1
|
Batista A, Kęsy J, Sadowska K, Karolewski Z, Bocianowski J, Woźniak A, Morkunas I. The role of silver nanoparticles in yellow lupine (Lupinus luteus L.) defense response to Fusarium oxysporum f.sp. lupini. Sci Rep 2025; 15:16136. [PMID: 40341719 PMCID: PMC12062378 DOI: 10.1038/s41598-025-00464-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 04/28/2025] [Indexed: 05/10/2025] Open
Abstract
This study presents the influence of silver nanoparticles (AgNPs) on the growth of yellow lupine (Lupinus luteus L.cv. Diament and Lupinus luteus L.cv. Mister), and some metabolic reactions triggered by AgNPs during the seed germination stage and development of the seedling. Also, the role of AgNPs in defense mechanisms of the above of yellow lupine varieties against hemibiotrofic patogen Fusarium oxysporum f.sp. lupini. AgNPs enhanced the growth of yellow lupine seedlings, particularly root length and fresh biomass. Furthermore, AgNPs triggered defense-related phytohormones, such as abscisic acid (ABA), jasmonates (JA/MeJA), and salicylic acid (SA), which were involved in defense response of yellow lupine against F. oxysporum infection. The application of AgNPs significantly enhanced the growth of yellow lupine seedlings, increasing root length by over 400% and fresh biomass by 183% compared to the control. Moreover, AgNPs also significantly triggered an important defense-related phytohormone ABA, which increased by 103- and 38-times in Diament and Mister varieties, respectively. AgNPs influenced soluble sugar levels, such as sucrose and fructose, in yellow lupine, which may be related to defense mechanisms. The treatment with AgNPs induced a hormetic effect, where the roots of seedlings exhibited increased growth and defense responses at low concentrations. The level of gibberellic acid (GA) increased by 556% and 297% in AgNP-pretreated embryo axes of Diament and Mister varieties, respectively. Sugar levels, such as sucrose and fructose, were also influenced by AgNPs. In Diament variety, sucrose and fructose levels increased by 60% and 146%, respectively. However, F. oxysporum infection caused a strong decline in sugar levels. Overall, the study suggests that AgNPs can be used to enhance plant growth and defense against pathogens.
Collapse
Affiliation(s)
- Anielkis Batista
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
- Polytechnic Institute of Huila, Universidade Mandume ya Ndemufayo, 3FJP+27X, Lubango, Angola
| | - Jacek Kęsy
- Department of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Lwowska 1, 87-100, Toruń, Poland
| | - Katarzyna Sadowska
- Laboratory of the Plant Diseases Clinic and Pathogen Bank, Institute of Plant Protection - National Research Institute, Władysława Węgorka 20, 60- 318, Poznań, Poland
| | - Zbigniew Karolewski
- Department of Phytopathology, Seed Science and Technology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Dąbrowskiego 159, 60-594, Poznań, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Agnieszka Woźniak
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland
| | - Iwona Morkunas
- Department of Plant Physiology, Faculty of Agriculture, Horticulture and Biotechnology, Poznań University of Life Sciences, Wołyńska 35, 60-637, Poznań, Poland.
| |
Collapse
|
2
|
Santos ICG, de Oliveira ML, Silva RC, Sant'Anna C. Assessment of silver nanoparticles' antitumor effects: Insights into cell number, viability, and morphology of glioblastoma and prostate cancer cells. Toxicol In Vitro 2024; 99:105869. [PMID: 38848823 DOI: 10.1016/j.tiv.2024.105869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
Silver nanoparticles (AgNPs) hold promise for cancer therapy. This study aimed to evaluate their impact on tumor and non-tumor cell number, viability, and morphology. Antitumor activity was tested on U-87MG (glioblastoma) and DU-145 (prostate cancer) cell lines. Treatment with AgNPs notably reached a reduction of U-87MG and DU-145 cell growth by 89.30% and 79.74%, respectively, resulting in slower growth rates. AgNPs induced DNA damage, evidenced by reduced nuclear area and DNA content via fluorescent image-based analyses. Conversely, HFF-1 non-tumor cells displayed no significant changes post-AgNPs exposure. Viability assays revealed substantial reductions in U-87MG and DU-145 cells (79% and 63% in MTT assays, 30% and 52.2% in high-content analyses), while HFF-1 cells exhibited lower sensitivity. Tumor cells had notably lower IC50 values than non-tumor cells, indicating selective susceptibility. Transmission electron microscopy (TEM) showed morphological changes post-AgNPs administration, including increased vacuoles, myelin figures, membrane ghosts, cellular extravasation, and membrane projections. The findings suggest the potential of AgNPs against glioblastoma and prostate cancer, necessitating further exploration across other cancer cell lines.
Collapse
Affiliation(s)
- Isabel Cristina Gomes Santos
- Laboratory of Biology of Eukaryotic Cells, National Institute of Metrology, Quality and Technology - Inmetro, Duque de Caxias, RJ 25250-020, Brazil
| | - Michelle Lopes de Oliveira
- Laboratory of Biology of Eukaryotic Cells, National Institute of Metrology, Quality and Technology - Inmetro, Duque de Caxias, RJ 25250-020, Brazil
| | - Renata Carvalho Silva
- Laboratory of Biology of Eukaryotic Cells, National Institute of Metrology, Quality and Technology - Inmetro, Duque de Caxias, RJ 25250-020, Brazil
| | - Celso Sant'Anna
- Laboratory of Biology of Eukaryotic Cells, National Institute of Metrology, Quality and Technology - Inmetro, Duque de Caxias, RJ 25250-020, Brazil.
| |
Collapse
|
3
|
Gorgzadeh A, Amiri PA, Yasamineh S, Naser BK, Abdulallah KA. The potential use of nanozyme in aging and age-related diseases. Biogerontology 2024; 25:583-613. [PMID: 38466515 DOI: 10.1007/s10522-024-10095-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/17/2024] [Indexed: 03/13/2024]
Abstract
The effects of an increasingly elderly population are among the most far-reaching in 21st-century society. The growing healthcare expense is mainly attributable to the increased incidence of chronic illnesses that accompany longer life expectancies. Different ideas have been put up to explain aging, but it is widely accepted that oxidative damage to proteins, lipids, and nucleic acids contributes to the aging process. Increases in life expectancy in all contemporary industrialized cultures are accompanied by sharp increases in the prevalence of age-related diseases such as cardiovascular and neurological conditions, type 2 diabetes, osteoporosis, and cancer. Therefore, academic and public health authorities should prioritize the development of therapies to increase health span. Nanozyme (NZ)-like activity in nanomaterials has been identified as promising anti-aging nanomedicines. More than that, nanomaterials displaying catalytic activities have evolved as artificial enzymes with high structural stability, variable catalytic activity, and functional diversity for use in a wide range of biological settings, including those dealing with age-related disorders. Due to their inherent enzyme-mimicking qualities, enzymes have attracted significant interest in treating diseases associated with reactive oxygen species (ROS). The effects of NZs on aging and age-related disorders are summarized in this article. Finally, prospects and threats to enzyme research and use in aging and age-related disorders are offered.
Collapse
Affiliation(s)
| | - Paria Arab Amiri
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saman Yasamineh
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | | | | |
Collapse
|
4
|
Asif K, Adeel M, Rahman MM, Sfriso AA, Bartoletti M, Canzonieri V, Rizzolio F, Caligiuri I. Silver nitroprusside as an efficient chemodynamic therapeutic agent and a peroxynitrite nanogenerator for targeted cancer therapies. J Adv Res 2024; 56:43-56. [PMID: 36958586 PMCID: PMC10834793 DOI: 10.1016/j.jare.2023.03.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/15/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
INTRODUCTION Chemodynamic therapy (CDT) holds great promise in achieving cancer therapy through Fenton and Fenton-like reactions, which generate highly toxic reactive species. However, CDT is limited by the lower amount of catalyst ions that can decompose already existing intracellular H2O2 and produce reactive oxygen species (ROS) to attain a therapeutic outcome. OBJECTIVES To overcome these limitations, a tailored approach, which utilizes dual metals cations (Ag+, Fe2+) based silver pentacyanonitrosylferrate or silver nitroprusside (AgNP) were developed for Fenton like reactions that can specifically kill cancer cells by taking advantage of tumor acidic environment without used of any external stimuli. METHODS A simple solution mixing procedure was used to synthesize AgNP as CDT agent. AgNP were structurally and morphologically characterized, and it was observed that a minimal dose of AgNP is required to destroy cancer cells with limited effects on normal cells. Moreover, comprehensive in vitro studies were conducted to evaluate antitumoral mechanism. RESULTS AgNP have an effective ability to decompose endogenous H2O2 in cells. The decomposed endogenous H2O2 generates several different types of reactive species (•OH, O2•-) including peroxynitrite (ONOO-) species as apoptotic inducers that kill cancer cells, specifically. Cellular internalization data demonstrated that in short time, AgNP enters in lysosomes, avoid degradation and due to the acidic pH of lysosomes significantly generate high ROS levels. These data are further confirmed by the activation of different oxidative genes. Additionally, we demonstrated the biocompatibility of AgNP on mouse liver and ovarian organoids as an ex vivo model while AgNP showed the therapeutic efficacy on patient derived tumor organoids (PDTO). CONCLUSION This work demonstrates the therapeutic application of silver nitroprusside as a multiple ROS generator utilizing Fenton like reaction. Thereby, our study exhibits a potential application of CDT against HGSOC (High Grade Serous Ovarian Cancer), a deadly cancer through altering the redox homeostasis.
Collapse
Affiliation(s)
- Kanwal Asif
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy
| | - Muhammad Adeel
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Md Mahbubur Rahman
- Department of Applied Chemistry, Konkuk University, Chungju 27478, Republic of Korea
| | | | - Michele Bartoletti
- Department of Medicine (DAME), University of Udine, Udine, Italy; Unit of Medical Oncology and Cancer Prevention, Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, 33081 Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
| | - Flavio Rizzolio
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy; Department of Molecular Sciences and Nanosystems, Ca' Foscari University of Venice, 30172 Venice, Italy.
| | - Isabella Caligiuri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (C.R.O.) IRCCS, 33081 Aviano, Italy
| |
Collapse
|
5
|
Chivé C, Mc Cord C, Sanchez-Guzman D, Brookes O, Joseph P, Lai Kuen R, Phan G, Baeza-Squiban A, Devineau S, Boland S. 3D model of the bronchial epithelial barrier to study repeated exposure to xenobiotics: Application to silver nanoparticles. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 103:104281. [PMID: 37742817 DOI: 10.1016/j.etap.2023.104281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
There is still a lack of in vitro human models to evaluate the chronic toxicity of drugs and environmental pollutants. Here, we used a 3D model of the human bronchial epithelium to assess repeated exposures to xenobiotics. The Calu-3 human bronchial cell line was exposed to silver nanoparticles (AgNP) 5 times during 12 days, at the air-liquid interface, to mimic single and repeated exposure to inhaled particles. Repeated exposures induced a stronger induction of the metal stress response and a steady oxidative stress over time. A sustained translocation of silver was observed after each exposure without any loss of the epithelial barrier integrity. The proteomic analysis of the mucus revealed changes in the secreted protein profiles associated with the epithelial immune response after repeated exposures only. These results demonstrate that advanced in vitro models are efficient to investigate the adaptive response of human cells submitted to repeated xenobiotic exposures.
Collapse
Affiliation(s)
- Chloé Chivé
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Claire Mc Cord
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Daniel Sanchez-Guzman
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Oliver Brookes
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Prinitha Joseph
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - René Lai Kuen
- Université Paris Cité, INSERM UMS 025-CNRS UMS 3612, Faculté de Pharmacie, F-75006 Paris, France
| | - Guillaume Phan
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-SANTE/SESANE/LRSI - plateforme Paterson, F-92260 Fontenay-aux-Roses, France
| | - Armelle Baeza-Squiban
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France.
| | - Stéphanie Devineau
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| | - Sonja Boland
- Université Paris Cité, CNRS, Unit of Functional and Adaptive Biology, F-75013 Paris, France
| |
Collapse
|
6
|
Utembe W, Andraos C, Gulumian M. Immunotoxicity of engineered nanomaterials and their role in asthma. Crit Rev Toxicol 2023; 53:491-505. [PMID: 37933836 DOI: 10.1080/10408444.2023.2270519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/03/2023] [Indexed: 11/08/2023]
Abstract
The toxicity of engineered nanomaterials (ENMs) in vivo and in vitro has formed the basis of most studies. However, the toxicity of ENMs, particularly on the immune system, i.e. immunotoxicity, and their role in manipulating it, are less known. This review addresses the initiation or exacerbation as well as the attenuation of allergic asthma by a variety of ENMs and how they may be used in drug delivery to enhance the treatment of asthma. This review also highlights a few research gaps in the study of the immunotoxicity of ENMs, for example, the potential drawbacks of assays used in immunotoxicity assays; the potential role of hormesis during dosing of ENMs; and the variables that result in discrepancies among different studies, such as the physicochemical properties of ENMs, differences in asthmatic animal models, and different routes of administration.
Collapse
Affiliation(s)
- Wells Utembe
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Department of Environmental Health, University of Johannesburg, Johannesburg, South Africa
- Environmental Health Division, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Charlene Andraos
- Toxicology and Biochemistry, National Institute for Occupational Health, National Health Laboratory Service, Johannesburg, South Africa
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Mary Gulumian
- Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Haematology and Molecular Medicine Department, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
7
|
Musielak M, Boś-Liedke A, Piwocka O, Kowalska K, Markiewicz R, Lorenz A, Bakun P, Suchorska W. Methodological and Cellular Factors Affecting the Magnitude of Breast Cancer and Normal Cell Radiosensitization Using Gold Nanoparticles. Int J Nanomedicine 2023; 18:3825-3850. [PMID: 37457801 PMCID: PMC10349585 DOI: 10.2147/ijn.s412458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Purpose Breast cancer (BC) is the most common malignant tumor in women, which most often originates from the epithelial tissue of the breast gland. One of the most recommended kinds of treatment is radiotherapy (RT), but irradiation (IR) can affect not only the cancer tumor but also the healthy tissue around it. Au nanoparticles (AuNPs) were proposed as a radiosensitizing agent for RT which would allow for lower radiation doses, reducing the negative radiation effects on healthy tissues. The main objective of the study is to assess the dependence on the radiosensitivity of BC (MDA-MB-231) and normal mammary gland epithelial cells (MCF12A) to ionizing radiation, caused by functionalized AuNPs under diverse conditions. Methods The viability, uptake, reactive oxygen species induction, and mitochondrial membrane potential in cells were analyzed applying a time and concentration-dependent manner. After different incubation times with AuNPs, cells were exposed to 2 Gy. The determination of radiation effect in combination with AuNPs was investigated using the clonogenic assay, p53, and γH2AX level, as well as, Annexin V staining. Results Our results highlighted the strong need for assessing the experimental conditions' optimization before the AuNPs will be implemented with IR. Moreover, results indicated that AuNPs did not act universally in cells. Conclusion AuNPs could be a promising tool as a radiotherapy sensitizing agent, but it should be specified and deeply investigated under what conditions it will be applied taking into consideration not only AuNPs modifications but also the model and experimental conditions.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Aleksandra Lorenz
- Faculty of Agronomy, Horticulture and Bioengineering, Poznan University of Life Sciences, Poznan, Poland
| | - Paweł Bakun
- Doctoral School, Poznan University of Medical Sciences, Poznan, Poland
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
8
|
Wang Z, Wang Y, Li H, Lan Y, Zeng Z, Yao J, Li M, Xia H. Fabrication of Etoposide-loaded superparamagnetic iron oxide nanoparticles (SPIONs) induced apoptosis in glioma cancer cells. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
9
|
Musielak M, Boś-Liedke A, Piwocka O, Kowalska K, Markiewicz R, Szymkowiak B, Bakun P, Suchorska WM. The Role of Functionalization and Size of Gold Nanoparticles in the Response of MCF-7 Breast Cancer Cells to Ionizing Radiation Comparing 2D and 3D In Vitro Models. Pharmaceutics 2023; 15:pharmaceutics15030862. [PMID: 36986725 PMCID: PMC10057027 DOI: 10.3390/pharmaceutics15030862] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Gold nanoparticles (AuNPs), as an agent enhancing radiosensitivity, play a key role in the potential treatment of breast cancer (BC). Assessing and understanding the kinetics of modern drug delivery systems is a crucial element that allows the implementation of AuNPs in clinical treatment. The main objective of the study was to assess the role of the properties of gold nanoparticles in the response of BC cells to ionizing radiation by comparing 2D and 3D models. In this research, four kinds of AuNPs, different in size and PEG length, were used to sensitize cells to ionizing radiation. The in vitro viability, uptake, and reactive oxygen species generation in cells were investigated in a time- and concentration-dependent manner using 2D and 3D models. Next, after the previous incubation with AuNPs, cells were irradiated with 2 Gy. The assessment of the radiation effect in combination with AuNPs was analyzed using the clonogenic assay and γH2AX level. The study highlights the role of the PEG chain in the efficiency of AuNPs in the process of sensitizing cells to ionizing radiation. The results obtained imply that AuNPs are a promising solution for combined treatment with radiotherapy.
Collapse
Affiliation(s)
- Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Agnieszka Boś-Liedke
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
| | - Oliwia Piwocka
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Katarzyna Kowalska
- Department of Histology and Embryology, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| | - Roksana Markiewicz
- NanoBioMedical Centre, Adam Mickiewicz University, 61-614 Poznan, Poland
| | | | - Paweł Bakun
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Chair and Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, 61-781 Poznan, Poland
| | - Wiktoria M Suchorska
- Department of Electroradiology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Radiobiology Laboratory, Department of Medical Physics, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
10
|
Besis A, Romano MP, Serafeim E, Avgenikou A, Kouras A, Lionetto MG, Guascito MR, De Bartolomeo AR, Giordano ME, Mangone A, Contini D, Samara C. Size-Resolved Redox Activity and Cytotoxicity of Water-Soluble Urban Atmospheric Particulate Matter: Assessing Contributions from Chemical Components. TOXICS 2023; 11:59. [PMID: 36668785 PMCID: PMC9867266 DOI: 10.3390/toxics11010059] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Throughout the cold and the warm periods of 2020, chemical and toxicological characterization of the water-soluble fraction of size segregated particulate matter (PM) (<0.49, 0.49−0.95, 0.95−1.5, 1.5−3.0, 3.0−7.2 and >7.2 μm) was conducted in the urban agglomeration of Thessaloniki, northern Greece. Chemical analysis of the water-soluble PM fraction included water-soluble organic carbon (WSOC), humic-like substances (HULIS), and trace elements (V, Cr, Mn, Fe, Ni, Cu, Zn, As, Cd and Pb). The bulk (sum of all size fractions) concentrations of HULIS were 2.5 ± 0.5 and 1.2 ± 0.3 μg m−3, for the cold and warm sampling periods, respectively with highest values in the <0.49 μm particle size fraction. The total HULIS-C/WSOC ratio ranged from 17 to 26% for all sampling periods, confirming that HULIS are a significant part of WSOC. The most abundant water-soluble metals were Fe, Zn, Cu, and Mn. The oxidative PM activity was measured abiotically using the dithiothreitol (DTT) assay. In vitro cytotoxic responses were investigated using mitochondrial dehydrogenase (MTT). A significant positive correlation was found between OPmDTT, WSOC, HULIS and the MTT cytotoxicity of PM. Multiple Linear Regression (MLR) showed a good relationship between OPMDTT, HULIS and Cu.
Collapse
Affiliation(s)
- Athanasios Besis
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Pia Romano
- Department of Mathematics and Physics, University of Salento, 73100 Lecce, Italy
| | - Eleni Serafeim
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Anna Avgenikou
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Athanasios Kouras
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Maria Giulia Lionetto
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Rachele Guascito
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), 73100 Lecce, Italy
| | - Anna Rita De Bartolomeo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Maria Elena Giordano
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Annarosa Mangone
- Department of Chemistry, University of Bari Aldo Moro, 70124 Bari, Italy
| | - Daniele Contini
- Institute of Atmospheric Sciences and Climate (CNR-ISAC), 73100 Lecce, Italy
| | - Constantini Samara
- Environmental Pollution Control Laboratory, Department of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| |
Collapse
|
11
|
Xi J, Kan W, Zhu Y, Huang S, Wu L, Wang J. Synthesis of silver nanoparticles using Eucommia ulmoides extract and their potential biological function in cosmetics. Heliyon 2022; 8:e10021. [PMID: 35942280 PMCID: PMC9356174 DOI: 10.1016/j.heliyon.2022.e10021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/12/2022] [Accepted: 07/18/2022] [Indexed: 11/15/2022] Open
Abstract
Silver nanoparticles (AgNPs) synthesized from plant extracts have recently emerged as a rapidly growing field with numerous applications in pharmaceutical and clinical contexts. The purpose of this research is to come up with a novel method for the biosynthesis of silver nanoparticles that use Eucommia ulmoides leaf extract as a reducing agent. The synthesis of AgNPs was confirmed using UV-vis spectroscopy, and the properties of AgNPs were characterized using Transmission Electron Microscope, Fourier Infrared Spectrometer, X-ray diffraction, Thermogravimetric Analysis, and Zeta potential. The results showed that the AgNPs exhibited a characteristic absorption peak at 430 nm, their diameter ranged from 4 nm to 52 nm, and C, O, and Cl elements, which might represent flavonoids and phenolic components absorbed on the surface of AgNPs. The zeta potential of AgNPs was found to be −30.5 mV, which indicates repulsion among AgNPs and they have good dispersion stability. AgNPs have been found to suppress the tyrosinase activity both in mushroom tyrosinase and A375 cells, as well as diminish ROS formation in HaCat cells. According to this study, AgNPs is a novel material that can enhance skin health by preventing melanin development.
Collapse
Affiliation(s)
- Jinfeng Xi
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Wenjie Kan
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Shengwei Huang
- Institute of Biomedical and Health Science, School of Life and Health Science, Anhui Science and Technology University, Fengyang, Anhui, 233100, China
- Corresponding author.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| | - Jun Wang
- The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China
- University of Science and Technology of China, Hefei 230026, Anhui, China
- Zhongke Taihe Experimental Station, Taihe 236626, Anhui, China
- Corresponding authors at: The Center for Ion Beam Bioengineering and Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, Anhui, China.
| |
Collapse
|
12
|
Sthijns MMJPE, Rademakers T, Oosterveer J, Geuens T, van Blitterswijk CA, LaPointe VLS. The response of three-dimensional pancreatic alpha and beta cell co-cultures to oxidative stress. PLoS One 2022; 17:e0257578. [PMID: 35290395 PMCID: PMC8923503 DOI: 10.1371/journal.pone.0257578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 11/19/2022] Open
Abstract
The pancreatic islets of Langerhans have low endogenous antioxidant levels and are thus especially sensitive to oxidative stress, which is known to influence cell survival and behaviour. As bioengineered islets are gaining interest for therapeutic purposes, it is important to understand how their composition can be optimized to diminish oxidative stress. We investigated how the ratio of the two main islet cell types (alpha and beta cells) and their culture in three-dimensional aggregates could protect against oxidative stress. Monolayer and aggregate cultures were established by seeding the alphaTC1 (alpha) and INS1E (beta) cell lines in varying ratios, and hydrogen peroxide was applied to induce oxidative stress. Viability, oxidative stress, and the level of the antioxidant glutathione were measured. Both aggregation and an increasing prevalence of INS1E cells in the co-cultures conferred greater resistance to cell death induced by oxidative stress. Increasing the prevalence of INS1E cells also decreased the number of alphaTC1 cells experiencing oxidative stress in the monolayer culture. In 3D aggregates, culturing the alphaTC1 and INS1E cells in a ratio of 50:50 prevented oxidative stress in both cell types. Together, the results of this study lead to new insight into how modulating the composition and dimensionality of a co-culture can influence the oxidative stress levels experienced by the cells.
Collapse
Affiliation(s)
- Mireille M. J. P. E. Sthijns
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Timo Rademakers
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jolien Oosterveer
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Thomas Geuens
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Clemens A. van Blitterswijk
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
| | - Vanessa L. S. LaPointe
- Department of Cell Biology–Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Gao X, Li R, Yourick JJ, Sprando RL. Transcriptomic and proteomic responses of silver nanoparticles in hepatocyte-like cells derived from human induced pluripotent stem cells. Toxicol In Vitro 2021; 79:105274. [PMID: 34798274 DOI: 10.1016/j.tiv.2021.105274] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/22/2021] [Accepted: 11/13/2021] [Indexed: 11/18/2022]
Abstract
Silver nanoparticles (AgNPs) have been increasingly used in a variety of consumer products over the last decades. However, their potential adverse effects have not been fully understood. In a previous study, we characterized transcriptomic changes in human induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells (HLCs) in response to AgNP exposure. Here, we report findings of a follow-up proteomic study that evaluated alternations at the protein level in the same cell after being exposed to 10 μg/ml AgNPs for 24 h. In total, 6287 proteins were identified across two groups of samples (n = 3). Among these proteins, 665 were found to be differentially regulated (fold change ≥1.25, p < 0.01) between the AgNP-treated group and the untreated control group, including 264 upregulated and 401 downregulated. Bioinformatics analysis of the proteomics data, in side-by-side comparison to the transcriptomics data, confirms and substantiates previous findings on AgNP-induced alterations in metabolism, oxidative stress, inflammation, and potential association with cancer. A mechanism of action was proposed based on these results. Collectively, the findings of the current proteomic study are consistent with those of the previous transcriptomic study and further demonstrate the usefulness of iPSC-derived HLCs as an in vitro model for liver nanotoxicology.
Collapse
Affiliation(s)
- Xiugong Gao
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA.
| | - Rong Li
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Jeffrey J Yourick
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| | - Robert L Sprando
- Division of Toxicology, Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
14
|
López-Laguna H, Sánchez JM, Carratalá JV, Rojas-Peña M, Sánchez-García L, Parladé E, Sánchez-Chardi A, Voltà-Durán E, Serna N, Cano-Garrido O, Flores S, Ferrer-Miralles N, Nolan V, de Marco A, Roher N, Unzueta U, Vazquez E, Villaverde A. Biofabrication of functional protein nanoparticles through simple His-tag engineering. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2021; 9:12341-12354. [PMID: 34603855 PMCID: PMC8483566 DOI: 10.1021/acssuschemeng.1c04256] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Indexed: 05/03/2023]
Abstract
We have developed a simple, robust, and fully transversal approach for the a-la-carte fabrication of functional multimeric nanoparticles with potential biomedical applications, validated here by a set of diverse and unrelated polypeptides. The proposed concept is based on the controlled coordination between Zn2+ ions and His residues in His-tagged proteins. This approach results in a spontaneous and reproducible protein assembly as nanoscale oligomers that keep the original functionalities of the protein building blocks. The assembly of these materials is not linked to particular polypeptide features, and it is based on an environmentally friendly and sustainable approach. The resulting nanoparticles, with dimensions ranging between 10 and 15 nm, are regular in size, are architecturally stable, are fully functional, and serve as intermediates in a more complex assembly process, resulting in the formation of microscale protein materials. Since most of the recombinant proteins produced by biochemical and biotechnological industries and intended for biomedical research are His-tagged, the green biofabrication procedure proposed here can be straightforwardly applied to a huge spectrum of protein species for their conversion into their respective nanostructured formats.
Collapse
Affiliation(s)
- Hèctor López-Laguna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Julieta M. Sánchez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - José Vicente Carratalá
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Mauricio Rojas-Peña
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Laura Sánchez-García
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Eloi Parladé
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Alejandro Sánchez-Chardi
- Servei de
Microscòpia, Universitat Autònoma
de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat
de Biologia, Universitat de Barcelona, Av. Diagonal 643, Barcelona 08028, Spain
| | - Eric Voltà-Durán
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Naroa Serna
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Olivia Cano-Garrido
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Sandra Flores
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Neus Ferrer-Miralles
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Verónica Nolan
- Universidad
Nacional de Córdoba, Facultad de
Ciencias Exactas, Físicas y Naturales, ICTA and Departamento
de Química, Cátedra de Química
Biológica, Av. Vélez Sársfield
1611, Córdoba 5016, Argentina
- CONICET-Universidad
Nacional de Córdoba, Instituto de Investigaciones Biológicas y Tecnológicas
(IIByT), Av. Velez Sarsfield
1611, Córdoba, 5016, Argentina
| | - Ario de Marco
- Laboratory
for Environmental and Life Sciences, University
of Nova Gorica, Nova Gorica 5000, Slovenia
| | - Nerea Roher
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Departament
de Biologia Cel·lular, Fisiologia Animal i Immunologia, Universitat Autònoma de Barcelona, Barcelona 08193, Spain
| | - Ugutz Unzueta
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
- Biomedical
Research Institute Sant Pau (IIB Sant Pau), Sant Antoni Ma Claret 167, Barcelona 08025, Spain
| | - Esther Vazquez
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| | - Antonio Villaverde
- Institut
de Biotecnologia i de Biomedicina, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- Departament
de Genètica i de Microbiologia, Universitat
Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- CIBER
de Bioingeniería, Biomateriales y
Nanomedicina (CIBER-BBN), C/Monforte de Lemos 3-5, Madrid 28029, Spain
| |
Collapse
|
15
|
Ude VC, Brown DM, Stone V, Johnston HJ. Time dependent impact of copper oxide nanomaterials on the expression of genes associated with oxidative stress, metal binding, inflammation and mucus secretion in single and co-culture intestinal in vitro models. Toxicol In Vitro 2021; 74:105161. [PMID: 33839236 DOI: 10.1016/j.tiv.2021.105161] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 03/05/2021] [Accepted: 04/04/2021] [Indexed: 12/18/2022]
Abstract
The potential for ingestion of copper oxide nanomaterials (CuO NMs) is increasing due to their increased exploitation. Investigation of changes in gene expression allows toxicity to be detected at an early stage of NM exposure and can enable investigation of the mechanism of toxicity. Here, undifferentiated Caco-2 cells, differentiated Caco-2 cells, Caco-2/HT29-MTX (mucus secreting) and Caco-2/Raji B (M cell model) co-cultures were exposed to CuO NMs and copper sulphate (CuSO4) in order to determine their impacts. Cellular responses were measured in terms of production of reactive oxygen species (ROS), the gene expression of an antioxidant (haem oxygenase 1 (HMOX1)), the pro-inflammatory cytokine (interleukin 8 (IL8)), the metal binding (metallothionein 1A and 2A (MT1A and MT2A)) and the mucus secreting (mucin 2 (MUC2)), as well as HMOX-1 protein level. While CuSO4 induced ROS production in cells, no such effect was observed for CuO NMs. However, these particles did induce an increase in the level of HMOX-1 protein and upregulation of HMOX1, MT2A, IL8 and MUC2 genes in all cell models. In conclusion, the expression of HMOX1, IL8 and MT2A were responsive to CuO NMs at 4 to 12 h post exposure when investigating the toxicity of NMs using intestinal in vitro models. These findings can inform the selection of endpoints, timepoints and models when investigating NM toxicity to the intestine in vitro in the future.
Collapse
Affiliation(s)
- Victor C Ude
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - David M Brown
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| | - Helinor J Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
16
|
Garcés M, Magnani ND, Pecorelli A, Calabró V, Marchini T, Cáceres L, Pambianchi E, Galdoporpora J, Vico T, Salgueiro J, Zubillaga M, Moretton MA, Desimone MF, Alvarez S, Valacchi G, Evelson P. Alterations in oxygen metabolism are associated to lung toxicity triggered by silver nanoparticles exposure. Free Radic Biol Med 2021; 166:324-336. [PMID: 33596456 DOI: 10.1016/j.freeradbiomed.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Along with the AgNP applications development, the concern about their possible toxicity has increasingly gained attention. As the respiratory system is one of the main exposure routes, the aim of this study was to evaluate the harmful effects developed in the lung after an acute AgNP exposure. In vivo studies using Balb/c mice intranasally instilled with 0.1 mg AgNP/kg b.w, were performed. 99mTc-AgNP showed the lung as the main organ of deposition, where, in turn, AgNP may exert barrier injury observed by increased protein content and total cell count in BAL samples. In vivo acute exposure showed altered lung tissue O2 consumption due to increased mitochondrial active respiration and NOX activity. Both O2 consumption processes release ROS triggering the antioxidant system as observed by the increased SOD, catalase and GPx activities and a decreased GSH/GSSG ratio. In addition, increased protein oxidation was observed after AgNP exposure. In A549 cells, exposure to 2.5 μg/mL AgNP during 1 h resulted in augment NOX activity, decreased mitochondrial ATP associated respiration and higher H2O2 production rate. Lung 3D tissue model showed AgNP-initiated barrier alterations as TEER values decreased and morphological alterations. Taken together, these results show that AgNP exposure alters O2 metabolism leading to alterations in oxygen metabolism lung toxicity. AgNP-triggered oxidative damage may be responsible for the impaired lung function observed due to alveolar epithelial injury.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Alessandra Pecorelli
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Erika Pambianchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Juan Galdoporpora
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Jimena Salgueiro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|
17
|
Khamrai M, Banerjee SL, Paul S, Ghosh AK, Sarkar P, Kundu PP. AgNPs Ornamented Modified Bacterial Cellulose Based Self-Healable L-B-L Assembly via a Schiff Base Reaction: A Potential Wound Healing Patch. ACS APPLIED BIO MATERIALS 2021; 4:428-440. [PMID: 35014294 DOI: 10.1021/acsabm.0c00915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A layer-by-layer (L-B-L) bacterial cellulose (BC)-based transdermal patch has been prepared via a Schiff base reaction. The L-B-L assembly consisting of covalently cross-linked ethylene diamine-modified carboxymethylated BC isolated from the Glucanoacetobacter xylinus (MTCC7795) bacterial strain and aldehyde-modified pectin formed via a Schiff base reaction. The presence of the imine bond assists the self-healing process after being scratched in the presence of a pH 7.4 buffer solution monitored via optical microscopy, atomic force microscopy, and tensile strength analyses. The formation of the L-B-L assembly was confirmed using field-emission scanning electron microscopy (FESEM) analysis. Simultaneously, water swelling and deswelling studies were carried out to test its water retention efficiency. The presence of silver nanoparticles (AgNPs) has been confirmed by ultraviolet-visible spectroscopy and FESEM analyses. The antimicrobial activity of the AgNPs-incorporated transdermal patch has been examined over Staphylococcus aureus and Escherichia coli using the zone of inhibition method. Additionally, the cell viability assay was performed using the fluorescent dyes 4',6-diamidino-2-phenylindole and propidium iodide. The AgNPs in the L-B-L assembly showed antimicrobial property against both types of bacteria. The cytotoxicity and wound healing property of the patch system have been studied over NIH 3T3 fibroblast and A549 epithelial cell lines. The L-B-L film also influenced the wound healing process of these two cell lines.
Collapse
Affiliation(s)
- Moumita Khamrai
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Sovan Lal Banerjee
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Saikat Paul
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Anup Kumar Ghosh
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - Priyatosh Sarkar
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Patit Paban Kundu
- Advanced Polymer Laboratory, Department of Polymer Science & Technology, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India.,Department of Chemical Engineering, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| |
Collapse
|
18
|
Sthijns MMJPE, Jetten MJ, Mohammed SG, Claessen SMH, de Vries RHW, Stell A, de Bont DFA, Engelse MA, Mumcuoglu D, van Blitterswijk CA, Dankers PYW, de Koning EJP, van Apeldoorn AA, LaPointe VLS. Oxidative stress in pancreatic alpha and beta cells as a selection criterion for biocompatible biomaterials. Biomaterials 2020; 267:120449. [PMID: 33129188 DOI: 10.1016/j.biomaterials.2020.120449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022]
Abstract
The clinical success rate of islet transplantation, namely independence from insulin injections, is limited by factors that lead to graft failure, including inflammation, acute ischemia, acute phase response, and insufficient vascularization. The ischemia and insufficient vascularization both lead to high levels of oxidative stress, which are further aggravated by islet encapsulation, inflammation, and undesirable cell-biomaterial interactions. To identify biomaterials that would not further increase damaging oxidative stress levels and that are also suitable for manufacturing a beta cell encapsulation device, we studied five clinically approved polymers for their effect on oxidative stress and islet (alpha and beta cell) function. We found that 300 poly(ethylene oxide terephthalate) 55/poly(butylene terephthalate) 45 (PEOT/PBT300) was more resistant to breakage and more elastic than other biomaterials, which is important for its immunoprotective function. In addition, it did not induce oxidative stress or reduce viability in the MIN6 beta cell line, and even promoted protective endogenous antioxidant expression over 7 days. Importantly, PEOT/PBT300 is one of the biomaterials we studied that did not interfere with insulin secretion in human islets.
Collapse
Affiliation(s)
- Mireille M J P E Sthijns
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marlon J Jetten
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sami G Mohammed
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Sandra M H Claessen
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Rick H W de Vries
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Adam Stell
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Denise F A de Bont
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Marten A Engelse
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Didem Mumcuoglu
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Clemens A van Blitterswijk
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Patricia Y W Dankers
- Department of Biomedical Engineering, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Eelco J P de Koning
- Department of Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Hubrecht Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands
| | - Aart A van Apeldoorn
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Vanessa L S LaPointe
- Department of Cell Biology-Inspired Tissue Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands.
| |
Collapse
|
19
|
da Silva Cansian LC, da Luz JZ, Bezerra AG, Machado TN, Santurio MTK, Oliveira Ribeiro CAD, Filipak Neto F. Malignancy and tumorigenicity of melanoma B16 cells are not affected by silver and gold nanoparticles. Toxicol Mech Methods 2020; 30:635-645. [PMID: 32746672 DOI: 10.1080/15376516.2020.1805663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Gold (AuNP) and silver (AgNP) nanoparticles have been incorporated into many therapeutic and diagnostic applications. However, previous studies revealed toxic properties as well as the hormesis phenomenon of many nanoparticles in different biological models. To evaluate the effects of low concentrations of AuNP and AgNP on murine melanoma cells B16F1 and B16F10 and relate them with phenotype changes, cells were exposed for 24 and 48 h. No cytotoxicity was observed for B16 cells through neutral red, MTT, trypan blue, and crystal violet assays at concentrations from 0.01 to 10 ng mL-1. Likewise, the nanoparticles did not interfere with drug-efflux activity, cell migration, cell cycle, and colony formation. Slight toxicity was observed for B16F10 exposed to 100 ng mL-1, with a decreased number of viable and attached cells, indicating differential sensitivity of B16F1 and B16F10 cells to the nanoparticles. Furthermore, colony size dispersion decreased for both B16 cell sub-lines. Therefore, there is no evidence that the tested concentrations of AuNP and AgNP can render B16 cells more aggressive and malignant, which is important since both nanoparticles are already largely used in nanotechnological products. Considering studies that have showed the hormesis effect of nanoparticles at low concentrations, which could protect cancer cells against chemotherapy, further investigation is advised.
Collapse
Affiliation(s)
| | | | - Arandi Ginane Bezerra
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Curitiba, Brasil
| | - Thiago Neves Machado
- Departamento de Física, Universidade Tecnológica Federal do Paraná, Curitiba, Brasil
| | | | | | | |
Collapse
|
20
|
Abram S, Fromm KM. Handling (Nano)Silver as Antimicrobial Agent: Therapeutic Window, Dissolution Dynamics, Detection Methods and Molecular Interactions. Chemistry 2020; 26:10948-10971. [DOI: 10.1002/chem.202002143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Sarah‐Luise Abram
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| | - Katharina M. Fromm
- Department of Chemistry University of Fribourg Chemin du Musée 9 1700 Fribourg Switzerland
| |
Collapse
|
21
|
Himly M, Geppert M, Hofer S, Hofstätter N, Horejs-Höck J, Duschl A. When Would Immunologists Consider a Nanomaterial to be Safe? Recommendations for Planning Studies on Nanosafety. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907483. [PMID: 32239645 DOI: 10.1002/smll.201907483] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/06/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The immune system is professional in recognizing and responding to non-self, including nanomaterials. Immune responses by professional and nonprofessional immune cells are thus nearly inevitable upon exposure of cells and organisms to such materials. The state of research into taking the immune system into account in nanosafety studies is reviewed and three aspects in which further improvements are desirable are identified: 1) Due to technical limitations, more stringent testing for endotoxin contamination should be made. 2) Since under overdose conditions immunity shows unphysiological responses, all doses used should be justified by being equivalent to tissue-delivered doses. 3) When markers of acute inflammation or cell stress are observed, functional assays are necessary to distinguish between homeostatic fluctuation and genuine defensive or tolerogenic responses. Since immune activation can also indicate that the immune system considers a stimulus to be harmless and induces tolerance, activation markers by themselves do not necessarily imply a danger to the body. Guidelines such as these are necessary to approach the point where specific nanomaterials are classified as safe based on reliable testing strategies.
Collapse
Affiliation(s)
- Martin Himly
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Mark Geppert
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Sabine Hofer
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Norbert Hofstätter
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Jutta Horejs-Höck
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| | - Albert Duschl
- Department for Biosciences & Allergy Cancer BioNano Research Centre, University of Salzburg, Hellbrunner Strasse 34, Salzburg, 5020, Austria
| |
Collapse
|
22
|
House JS, Bouzos E, Fahy KM, Francisco VM, Lloyd DT, Wright FA, Motsinger-Reif AA, Asuri P, Wheeler KE. Low-Dose Silver Nanoparticle Surface Chemistry and Temporal Effects on Gene Expression in Human Liver Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2000299. [PMID: 32227433 PMCID: PMC7446734 DOI: 10.1002/smll.202000299] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 05/31/2023]
Abstract
Silver nanoparticles (AgNPs) are widely incorporated into consumer and biomedical products for their antimicrobial and plasmonic properties with limited risk assessment of low-dose cumulative exposure in humans. To evaluate cellular responses to low-dose AgNP exposures across time, human liver cells (HepG2) are exposed to AgNPs with three different surface charges (1.2 µg mL-1 ) and complete gene expression is monitored across a 24 h period. Time and AgNP surface chemistry mediate gene expression. In addition, since cells are fed, time has marked effects on gene expression that should be considered. Surface chemistry of AgNPs alters gene transcription in a time-dependent manner, with the most dramatic effects in cationic AgNPs. Universal to all surface coatings, AgNP-treated cells responded by inactivating proliferation and enabling cell cycle checkpoints. Further analysis of these universal features of AgNP cellular response, as well as more detailed analysis of specific AgNP treatments, time points, or specific genes, is facilitated with an accompanying application. Taken together, these results provide a foundation for understanding hepatic response to low-dose AgNPs for future risk assessment.
Collapse
Affiliation(s)
- John S House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Evangelia Bouzos
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, 95053, USA
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Kira M Fahy
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| | | | - Dillon T Lloyd
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Alison A Motsinger-Reif
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, 27709, USA
| | - Prashanth Asuri
- Department of Bioengineering, Santa Clara University, Santa Clara, CA, 95053, USA
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, Santa Clara, CA, 95053, USA
| |
Collapse
|
23
|
Raja G, Jang YK, Suh JS, Kim HS, Ahn SH, Kim TJ. Microcellular Environmental Regulation of Silver Nanoparticles in Cancer Therapy: A Critical Review. Cancers (Basel) 2020; 12:E664. [PMID: 32178476 PMCID: PMC7140117 DOI: 10.3390/cancers12030664] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Silver nanoparticles (AgNPs) play significant roles in various cancer cells such as functional heterogeneity, microenvironmental differences, and reversible changes in cell properties (e.g., chemotherapy). There is a lack of targets for processes involved in tumor cellular heterogeneity, such as metabolic clampdown, cytotoxicity, and genotoxicity, which hinders microenvironmental biology. Proteogenomics and chemical metabolomics are important tools that can be used to study proteins/genes and metabolites in cells, respectively. Chemical metabolomics have many advantages over genomics, transcriptomics, and proteomics in anticancer therapy. However, recent studies with AgNPs have revealed considerable genomic and proteomic changes, particularly in genes involved in tumor suppression, apoptosis, and oxidative stress. Metabolites interact biochemically with energy storage, neurotransmitters, and antioxidant defense systems. Mechanobiological studies of AgNPs in cancer metabolomics suggest that AgNPs may be promising tools that can be exploited to develop more robust and effective adaptive anticancer therapies. Herein, we present a proof-of-concept review for AgNPs-based proteogenomics and chemical metabolomics from various tumor cells with the help of several technologies, suggesting their promising use as drug carriers for cancer therapy.
Collapse
Affiliation(s)
- Ganesan Raja
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
| | - Yoon-Kwan Jang
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Jung-Soo Suh
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Heon-Su Kim
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Sang Hyun Ahn
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
| | - Tae-Jin Kim
- Department of Biological Sciences, Pusan National University, Pusan 46241, Korea;
- Integrated Biological Science, Pusan National University, Pusan 46241, Korea (S.H.A.)
- Institute of Systems Biology, Pusan National University, Pusan 46241, Korea
| |
Collapse
|
24
|
Chen S, Chen Y, Chen Y, Yao Z. InP/ZnS Quantum Dots Cause Inflammatory Response in Macrophages Through Endoplasmic Reticulum Stress and Oxidative stress. Int J Nanomedicine 2019; 14:9577-9586. [PMID: 31824152 PMCID: PMC6901044 DOI: 10.2147/ijn.s218748] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Quantum dots (QDs) are widely used semiconductor nanomaterials. Indium phosphide/zinc sulfide (InP/ZnS) QDs are becoming potential alternatives to toxic heavy metal-containing QDs. However, the potential toxicity and, in particular, the immunotoxicity of InP/ZnS QDs are unknown. This study aimed to investigate the impacts of InP/ZnS QDs on inflammatory responses both in vivo and in vitro. METHODS Mice and mouse bone marrow-derived macrophages (BMMs) were exposed to polyethylene glycol (PEG) coated InP/ZnS QDs. The infiltration of neutrophils and the release of interleukin-6 (IL-6) were measured using a hematology analyzer and an enzyme-linked immunosorbent assay (ELISA) for the in vivo test. Cytotoxicity, IL-6 secretion, oxidative stress and endoplasmic reticulum (ER) stress were studied in the BMMs, and then, inhibitors of oxidative stress and ER stress were used to explore the mechanism of the InP/ZnS QDs. RESULTS We found that 20 mg/kg PEG-InP/ZnS QDs increased the number of neutrophils and the levels of IL-6 in both peritoneal lavage fluids and blood, which indicated acute phase inflammation in the mice. PEG-InP/ZnS QDs also activated the BMMs and increased the production of IL-6. In addition, PEG-InP/ZnS QDs triggered oxidative stress and the ER stress-related PERK-ATF4 pathway in the BMMs. Moreover, the inflammatory response caused by the PEG-InP/ZnS QDs could be attenuated in the macrophages by blocking the oxidative stress or the ER stress with inhibitors. CONCLUSION InP/ZnS QDs can activate macrophages and induce acute phase inflammation both in vivo and in vitro, which may be regulated by oxidative stress and ER stress. Our present work is expected to help clarify the biosafety of InP/ZnS QDs and promote their safe application in biomedical and engineering fields.
Collapse
Affiliation(s)
- Shuzhen Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Yajing Chen
- Department of Clinical Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Yenhua Chen
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| | - Zhengyuan Yao
- Key Laboratory of Functional and Clinical Translational Medicine, Department of Basic Medicine, Xiamen Medical College, Xiamen361023, People’s Republic of China
| |
Collapse
|
25
|
Re-analysis of herbal extracts data reveals that inflammatory processes are mediated by hormetic mechanisms. Chem Biol Interact 2019; 314:108844. [PMID: 31600484 DOI: 10.1016/j.cbi.2019.108844] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/30/2019] [Accepted: 10/04/2019] [Indexed: 12/25/2022]
Abstract
Using data from Schink et al. (2018), a large number of herbal extracts were assessed for their capacity to induce pro- and anti-inflammatory effects based on TLR4 expression normalized for cell viability in two immune cell models (i.e., HeLa-TLR4 transfected reporter cell line, and THP-1 monocytes) applying seven concentrations (0.01-3.0%). The analysis revealed that 70-80% of the extracts satisfying the a priori entry criteria also satisfied a priori evaluative criteria for hormetic concentration responses. These findings demonstrate that a large proportion of herbal extracts display hormetic dose responses in immune cells, indicating that hormetic mechanisms mediate pro- and anti-inflammatory processes and may provide a means to guide optimal dosing strategies. The identification of doses eliciting only anti-inflammatory therapeutic activity as well as the use of dose-variable herbal extracts in the treatment of inflammatory diseases will be challenging.
Collapse
|
26
|
Yusuf A, Casey A. Surface modification of silver nanoparticle (AgNP) by liposomal encapsulation mitigates AgNP-induced inflammation. Toxicol In Vitro 2019; 61:104641. [PMID: 31493545 DOI: 10.1016/j.tiv.2019.104641] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/25/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Silver nanoparticles (AgNP) are widely used in a variety of consumable products as antibacterial to prevent or treat infection. Unfortunately, evidence exits that AgNP induces inflammation which can worsen with repeated human exposure. However, there is little or no research on how to mitigate these adverse effects due to AgNP induced-toxicity. Here, we investigated if surface modification of AgNP by liposomal encapsulation suppresses AgNP-mediated inflammatory responses in THP1 monocytes and THP1 differentiated macrophages (TDM). AgNP was encapsulated in a dipalmitoyl phosphatidyl choline- (DPPC)/cholesterol-based liposome by extrusion through a 100-nm polycarbonate membrane to form Lipo-AgNP. It was found as expected that AgNP induced significant release of IL-1β, IL-6, IL-8 and TNF-α in THP1 monocytes more than the basal level. Interestingly, release of these cytokines was suppressed by Lipo-AgNP. In TDMs, AgNP and Lipo-AgNP induced IL-8 release (p < .0001), but Lipo-AgNP maintained IL-8 release at levels significantly lower than that of AgNP (p < .01). However, both AgNP and Lipo-AgNP suppressed IL-1β and TNF-α release in LPS-stimulated THP1 monocytes and LPS-stimulated or unstimulated TDM respectively. We finally showed that Lipo-AgNP inhibits STAT-3 and this may be responsible for regulating the uncontrolled inflammation induced by AgNP likely mediated STAT-3 protein expression in LPS stimulated THP1 monocytes and TDMs, both LPS-stimulated and unstimulated. This data showed that Lipo-AgNP suppressed AgNP induced inflammation, making Lipo-AgNP particularly useful in treatment of bacteria induced inflammatory diseases and inflammatory cancers.
Collapse
Affiliation(s)
- Azeez Yusuf
- School of Physics, Technological University Dublin, Kevin Street, Dublin 8, Ireland; Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland.
| | - Alan Casey
- School of Physics, Technological University Dublin, Kevin Street, Dublin 8, Ireland; Nanolab Research Centre, FOCAS Research Institute, Technological University Dublin, Kevin Street, Dublin 8, Ireland
| |
Collapse
|
27
|
Hassan D, Farghali M, Eldeek H, Gaber M, Elossily N, Ismail T. Antiprotozoal activity of silver nanoparticles against Cryptosporidium parvum oocysts: New insights on their feasibility as a water disinfectant. J Microbiol Methods 2019; 165:105698. [PMID: 31446036 DOI: 10.1016/j.mimet.2019.105698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 02/04/2023]
Abstract
Cryptosporidium is a protozoan of extremely medical and veterinary impact; whose oocysts donate a considerable resistant to the water treatment processes. Therefore, this study aimed to explore the impacts of silver nanoparticles (AgNPs) on count and viability of the Cryptosporidium parvum (CP) isolated from different tap water samples. The oocysts were exposed to AgNPs at different dosages of 0.05, 0.1 and 1 ppm for several contact times (30 min to 4 h). The results showed a significant decrease in oocyst count and viability in a dose-dependent manner. Additionally, AgNPs at a conc. of 1 ppm for 30 min and 0.1 ppm for 1 h reduced the oocysts by 97.2 and 94.4%, respectively. Comparatively, there was a noticeable increase in the oocyst's viability at 2 and 4 h, which emphasized that the time of contact between AgNPs and CP was not a major influencing factor for successful application of AgNPs in the nano-water treatment.
Collapse
Affiliation(s)
- Dalia Hassan
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt
| | - Mohamed Farghali
- Department of Animal and Poultry Hygiene & Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, 71526, Egypt.
| | - Hanan Eldeek
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Mona Gaber
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Nahed Elossily
- Department of Parasitology, Faculty of Medicine, Assiut University, 71526, Egypt
| | - Taghreed Ismail
- Public Health and Community Medicine Department, Assiut University, 71526, Egypt
| |
Collapse
|
28
|
Rajivgandhi G, Maruthupandy M, Quero F, Li WJ. Graphene/nickel oxide nanocomposites against isolated ESBL producing bacteria and A549 cancer cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:829-843. [PMID: 31147055 DOI: 10.1016/j.msec.2019.05.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/21/2019] [Accepted: 05/06/2019] [Indexed: 02/06/2023]
Abstract
The synthesis of nickel oxide nanoparticles (NiO NPs) and graphene/nickel oxide nanocomposites (Gr/NiO NCs) was performed using a simple chemical reduction method. Powder X-ray diffraction (XRD) and thermogravimetric analysis (TGA) were used to examine the crystalline nature and thermal stability of the synthesized NiO NPs and Gr/NiO NCs, respectively. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were utilized to observe the morphology of NiO NPs and Gr/NiO NCs and estimate their size range. TEM suggested that the NiO NPs were speared onto the surface of Gr nanosheet. The efficiency of NiO NPs and Gr/NiO NCs against extended spectrum β-lacamase (ESBL) producing bacteria, which was confirmed by specific HEXA disc Hexa G-minus 24 (HX-096) and MIC strip methods (CLSI); namely Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. aeruginosa) was investigated using the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) methods. MIC results suggested that the NiO NPs and Gr/NiO NCs possess maximum growth inhibition of 86%, 82% and 94%, 92% at 50 and 30 μg/mL concentrations, respectively. Similarly, both nanomaterials were found to inhibit the β-lacamase enzyme at concentrations of 60 μg/mL and 40 μg/mL, respectively. The cytotoxicity of NiO NPs and Gr/NiO NCs was quantified against A549 human lung cancer cells. Cell death percentage values of 52% at 50 μg/mL against NiO NPs and 54% at 20 μg/mL against Gr/NiO NCs were obtained, respectively. The NCs were found to reduce cell viability, increase the level of reactive oxygen species (ROS) and modify both the mitochondrial membrane permeability and cell cycle arrest.
Collapse
Affiliation(s)
- Govindan Rajivgandhi
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Muthuchamy Maruthupandy
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, Chile.
| | - Franck Quero
- Laboratorio de Nanocelulosa y Biomateriales, Departamento de Ingeniería Química, Biotecnología y Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Avenida Beauchef 851, Santiago, Chile.
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, PR China
| |
Collapse
|
29
|
Xie H, Wang P, Wu J. Effect of exposure of osteoblast-like cells to low-dose silver nanoparticles: uptake, retention and osteogenic activity. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:260-267. [PMID: 30663398 DOI: 10.1080/21691401.2018.1552594] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Hongjun Xie
- Stomatology Department, Linyi People’s Hospital, Linyi, China
| | - Pei Wang
- Stomatology Department, Tianjin Fourth Central Hospital, Tianjin, China
| | - Jie Wu
- Stomatology Department, Shandong Medical College, Linyi, China
| |
Collapse
|
30
|
Marine sponge alkaloid aaptamine enhances the anti-bacterial and anti-cancer activity against ESBL producing Gram negative bacteria and HepG 2 human liver carcinoma cells. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
A web-based tool for designing experimental studies to detect hormesis and estimate the threshold dose. Stat Pap (Berl) 2018; 59:1307-1324. [PMID: 30930546 DOI: 10.1007/s00362-018-1038-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hormesis has been widely observed and debated in a variety of context in biomedicine and toxicological sciences. Detecting its presence can be an important problem with wide ranging implications. However, there is little work on constructing an efficient experiment to detect its existence or estimate the threshold dose. We use optimal design theory to develop a variety of locally optimal designs to detect hormesis, estimate the threshold dose and the zero-equivalent point (ZEP) for commonly used models in toxicology and risk assessment. To facilitate use of more efficient designs to detect hormesis, estimate threshold dose and estimate the ZEP in practice, we implement computer algorithms and create a user-friendly web site to help the biomedical researcher generate different types of optimal designs. The online tool facilitates the user to evaluate robustness properties of a selected design to various model assumptions and compare designs before implementation.
Collapse
|
32
|
A Current Overview of the Biological and Cellular Effects of Nanosilver. Int J Mol Sci 2018; 19:ijms19072030. [PMID: 30002330 PMCID: PMC6073671 DOI: 10.3390/ijms19072030] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/03/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023] Open
Abstract
Nanosilver plays an important role in nanoscience and nanotechnology, and is becoming increasingly used for applications in nanomedicine. Nanosilver ranges from 1 to 100 nanometers in diameter. Smaller particles more readily enter cells and interact with the cellular components. The exposure dose, particle size, coating, and aggregation state of the nanosilver, as well as the cell type or organism on which it is tested, are all large determining factors on the effect and potential toxicity of nanosilver. A high exposure dose to nanosilver alters the cellular stress responses and initiates cascades of signalling that can eventually trigger organelle autophagy and apoptosis. This review summarizes the current knowledge of the effects of nanosilver on cellular metabolic function and response to stress. Both the causative effects of nanosilver on oxidative stress, endoplasmic reticulum stress, and hypoxic stress—as well as the effects of nanosilver on the responses to such stresses—are outlined. The interactions and effects of nanosilver on cellular uptake, oxidative stress (reactive oxygen species), inflammation, hypoxic response, mitochondrial function, endoplasmic reticulum (ER) function and the unfolded protein response, autophagy and apoptosis, angiogenesis, epigenetics, genotoxicity, and cancer development and tumorigenesis—as well as other pathway alterations—are examined in this review.
Collapse
|
33
|
Leak RK, Calabrese EJ, Kozumbo WJ, Gidday JM, Johnson TE, Mitchell JR, Ozaki CK, Wetzker R, Bast A, Belz RG, Bøtker HE, Koch S, Mattson MP, Simon RP, Jirtle RL, Andersen ME. Enhancing and Extending Biological Performance and Resilience. Dose Response 2018; 16:1559325818784501. [PMID: 30140178 PMCID: PMC6096685 DOI: 10.1177/1559325818784501] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 12/17/2022] Open
Abstract
Human performance, endurance, and resilience have biological limits that are genetically and epigenetically predetermined but perhaps not yet optimized. There are few systematic, rigorous studies on how to raise these limits and reach the true maxima. Achieving this goal might accelerate translation of the theoretical concepts of conditioning, hormesis, and stress adaptation into technological advancements. In 2017, an Air Force-sponsored conference was held at the University of Massachusetts for discipline experts to display data showing that the amplitude and duration of biological performance might be magnified and to discuss whether there might be harmful consequences of exceeding typical maxima. The charge of the workshop was "to examine and discuss and, if possible, recommend approaches to control and exploit endogenous defense mechanisms to enhance the structure and function of biological tissues." The goal of this white paper is to fulfill and extend this workshop charge. First, a few of the established methods to exploit endogenous defense mechanisms are described, based on workshop presentations. Next, the white paper accomplishes the following goals to provide: (1) synthesis and critical analysis of concepts across some of the published work on endogenous defenses, (2) generation of new ideas on augmenting biological performance and resilience, and (3) specific recommendations for researchers to not only examine a wider range of stimulus doses but to also systematically modify the temporal dimension in stimulus inputs (timing, number, frequency, and duration of exposures) and in measurement outputs (interval until assay end point, and lifespan). Thus, a path forward is proposed for researchers hoping to optimize protocols that support human health and longevity, whether in civilians, soldiers, athletes, or the elderly patients. The long-term goal of these specific recommendations is to accelerate the discovery of practical methods to conquer what were once considered intractable constraints on performance maxima.
Collapse
Affiliation(s)
- Rehana K. Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Edward J. Calabrese
- School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, USA
| | | | - Jeffrey M. Gidday
- Departments of Ophthalmology, Neuroscience, and Physiology, Louisiana State University School of Medicine, New Orleans, LA, USA
| | - Thomas E. Johnson
- Department of Integrative Physiology, University of Colorado, Boulder, CO, USA
| | - James R. Mitchell
- Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - C. Keith Ozaki
- Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Reinhard Wetzker
- Institute for Molecular Cell Biology, University of Jena, Jena, Germany
| | - Aalt Bast
- Department of Pharmacology and Toxicology, Maastricht University, Maastricht, The Netherlands
| | - Regina G. Belz
- Hans-Ruthenberg-Institute, Agroecology Unit, University of Hohenheim, Stuttgart, Germany
| | - Hans E. Bøtker
- Department of Clinical Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Sebastian Koch
- Department of Neurology, University of Miami, Miller School of Medicine, FL, USA
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, MD, USA
| | - Roger P. Simon
- Departments of Medicine and Neurobiology, Morehouse School of Medicine, Atlanta, GA, USA
| | - Randy L. Jirtle
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | | |
Collapse
|
34
|
Silver nanoparticle-induced hormesis of astroglioma cells: A Mu-2-related death-inducing protein-orchestrated modus operandi. Int J Biol Macromol 2018; 117:1147-1156. [PMID: 29870812 DOI: 10.1016/j.ijbiomac.2018.05.234] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/31/2018] [Accepted: 05/31/2018] [Indexed: 12/12/2022]
Abstract
Hormesis is a dose-response phenomenon that, when applied to nanomaterial-biological interactions, refers to growth stimulation at low doses and growth inhibition at high doses. MUDENG (Mu-2-related death-inducing gene, MuD) is involved in cell death signaling. Astrocytes, the major glial cell type in the central nervous system, are a major source of brain tumors. In this study, we investigated whether silver nanoparticles (AgNPs) induce hormesis in astroglioma cells and the possible involvement of MuD in AgNP-induced hormesis. AgNPs exhibited cytotoxic effects on cell proliferation in a dose-dependent manner and increased MuD expression was observed during AgNP-induced astroglioma hormesis. Studies using MuD-knockout cells and MuD siRNA transfection showed that MuD might influence cell viability upon AgNP treatment. In addition, apoptotic cell population and production of reactive oxygen species in the absence of MuD were significantly increased. The phosphorylation of two mitogen-activated protein kinases, p38 and extracellular signal-regulated kinase (ERK), but not c-Jun N-terminal kinases (JNK), was observed upon AgNP stimulation. In summary, AgNPs at low doses induced hormesis of human astroglioma cells, and MuD and p38/ERK mediators are involved in AgNP-induced astroglioma hormesis, resulting in beneficial effects from the cellular point of view.
Collapse
|
35
|
Abstract
The concept of hormesis, as an adaptive response of biological systems to moderate environmental challenges, has raised considerable nano-toxicological interests in view of the rapid pace of production and application of even more innovative nanomaterials and the expected increasing likelihood of environmental and human exposure to low-dose concentrations. Therefore, the aim of this review is to provide an update of the current knowledge concerning the biphasic dose-responses induced by nanoparticle exposure. The evidence presented confirmed and extended our previous findings, showing that hormesis is a generalized adaptive response which may be further generalized to nanoscale xenobiotic challenges. Nanoparticle physico-chemical properties emerged as possible features affecting biphasic relationships, although the molecular mechanisms underlining such influences remain to be fully understood, especially in experimental settings resembling long-term and low-dose realistic environmental exposure scenarios. Further investigation is necessary to achieve helpful information for a suitable assessment of nanomaterial risks at the low-dose range for both the ecosystem function and the human health.
Collapse
|
36
|
de Pinho Favaro MT, Sánchez-García L, Sánchez-Chardi A, Roldán M, Unzueta U, Serna N, Cano-Garrido O, Azzoni AR, Ferrer-Miralles N, Villaverde A, Vázquez E. Protein nanoparticles are nontoxic, tuneable cell stressors. Nanomedicine (Lond) 2018; 13:255-268. [DOI: 10.2217/nnm-2017-0294] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: Nanoparticle–cell interactions can promote cell toxicity and stimulate particular behavioral patterns, but cell responses to protein nanomaterials have been poorly studied. Results: By repositioning oligomerization domains in a simple, modular self-assembling protein platform, we have generated closely related but distinguishable homomeric nanoparticles. Composed by building blocks with modular domains arranged in different order, they share amino acid composition. These materials, once exposed to cultured cells, are differentially internalized in absence of toxicity and trigger distinctive cell adaptive responses, monitored by the emission of tubular filopodia and enhanced drug sensitivity. Conclusion: The capability to rapidly modulate such cell responses by conventional protein engineering reveals protein nanoparticles as tuneable, versatile and potent cell stressors for cell-targeted conditioning.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Centro de Biologia Molecular e Engenharia Genética, Universidade Estadual de Campinas, Av Candido Rondon, 400, 13083–875 Campinas, SP, Brazil
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Laura Sánchez-García
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | | | - Mónica Roldán
- Unitat de Microscòpia Confocal, IPER, Hospital Sant Joan de Déu, Passeig de Sant Joan de Déu, 2, 08950 Esplugues de Llobregat, Barcelona
| | - Ugutz Unzueta
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Naroa Serna
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Olivia Cano-Garrido
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
| | - Adriano Rodrigues Azzoni
- Departamento de Engenharia Química, Escola Politécnica, Universidade de São Paulo, Av. Prof. Luciano Gualberto, Trav. 3, No. 380, 05508-900, São Paulo, SP, Brazil
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina (IBB), Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Cerdanyola del Vallès, Spain
| |
Collapse
|
37
|
Golzar H, Yazdian F, Hashemi M, Omidi M, Mohammadrezaei D, Rashedi H, Farahani M, Ghasemi N, Shabani shayeh J, Tayebi L. Optimizing the hybrid nanostructure of functionalized reduced graphene oxide/silver for highly efficient cancer nanotherapy. NEW J CHEM 2018. [DOI: 10.1039/c8nj01764f] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Conjugation of Herceptin to the surface of an optimized rGO-PLL/AgNP nanohybrid to achieve an efficient targeted DDS against Her2 positive breast cancer cells.
Collapse
Affiliation(s)
- Hossein Golzar
- School of Chemical Engineering
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Fatemeh Yazdian
- Department of Life Science Engineering
- Faculty of New Science and Technologies
- University of Tehran
- Tehran
- Iran
| | - Mohadeseh Hashemi
- Division of Pharmaceutics
- College of Pharmacy
- The University of Texas at Austin
- Austin
- USA
| | - Meisam Omidi
- Protein Research Center
- Shahid Beheshti University
- GC
- Tehran
- Iran
| | - Dorsa Mohammadrezaei
- School of Chemical Engineering
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Hamid Rashedi
- School of Chemical Engineering
- College of Engineering
- University of Tehran
- Tehran
- Iran
| | - Masoumeh Farahani
- Proteomics Research Center
- Faculty of Paramedical Sciences
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| | - Nazanin Ghasemi
- Department of Immunology
- School of Medicine
- Shahid Beheshti University of Medical Sciences
- Tehran
- Iran
| | | | - Lobat Tayebi
- Marquette University, School of Dentistry
- Milwaukee
- USA
| |
Collapse
|
38
|
Xu Q, Li S, Wan Y, Wang S, Ma B, She Z, Guo L, Gao M, Zhao Y, Jin C, Dong J, Li Z. Impacts of silver nanoparticles on performance and microbial community and enzymatic activity of a sequencing batch reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2017; 204:667-673. [PMID: 28950236 DOI: 10.1016/j.jenvman.2017.09.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 06/07/2023]
Abstract
The performance, microbial community and enzymatic activity of a sequencing batch reactor (SBR) were evaluated under silver nanoparticles (Ag NPs) stress. Over 5 mg/L Ag NPs inhibited the COD and phosphorus removals, whereas the NH4+ removal kept stable during the whole operational period. The organic matter, nitrogen and phosphorus removal rates were obviously inhibited under Ag NPs stress, which showed similar varying trends with the corresponding microbial enzymatic activities. The change of Ag content in the activated sludge indicated that some Ag NPs were absorbed by the sludge. The presence of Ag NPs promoted the increase of reactive oxygen species (ROS) and lactate dehydrogenase (LDH) of microorganism due to the microbial response to the Ag NPs toxicity, which could impact on the microbial morphology and physiological functions. The presence of Ag NPs could produce some evident changes in the microbial community.
Collapse
Affiliation(s)
- Qiaoyan Xu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao, 266100, China
| | - Shanshan Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Yiping Wan
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Sen Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Bingrui Ma
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China; School of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Junwei Dong
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Zhiwei Li
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, 266100, China
| |
Collapse
|
39
|
Panzarini E, Mariano S, Vergallo C, Carata E, Fimia GM, Mura F, Rossi M, Vergaro V, Ciccarella G, Corazzari M, Dini L. Glucose capped silver nanoparticles induce cell cycle arrest in HeLa cells. Toxicol In Vitro 2017; 41:64-74. [PMID: 28223142 DOI: 10.1016/j.tiv.2017.02.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 02/16/2017] [Accepted: 02/17/2017] [Indexed: 01/25/2023]
Abstract
This study aims to determine the interaction (uptake and biological effects on cell viability and cell cycle progression) of glucose capped silver nanoparticles (AgNPs-G) on human epithelioid cervix carcinoma (HeLa) cells, in relation to amount, 2×103 or 2×104 NPs/cell, and exposure time, up to 48h. The spherical and well dispersed AgNPs (30±5nm) were obtained by using glucose as reducing agent in a green synthesis method that ensures to stabilize AgNPs avoiding cytotoxic soluble silver ions Ag+ release. HeLa cells take up abundantly and rapidly AgNPs-G resulting toxic to cells in amount and incubation time dependent manner. HeLa cells were arrested at S and G2/M phases of the cell cycle and subG1 population increased when incubated with 2×104 AgNPs-G/cell. Mitotic index decreased accordingly. The dissolution experiments demonstrated that the observed effects were due only to AgNPs-G since glucose capping prevents Ag+ release. The AgNPs-G influence on HeLa cells viability and cell cycle progression suggest that AgNPs-G, alone or in combination with chemotherapeutics, may be exploited for the development of novel antiproliferative treatment in cancer therapy. However, the possible influence of the cell cycle on cellular uptake of AgNPs-G and the mechanism of AgNPs entry in cells need further investigation.
Collapse
Affiliation(s)
- Elisa Panzarini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy.
| | - Stefania Mariano
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy.
| | - Cristian Vergallo
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy.
| | - Elisabetta Carata
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy.
| | - Gian Maria Fimia
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy.
| | - Francesco Mura
- Department of Base and Applied Science to Engineering, Sapienza University of Rome, Rome, Italy.
| | - Marco Rossi
- Department of Base and Applied Science to Engineering, Sapienza University of Rome, Rome, Italy.
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy; Institute of Nanotechnology - CNR (CNR-NANOTEC) Via Monteroni, 73100 Lecce, Italy
| | - Marco Corazzari
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.
| | - Luciana Dini
- Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, Lecce, Italy; CNR Nanotec, Lecce, Italy.
| |
Collapse
|