1
|
Huang C, Huangfu C, Bai Z, Zhu L, Shen P, Wang N, Li G, Deng H, Ma Z, Zhou W, Gao Y. Multifunctional carbomer based ferulic acid hydrogel promotes wound healing in radiation-induced skin injury by inactivating NLRP3 inflammasome. J Nanobiotechnology 2024; 22:576. [PMID: 39300534 PMCID: PMC11411768 DOI: 10.1186/s12951-024-02789-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/20/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Radiation-induced skin injury is a significant adverse reaction to radiotherapy. However, there is a lack of effective prevention and treatment methods for this complication. Ferulic acid (FA) has been identified as an effective anti-radiation agent. Conventional administrations of FA limit the reaching of it on skin. We aimed to develop a novel FA hydrogel to facilitate the use of FA in radiation-induced skin injury. METHODS We cross-linked carbomer 940, a commonly used adjuvant, with FA at concentrations of 5%, 10%, and 15%. Sweep source optical coherence tomography system, a novel skin structure evaluation method, was applied to investigate the influence of FA on radiation-induced skin injury. Calcein-AM/PI staining, CCK8 assay, hemolysis test and scratch test were performed to investigate the biocompatibility of FA hydrogel. The reducibility of DPPH and ABTS radicals by FA hydrogel was also performed. HE staining, Masson staining, laser Doppler blood flow monitor, and OCT imaging system are used to evaluate the degree of skin tissue damage. Potential differentially expressed genes were screened via transcriptome analysis. RESULTS Good biocompatibility and in vitro antioxidant ability of the FA hydrogels were observed. 10% FA hydrogel presented a better mechanical stability than 5% and 15% FA hydrogel. All three concentrations of FA remarkably promoted the recovery of radiation-induced skin injury by reducing inflammation, oxidative conidiation, skin blood flow, and accelerating skin tissue reconstruction, collagen deposition. FA hydrogel greatly inhibiting the levels of NLRP3, caspase-1, IL-18, pro-IL-1β and IL-1β in vivo and vitro levels through restraining the activation of NLRP3 inflammasome. Transcriptome analysis indicated that FA might regulate wound healing via targeting immune response, inflammatory response, cell migration, angiogenesis, hypoxia response, and cell matrix adhesion. CONCLUSIONS These findings suggest that the novel FA hydrogel is a promising therapeutic method for the prevention and treatment of radiation-induced skin injury patients.
Collapse
Affiliation(s)
- Congshu Huang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
- Department of Traditional Chinese medicine, Henan University of Chinese Medicine, No. 156 Jinshui East Road, Zhengzhou, 450046, China
| | - Chaoji Huangfu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Zhijie Bai
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Long Zhu
- Qinghai University, No. 251 Ningda Road, Xining, 810016, China
| | - Pan Shen
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Ningning Wang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Gaofu Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Huifang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China
| | - Zengchun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
| | - Yue Gao
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, No. 27 Taiping Road, Beijing, 100850, China.
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, No. 28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
2
|
Wang Y, Qi JJ, Yin YJ, Jiang H, Zhang JB, Liang S, Yuan B. Ferulic Acid Enhances Oocyte Maturation and the Subsequent Development of Bovine Oocytes. Int J Mol Sci 2023; 24:14804. [PMID: 37834252 PMCID: PMC10573426 DOI: 10.3390/ijms241914804] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Improving the quality of oocytes matured in vitro is integral to enhancing the efficacy of in vitro embryo production. Oxidative stress is one of the primary causes of quality decline in oocytes matured in vitro. In this study, ferulic acid (FA), a natural antioxidant found in plant cell walls, was investigated to evaluate its impact on bovine oocyte maturation and subsequent embryonic development. Bovine cumulus-oocyte complexes (COCs) were treated with different concentrations of FA (0, 2.5, 5, 10, 20 μM) during in vitro maturation (IVM). Compared to the control group, supplementation with 5 μM FA significantly enhanced the maturation rates of bovine oocytes and the expansion of the cumulus cells area, as well as the subsequent cleavage and blastocyst formation rates after in vitro fertilization (IVF) and somatic cell nuclear transfer (SCNT). Furthermore, FA supplementation was observed to effectively decrease the levels of ROS in bovine oocytes and improve their mitochondrial function. Our experiments demonstrate that FA can maintain the levels of antioxidants (GSH, SOD, CAT) in oocytes, thereby alleviating the oxidative stress induced by H2O2. RT-qPCR results revealed that, after FA treatment, the relative mRNA expression levels of genes related to oocyte maturation (GDF-9 and BMP-15), cumulus cell expansion (HAS2, PTX3, CX37, and CX43), and embryo pluripotency (OCT4, SOX2, and CDX2) were significantly increased. In conclusion, these findings demonstrate that FA supplementation during bovine oocyte IVM can enhance oocyte quality and the developmental potential of subsequent embryos.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuang Liang
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| | - Bao Yuan
- Department of Animals Sciences, College of Animal Sciences, Jilin University, Changchun 130062, China; (Y.W.); (J.-J.Q.); (Y.-J.Y.); (H.J.); (J.-B.Z.)
| |
Collapse
|
3
|
Shi Y, Shi L, Liu Q, Wang W, Liu Y. Molecular mechanism and research progress on pharmacology of ferulic acid in liver diseases. Front Pharmacol 2023; 14:1207999. [PMID: 37324465 PMCID: PMC10264600 DOI: 10.3389/fphar.2023.1207999] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Ferulic acid (FA) is a natural polyphenol, a derivative of cinnamic acid, widely found in Angelica, Chuanxiong and other fruits, vegetables and traditional Chinese medicine. FA contains methoxy, 4-hydroxy and carboxylic acid functional groups that bind covalently to neighbouring adjacent unsaturated Cationic C and play a key role in many diseases related to oxidative stress. Numerous studies have shown that ferulic acid protects liver cells and inhibits liver injury, liver fibrosis, hepatotoxicity and hepatocyte apoptosis caused by various factors. FA has protective effects on liver injury induced by acetaminophen, methotrexate, antituberculosis drugs, diosbulbin B and tripterygium wilfordii, mainly through the signal pathways related to TLR4/NF-κB and Keap1/Nrf2. FA also has protective effects on carbon tetrachloride, concanavalin A and septic liver injury. FA pretreatment can protect hepatocytes from radiation damage, protects the liver from damage caused by fluoride, cadmium and aflatoxin b1. At the same time, FA can inhibit liver fibrosis, inhibit liver steatosis and reduce lipid toxicity, improve insulin resistance in the liver and exert the effect of anti-liver cancer. In addition, signalling pathways such as Akt/FoxO1, AMPK, PPAR γ, Smad2/3 and Caspase-3 have been shown to be vital molecular targets for FA involvement in improving various liver diseases. Recent advances in the pharmacological effects of ferulic acid and its derivatives on liver diseases were reviewed. The results will provide guidance for the clinical application of ferulic acid and its derivatives in the treatment of liver diseases.
Collapse
Affiliation(s)
- Yingying Shi
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Lu Shi
- Department of Pharmacy, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Qi Liu
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - Wenbo Wang
- Department of Immunology, School of Medicine, Jianghan University, Wuhan, Hubei, China
| | - YongJuan Liu
- Department of Central Laboratory, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, Jiangsu, China
| |
Collapse
|
4
|
Zhou YJ, Tang Y, Liu SJ, Zeng PH, Qu L, Jing QC, Yin WJ. Radiation-induced liver disease: beyond DNA damage. Cell Cycle 2023; 22:506-526. [PMID: 36214587 PMCID: PMC9928481 DOI: 10.1080/15384101.2022.2131163] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/03/2022] Open
Abstract
Radiation-induced liver disease (RILD), also known as radiation hepatitis, is a serious side effect of radiotherapy (RT) for hepatocellular carcinoma. The therapeutic dose of RT can damage normal liver tissue, and the toxicity that accumulates around the irradiated liver tissue is related to numerous physiological and pathological processes. RILD may restrict treatment use or eventually deteriorate into liver fibrosis. However, the research on the mechanism of radiation-induced liver injury has seen little progress compared with that on radiation injury in other tissues, and no targeted clinical pharmacological treatment for RILD exists. The DNA damage response caused by ionizing radiation plays an important role in the pathogenesis and development of RILD. Therefore, in this review, we systematically summarize the molecular and cellular mechanisms involved in RILD. Such an analysis is essential for preventing the occurrence and development of RILD and further exploring the potential treatment of this disease.
Collapse
Affiliation(s)
- Ying Jie Zhou
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yun Tang
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Si Jian Liu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Peng Hui Zeng
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Li Qu
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Qian Cheng Jing
- The Affiliated Changsha Central Hospital, Department of Otolaryngology Head and Neck Surgery,Hengyang Medical School, University of South China, Changsha, Hunan, China
- Institute of Otolaryngology Head and Neck Surgery, Hengyang Medical School, University of South China, Changsha, Hunan, China
| | - Wen Jun Yin
- Department of Clinical Laboratory Medicine, Institution of microbiology and infectious diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
- Department of Clinical Laboratory, Changsha Central Hospital, University of South China, Changsha, Hunan, China
| |
Collapse
|
5
|
Raghu SV, Rao S, Kini V, Kudva AK, George T, Baliga MS. Fruits and their phytochemicals in mitigating the ill effects of ionizing radiation: review on the existing scientific evidence and way forward. Food Funct 2023; 14:1290-1319. [PMID: 36688345 DOI: 10.1039/d2fo01911f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Although helpful in treating cancer, exposure to ionizing radiation can sometimes cause severe side effects, negating its benefit. In addition to its use in clinics, a nontoxic radioprotective agent can also be beneficial in occupational settings where humans are occupationally exposed for prolonged periods to low doses of radiation. Scientific studies using laboratory animals have shown that the fruits Aegle marmelos, Capsicum annuum, Citrus aurantium, Citrullus lanatus, Crataegus microphylla, Eugenia jambolana, Emblica officinalis, Garcinia kola, Grewia asiatica, Hippophae rhamnoides, Malus baccata, Malpighia glabra or Malpighia emarginata, Mangifera indica, Prunus domestica, Prunus avium, Prunus armeniaca, Psoralea corylifolia, Punica granatum, Solanum lycopersicum, Terminalia chebula, Vaccinium macrocarpon, Vitis vinifera and Xylopia aethiopica, and the phytochemicals gallic acid, ellagic acid, quercetin, geraniin, corilagin, ascorbic acid, hesperetin, ursolic acid, lycopene, naringin, hesperidin, rutin, resveratrol, β-sitosterol, apigenin, luteolin, chlorogenic acid, caffeic acid, mangiferin, diosmin, ferulic acid, and kaempferol are effective in preventing radiation-induced ill effects. Clinical studies with Emblica officinalis and Punica granatum have also shown that fruits help mitigate radiation-induced mucositis, dermatitis, and cystitis. For the first time, the current review summarizes the beneficial effects of fruits and phytochemicals in mitigating radiation-induced damage, the underlying mechanisms and the existing lacunae for future studies to be undertaken for the benefit of humans and the nutraceutical and agri-based industries.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Suresh Rao
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Venkataramana Kini
- Mangalore Institute of Oncology, Pumpwell, Mangalore-575002, Karnataka, India.
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangotri, 574199, Karnataka, India
| | - Thomas George
- Internal Medicine, Coney Island Hospital, 2601 Ocean Pkwy, Brooklyn, New York, 11235, USA
| | | |
Collapse
|
6
|
Putt KS, Du Y, Fu H, Zhang ZY. High-throughput screening strategies for space-based radiation countermeasure discovery. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:88-104. [PMID: 36336374 DOI: 10.1016/j.lssr.2022.07.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/16/2023]
Abstract
As humanity begins to venture further into space, approaches to better protect astronauts from the hazards found in space need to be developed. One particular hazard of concern is the complex radiation that is ever present in deep space. Currently, it is unlikely enough spacecraft shielding could be launched that would provide adequate protection to astronauts during long-duration missions such as a journey to Mars and back. In an effort to identify other means of protection, prophylactic radioprotective drugs have been proposed as a potential means to reduce the biological damage caused by this radiation. Unfortunately, few radioprotectors have been approved by the FDA for usage and for those that have been developed, they protect normal cells/tissues from acute, high levels of radiation exposure such as that from oncology radiation treatments. To date, essentially no radioprotectors have been developed that specifically counteract the effects of chronic low-dose rate space radiation. This review highlights how high-throughput screening (HTS) methodologies could be implemented to identify such a radioprotective agent. Several potential target, pathway, and phenotypic assays are discussed along with potential challenges towards screening for radioprotectors. Utilizing HTS strategies such as the ones proposed here have the potential to identify new chemical scaffolds that can be developed into efficacious radioprotectors that are specifically designed to protect astronauts during deep space journeys. The overarching goal of this review is to elicit broader interest in applying drug discovery techniques, specifically HTS towards the identification of radiation countermeasures designed to be efficacious towards the biological insults likely to be encountered by astronauts on long duration voyages.
Collapse
Affiliation(s)
- Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology and Emory Chemical Biology Discovery Center, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette IN 47907 USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette IN 47907 USA.
| |
Collapse
|
7
|
Pharmacodynamic Evaluation of the Gexia Zhuyu Decoction in the Treatment of NAFLD and the Molecular Mechanism Underlying the TRPM4 Pathway Regulation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:3364579. [PMID: 34887931 PMCID: PMC8651363 DOI: 10.1155/2021/3364579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/08/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a clinicopathological syndrome of abnormal lipid deposition in the liver mediated by nonalcohol intake. The Gexia Zhuyu decoction, a classic traditional Chinese medicine compound, is widely used in the clinical treatment of NAFLD. However, its specific efficacy and underlying mechanisms have not been elucidated yet. This study aimed to quantitatively evaluate the efficacy of the Gexia Zhuyu decoction using pharmacodynamics and to explore its molecular mechanisms in conjunction with proteomics. High-fat diets and methionine choline-deficient diets were used to induce various NAFLD progression stages in mouse models. The effects of oral Gexia Zhuyu decoction administration on NAFLD were evaluated by measuring the serum and liver indicators of the treated mice before and after drug intervention and by comparing the changes in liver tissue. Liver TRPM4 mRNA and protein levels were measured using reverse transcription-polymerase chain reaction and Western blotting, respectively. Experimental data showed that serum ALT, AST, and liver triglyceride (TG) levels in each disease stage group of drug intervention mice decreased, and high-density lipoprotein (HDL) and superoxide dismutase (SOD) levels increased. Liver TG levels decreased after drug intervention in the liver fibrosis mice, but serum TG levels increased. Furthermore, cellular fatty changes, inflammatory changes, and fibrous tissue proliferation were all relieved. The TRPM4 protein and mRNA levels in the liver tissue were decreased, and the microRNA (miRNA)-24 expression was increased. The Gexia Zhuyu decoction has a clear therapeutic effect at each stage of NAFLD. It likely acts by altering miRNA-24 expression and regulating the target TRPM4 protein pathway to achieve NAFLD treatment.
Collapse
|
8
|
Pareri AU, Koijam AS, Kumar C. Breaking the Silence of Tumor Response: Future Prospects of Targeted Radionuclide Therapy. Anticancer Agents Med Chem 2021; 22:1845-1858. [PMID: 34477531 DOI: 10.2174/1871520621666210903152354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023]
Abstract
Therapy-induced tumor resistance has always been a paramount hurdle in the clinical triumph of cancer therapy. Resistance acquired by tumor through interventions of chemotherapeutic drugs, ionizing radiation, and immunotherapy in the patientsis a severe drawback and major cause of recurrence of tumor and failure of therapeutic responses. To counter acquired resistance in tumor cells, several strategies are practiced such as chemotherapy regimens, immunotherapy, and immunoconjugates, but the outcome is very disappointing for the patients as well as clinicians. Radionuclide therapy using alpha or beta-emitting radionuclide as payload became state-of-the-art for cancer therapy. With the improvement in dosimetric studies, development of high-affinity target molecules, and design of several novel chelating agents which provide thermodynamically stable complexes in vivo, the scope of radionuclide therapy has increased by leaps and bounds. Additionally, radionuclide therapy along with the combination of chemotherapy is gaining importance in pre-clinics, which is quite encouraging. Thus, it opens an avenue for newer cancer therapy modalities where chemotherapy, radiation therapy, and immunotherapy are unable to break the silence of tumor response. This article describes, in brief, the causes of tumor resistance and discusses the potential of radionuclide therapy to enhance tumor response.
Collapse
Affiliation(s)
| | | | - Chandan Kumar
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre Mumbai-400085, India
| |
Collapse
|
9
|
Jameel QY, Mohammed NK. Protective rules of natural antioxidants against gamma-induced damage-A review. Food Sci Nutr 2021; 9:5263-5278. [PMID: 34532033 PMCID: PMC8441341 DOI: 10.1002/fsn3.2469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/17/2021] [Accepted: 06/29/2021] [Indexed: 11/17/2022] Open
Abstract
Phytochemicals accessible in food have demonstrated efficiency against impairment by gamma radiation. The review presented here is an attempt to show the pharmacological outline of the activity of the natural antioxidants and its primary action of molecular mechanism against the damage induced by gamma rays. This research focused on the results of the in vitro dosage of natural antioxidants relationship, and on the correlation of this information with the statistical variables. Moreover, it deliberated the natural compounds which could decrease the unwelcome impacts of gamma radiation and safeguard biological systems from radiation-stimulated genotoxicity. The outcomes indicated that natural compounds can be utilized as an adjunct to orthodox radiotherapy and cultivate it as an effectual drug for the clinical administration of ailments.
Collapse
Affiliation(s)
- Qaswaa Y. Jameel
- Department of Food ScienceColleges of Agricultural and ForestryMosul UniversityMosulIraq
| | - Nameer K. Mohammed
- Department of Food ScienceCollege of AgricultureTikrit UniversityTikritIraq
| |
Collapse
|
10
|
Perumal E, Eswaran S, Parvin R, Balasubramanian S. Mitigation of arsenic induced developmental cardiotoxicity by ferulic acid in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109021. [PMID: 33631344 DOI: 10.1016/j.cbpc.2021.109021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
We investigated whether ferulic acid (FA), a nutraceutical could mitigate the arsenic (As) induced cardiotoxicity. Zebrafish larvae (60 and 72 h post-fertilization [hpf]) were used to study the effect of FA on As at different time points (24 and 48 h after exposure). The FA exposure was given as pre-treatment (60 hpf) and simultaneous treatment (72 hpf) to translate the results for As contaminated areas. To accomplish this, the lethality assay was done, and based on the results, the dosage for As (1 mM) and FA (30 μM) was fixed. The FA intervention (30 μM) as 12 h pre-treatment (60 hpf) and simultaneous treatment along with As (72 hpf) decreased the As content in zebrafish larvae as evidenced by inductively coupled plasma-mass spectrometry. As exposure showed congenital deformities especially cardiac malformations in zebrafish larvae after 24 and 48 h. These teratogenic effects induced by As were reduced by FA supplementation in both groups. Also, o-dianisidine staining demonstrated that As treated larvae encountered abnormal cardiac function with reduced blood circulation, while FA supplementation reversed these effects. The acetylcholinesterase activity, a biomarker of As-induced cardiotoxicity was also found to be decreased in As group, which was rescued by FA. The modulation in the expression of the genes involved in cardiogenesis (nkx2.5, bmp2b, gata4, gata5, myh6, myl7, and tnnt2) further confirmed the ameliorative effect of FA on As induced malformations.
Collapse
Affiliation(s)
- Ekambaram Perumal
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India.
| | - Sangavi Eswaran
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | - Reshma Parvin
- Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641 046, India
| | | |
Collapse
|
11
|
Ramazani A, Karimi M, Hosseinzadeh Z, Rezayati S, Hanifehpour Y, Joo SW. Syntheses and Antitumor Properties of Furoxan Derivatives. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208183751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is the second leading cause of death in Iran, next to heart disease. Current
therapy suffers from the major limitations of side effects and drug resistance, so the characterization
of new structures that can be power-selective and less-toxic anticancer agents is the
main challenge to medicinal chemistry research. Furoxan (1,2,5-oxadiazole-2-oxide) is a crucial
compound with many medicinal and pharmaceutical properties. The most important aspect
of furoxan is the nitric oxide (NO) molecule. One of the most essential furoxan derivatives,
which could be utilized in medicinal goals and pharmaceutical affairs, is benzofuroxan.
Furoxan could be described as a NO-donating compound in a variety of reactions, which
could also appear as hybridised with different medicinal compounds. This review article presents
a summary of syntheses and antitumor properties of furoxan derivatives as possible
chemotherapy agents for cancer. Furoxan can inhibit tumor growth in vivo without any side
effects in normal cells. Furthermore, due to NO-releasing in high levels in vivo and a wide
range of anticancer compounds, furoxan derivatives and especially its hybridised compounds could be considered as
antitumor, cytotoxic and apoptosis compounds to be applied in the human body.
Collapse
Affiliation(s)
- Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Masoud Karimi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Zahra Hosseinzadeh
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran
| | - Younes Hanifehpour
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Sang Woo Joo
- School of Mechanical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
12
|
Aoiadni N, Ayadi H, Jdidi H, Naifar M, Maalej S, Makni FA, El Feki A, Fetoui H, Koubaa FG. Flavonoid-rich fraction attenuates permethrin-induced toxicity by modulating ROS-mediated hepatic oxidative stress and mitochondrial dysfunction ex vivo and in vivo in rat. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:9290-9312. [PMID: 33136269 DOI: 10.1007/s11356-020-11250-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The present study explores the antioxidant, anti-microbial, and hepatoprotective potentials of flavonoid-rich fractions from Fumaria officinalis against permethrin-induced liver damage ex vivo/in vivo in rat. However, HPLC-DAD analysis revealed the richness of 6 components in ethyl acetate fraction (EAF) where ferulic acid, rosmarinic acid, and myricetin are the most abundant. The in vitro assays showed that EAFs have impressive antioxidant and anti-microbial properties. Ex vivo, permethrin (PER) (100 μM) induced a decrease of hepatic AST and ALT activities and 25-OH vitamin D and vitamin C levels and an increase of ALP and LDH activities, TBARS, and ϒ-GT levels with a disturbance of oxidative status. The hepatoprotective effect of EAF (1 mg/mL) against PER was confirmed by the amelioration of oxidative stress profile. In vivo, permethrin was found to increase absolute and relative liver weights, plasma transaminase activities, lactate-to-pyruvate ratio, hepatic and mitochondrial lipid peroxidation, and protein oxidation levels. This pesticide triggered a decrease of Ca2+ and Mg2+-ATPases and mitochondrial enzyme activities. The co-treatment with EAF reestablished the hepatic and mitochondrial function, which could be attributed to its richness in phenolic compounds.
Collapse
Affiliation(s)
- Nissaf Aoiadni
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia.
| | - Houda Ayadi
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, Sciences Faculty of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Hajer Jdidi
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Manel Naifar
- Laboratory of Biochemistry, CHU Habib Bourguiba, Sfax, Tunisia
| | - Sami Maalej
- Laboratory of Biodiversity and Aquatic Ecosystems, Ecology and Planktonology, Sciences Faculty of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | | | - Abdelfattah El Feki
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| | - Hamadi Fetoui
- Laboratory of Toxicology and Environmental Health.LR17ES06, Sciences Faculty of Sfax, University of Sfax, BP1171, 3000, Sfax, Tunisia
| | - Fatma Ghorbel Koubaa
- Laboratory of Animal Eco-Physiology, Faculty of Sciences of Sfax, Street of Soukra Km 3.5, BP 1171, CP 3000, Sfax, Tunisia
| |
Collapse
|
13
|
Ben Hsouna A, Dhibi S, Dhifi W, Ben Saad R, Brini F, Hfaidh N, Almeida JRGDS, Mnif W. Lobularia maritima leave extract, a nutraceutical agent with antioxidant activity, protects against CCl4-induced liver injury in mice. Drug Chem Toxicol 2020; 45:604-616. [DOI: 10.1080/01480545.2020.1742730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Anis Ben Hsouna
- Department of Life Sciences, Faculty of Sciences of Gafsa, Gafsa, Tunisia
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Sabah Dhibi
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | - Wissal Dhifi
- Laboratory of Physiopathology, Alimentation and Biomolecules, PAB, LR17ES03, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| | - Rania Ben Saad
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Faical Brini
- Centre of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, Sfax, Tunisia
| | - Najla Hfaidh
- Laboratory of Animal Ecophysiology, Faculty of Sciences, University of Gafsa, Gafsa, Tunisia
| | | | - Wissem Mnif
- Department of Chemistry, Faculty of Sciences and Arts in Balgarn, University of Bisha, Bisha, Saudi Arabia
- Laboratory of Biotechnology and Valorisation of Bio-GeoRessources, BVBGR, LR11ES31, Higher Institute of Biotechnology of Sidi Thabet, BiotechPole of Sidi Thabet, University of Manouba, Ariana, Tunisia
| |
Collapse
|
14
|
Sun JL, Li S, Lu X, Feng JB, Cai TJ, Tian M, Liu QJ. Identification of the differentially expressed protein biomarkers in rat blood plasma in response to gamma irradiation. Int J Radiat Biol 2020; 96:748-758. [DOI: 10.1080/09553002.2020.1739775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Li Sun
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
- Beijing Tongzhou Center for Disease Control and Prevention, Beijing, P.R. China
| | - Shuang Li
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Xue Lu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Jiang-Bin Feng
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Tian-Jing Cai
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Mei Tian
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| | - Qing-Jie Liu
- China CDC Key Laboratory of Radiological Protection and Nuclear Emergency, National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing, P.R. China
| |
Collapse
|
15
|
Rabou MAA, Naga NAAE, Eid FA. Effect of Transplanted Bone Marrow on Kidney Tissue of γ-Irradiated Pregnant Rats and Their Fetuses. Pak J Biol Sci 2020; 23:92-102. [PMID: 31930887 DOI: 10.3923/pjbs.2020.92.102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES The damaging effects of ionizing radiation lead to cell death. The present study was performed to assess the possible ameliorating effects of bone marrow transplantation (BMT) on the histopathological and histochemical changes in the kidney tissue of γ-irradiated pregnant rats and their fetuses. MATERIALS AND METHODS Pregnant rats were divided into 5 sets (6 females in each set): Group C (untreated pregnant rats), group R7 (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy), group R7+BM (pregnant rats exposed to 2Gy of γ-rays on the 7th day of pregnancy then injected by freshly BMT (75×106±5 cells) intra peritoneally after 1 h of irradiation, group R14 (pregnant rats exposed to 2Gy of γ-rays on the 14th day of pregnancy), group R14+BM (pregnant rats exposed to 2Gy γ-rays on the 14th day of pregnancy and after 1 h received 1 dose of BMT). All pregnant rats were sacrificed on the 20th day of pregnancy and kidney samples of pregnant rats and their fetuses were removed for histopathological and histochemical studies. RESULTS Gamma rays caused many histological and histochemical deviations in the kidney tissue of mothers and their fetuses on day 7 or 14 of gestation, but bone marrow transplantation highly improved the damage were occurred due to γ-rays. CONCLUSION Bone marrow transplantation has the ability to decrease the injury of gamma rays.
Collapse
|
16
|
Xu D, Pan Y, Chen J. Chemical Constituents, Pharmacologic Properties, and Clinical Applications of Bletilla striata. Front Pharmacol 2019; 10:1168. [PMID: 31736742 PMCID: PMC6838137 DOI: 10.3389/fphar.2019.01168] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Bletilla striata is a plant from the Orchidaceae family that has been employed as a traditional Chinese medicine (TCM) for thousands of years in China. Here, we briefly review the published studies of the last 30 years that were related to chemical constituents, pharmacologic activities, and clinical applications of B. striata. Approximately 158 compounds have been extracted from B. striata tubers with clarified molecular structures that were classified as glucosides, bibenzyls, phenanthrenes, quinones, biphenanthrenes, dihydrophenanthrenes, anthocyanins, steroids, triterpenoids, and phenolic acids. These chemicals support the pharmacological properties of hemostasis and wound healing, and also exhibit anti-oxidation, anti-cancer, anti-viral, and anti-bacterial activities. Additionally, various clinical trials conducted on B. striata have demonstrated its marked activities as an embolizing and mucosa-protective agent, and its application for use in novel biomaterials, quality control, and toxicology. It also has been widely used as a constituent of many preparations in TCM formulations, but because there are insufficient studies on its clinical properties, its efficacy and safety cannot be established from a scientific point of view. We hope that this review will provide reference for further research and development of this unique plant.
Collapse
Affiliation(s)
- Delin Xu
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Yinchi Pan
- Department of Cell Biology, Zunyi Medical University, Zunyi, China
| | - Jishuang Chen
- Key Laboratory of Basic Pharmacology and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
17
|
Li M, Jia Z, Wan G, Wang S, Min D. Enhancing isolation of p-coumaric and ferulic acids from sugarcane bagasse by sequential hydrolysis. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00890-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
18
|
Fathy AH, Bashandy MA, Bashandy SA, Mansour AM, Azab KS. The beneficial effect of natural antioxidants from olive oil with fig and date palm fruit extracts on biochemical and hematological parameters in rats treated with doxorubicin and γ-radiation. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The goal of this study was to determine the possible beneficial effect of olive oil (7 g/kg) with fig (1 g/kg) and date palm fruit (1 g/kg) extracts (OFD) on the toxicity hazards of doxorubicin (DOX) and (or) γ-radiation. The DOX-treated groups received doses of 2.5 mg/kg body weight via intravenous (IV) injection weekly for four consecutive weeks. Rats in the irradiated groups were exposed to whole-body γ-radiation with fractioned doses of 2 Gy weekly for four consecutive weeks. The OFD-treated groups received two weeks of pretreatment with OFD and daily supplementation via oral gavage during the experimental period. The DOX-treated and (or) irradiated groups showed decreases in the antioxidant parameters (reduced glutathione and nitric oxide) as well as increased lipid peroxidation products. In addition, we observed changes in the lipid profile parameters, lipid risk ratios, and hematological values (erythrocyte (RBC) count, hemoglobin (Hb) concentration, hematocrit (Hct) percentage, platelet count, and total and differential leukocyte (WBC) count) in these groups compared with the control rats. The administration of OFD to DOX-treated and (or) irradiated rats significantly ameliorated the oxidative stress markers, lipid profile, risk ratios, and hematological parameters. In conclusion, OFD could be used synergistically to decrease the negative side effects of chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Abdallah H. Fathy
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
- Experiments and Advanced Pharmaceutical Research Unit, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mohamed A. Bashandy
- Department of Zoology, Faculty of Science, Al-Azhar University, Cairo, Egypt
| | - Samir A.E. Bashandy
- Department of Pharmacology, Medical Division, National Research Center, Dokki, Giza, Egypt
| | - Ahmed M. Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Khaled S. Azab
- Department of Radiation Biology, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
19
|
Shin JA, Jeong SH, Jia CH, Hong ST, Lee KT. Comparison of antioxidant capacity of 4-vinylguaiacol with catechin and ferulic acid in oil-in-water emulsion. Food Sci Biotechnol 2018; 28:35-41. [PMID: 30815292 DOI: 10.1007/s10068-018-0458-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/15/2018] [Accepted: 08/19/2018] [Indexed: 11/30/2022] Open
Abstract
The product of ferulic acid decarboxylation, 4-vinylguaiacol (4-VG), is an important antioxidant and is reported to have an antioxidant capacity comparable to α-tocopherol. In this study, evaluation on antioxidant capacities of ferulic acid, catechin, and 4-VG was performed when 200 ppm of each compound was added in a 10% O/W emulsion for 50 days. Peroxide value (POV) results of the O/W emulsion containing 4-VG were noteworthy. The POV was 1.9 meq/L of emulsion after 29 days, which was no different to the initial value (day 0). Even when the oxidation was allowed to advance to day 50, the POV remained at 2.2 meq/L of emulsion, representing only a tiny increase relative to the initial value on day 0. 1H-NMR results also showed that the lowest conjugated forms and no aldehydes were detected in emulsion of 4-VG stored for 50 days, proving the excellent antioxidant capacity in the O/W emulsion.
Collapse
Affiliation(s)
- Jung-Ah Shin
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Sang-Hwa Jeong
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Cai-Hua Jia
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Soon Taek Hong
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| | - Ki-Teak Lee
- Department of Food Science and Technology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134 Republic of Korea
| |
Collapse
|
20
|
Shao S, Gao Y, Liu J, Tian M, Gou Q, Su X. Ferulic Acid Mitigates Radiation Injury in Human Umbilical Vein Endothelial Cells In Vitro via the Thrombomodulin Pathway. Radiat Res 2018; 190:298-308. [DOI: 10.1667/rr14696.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shuai Shao
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Yue Gao
- Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jianxiang Liu
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Mei Tian
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Qiao Gou
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Xu Su
- National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| |
Collapse
|
21
|
Wu WT, Mong MC, Yang YC, Wang ZH, Yin MC. Aqueous and Ethanol Extracts of Daylily Flower (Hemerocallis fulva
L.) Protect HUVE Cells Against High Glucose. J Food Sci 2018; 83:1463-1469. [DOI: 10.1111/1750-3841.14137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 02/05/2018] [Accepted: 03/04/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Wen-Tzu Wu
- Dept. of Food Nutrition and Health Biotechnology; Asia Univ.; Taichung City Taiwan
| | - Mei-chin Mong
- Dept. of Food Nutrition and Health Biotechnology; Asia Univ.; Taichung City Taiwan
| | - Ya-chen Yang
- Dept. of Food Nutrition and Health Biotechnology; Asia Univ.; Taichung City Taiwan
| | - Zhi-hong Wang
- Dept. of Food Nutrition and Health Biotechnology; Asia Univ.; Taichung City Taiwan
| | - Mei-chin Yin
- Dept. of Food Nutrition and Health Biotechnology; Asia Univ.; Taichung City Taiwan
- Dept. of Medical Research, China Medical Univ. Hospital; China Medical Univ.; Taichung City Taiwan
| |
Collapse
|
22
|
Ultrasound-Assisted, Base-Catalyzed, Homogeneous Reaction for Ferulic Acid Production from γ-Oryzanol. J CHEM-NY 2018. [DOI: 10.1155/2018/3132747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A method for producing ferulic acid by ultrasound-assisted, homogeneous, base-catalyzed hydrolysis of γ-oryzanol was developed. Experiments were conducted using various reaction temperatures and ratios of γ-oryzanol to base catalyst in both homogeneous and heterogeneous systems. The reaction performed without ultrasound under the homogeneous conditions of potassium hydroxide/γ-oryzanol ratio (wt/wt) 20 : 1 and 75°C gave a ferulic acid yield of 83.3% in 3 h. Acceleration of the homogeneous reaction using ultrasound irradiation at 20 (horn type) and 200 kHz (planar type) was explored by evaluating the kinetic parameters. At 30°C, the ratios of ultrasonic irradiation at low (20 kHz, 50 W) and high (200 kHz, 50 W) frequencies versus those of the heating method increased by 2.0- and 1.4-fold in comparison with those at 60°C, respectively. The contribution of ultrasonic irradiation (50 W) to the hydrolysis reaction decreased with increase of temperature. However, irradiation at 20 kHz and a power of 180 W gave a 94% ferulic acid yield at 60°C in 3 h. These results indicate that the use of low frequency (horn type and high-power irradiation) enabled yields higher than 90% to be obtained.
Collapse
|
23
|
Ren Z, Zhang R, Li Y, Li Y, Yang Z, Yang H. Ferulic acid exerts neuroprotective effects against cerebral ischemia/reperfusion-induced injury via antioxidant and anti-apoptotic mechanisms in vitro and in vivo. Int J Mol Med 2017; 40:1444-1456. [PMID: 28901374 PMCID: PMC5627889 DOI: 10.3892/ijmm.2017.3127] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 08/24/2017] [Indexed: 12/21/2022] Open
Abstract
Ferulic acid (FA) is a derivative of cinnamic acid. It is used in the treatment of heart head blood-vessel disease and exerts protective effects against hypoxia/ischemia-induced cell injury in the brain. This study investigated the potential neuroprotective effects of FA against ischemia/reperfusion (I/R)-induced brain injury in vivo and in vitro through hematoxylin and eosin (H&E) and Nissl staining assays, flow cytometry, Hoechst 33258 staining, quantitative PCR, western blot analysis and fluorescence microscopic analysis. In this study, models of cerebral I/R injury were established using rats and pheochromocytoma (PC-12) cells. The results revealed that treatment with FA significantly attenuated memory impairment, and reduced hippocampal neuronal apoptosis and oxidative stress in a dose-dependent manner. The results from in vitro experiments also indicated that FA protected the PC-12 cells against I/R-induced reactive oxygen species (ROS) generation and apoptosis by inhibiting apoptosis, Ca2+ influx, superoxide anion (O2-), malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) production in a concentration-dependent manner. Moreover, FA inactivated the Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) pathway. MyD88 overexpression abolished the neuroprotective effects of FA. On the whole, we found that FA attenuated memory dysfunction and exerted protective effects against oxidative stress and apoptosis induced by I/R injury by inhibiting the TLR4/MyD88 signaling pathway. This study supports the view that FA may be a promising neuroprotective agent for use in the treatment of cerebral ischemia.
Collapse
Affiliation(s)
- Zhongkun Ren
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Rongping Zhang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yuanyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Yu Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Zhiyong Yang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, P.R. China
| | - Hui Yang
- Biomedical Engineering Center, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
24
|
A Method for Ferulic Acid Production from Rice Bran Oil Soapstock Using a Homogenous System. APPLIED SCIENCES-BASEL 2017. [DOI: 10.3390/app7080796] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Gao JL, Chen J, Yang GZ, Lu L, Lu XY, Jia HH, Jin XD, Zhang H, Li QN. Ferulic acid induces proliferation and differentiation of rat osteoblasts in vitro through cGMP/PKGII/ENaC signaling. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:176-187. [PMID: 28024413 DOI: 10.1080/10286020.2016.1268127] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
Ferulic acid (FA) is an active component of the traditional Chinese herb Angelica sinensis. Numerous health benefits have been attributed to FA, but few studies have investigated the effects of FA on osteoblasts (Obs). Our work studied the effects of FA on proliferation, differentiation, and mineralization of rat calvarial Obs and examined the signaling pathways involved. Cell proliferation and differentiation were evaluated by Cell Counting Kit-8 (CCK-8) and alkaline phosphatase (ALP) assay kit, respectively. Cyclic guanosine monophosphate (cGMP)-dependent protein kinase II (PKGII) expression was silenced by small interfering RNA (siRNA). The mRNA expression was investigated by semi-quantitative PCR. FA (40-2560 μM) promoted Ob proliferation and differentiation; at 40-640 μM, FA stimulated calcified nodule formation and increased the expression of osteogenic genes encoding osteopontin and collagen-l. FA (40-2560 μM) increased cGMP levels in Obs and upregulated the expression of PKGII, EnaCα, and ENaCγ mRNAs. Downregulated ENaCα mRNA expression in Obs transfected with the siRNA for PKGII was reversed when FA was introduced into Obs. These results demonstrated that FA promoted proliferation, differentiation, and mineralization of Obs in vitro, and enhanced osteogenic genes expression partly through the cGMP-PKGII-ENaC signaling pathway.
Collapse
Affiliation(s)
- Jian-Lin Gao
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
- b Department of Medicine , Dongguan Kanghua Hospital , Dongguan 523080 , China
| | - Jun Chen
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Guo-Zhu Yang
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Li Lu
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xing-Yan Lu
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Huan-Huan Jia
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Xiao-Dong Jin
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Hao Zhang
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| | - Qing-Nan Li
- a School of Biosciences and Biopharmaceutics , Guangdong Pharmaceutical University , Guangzhou 510006 , China
| |
Collapse
|
26
|
Xu X, Zhao W, Shen M. Antioxidant activity of liquid cultured Inonotus obliquus polyphenols using tween-20 as a stimulatory agent: Correlation of the activity and the phenolic profiles. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
27
|
Ismail AFM, Zaher NH, El-Hossary EM, El-Gazzar MG. Modulatory effects of new curcumin analogues on gamma-irradiation - Induced nephrotoxicity in rats. Chem Biol Interact 2016; 260:141-153. [PMID: 27838230 DOI: 10.1016/j.cbi.2016.11.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/04/2016] [Accepted: 11/08/2016] [Indexed: 12/18/2022]
Abstract
In the present study, a new series of 2-amino-pyran-3-carbonitrile derivatives of curcumin 2-7 have been synthesized via one-pot simple and efficient protocol, involving the reaction of curcumin 1 with substituted-benzylidene-malononitrile to modify the 1,3-diketone moiety. The structures of the synthesized compounds 2-7 were elucidated by microanalytical and spectral data, which were found consistent with the assigned structures. The nephroprotective mechanism of these new curcumin analogues was evaluated on the post-gamma-irradiation (7 Gy) - induced nephrotoxicity in rats. Activation of Nrf2 by these curcumin analogues is responsible for the amendment of the antioxidant status, impairment of NF-κB signal, thus attenuate the nephrotoxicity induced post-γ-irradiation exposure. 4-Chloro-phenyl curcumin analogue 7 showed the most potent activity. In conclusion, the results of the present study demonstrate a promising role of these new curcumin analogues to attenuate the early symptoms of nephrotoxicity induced by γ-irradiation in rats via activation of Nrf2 gene expression. These new curcumin analogues need further toxicological investigations to assess their therapeutic index.
Collapse
Affiliation(s)
- Amel F M Ismail
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box: 29, Nasr City, Cairo, Egypt.
| | - Nashwa H Zaher
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box: 29, Nasr City, Cairo, Egypt
| | - Ebaa M El-Hossary
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box: 29, Nasr City, Cairo, Egypt
| | - Marwa G El-Gazzar
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), P.O. Box: 29, Nasr City, Cairo, Egypt
| |
Collapse
|
28
|
Hong IH, Choi JY, Kim AY, Lee EM, Kim JH, Park JH, Choi SW, Jeong KS. Anti-rheumatoid arthritic effect of fermented Adlay and Achyranthes japonica Nakai on collagen-induced arthritis in mice. FOOD AGR IMMUNOL 2016. [DOI: 10.1080/09540105.2016.1202207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
|
29
|
Protection against Radiotherapy-Induced Toxicity. Antioxidants (Basel) 2016; 5:antiox5030022. [PMID: 27399787 PMCID: PMC5039571 DOI: 10.3390/antiox5030022] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 06/27/2016] [Accepted: 06/28/2016] [Indexed: 01/18/2023] Open
Abstract
Radiation therapy is a highly utilized therapy in the treatment of malignancies with up to 60% of cancer patients receiving radiation therapy as a part of their treatment regimen. Radiation therapy does, however, cause a wide range of adverse effects that can be severe and cause permanent damage to the patient. In an attempt to minimize these effects, a small number of compounds have been identified and are in use clinically for the prevention and treatment of radiation associated toxicities. Furthermore, there are a number of emerging therapies being developed for use as agents that protect against radiation-induced toxicities. The aim of this review was to evaluate and summarise the evidence that exists for both the known radioprotectant agents and the agents that show promise as future radioprotectant agents.
Collapse
|
30
|
Wang R, Hua M, Yu Y, Zhang M, Xian QM, Yin DQ. Evaluating the effects of allelochemical ferulic acid on Microcystis aeruginosa by pulse-amplitude-modulated (PAM) fluorometry and flow cytometry. CHEMOSPHERE 2016; 147:264-271. [PMID: 26766364 DOI: 10.1016/j.chemosphere.2015.12.109] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 12/17/2015] [Accepted: 12/23/2015] [Indexed: 06/05/2023]
Abstract
We investigated the effects of allelochemical ferulic acid (FA) on a series of physiological and biochemical processes of blue-green algae Microcystis aeruginosa, in order to find sensitive diagnostic variables for allelopathic effects. Algal cell density was significantly suppressed by FA (0.31-5.17 mM) only after 48 h exposure. Inhibitions of photosynthetic parameters (F(v)/F(m) and F(v)'/F(m)') occurred more rapidly than cell growth, and the stimulation of non-photochemical quenching was observed as a feed-back mechanisms induced by photosystem II blockage, determining by PAM fluorometry. Inhibitions on esterase activity, membrane potential and integrity, as well as disturbance on cell size, were all detected by flow cytometry with specific fluorescent markers, although exhibiting varied sensitivities. Membrane potential and esterase activity were identified as the most sensitive parameters (with relatively lower EC50 values), and responded more rapidly (significantly inhibited only after 8 h exposure) than photosynthetic parameters and cell growth, thus may be the primary responses of cyanobacteria to FA exposure. The use of PAM fluorometry and flow cytometry for rapid assessment of those sensitive variables may contribute to future mechanistic studies of allolepathic effects on phytoplankton.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ming Hua
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Yang Yu
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, 210093, Jiangsu, PR China
| | - Min Zhang
- Nanjing Institute of Geography and Limnology, Chinese Academy of Science, 210093, Jiangsu, PR China
| | - Qi-Ming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, PR China
| | - Da-Qiang Yin
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
31
|
Doss HM, Dey C, Sudandiradoss C, Rasool MK. Targeting inflammatory mediators with ferulic acid, a dietary polyphenol, for the suppression of monosodium urate crystal-induced inflammation in rats. Life Sci 2016; 148:201-10. [DOI: 10.1016/j.lfs.2016.02.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/30/2016] [Accepted: 02/02/2016] [Indexed: 11/17/2022]
|
32
|
Bocco BM, Fernandes GW, Lorena FB, Cysneiros RM, Christoffolete MA, Grecco SS, Lancellotti CL, Romoff P, Lago JHG, Bianco AC, Ribeiro MO. Combined treatment with caffeic and ferulic acid from Baccharis uncinella C. DC. (Asteraceae) protects against metabolic syndrome in mice. Braz J Med Biol Res 2016; 49:S0100-879X2016000300604. [PMID: 26840707 PMCID: PMC4763817 DOI: 10.1590/1414-431x20155003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 09/04/2015] [Indexed: 12/28/2022] Open
Abstract
Fractionation of the EtOH extract from aerial parts of Baccharis
uncinella C. DC. (Asteraceae) led to isolation of caffeic and ferulic
acids, which were identified from spectroscopic and spectrometric evidence. These
compounds exhibit antioxidant and anti-inflammatory properties and have been shown to
be effective in the prevention/treatment of metabolic syndrome. This study
investigated whether the combined treatment of caffeic and ferulic acids exhibits a
more significant beneficial effect in a mouse model with metabolic syndrome. The
combination treatment with caffeic and ferulic acids was tested for 60 days in C57
mice kept on a high-fat (40%) diet. The data obtained indicated that treatment with
caffeic and ferulic acids prevented gain in body weight induced by the high-fat diet
and improved hyperglycemia, hypercholesterolemia and hypertriglyceridemia. The
expression of a number of metabolically relevant genes was affected in the liver of
these animals, showing that caffeic and ferulic acid treatment results in increased
cholesterol uptake and reduced hepatic triglyceride synthesis in the liver, which is
a likely explanation for the prevention of hepatic steatosis. In conclusion, the
combined treatment of caffeic and ferulic acids displayed major positive effects
towards prevention of multiple aspects of the metabolic syndrome and liver steatosis
in an obese mouse model.
Collapse
Affiliation(s)
- B M Bocco
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - G W Fernandes
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - F B Lorena
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - R M Cysneiros
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - M A Christoffolete
- Centro de Ciências Naturais e Humanas, Universidade Federal de ABC, São Paulo, SP, Brasil
| | - S S Grecco
- Centro de Ciências Naturais e Humanas, Universidade Federal de ABC, São Paulo, SP, Brasil
| | - C L Lancellotti
- Departmento de Ciências Patológicas da Escola de Ciências Médicas, São Paulo, SP, Brasil
| | - P Romoff
- Escola de Engenharia, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| | - J H G Lago
- Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - A C Bianco
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Rush University and Medical Center, IL, USA
| | - M O Ribeiro
- Programa de Pós-Graduação em Distúrbios do Desenvolvimento, Centro de Ciências Biológicas e da Saúde, Universidade Presbiteriana Mackenzie, São Paulo, SP, Brasil
| |
Collapse
|
33
|
Palani Swamy SK, Govindaswamy V. Therapeutical properties of ferulic acid and bioavailability enhancement through feruloyl esterase. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.06.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
34
|
Xue J, Luo D, Xu D, Zeng M, Cui X, Li L, Huang H. CCR1, an enzyme required for lignin biosynthesis in Arabidopsis, mediates cell proliferation exit for leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:375-87. [PMID: 26058952 DOI: 10.1111/tpj.12902] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/03/2015] [Indexed: 05/20/2023]
Abstract
After initiation, leaves first undergo rapid cell proliferation. During subsequent development, leaf cells gradually exit the proliferation phase and enter the expansion stage, following a basipetally ordered pattern starting at the leaf tip. The molecular mechanism directing this pattern of leaf development is as yet poorly understood. By genetic screening and characterization of Arabidopsis mutants defective in exit from cell proliferation, we show that the product of the CINNAMOYL CoA REDUCTASE (CCR1) gene, which is required for lignin biosynthesis, participates in the process of cell proliferation exit in leaves. CCR1 is expressed basipetally in the leaf, and ccr1 mutants exhibited multiple abnormalities, including increased cell proliferation. The ccr1 phenotypes are not due to the reduced lignin content, but instead are due to the dramatically increased level of ferulic acid (FeA), an intermediate in lignin biosynthesis. FeA is known to have antioxidant activity, and the levels of reactive oxygen species (ROS) in ccr1 were markedly reduced. We also characterized another double mutant in CAFFEIC ACID O-METHYLTRANSFERASE (comt) and CAFFEOYL CoA 3-O-METHYLTRANSFERASE (ccoaomt), in which the FeA level was dramatically reduced. Cell proliferation in comt ccoaomt leaves was decreased, accompanied by elevated ROS levels, and the mutant phenotypes were partially rescued by treatment with FeA or another antioxidant (N-acetyl-L-cysteine). Taken together, our results suggest that CCR1, FeA and ROS coordinate cell proliferation exit in normal leaf development.
Collapse
Affiliation(s)
- Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Dexian Luo
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Deyang Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Minhuan Zeng
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Xiaofeng Cui
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Laigeng Li
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
35
|
Sompong W, Cheng H, Adisakwattana S. Protective Effects of Ferulic Acid on High Glucose-Induced Protein Glycation, Lipid Peroxidation, and Membrane Ion Pump Activity in Human Erythrocytes. PLoS One 2015; 10:e0129495. [PMID: 26053739 PMCID: PMC4460125 DOI: 10.1371/journal.pone.0129495] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/08/2015] [Indexed: 11/29/2022] Open
Abstract
Ferulic acid (FA) is the ubiquitous phytochemical phenolic derivative of cinnamic acid. Experimental studies in diabetic models demonstrate that FA possesses multiple mechanisms of action associated with anti-hyperglycemic activity. The mechanism by which FA prevents diabetes-associated vascular damages remains unknown. The aim of study was to investigate the protective effects of FA on protein glycation, lipid peroxidation, membrane ion pump activity, and phosphatidylserine exposure in high glucose-exposed human erythrocytes. Our results demonstrated that FA (10-100 μM) significantly reduced the levels of glycated hemoglobin (HbA1c) whereas 0.1-100 μM concentrations inhibited lipid peroxidation in erythrocytes exposed to 45 mM glucose. This was associated with increased glucose consumption. High glucose treatment also caused a significant reduction in Na+/K+-ATPase activity in the erythrocyte plasma membrane which could be reversed by FA. Furthermore, we found that FA (0.1-100 μM) prevented high glucose-induced phosphatidylserine exposure. These findings provide insights into a novel mechanism of FA for the prevention of vascular dysfunction associated with diabetes.
Collapse
Affiliation(s)
- Weerachat Sompong
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- Research Group of Herbal Medicine for Prevention and Therapeutic of Metabolic Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Henrique Cheng
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana, United States of America
| | - Sirichai Adisakwattana
- Research Group of Herbal Medicine for Prevention and Therapeutic of Metabolic Diseases, Chulalongkorn University, Bangkok, Thailand
- Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
36
|
Kim BW, Koppula S, Park SY, Kim YS, Park PJ, Lim JH, Kim IS, Choi DK. Attenuation of neuroinflammatory responses and behavioral deficits by Ligusticum officinale (Makino) Kitag in stimulated microglia and MPTP-induced mouse model of Parkinson's disease. JOURNAL OF ETHNOPHARMACOLOGY 2015; 164:388-397. [PMID: 25449453 DOI: 10.1016/j.jep.2014.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/23/2014] [Accepted: 11/03/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ligusticum officinale (Makino) Kitag (L. officinale) is one of the important traditional herbs used in traditional Oriental medicine for the treatment of various disorders including pain and inflammation. However, there is limited scientific basis for its activity and mechanism in brain inflammation. AIM OF THE STUDY This study aimed to evaluate the effects of L. officinale on microglia-mediated neuroinflammation and behavioral impairments using in vitro cellular and in vivo mouse model of PD, as well as investigate the molecular mechanisms involved including the finger printing analysis of its ethanol extract. MATERIALS AND METHODS Lipopolysaccharide (LPS) was used to stimulate BV-2 microglial cells. The changes in neuroinflammatory expressional levels were measured by Western blotting and immunofluorescence techniques. 1-methyl-4 phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-intoxicated mice model of PD was developed to evaluate the behavioral impairments and the brain tissues were used for immunohistochemical studies. High performance liquid chromatography (HPLC) technique was performed for finger printing analysis of L. officinale extract used in the study. RESULTS L. officinale significantly attenuated the LPS-stimulated increase in inflammatory mediators in BV-2 cells. L. officinale also inhibited the LPS-induced activation of nuclear factor-kappa beta by blocking the degradation of IκB-α and suppressing the increase in p38-mitogen-activated protein kinase phosphorylation in BV-2 cells. Furthermore, L. officinale exhibited significant antioxidant properties by inhibiting the 1-diphenyl-2-picrylhydrazyl radicals. An in vivo evaluation in MPTP (20mg/kg, four times, 1 day, i.p.) intoxicated mice resulted in brain microglial activation and significant behavioral deficits. Prophylactic treatment with L. officinale prevented microglial activation and attenuated PD-like behavioral changes as assessed by the pole test. HPLC finger printing analysis revealed that L. officinale extract contained ferulic acid (FA) as one of the major constituents compared with reference standard. FA also inhibited the LPS-stimulated excessive release of NO and suppressed the increased the expressional levels of proinflammatory mediators in BV-2 microglia. CONCLUSIONS The findings observed in this study indicated that L. officinale extract significantly attenuated the neuroinflammatory processes in stimulated microglia and restored the behavioral impairments in a mouse model of PD providing a scientific basis for its traditional claims.
Collapse
Affiliation(s)
- Byung-Wook Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | | | - Shin-Young Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Yon-Suk Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Pyo-Jam Park
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Ji-Hong Lim
- Department of Biomedical chemistry, Konkuk University, Chungju, Korea
| | - In-Su Kim
- Department of Biotechnology, Konkuk University, Chungju, Korea
| | - Dong-Kug Choi
- Department of Biotechnology, Konkuk University, Chungju, Korea.
| |
Collapse
|
37
|
Ferulic acid suppresses activation of hepatic stellate cells through ERK1/2 and Smad signaling pathways in vitro. Biochem Pharmacol 2015; 93:49-58. [DOI: 10.1016/j.bcp.2014.10.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/30/2014] [Accepted: 10/30/2014] [Indexed: 01/25/2023]
|
38
|
Bacanlı M, Aydın S, Taner G, Göktaş HG, Şahin T, Başaran AA, Başaran N. The protective role of ferulic acid on sepsis-induced oxidative damage in Wistar albino rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:774-782. [PMID: 25305738 DOI: 10.1016/j.etap.2014.08.018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/18/2014] [Accepted: 08/25/2014] [Indexed: 02/05/2023]
Abstract
Oxidative stress has an important role in the development of sepsis-induced multiorgan failure. Ferulic acid (FA), a well-established natural antioxidant, has several pharmacological activities including anti-inflammatory, anticancer and hepatoprotective. This study aimed to investigate the effects of FA on sepsis-induced oxidative damage in Wistar albino rats. Sepsis-induced DNA damage in the lymphocytes, liver and kidney cells of rats were evaluated by comet assay with and without formamidopyrimidine DNA glycosylase (Fpg). The oxidative stress parameters such as superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities and total glutathione (GSH) and malondialdehyde (MDA) levels were also measured. It is found that DNA damage in sepsis+FA-treated group was significantly lower than the sepsis group. FA treatment also decreased the MDA levels and increased the GSH levels and SOD and GSH-Px activities in the sepsis-induced rats. It seems that FA might have ameliorative effects against sepsis-induced oxidative damage.
Collapse
Affiliation(s)
- Merve Bacanlı
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Sevtap Aydın
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Gökçe Taner
- Department of Biology, Faculty of Science, Gazi University, 06500 Ankara, Turkey
| | - Hatice Gül Göktaş
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey; Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Çukurova University, Sarıçam, 01330 Adana, Turkey
| | - Tolga Şahin
- Department of Surgery, Faculty of Kastamonu Medicine, Hacettepe University, 06100 Ankara, Turkey
| | - A Ahmet Başaran
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey
| | - Nurşen Başaran
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Hacettepe University, 06100 Ankara, Turkey.
| |
Collapse
|
39
|
Liu L, Gou Y, Gao X, Zhang P, Chen W, Feng S, Hu F, Li Y. Electrochemically reduced graphene oxide-based electrochemical sensor for the sensitive determination of ferulic acid in A. sinensis and biological samples. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:227-33. [DOI: 10.1016/j.msec.2014.05.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/13/2014] [Accepted: 05/18/2014] [Indexed: 11/30/2022]
|
40
|
Liu P, Jin X, Lv H, Li J, Xu W, Qian HH, Yin Z. Icaritin ameliorates carbon tetrachloride-induced acute liver injury mainly because of the antioxidative function through estrogen-like effects. In Vitro Cell Dev Biol Anim 2014; 50:899-908. [DOI: 10.1007/s11626-014-9792-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/19/2014] [Indexed: 12/16/2022]
|
41
|
Das U, Manna K, Sinha M, Datta S, Das DK, Chakraborty A, Ghosh M, Saha KD, Dey S. Role of ferulic acid in the amelioration of ionizing radiation induced inflammation: a murine model. PLoS One 2014; 9:e97599. [PMID: 24854039 PMCID: PMC4031149 DOI: 10.1371/journal.pone.0097599] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/23/2014] [Indexed: 12/30/2022] Open
Abstract
Ionizing radiation is responsible for oxidative stress by generating reactive oxygen species (ROS), which alters the cellular redox potential. This change activates several redox sensitive enzymes which are crucial in activating signaling pathways at molecular level and can lead to oxidative stress induced inflammation. Therefore, the present study was intended to assess the anti-inflammatory role of ferulic acid (FA), a plant flavonoid, against radiation-induced oxidative stress with a novel mechanistic viewpoint. FA was administered (50 mg/kg body wt) to Swiss albino mice for five consecutive days prior to exposing them to a single dose of 10 Gy 60Co γ-irradiation. The dose of FA was optimized from the survival experiment and 50 mg/kg body wt dose showed optimum effect. FA significantly ameliorated the radiation induced inflammatory response such as phosphorylation of IKKα/β and IκBα and consequent nuclear translocation of nuclear factor kappa B (NF-κB). FA also prevented the increase of cycloxygenase-2 (Cox-2) protein, inducible nitric oxide synthase-2 (iNOS-2) gene expression, lipid peroxidation in liver and the increase of tumor necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) in serum. It was observed that exposure to radiation results in decreased activity of superoxide dismutase (SOD), catalase (CAT) and the pool of reduced glutathione (GSH) content. However, FA treatment prior to irradiation increased the activities of the same endogenous antioxidants. Thus, pretreatment with FA offers protection against gamma radiation induced inflammation.
Collapse
Affiliation(s)
- Ujjal Das
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | - Krishnendu Manna
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | - Mahuya Sinha
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | - Sanjukta Datta
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Dipesh Kr Das
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
| | - Anindita Chakraborty
- Department of Radiation Biology, UGC-DAE CSR Center Kolkata, Kolkata, West Bengal, India
| | - Mahua Ghosh
- Department of Chemical Technology, University of Calcutta, Kolkata, West Bengal, India
| | - Krishna Das Saha
- Cancer Biology & Inflammatory Disorder Division, IICB, Kolkata, West Bengal, India
| | - Sanjit Dey
- Department of Physiology, Centre for Nanoscience and Nanotechnology and Centre with Potential for Excellence in Particular Area (CPEPA), University of Calcutta, Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
42
|
Song HJ, Jin MH, Lee SH. Effect of Ferulic Acid Isolated from Cnidium Officinale on the Synthesis of Hyaluronic Acid. ACTA ACUST UNITED AC 2013. [DOI: 10.15230/scsk.2013.39.4.281] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
43
|
Lagouri V, Prasianaki D, Krysta F. Antioxidant Properties and Phenolic Composition of Greek Propolis Extracts. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2013. [DOI: 10.1080/10942912.2012.654561] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
44
|
Anti-acetylcholinesterase and antioxidant activities and HPLC-MS analysis of polyphenol from extracts of Nelsonia canescens (Lam.) Spreng. ASIAN PACIFIC JOURNAL OF TROPICAL DISEASE 2013. [DOI: 10.1016/s2222-1808(13)60088-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
45
|
Paiva LBD, Goldbeck R, Santos WDD, Squina FM. Ferulic acid and derivatives: molecules with potential application in the pharmaceutical field. BRAZ J PHARM SCI 2013. [DOI: 10.1590/s1984-82502013000300002] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Ferulic acid is a phenolic acid widely distributed in the plant kingdom. It presents a wide range of potential therapeutic effects useful in the treatments of cancer, diabetes, lung and cardiovascular diseases, as well as hepatic, neuro and photoprotective effects and antimicrobial and anti-inflammatory activities. Overall, the pharmaceutical potential of ferulic acid can be attributed to its ability to scavenge free radicals. However, recent studies have revealed that ferulic acid presents pharmacological properties beyond those related to its antioxidant activity, such as the ability to competitively inhibit HMG-CoA reductase and activate glucokinase, contributing to reduce hypercholesterolemia and hyperglycemia, respectively. The present review addresses ferulic acid dietary sources, the pharmacokinetic profile, antioxidant action mechanisms and therapeutic effects in the treatment and prevention of various diseases, in order to provide a basis for understanding its mechanisms of action as well as its pharmaceutical potential.
Collapse
Affiliation(s)
- Lívia Brenelli de Paiva
- Brazilian Bioethanol Science and Technology Laboratory; Brazilian Centre of Research in Energy and Materials, Brazil
| | - Rosana Goldbeck
- Brazilian Bioethanol Science and Technology Laboratory; Brazilian Centre of Research in Energy and Materials, Brazil
| | | | - Fabio Marcio Squina
- Brazilian Bioethanol Science and Technology Laboratory; Brazilian Centre of Research in Energy and Materials, Brazil
| |
Collapse
|
46
|
Gaascht F, Dicato M, Diederich M. Venus Flytrap (Dionaea muscipula Solander ex Ellis) Contains Powerful Compounds that Prevent and Cure Cancer. Front Oncol 2013; 3:202. [PMID: 23971004 PMCID: PMC3747514 DOI: 10.3389/fonc.2013.00202] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 07/24/2013] [Indexed: 12/11/2022] Open
Abstract
Chemoprevention uses natural or synthetic molecules without toxic effects to prevent and/or block emergence and development of diseases including cancer. Many of these natural molecules modulate mitogenic signals involved in cell survival, apoptosis, cell cycle regulation, angiogenesis, or on processes involved in the development of metastases occur naturally, especially in fruits and vegetables bur also in non-comestible plants. Carnivorous plants including the Venus flytrap (Dionaea muscipula Solander ex Ellis) are much less investigated, but appear to contain a wealth of potent bioactive secondary metabolites. Aim of this review is to give insight into molecular mechanisms triggered by compounds isolated from these interesting plants with either therapeutic or chemopreventive potential.
Collapse
Affiliation(s)
- François Gaascht
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Mario Dicato
- Laboratory for Molecular and Cellular Biology of Cancer (LBMCC), Hôpital Kirchberg, Luxembourg, Luxembourg
| | - Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul, South Korea
| |
Collapse
|
47
|
Batra V, Kislay B. Mitigation of gamma-radiation induced abasic sites in genomic DNA by dietary nicotinamide supplementation: metabolic up-regulation of NAD(+) biosynthesis. Mutat Res 2013; 749:28-38. [PMID: 23891603 DOI: 10.1016/j.mrfmmm.2013.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 06/14/2013] [Accepted: 07/09/2013] [Indexed: 01/25/2023]
Abstract
The search for non-toxic radio-protective drugs has yielded many potential agents but most of these compounds have certain amount of toxicity. The objective of the present study was to investigate dietary nicotinamide enrichment dependent adaptive response to potential cytotoxic effect of (60)Co γ-radiation. To elucidate the possible underlying mechanism(s), male Swiss mice were maintained on control diet (CD) and nicotinamide supplemented diet (NSD). After 6 weeks of CD and NSD dietary regimen, we exposed the animals to γ-radiation (2, 4 and 6Gy) and investigated the profile of downstream metabolites and activities of enzymes involved in NAD(+) biosynthesis. Increased activities of nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide mononucleotide adenylyltransferase (NMNAT) were observed up to 48h post-irradiation in NSD fed irradiated mice. Concomitant with increase in liver NAMPT and NMNAT activities, NAD(+) levels were replenished in NSD fed and irradiated animals. However, NAMPT and NMNAT-mediated NAD(+) biosynthesis and ATP levels were severely compromised in liver of CD fed irradiated mice. Another major finding of these studies revealed that under γ-radiation stress, dietary nicotinamide supplementation might induce higher and long-lasting poly(ADP)-ribose polymerase 1 (PARP1) and poly(ADP-ribose) glycohydrolase (PARG) activities in NSD fed animals compared to CD fed animals. To investigate liver DNA damage, number of apurinic/apyrimidinic sites (AP sites) and level of 8-hydroxy-2'-deoxyguanosine (8-oxo-dG) residues were quantified. A significant increase in liver DNA AP sites and 8-oxo-dG levels with concomitant increase in caspase-3 was observed in CD fed and irradiated animals compared to NSD fed and irradiated mice. In conclusion present studies show that under γ-radiation stress conditions, dietary nicotinamide supplementation restores DNA excision repair activity via prolonged activation of PARP1 and PARG activities. Present results clearly indicated that hepatic NAD(+) replenishment might be a novel and potent approach to reduce radiation injury.
Collapse
Affiliation(s)
- Vipen Batra
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, India.
| | | |
Collapse
|
48
|
Lin A, Tu B, Cai Z, Pan Y. Synthesis and Structure Analysis of 4-Benzyl-1-[(2 E)-3-(3-Bromo-4-Hydroxy-5-Methoxyphenyl)Prop-2-Enoyl]Piperazine Hydrochloride. JOURNAL OF CHEMICAL RESEARCH 2013. [DOI: 10.3184/174751913x13700888313361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
4-Benzyl-1-[(2 E)-3-(3-bromo-4-hydroxy-5-methoxyphenyl)prop-2-enoyl]piperazine hydrochloride was prepared from 3-(3-bromo-4-acetyloxy-5-methoxyphenyl)-2-propenoic acid and benzylpiperazine. Its piperazine ring exhibits a chair conformation.
Collapse
Affiliation(s)
- Aibin Lin
- Zhejiang Pharmaceutical College, Ningbo, 315100, P. R. China
- Department of Chemistry, Shantou University Medical College, Shantou, 515041, P. R. China
| | - Bing Tu
- Zhejiang Pharmaceutical College, Ningbo, 315100, P. R. China
| | - Zhongqi Cai
- Zhejiang Pharmaceutical College, Ningbo, 315100, P. R. China
| | - Ying Pan
- Department of Chemistry, Shantou University Medical College, Shantou, 515041, P. R. China
| |
Collapse
|
49
|
Ferulic acid regulates the AKT/GSK-3β/CRMP-2 signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2013; 29:63-9. [PMID: 23825478 PMCID: PMC3696626 DOI: 10.5625/lar.2013.29.2.63] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 04/27/2013] [Accepted: 05/02/2013] [Indexed: 11/21/2022] Open
Abstract
Ferulic acid, a component of the plants Angelica sinensis (Oliv.) Diels and Ligusticum chuanxiong Hort, exerts a neuroprotective effect by regulating various signaling pathways. This study showed that ferulic acid treatment prevents the injury-induced increase of collapsin response mediator protein 2 (CRMP-2) in focal cerebral ischemia. Glycogen synthase kinase-3β (GSK-3β) regulates CRMP-2 function through phosphorylation of CRMP-2. Moreover, the pro-apoptotic activity of GSK-3β is inactivated by phosphorylation by Akt. This study investigated whether ferulic acid modulates the expression of CRMP-2 and its upstream targets, Akt and GSK-3β, in focal cerebral ischemia. Male rats were treated immediately with ferulic acid (100 mg/kg, i.v.) or vehicle after middle cerebral artery occlusion (MCAO), and then cerebral cortices were collected 24 hr after MCAO. MCAO resulted in decreased levels of phospho-Akt and phospho-GSK-3β, while ferulic acid treatment prevented the decrease in the levels of these proteins. Moreover, phospho-CRMP-2 and CRMP-2 levels increased during MCAO, whereas ferulic acid attenuated these injury-induced increases. These results demonstrate that ferulic acid regulates the Akt/GSK-3β/CRMP-2 signaling pathway in focal cerebral ischemic injury, thereby protecting against brain injury.
Collapse
|
50
|
Tian L, Dang XQ, Wang CS, Yang P, Zhang C, Wang KZ. Effects of sodium ferulate on preventing steroid-induced femoral head osteonecrosis in rabbits. J Zhejiang Univ Sci B 2013; 14:426-437. [PMID: 23645179 PMCID: PMC3650456 DOI: 10.1631/jzus.b1200311] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 01/15/2013] [Indexed: 11/11/2022]
Abstract
The aim of this study is to investigate the effects and possible mechanisms of sodium ferulate (SF) on anti-apoptosis in steroid-induced femoral head osteonecrosis in rabbits. Japanese white rabbits were randomly divided into three groups (control group, treatment group, and model group), each with 24 rabbits. The model and treatment groups were first injected with an intravenous dose of horse serum, 10 ml/kg, three weeks later with an intravenous dose of 7.5 ml/kg, and two weeks later with an intramuscular dose of methylprednisolone, 45 mg/kg, three times in order to establish rabbit models of osteonecrosis. Concurrently, the treatment group was injected with intravenous doses of SF 20 mg/kg for two weeks, once per day. Three time points, Weeks 2, 4, and 8, were selected after modeling was completed. Osteonecrosis was verified by histopathology with haematoxylin-eosin (HE) staining. The apoptosis rate of osteonecrosis was observed by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. The apoptosis expressions of caspase-3 and Bcl-2 were analyzed by immunohistochemistry and Western blot. The rabbit models of osteonecrosis were successfully established and observed by HE staining. SF was effective in intervening in apoptosis and decreasing the apoptosis rate in femoral head necrosis by the immunohistochemistry and TUNEL assay (P<0.01). Western blot analysis indicated that there were statistical significances in the protein levels of caspase-3 and Bcl-2 (P<0.01). SF has a protective effect by reducing the incidence of early steroid-induced femoral head necrosis in rabbits, effectively intervening in apoptosis through decreasing caspase-3 expression and up-regulating Bcl-2 expression.
Collapse
|