408 Bucharest, Romania;
| | - Andrei Alexandru Muntean
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Mircea Ioan Popa
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania; (A.A.M.); (M.I.P.)
- Department of Microbiology II, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
| | - Liliana Marinescu
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politechnica of Bucharest, Gh. Polizu, No. 1–7, 011061 Bucharest, Romania; (L.M.); (D.F.); (A.F.)
| | - Ilda Czobor Barbu
- Faculty of Biology, University of Bucharest, Intr. Portocalelor No. 1–3, 060101 Bucharest, Romania; (I.G.-B.); (C.O.V.); (I.C.M.); (M.P.); (A.Ș.D.); (I.C.B.)
- The Research Institute of the University of Bucharest (ICUB), B.P Hasdeu No. 7, 050095 Bucharest, Romania
| |
Collapse
|
35
|
Kamyab H, Chelliapan S, Hayder G, Yusuf M, Taheri MM, Rezania S, Hasan M, Yadav KK, Khorami M, Farajnezhad M, Nouri J. Exploring the potential of metal and metal oxide nanomaterials for sustainable water and wastewater treatment: A review of their antimicrobial properties. CHEMOSPHERE 2023; 335:139103. [PMID: 37271472 DOI: 10.1016/j.chemosphere.2023.139103] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
Metallic nanoparticles (NPs) are of particular interest as antimicrobial agents in water and wastewater treatment due to their broad suppressive range against bacteria, viruses, and fungi commonly found in these environments. This review explores the potential of different types of metallic NPs, including zinc oxide, gold, copper oxide, and titanium oxide, for use as effective antimicrobial agents in water and wastewater treatment. This is due to the fact that metallic NPs possess a broad suppressive range against bacteria, viruses, as well as fungus. In addition to that, NPs are becoming an increasingly popular alternative to antibiotics for treating bacterial infections. Despite the fact that most research has been focused on silver NPs because of the antibacterial qualities that are known to be associated with them, curiosity about other metallic NPs as potential antimicrobial agents has been growing. Zinc oxide, gold, copper oxide, and titanium oxide NPs are included in this category since it has been demonstrated that these elements have antibacterial properties. Inducing oxidative stress, damage to the cellular membranes, and breakdowns throughout the protein and DNA chains are some of the ways that metallic NPs can have an influence on microbial cells. The purpose of this review was to engage in an in-depth conversation about the current state of the art regarding the utilization of the most important categories of metallic NPs that are used as antimicrobial agents. Several approaches for the synthesis of metal-based NPs were reviewed, including physical and chemical methods as well as "green synthesis" approaches, which are synthesis procedures that do not involve the employment of any chemical agents. Moreover, additional pharmacokinetics, physicochemical properties, and the toxicological hazard associated with the application of silver NPs as antimicrobial agents were discussed.
Collapse
Affiliation(s)
- Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia.
| | - Shreeshivadasan Chelliapan
- Engineering Department, Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Jln Sultan Yahya Petra, 54100, Kuala Lumpur, Malaysia.
| | - Gasim Hayder
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia; Department of Civil Engineering, College of Engineering, Universiti Tenaga Nasional (UNITEN), Selangor Darul Ehsan, Kajang, 43000, Malaysia
| | - Mohammad Yusuf
- Institute of Hydrocarbon Recovery, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak, 32610, Malaysia
| | - Mohammad Mahdi Taheri
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul, 05006, South Korea
| | - Mudassir Hasan
- Department of Chemical Engineering King Khalid University, Abha, Saudi Arabia
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Majid Khorami
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuado
| | - Mohammad Farajnezhad
- Azman Hashim International Business School (AHIBS), Universiti Teknologi Malaysia Kuala Lumpur, 54100, Kuala Lumpur, Malaysia
| | - J Nouri
- Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Machková A, Vaňková E, Obrová K, Fürhacker P, Košutová T, Lion T, Hanuš J, Scholtz V. Silver nanoparticles with plasma-polymerized hexamethyldisiloxane coating on 3D printed substrates are non-cytotoxic and effective against respiratory pathogens. Front Microbiol 2023; 14:1217617. [PMID: 37637122 PMCID: PMC10450633 DOI: 10.3389/fmicb.2023.1217617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Due to the emerging resistance of microorganisms and viruses to conventional treatments, the importance of self-disinfecting materials is highly increasing. Such materials could be silver or its nanoparticles (AgNPs), both of which have been studied for their antimicrobial effect. In this study, we compared the biological effects of AgNP coatings with and without a plasma-polymerized hexamethyldisiloxane (ppHMDSO) protective film to smooth silver or copper coatings under three ambient conditions that mimic their potential medical use (dry or wet environments and an environment simulating the human body). The coatings were deposited on 3D printed polylactic acid substrates by DC magnetron sputtering, and their surface morphology was visualized using scanning electron microscopy. Cytotoxicity of the samples was evaluated using human lung epithelial cells A549. Furthermore, antibacterial activity was determined against the Gram-negative pathogenic bacterium Pseudomonas aeruginosa PAO1 and antiviral activity was assessed using human rhinovirus species A/type 2. The obtained results showed that overcoating of AgNPs with ppHMDSO creates the material with antibacterial and antiviral activity and at the same time without a cytotoxic effect for the surrounding tissue cells. These findings suggest that the production of 3D printed substrates coated with a layer of AgNPs-ppHMDSO could have potential applications in the medical field as functional materials.
Collapse
Affiliation(s)
- Anna Machková
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Eva Vaňková
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| | - Klára Obrová
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Paola Fürhacker
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
| | - Tereza Košutová
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Thomas Lion
- St. Anna Children’s Cancer Research Institute, Vienna, Austria
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Jan Hanuš
- Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University, Prague, Czechia
| | - Vladimír Scholtz
- Department of Physics and Measurements, Faculty of Chemical Engineering, University of Chemistry and Technology in Prague, Prague, Czechia
| |
Collapse
|
37
|
Giráldez-Pérez RM, Grueso EM, Carbonero A, Álvarez Márquez J, Gordillo M, Kuliszewska E, Prado-Gotor R. Synergistic Antibacterial Effects of Amoxicillin and Gold Nanoparticles: A Therapeutic Option to Combat Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1275. [PMID: 37627696 PMCID: PMC10451730 DOI: 10.3390/antibiotics12081275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023] Open
Abstract
Compacted Au@16-mph-16/DNA-AMOX (NSi) nanosystems were prepared from amoxicillin (AMOX) and precursor Au@16-mph-16 gold nanoparticles (Ni) using a Deoxyribonucleic acid (DNA) biopolymer as a glue. The synthesized nanocarrier was tested on different bacterial strains of Escherichia coli, Staphylococcus aureus, and Streptococcus pneumoniae to evaluate its effectiveness as an antibiotic as well as its internalization. Synthesis of the nanosystems required previous structural and thermodynamic studies using circular dichroism (CD) and UV-visible techniques to guarantee optimal complex formation and maximal DNA compaction, characteristics which facilitate the correct uptake of the nanocarrier. Two nanocomplexes with different compositions and structures, denoted NS1 and NS2, were prepared, the first involving external Au@16-mph-16 binding and the second partial intercalation. The Ni and NSi nanosystems obtained were characterized via transmission electron microscopy (TEM), zeta potential, and dynamic light scattering (DLS) techniques to measure their charge, aggregation state and hydrodynamic size, and to verify their presence inside the bacteria. From these studies, it was concluded that the zeta potential values for gold nanoparticles, NS1, and NS2 nanosystems were 67.8, -36.7, and -45.1 mV. Moreover, the particle size distribution of the Au@16-mph-16 gold nanoparticles and NS2 nanoformulation was found to be 2.6 nm and 69.0 nm, respectively. However, for NS1 nanoformulation, a bimodal size distribution of 44 nm (95.5%) and 205 nm (4.5%) was found. Minimal inhibitory concentration (MIC) values were determined for the bacteria studied using a microdilution plates assay. The effect on Escherichia coli bacteria was notable, with MIC values of 17 µM for both the NS1 and NS2 nanosystems. The Staphylococcus aureus chart shows a greater inhibition effect of NS2 and NP2 in non-diluted wells, and clearly reveals a great effect on Streptococcus pneumoniae, reaching MIC values of 0.53 µM in more diluted wells. These results are in good agreement with TEM internalization studies of bacteria that reveal significant internalization and damage in Streptococcus pneumoniae. In all the treatments carried out, the antibiotic capacity of gold nanosystems as enhancers of amoxicillin was demonstrated, causing both the precursors and the nanosystems to act very quickly, and thus favoring microbial death with a small amount of antibiotic. Therefore, these gold nanosystems may constitute an effective therapy to combat resistance to antibiotics, in addition to avoiding the secondary effects derived from the administration of high doses of antibiotics.
Collapse
Affiliation(s)
- Rosa M. Giráldez-Pérez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Elia M. Grueso
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| | - Alfonso Carbonero
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | - Juan Álvarez Márquez
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Cordoba, 14014 Cordoba, Spain;
| | - Mirian Gordillo
- Department of Animal Health, Veterinary Faculty, University of Cordoba, 14014 Cordoba, Spain; (A.C.); (M.G.)
| | | | - Rafael Prado-Gotor
- Department of Physical Chemistry, Faculty of Chemistry, University of Seville, 41012 Seville, Spain;
| |
Collapse
|
38
|
Bushra R, Ahmad M, Seidi F, Qurtulen, Song J, Jin Y, Xiao H. Polysaccharide-based nanoassemblies: From synthesis methodologies and industrial applications to future prospects. Adv Colloid Interface Sci 2023; 318:102953. [PMID: 37399637 DOI: 10.1016/j.cis.2023.102953] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Polysaccharides, due to their remarkable features, have gained significant prominence in the sustainable production of nanoparticles (NPs). High market demand and minimal production cost, compared to the chemically synthesised NPs, demonstrate a drive towards polysaccharide-based nanoparticles (PSNPs) benign to environment. Various approaches are used for the synthesis of PSNPs including cross-linking, polyelectrolyte complexation, and self-assembly. PSNPs have the potential to replace a wide diversity of chemical-based agents within the food, health, medical and pharmacy sectors. Nevertheless, the considerable challenges associated with optimising the characteristics of PSNPs to meet specific targeting applications are of utmost importance. This review provides a detailed compilation of recent accomplishments in the synthesis of PSNPs, the fundamental principles and critical factors that govern their rational fabrication, as well as various characterisation techniques. Noteworthy, the multiple use of PSNPs in different disciplines such as biomedical, cosmetics agrochemicals, energy storage, water detoxification, and food-related realms, is accounted in detail. Insights into the toxicological impacts of the PSNPs and their possible risks to human health are addressed, and efforts made in terms of PSNPs development and optimising strategies that allow for enhanced delivery are highlighted. Finally, limitations, potential drawbacks, market diffusion, economic viability and future possibilities for PSNPs to achieve widespread commercial use are also discussed.
Collapse
Affiliation(s)
- Rani Bushra
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Mehraj Ahmad
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; College of Light Industry and Food, Department of Food Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Farzad Seidi
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Qurtulen
- Department of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Junlong Song
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada
| |
Collapse
|
39
|
Flores-Rábago KM, Rivera-Mendoza D, Vilchis-Nestor AR, Juarez-Moreno K, Castro-Longoria E. Antibacterial Activity of Biosynthesized Copper Oxide Nanoparticles (CuONPs) Using Ganoderma sessile. Antibiotics (Basel) 2023; 12:1251. [PMID: 37627671 PMCID: PMC10451715 DOI: 10.3390/antibiotics12081251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Copper oxide nanoparticles (CuONPs) were synthesized using an eco-friendly method and their antimicrobial and biocompatibility properties were determined. The supernatant and extract of the fungus Ganoderma sessile yielded small, quasi-spherical NPs with an average size of 4.5 ± 1.9 nm and 5.2 ± 2.1 nm, respectively. Nanoparticles were characterized by UV-Vis spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and zeta potential analysis. CuONPs showed antimicrobial activity against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa (P. aeruginosa). The half-maximal inhibitory concentration (IC50) for E. coli was 8.5 µg/mL, for P. aeruginosa was 4.1 µg/mL, and for S. aureus was 10.2 µg/mL. The ultrastructural analysis of bacteria exposed to CuONPs revealed the presence of small CuONPs all through the bacterial cells. Finally, the toxicity of CuONPs was analyzed in three mammalian cell lines: hepatocytes (AML-12), macrophages (RAW 264.7), and kidney (MDCK). Low concentrations (<15 µg/mL) of CuONPs-E were non-toxic to kidney cells and macrophages, and the hepatocytes were the most susceptible to CuONPs-S. The results obtained suggest that the CuONPs synthesized using the extract of the fungus G. sessile could be further evaluated for the treatment of superficial infectious diseases.
Collapse
Affiliation(s)
- Karla M. Flores-Rábago
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | - Daniel Rivera-Mendoza
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| | | | - Karla Juarez-Moreno
- Center for Applied Physics and Advanced Technology, UNAM, Juriquilla 76230, Mexico;
| | - Ernestina Castro-Longoria
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada (CICESE), Ensenada 22860, Mexico; (K.M.F.-R.); (D.R.-M.)
| |
Collapse
|
40
|
Ugalde-Arbizu M, Aguilera-Correa JJ, San Sebastian E, Páez PL, Nogales E, Esteban J, Gómez-Ruiz S. Antibacterial Properties of Mesoporous Silica Nanoparticles Modified with Fluoroquinolones and Copper or Silver Species. Pharmaceuticals (Basel) 2023; 16:961. [PMID: 37513873 PMCID: PMC10386262 DOI: 10.3390/ph16070961] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Antibiotic resistance is a global problem and bacterial biofilms contribute to its development. In this context, this study aimed to perform the synthesis and characterization of seven materials based on silica mesoporous nanoparticles functionalized with three types of fluoroquinolones, along with Cu2+ or Ag+ species to evaluate the antibacterial properties against Staphylococcus aureus, Enterococcus faecalis, Escherichia coli, and Pseudomonas aeruginosa, including clinical and multi-drug-resistant strains of S. aureus and P. aeruginosa. In addition, in order to obtain an effective material to promote wound healing, a well-known proliferative agent, phenytoin sodium, was adsorbed onto one of the silver-functionalized materials. Furthermore, biofilm studies and the generation of reactive oxygen species (ROS) were also carried out to determine the antibacterial potential of the synthesized materials. In this sense, the Cu2+ materials showed antibacterial activity against S. aureus and E. coli, potentially due to increased ROS generation (up to 3 times), whereas the Ag+ materials exhibited a broader spectrum of activity, even inhibiting clinical strains of MRSA and P. aeruginosa. In particular, the Ag+ material with phenytoin sodium showed the ability to reduce biofilm development by up to 55% and inhibit bacterial growth in a "wound-like medium" by up to 89.33%.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 San Sebastián, Spain
| | - Paulina L. Páez
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Haya de la Torre y Medina Allende, Ciudad Universitaria, Córdoba X5000HUA, Argentina
| | - Estela Nogales
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes Católicos 2, 28040 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, 28222 Madrid, Spain
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| |
Collapse
|
41
|
Xing X, Han Y, Cheng H. Biomedical applications of chitosan/silk fibroin composites: A review. Int J Biol Macromol 2023; 240:124407. [PMID: 37060984 DOI: 10.1016/j.ijbiomac.2023.124407] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/31/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Natural polymers have been used in the biomedical fields for decades, mainly derived from animals and plants with high similarities with biomacromolecules in the human body. As an alkaline polysaccharide, chitosan (CS) attracts much attention in tissue regeneration and drug delivery with favorable biocompatibility, biodegradation, and antibacterial activity. However, to overcome its mechanical properties and degradation behavior drawbacks, a robust fibrous protein-silk fibroin (SF) was introduced to prepare the CS/SF composites. Not only can CS be combined with SF via the amide and hydrogen bond formation, but also their functions are complementary and tunable with the blending ratio. To further improve the performances of CS/SF composites, natural (e.g., hyaluronic acid and collagen) and synthetic biopolymers (e.g., polyvinyl alcohol and hexanone) were incorporated. Also, the CS/SF composites acted as slow-release carriers for inorganic non-metals (e.g., hydroxyapatite and graphene) and metal particles (e.g., silver and magnesium), which could enhance cell functions, facilitate tissue healing, and inhibit bacterial growth. This review presents the state-of-the-art and future perspectives of different biomaterials combined with CS/SF composites as sponges, hydrogels, membranes, particles, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a multitude of applications.
Collapse
Affiliation(s)
- Xiaojie Xing
- Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, Fujian 350004, China
| | - Yu Han
- Division of Craniofacial Development and Regeneration, Tohoku University Graduate School of Dentistry, 4-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan
| | - Hui Cheng
- Institute of Stomatology & Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, Fujian 350002, China.
| |
Collapse
|
42
|
Skrzyniarz K, Sanchez-Nieves J, de la Mata FJ, Łysek-Gładysińska M, Lach K, Ciepluch K. Mechanistic insight of lysozyme transport through the outer bacteria membrane with dendronized silver nanoparticles for peptidoglycan degradation. Int J Biol Macromol 2023; 237:124239. [PMID: 36996956 DOI: 10.1016/j.ijbiomac.2023.124239] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/09/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023]
Abstract
Drug resistance has become a global problem, prompting the entire scientific world to seek alternative methods of dealing with resistant pathogens. Among the many alternatives to antibiotics, two appear to be the most promising: membrane permeabilizers and enzymes that destroy bacterial cell walls. Therefore, in this study, we provide insight into the mechanism of lysozyme transport strategies using two types of carbosilane dendronized silver nanoparticles (DendAgNPs), non-polyethylene glycol (PEG)-modified (DendAgNPs) and PEGylated (PEG-DendAgNPs), for outer membrane permeabilization and peptidoglycan degradation. Remarkably, studies have shown that DendAgNPs can build up on the surface of a bacterial cell, destroying the outer membrane, and thereby allowing lysozymes to penetrate inside the bacteria and destroy the cell wall. PEG-DendAgNPs, on the other hand, have a completely different mechanism of action. PEG chains containing a complex lysozyme resulted in bacterial aggregation and an increase in the local enzyme concentration near the bacterial membrane, thereby inhibiting bacterial growth. This is due to the accumulation of the enzyme in one place on the surface of the bacteria and penetration into it through slight damage of the membrane due to interactions of NPs with the membrane. The results of this study will help propel more effective antimicrobial protein nanocarriers.
Collapse
Affiliation(s)
- Kinga Skrzyniarz
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Javier Sanchez-Nieves
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, 28034 Madrid, Spain
| | - F Javier de la Mata
- Department of Organic and Inorganic Chemistry, Research Institute in Chemistry "Andrés M. del Río" (IQAR), University of Alcalá, 28871 Alcalá de Henares, Spain; Networking Research Center for Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain; Ramón y Cajal Institute of Health Research, IRYCIS, 28034 Madrid, Spain
| | | | - Karolina Lach
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland
| | - Karol Ciepluch
- Division of Medical Biology, Jan Kochanowski University, 25-406 Kielce, Poland.
| |
Collapse
|
43
|
Ugalde-Arbizu M, Aguilera-Correa JJ, García-Almodóvar V, Ovejero-Paredes K, Díaz-García D, Esteban J, Páez PL, Prashar S, San Sebastian E, Filice M, Gómez-Ruiz S. Dual Anticancer and Antibacterial Properties of Silica-Based Theranostic Nanomaterials Functionalized with Coumarin343, Folic Acid and a Cytotoxic Organotin(IV) Metallodrug. Pharmaceutics 2023; 15:pharmaceutics15020560. [PMID: 36839883 PMCID: PMC9962538 DOI: 10.3390/pharmaceutics15020560] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Five different silica nanoparticles functionalized with vitamin B12, a derivative of coumarin found in green plants and a minimum content of an organotin(IV) fragment (1-MSN-Sn, 2-MSN-Sn, 2-SBA-Sn, 2-FSPm-Sn and 2-FSPs-Sn), were identified as excellent anticancer agents against triple negative breast cancer, one of the most diagnosed and aggressive cancerous tumors, with very poor prognosis. Notably, compound 2-MSN-Sn shows selectivity for cancer cells and excellent luminescent properties detectable by imaging techniques once internalized. The same compound is also able to interact with and nearly eradicate biofilms of Staphylococcus aureus, the most common bacteria isolated from chronic wounds and burns, whose treatment is a clinical challenge. 2-MSN-Sn is efficiently internalized by bacteria in a biofilm state and destroys the latter through reactive oxygen species (ROS) generation. Its internalization by bacteria was also efficiently monitored by fluorescence imaging. Since silica nanoparticles are particularly suitable for oral or topical administration, and considering both its anticancer and antibacterial activity, 2-MSN-Sn represents a new dual-condition theranostic agent, based primarily on natural products or their derivatives and with only a minimum amount of a novel metallodrug.
Collapse
Affiliation(s)
- Maider Ugalde-Arbizu
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - John Jairo Aguilera-Correa
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Victoria García-Almodóvar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Karina Ovejero-Paredes
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
| | - Diana Díaz-García
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Jaime Esteban
- Clinical Microbiology Department, IIS-Fundación Jiménez Diaz, UAM, Avenida Reyes 15 Católicos 2, 28037 Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, 28029 Madrid, Spain
| | - Paulina L. Páez
- Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Sanjiv Prashar
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
| | - Eider San Sebastian
- Departamento de Química Aplicada, Facultad de Química, Euskal Herriko Unibertsitatea (UPV/EHU), Paseo Manuel Lardizabal 3, 20018 Donostia San Sebastián, Spain
| | - Marco Filice
- Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Microscopy and Dynamic Imaging Unit, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Calle Melchor Fernandez Almagro 3, 28029 Madrid, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| | - Santiago Gómez-Ruiz
- COMET-NANO Group, Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, C/Tulipán s/n, 28933 Móstoles, Spain
- Correspondence: (J.J.A.-C.); (M.F.); (S.G.-R.)
| |
Collapse
|
44
|
Roa Cordero MV, Romero Pineda MF, Guerrero Rodríguez JM, López Ortíz JG, Leal Pinto SM. Exploring the potential of eco-friendly silver nanoparticles to inhibit azole-resistant clinical isolates of Candida spp. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:31-38. [PMID: 36724546 DOI: 10.1080/10934529.2023.2172267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 12/28/2022] [Accepted: 01/07/2023] [Indexed: 06/18/2023]
Abstract
The antimicrobial activity and biological efficiency of silver nanoparticles (AgNps) have been widely described and can be modeled through stabilizing and reducing agents, especially if they exhibit biocidal properties, which can enhance bioactivity against pathogens. The selective action of AgNps remains a major concern. In this regard, the use of plant extracts for the green synthesis of nanoparticles offers advantages because it improves the toxicity of Nps for microorganisms and is harmless to normal cells. However, biological evaluations of the activity of AgNps synthesized using different reducing agents are determined independently, and comparisons are frequently overlooked. Thus, we investigated and compared the antifungal and cytotoxic effects of two ecological AgNps synthesized from Moringa oleifera aqueous leaf extract (AgNp-M) and glucose (AgNp-G) against azole-resistant clinical isolates of Candida spp. and nontumor mammalian cells. Synthesized AgNps exhibited an antifungal effect on planktonic cells of drug-resistant C. albicans and C. tropicalis (MIC 0.21-52.6 µg/mL). The toxicity was influenced by size. However, the use of M. oleifera extracts allows us to obtain AgNps that are highly selective and nongenotoxic to Vero cells due to modifications of the shape and surface. Therefore, these results suggest that AgNp-M has antimicrobial potential and deserves further investigation for biomedical applications.
Collapse
Affiliation(s)
- Martha Viviana Roa Cordero
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| | - María Fernanda Romero Pineda
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
| | - Julián Mauricio Guerrero Rodríguez
- Grupo de Investigación Zumoinnova, Zumotec S.A., Bucaramanga, Colombia
- Facultad de Ingeniería Química, Grupo de Investigación Interfase, Universidad Industrial de Santander, Bucaramanga, Colombia
| | | | - Sandra Milena Leal Pinto
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de investigación en biotecnología Agroambiental y salud-Microbiota, Bucarmanga, Colombia
- Universidad de Santander, Facultad de Ciencias Médicas y de la Salud, Grupo de Investigación Manejo Clínico-Cliniudes, Bucarmanga, Colombia
| |
Collapse
|
45
|
Curcumin-ZnO nanocomposite mediated inhibition of Pseudomonas aeruginosa biofilm and its mechanism of action. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
46
|
Hetta HF, Ramadan YN, Al-Harbi AI, A. Ahmed E, Battah B, Abd Ellah NH, Zanetti S, Donadu MG. Nanotechnology as a Promising Approach to Combat Multidrug Resistant Bacteria: A Comprehensive Review and Future Perspectives. Biomedicines 2023; 11:biomedicines11020413. [PMID: 36830949 PMCID: PMC9953167 DOI: 10.3390/biomedicines11020413] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/20/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
The wide spread of antibiotic resistance has been alarming in recent years and poses a serious global hazard to public health as it leads to millions of deaths all over the world. The wide spread of resistance and sharing resistance genes between different types of bacteria led to emergence of multidrug resistant (MDR) microorganisms. This problem is exacerbated when microorganisms create biofilms, which can boost bacterial resistance by up to 1000-fold and increase the emergence of MDR infections. The absence of novel and potent antimicrobial compounds is linked to the rise of multidrug resistance. This has sparked international efforts to develop new and improved antimicrobial agents as well as innovative and efficient techniques for antibiotic administration and targeting. There is an evolution in nanotechnology in recent years in treatment and prevention of the biofilm formation and MDR infection. The development of nanomaterial-based therapeutics, which could overcome current pathways linked to acquired drug resistance, is a hopeful strategy for treating difficult-to-treat bacterial infections. Additionally, nanoparticles' distinct size and physical characteristics enable them to target biofilms and treat resistant pathogens. This review highlights the current advances in nanotechnology to combat MDR and biofilm infection. In addition, it provides insight on development and mechanisms of antibiotic resistance, spread of MDR and XDR infection, and development of nanoparticles and mechanisms of their antibacterial activity. Moreover, this review considers the difference between free antibiotics and nanoantibiotics, and the synergistic effect of nanoantibiotics to combat planktonic bacteria, intracellular bacteria and biofilm. Finally, we will discuss the strength and limitations of the application of nanotechnology against bacterial infection and future perspectives.
Collapse
Affiliation(s)
- Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
- Correspondence: (H.F.H.); (M.G.D.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Alhanouf I. Al-Harbi
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46411, Saudi Arabia
| | - Esraa A. Ahmed
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut 71515, Egypt
| | - Basem Battah
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Syrian Private University (SPU), Daraa International Highway, 36822 Damascus, Syria
| | - Noura H. Abd Ellah
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, Badr University in Assiut, Naser City, Assiut 2014101, Egypt
| | - Stefania Zanetti
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Matthew Gavino Donadu
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Hospital Pharmacy, Azienda Ospedaliero Universitaria di Sassari, 07100 Sassari, Italy
- Correspondence: (H.F.H.); (M.G.D.)
| |
Collapse
|
47
|
Skłodowski K, Chmielewska-Deptuła SJ, Piktel E, Wolak P, Wollny T, Bucki R. Metallic Nanosystems in the Development of Antimicrobial Strategies with High Antimicrobial Activity and High Biocompatibility. Int J Mol Sci 2023; 24:2104. [PMID: 36768426 PMCID: PMC9917064 DOI: 10.3390/ijms24032104] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Antimicrobial resistance is a major and growing global problem and new approaches to combat infections caused by antibiotic resistant bacterial strains are needed. In recent years, increasing attention has been paid to nanomedicine, which has great potential in the development of controlled systems for delivering drugs to specific sites and targeting specific cells, such as pathogenic microbes. There is continued interest in metallic nanoparticles and nanosystems based on metallic nanoparticles containing antimicrobial agents attached to their surface (core shell nanosystems), which offer unique properties, such as the ability to overcome microbial resistance, enhancing antimicrobial activity against both planktonic and biofilm embedded microorganisms, reducing cell toxicity and the possibility of reducing the dosage of antimicrobials. The current review presents the synergistic interactions within metallic nanoparticles by functionalizing their surface with appropriate agents, defining the core structure of metallic nanoparticles and their use in combination therapy to fight infections. Various approaches to modulate the biocompatibility of metallic nanoparticles to control their toxicity in future medical applications are also discussed, as well as their ability to induce resistance and their effects on the host microbiome.
Collapse
Affiliation(s)
- Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
| | | | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, 15-222 Bialystok, Poland
| | - Przemysław Wolak
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| | - Tomasz Wollny
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, 15-222 Bialystok, Poland
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, IX Wieków Kielce 19A, 25-317 Kielce, Poland
| |
Collapse
|
48
|
Rybka M, Mazurek Ł, Konop M. Beneficial Effect of Wound Dressings Containing Silver and Silver Nanoparticles in Wound Healing-From Experimental Studies to Clinical Practice. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010069. [PMID: 36676019 PMCID: PMC9864212 DOI: 10.3390/life13010069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Impaired wound healing affects hundreds of million people around the world; therefore, chronic wounds are a major problem not only for the patient, but also for already overloaded healthcare systems. Chronic wounds are always very susceptible to infections. Billions of dollars are spent to discover new antibiotics as quickly as possible; however, bacterial resistance against antibiotics is rising even faster. For this reason, a complete shift of the antibacterial treatment paradigm is necessary. The development of technology has allowed us to rediscover well-known agents presenting antimicrobial properties with a better outcome. In this context, silver nanoparticles are a promising candidate for use in such therapy. Silver has many useful properties that can be used in the treatment of chronic wounds, such as anti-bacterial, anti-inflammatory, and anti-oxidative properties. In the form of nanoparticles, silver agents can work even more effectively and can be more easily incorporated into various dressings. Silver-based dressings are already commercially available; however, innovative combinations are still being discovered and very promising results have been described. In this review article, the authors focused on describing experimental and clinical studies exploring dressings containing either silver or silver nanoparticles, the results of which have been published in recent years.
Collapse
|
49
|
Yang X, Yu Q, Gao W, Tang X, Yi H, Tang X. The mechanism of metal-based antibacterial materials and the progress of food packaging applications: A review. CERAMICS INTERNATIONAL 2022; 48:34148-34168. [PMID: 36059853 PMCID: PMC9419445 DOI: 10.1016/j.ceramint.2022.08.249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 05/13/2023]
Abstract
Food packages have been detected carrying novel coronavirus in multi-locations since the outbreak of COVID-19, causing major concern in the field of food safety. Metal-based supported materials are widely used for sterilization due to their excellent antibacterial properties as well as low biological resistance. As the principal part of antibacterial materials, the active component, commonly referred to Ag, Cu, Zn, etc., plays the main role in inhibiting and killing pathogenic microorganisms by destroying the structure of cells. As another composition of metal-based antibacterial materials, the carrier could support and disperse the active component, which on one hand, could effectively decrease the usage amount of active component, on the other hand, could be processed into various forms to broaden the application range of antibacterial materials. Different from other metal-based antibacterial reviews, in order to highlight the detailed function of various carriers, we divided the carriers into biocompatible and adsorptable types and discussed their different antibacterial effects. Moreover, a novel substitution antibacterial mechanism was proposed. The coating and shaping techniques of metal-based antibacterial materials as well as their applications in food storage at ambient and low temperatures are also comprehensively summarized. This review aims to provide a theoretical basis and reference for researchers in this field to develop new metal-based antibacterial materials.
Collapse
Affiliation(s)
- Xiaotong Yang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Qingjun Yu
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Wei Gao
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaoning Tang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan, China
| | - Honghong Yi
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- Department of Environmental Science and Engineering, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
50
|
Samrot AV, Ram Singh SP, Deenadhayalan R, Rajesh VV, Padmanaban S, Radhakrishnan K. Nanoparticles, a Double-Edged Sword with Oxidant as Well as Antioxidant Properties—A Review. OXYGEN 2022; 2:591-604. [DOI: https:/doi.org/10.3390/oxygen2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
The usage of nanoparticles became inevitable in medicine and other fields when it was found that they could be administered to hosts to act as oxidants or antioxidants. These oxidative nanoparticles act as pro-oxidants and induce oxidative stress-mediated toxicity through the generation of free radicals. Some nanoparticles can act as antioxidants to scavenge these free radicals and help in maintaining normal metabolism. The oxidant and antioxidant properties of nanoparticles rely on various factors including size, shape, chemical composition, etc. These properties also help them to be taken up by cells and lead to further interaction with cell organelles/biological macromolecules, leading to either the prevention of oxidative damage, the creation of mitochondrial dysfunction, damage to genetic material, or cytotoxic effects. It is important to know the properties that make these nanoparticles act as oxidants/antioxidants and the mechanisms behind them. In this review, the roles and mechanisms of nanoparticles as oxidants and antioxidants are explained.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia
| | - Sanjay Preeth Ram Singh
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Rajalakshmi Deenadhayalan
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, Tamil Nadu, India
| | - Vinod Vincent Rajesh
- MSU College, Naduvakurichi, Sankarankovil Taluk, Tenkasi District, Tirunelveli 627012, Tamil Nadu, India
| | - Sathiyamoorthy Padmanaban
- Department of Medical Nanotechnology, School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur 613401, Tamil Nadu, India
| | - Kamalakannan Radhakrishnan
- Combinatorial Cancer Immunotherapy MRC, Clinical Vaccine R&D Center, Chonnam National University Medical School, Gwangju 58128, Republic of Korea
| |
Collapse
|