1
|
Movassagh H, Halchenko Y, Sampath V, Nygaard UC, Jackson B, Robbins D, Li Z, Nadeau KC, Karagas MR. Maternal gestational mercury exposure in relation to cord blood T cell alterations and placental gene expression signatures. ENVIRONMENTAL RESEARCH 2021; 201:111385. [PMID: 34129869 PMCID: PMC8478717 DOI: 10.1016/j.envres.2021.111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/18/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
The immunotoxic impacts of mercury during early life is poorly understood. We investigated the associations between gestational mercury exposure and frequency of cord blood T cells as well as placental gene expression. Frequency of natural Treg cells was positively associated with prenatal and postpartum mercury toenail concentrations. Frequency of NKT and activated naïve Th cells was positively associated with prenatal toenail mercury concentrations and number of maternal silver-mercury dental amalgams, respectively. Placental gene expression analyses revealed distinct gene signatures associated with mercury exposure. Decreased placental expression of a histone demethylase, KDM4DL, was associated with both higher prenatal and postpartum maternal toenail mercury levels among male infants and remained statistically significant after adjustment for fish and seafood consumption. The results suggest that gestational exposure to mercury concentrations contribute to alterations in both T cells and gene expression in placenta at birth. These alterations may inform mechanisms of mercury immunotoxicity.
Collapse
Affiliation(s)
- Hesam Movassagh
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Yuliya Halchenko
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA
| | - Unni C Nygaard
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA; Department of Environmental Health, Norwegian Institute of Public Health; Oslo, Norway
| | - Brian Jackson
- Department of Earth Sciences, Dartmouth College; Hanover, NH, USA
| | - David Robbins
- Department of Surgery, University of Miami, Miller School of Medicine; Miami, FL, USA
| | - Zhigang Li
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| | - Kari C Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University, Palo Alto, CA, USA.
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine and the Children's Environmental Health and Disease Prevention Research Center at Dartmouth; Hanover, NH, USA
| |
Collapse
|
2
|
Amirhosseini M, Alkaissi H, Hultman PA, Havarinasab S. Autoantibodies in outbred Swiss Webster mice following exposure to gold and mercury. Toxicol Appl Pharmacol 2020; 412:115379. [PMID: 33358697 DOI: 10.1016/j.taap.2020.115379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/25/2020] [Accepted: 12/17/2020] [Indexed: 10/22/2022]
Abstract
Exposure to heavy metals may have toxic effects on several human organs causing morbidity and mortality. Metals may trigger or exacerbate autoimmunity in humans. Inbred mouse strains with certain H-2 haplotypes are susceptible to xenobiotic-induced autoimmunity; and their immune response to metals such as mercury, gold, and silver have been explored. Serum antinuclear antibodies (ANA), polyclonal B-cell activation, hypergammaglobulinemia and tissue immune complex deposition are the main features of metal-induced autoimmunity in inbred mice. However, inbred mouse strains do not represent the genetic heterogeneity in humans. In this study, outbred Swiss Webster (SW) mice exposed to gold or mercury salts showed immune and autoimmune responses. Intramuscular injection of 22.5 mg/kg.bw aurothiomalate (AuTM) induced IgG ANA in SW mice starting after 5 weeks that persisted until week 15 although with a lower intensity. This was accompanied by elevated serum levels of total IgG antibodies against chromatin and total histones. Exposure to gold led to development of serum IgG autoantibodies corresponding to H1 and H2A histones, and dsDNA. Both gold and mercury induced polyclonal B-cell activation. Eight mg/L mercuric chloride (HgCl2) in drinking water, caused IgG antinucleolar antibodies (ANoA) after 5 weeks in SW mice accompanied by immune complex deposition in kidneys and spleen. Serum IgG antibodies corresponding to anti-fibrillarin, and anti-PM/Scl-100 antibodies, were observed in mercury-exposed SW mice. Gold and mercury trigger systemic autoimmune response in genetically heterogeneous outbred SW mice and suggest them as an appropriate model to study xenobiotic-induced autoimmunity.
Collapse
Affiliation(s)
- Mehdi Amirhosseini
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Hammoudi Alkaissi
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Per A Hultman
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden; Department of Clinical Pathology, Linköping University, Linköping, Sweden
| | - Said Havarinasab
- Division of Clinical Chemistry, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
| |
Collapse
|
3
|
Mazzariol S, Centelleghe C, Cozzi B, Povinelli M, Marcer F, Ferri N, Di Francesco G, Badagliacca P, Profeta F, Olivieri V, Guccione S, Cocumelli C, Terracciano G, Troiano P, Beverelli M, Garibaldi F, Podestà M, Marsili L, Fossi MC, Mattiucci S, Cipriani P, De Nurra D, Zaccaroni A, Rubini S, Berto D, de Quiros YB, Fernandez A, Morell M, Giorda F, Pautasso A, Modesto P, Casalone C, Di Guardo G. Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (Physeter macrocephalus) along the Adriatic coast of Italy. Sci Rep 2018; 8:11577. [PMID: 30068967 PMCID: PMC6070578 DOI: 10.1038/s41598-018-29966-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/21/2018] [Indexed: 11/20/2022] Open
Abstract
Mass strandings of sperm whales (Physeter macrocephalus) are rare in the Mediterranean Sea. Nevertheless, in 2014 a pod of 7 specimens stranded alive along the Italian coast of the Central Adriatic Sea: 3 individuals died on the beach after a few hours due to internal damages induced by prolonged recumbency; the remaining 4 whales were refloated after great efforts. All the dead animals were genetically related females; one was pregnant. All the animals were infected by dolphin morbillivirus (DMV) and the pregnant whale was also affected by a severe nephropathy due to a large kidney stone. Other analyses ruled out other possible relevant factors related to weather conditions or human activities. The results of multidisciplinary post-mortem analyses revealed that the 7 sperm whales entered the Adriatic Sea encountering adverse weather conditions and then kept heading northward following the pregnant but sick leader of the pod, thereby reaching the stranding site. DMV infection most likely played a crucial role in impairing the health condition and orientation abilities of the whales. They did not steer back towards deeper waters, but eventually stranded along the Central Adriatic Sea coastline, a real trap for sperm whales.
Collapse
Affiliation(s)
- Sandro Mazzariol
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Cinzia Centelleghe
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy.
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Michele Povinelli
- Department of Comparative Biomedicine and Food Science, University of Padova, Padova, Italy
| | - Federica Marcer
- Department of Animal Medicine, Production and Health, University of Padova, Padova, Italy
| | - Nicola Ferri
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Gabriella Di Francesco
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Pietro Badagliacca
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Francesca Profeta
- University of Teramo, Faculty of Veterinary Medicine, Località Piano d'Accio, 64100, Teramo, Italy
| | | | | | - Cristiano Cocumelli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Rome, Italy
| | - Giuliana Terracciano
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana M. Aleandri, Rome, Italy
| | - Pasquale Troiano
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Matteo Beverelli
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | | | | | - Letizia Marsili
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Maria Cristina Fossi
- Department of Physical Science, Earth and Environment, University of Siena, Siena, Italy
| | - Simonetta Mattiucci
- Department of Public Health and Infectious Diseases, University La Sapienza, Rome, Italy
| | - Paolo Cipriani
- Department of Public Health and Infectious Diseases, University La Sapienza, Rome, Italy
| | - Daniele De Nurra
- Istituto Zooprofilattico Sperimentale della Sardegna, Sassari, Italy
| | | | - Silva Rubini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Ferrara, Italy
| | | | - Yara Beraldo de Quiros
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Antonio Fernandez
- Institute of Animal Health and Food Safety, Universitad de Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Maria Morell
- Institute for Neurosciences of Montpellier (Inserm UMR 1051), Montpellier, France
| | - Federica Giorda
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Alessandra Pautasso
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Paola Modesto
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Cristina Casalone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Val d'Aosta, Torino, Italy
| | - Giovanni Di Guardo
- University of Teramo, Faculty of Veterinary Medicine, Località Piano d'Accio, 64100, Teramo, Italy
| |
Collapse
|
4
|
Cauvi DM, Cauvi G, Toomey CB, Jacquinet E, Pollard KM. From the Cover: Interplay Between IFN-γ and IL-6 Impacts the Inflammatory Response and Expression of Interferon-Regulated Genes in Environmental-Induced Autoimmunity. Toxicol Sci 2018; 158:227-239. [PMID: 28453771 DOI: 10.1093/toxsci/kfx083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity.
Collapse
Affiliation(s)
- David M Cauvi
- Department of Surgery, School of Medicine, University of California, San Diego, La Jolla, California 92037
| | - Gabrielle Cauvi
- Genomics Institute of the Novartis Research Foundation, San Diego, California 92037
| | - Christopher B Toomey
- Department of Ophthalmology, Shiley Eye Institute, University of California, San Diego, La Jolla, California 92037
| | | | - Kenneth Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|
5
|
Branco V, Caito S, Farina M, Teixeira da Rocha J, Aschner M, Carvalho C. Biomarkers of mercury toxicity: Past, present, and future trends. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2017; 20:119-154. [PMID: 28379072 PMCID: PMC6317349 DOI: 10.1080/10937404.2017.1289834] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Mercury (Hg) toxicity continues to represent a global health concern. Given that human populations are mostly exposed to low chronic levels of mercurial compounds (methylmercury through fish, mercury vapor from dental amalgams, and ethylmercury from vaccines), the need for more sensitive and refined tools to assess the effects and/or susceptibility to adverse metal-mediated health risks remains. Traditional biomarkers, such as hair or blood Hg levels, are practical and provide a reliable measure of exposure, but given intra-population variability, it is difficult to establish accurate cause-effect relationships. It is therefore important to identify and validate biomarkers that are predictive of early adverse effects prior to adverse health outcomes becoming irreversible. This review describes the predominant biomarkers used by toxicologists and epidemiologists to evaluate exposure, effect and susceptibility to Hg compounds, weighing on their advantages and disadvantages. Most importantly, and in light of recent findings on the molecular mechanisms underlying Hg-mediated toxicity, potential novel biomarkers that might be predictive of toxic effect are presented, and the applicability of these parameters in risk assessment is examined.
Collapse
Affiliation(s)
- Vasco Branco
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| | - Sam Caito
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Marcelo Farina
- c Departamento de Bioquímica, Centro de Ciências Biológicas , Universidade Federal de Santa Catarina , Florianópolis , Brazil
| | - João Teixeira da Rocha
- d Departamento Bioquímica e Biologia Molecular , Universidade Federal de Santa Maria , Santa Maria , RS , Brazil
| | - Michael Aschner
- b Department of Molecular Pharmacology , Albert Einstein College of Medicine , Bronx , New York , USA
| | - Cristina Carvalho
- a Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa , Lisboa , Portugal
| |
Collapse
|
6
|
Maqbool F, Niaz K, Hassan FI, Khan F, Abdollahi M. Immunotoxicity of mercury: Pathological and toxicological effects. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2017; 35:29-46. [PMID: 28055311 DOI: 10.1080/10590501.2016.1278299] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Mercury (Hg) is toxic and hazardous metal that causes natural disasters in the earth's crust. Exposure to Hg occurs via various routes; like oral (fish), inhalation, dental amalgams, and skin from cosmetics. In this review, we have discussed the sources of Hg and its potential for causing toxicity in humans. In addition, we also review its bio-chemical cycling in the environment; its systemic, immunotoxic, genotoxic/carcinogenic, and teratogenic health effects; and the dietary influences; as well as the important considerations in risk assessment and management of Hg poisoning have been discussed in detail. Many harmful outcomes have been reported, which will provide more awareness.
Collapse
Affiliation(s)
- Faheem Maqbool
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Kamal Niaz
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Fatima Ismail Hassan
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Fazlullah Khan
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Abdollahi
- a International Campus, Tehran University of Medical Sciences , Tehran , Iran
- b Toxicology and Diseases Group , Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences , Tehran , Iran
- c Department of Toxicology and Pharmacology , Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
- d Endocrinology and Metabolism Research Center , Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
7
|
Crowe W, Allsopp PJ, Watson GE, Magee PJ, Strain JJ, Armstrong DJ, Ball E, McSorley EM. Mercury as an environmental stimulus in the development of autoimmunity - A systematic review. Autoimmun Rev 2016; 16:72-80. [PMID: 27666813 DOI: 10.1016/j.autrev.2016.09.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/13/2016] [Indexed: 12/24/2022]
Abstract
Autoimmune diseases result from an interplay of genetic predisposition and factors which stimulate the onset of disease. Mercury (Hg), a well-established toxicant, is an environmental factor reported to be linked with autoimmunity. Hg exists in several chemical forms and is encountered by humans in dental amalgams, certain vaccines, occupational exposure, atmospheric pollution and seafood. Several studies have investigated the effect of the various forms of Hg, including elemental (Hg0), inorganic (iHg) and organic mercury (oHg) and their association with autoimmunity. In vitro studies using peripheral blood mononuclear cells (PBMC) from healthy participants have shown that methylmercury (MeHg) causes cell death at lower concentrations than iHg albeit exposure to iHg results in a more enhanced pro-inflammatory profile in comparison to MeHg. In vivo research utilising murine models susceptible to the development of metal-induced autoimmunity report that exposure to iHg results in a lupus-like syndrome, whilst mice exposed to MeHg develop autoimmunity without the formation of immune complexes. Furthermore, lower concentrations of IgE are detected in MeHg-treated animals in comparison with those treated with iHg. It appears that, oHg has a negative impact on animal models with existing autoimmunity. The research conducted on humans in this area is diverse in study design and the results are conflicting. There is currently no evidence to implicate a role for Hg0 exposure from dental amalgams in the development or perpetuation of autoimmune disease, apart from some suggestion of individual sensitivity. Several studies have consistently shown a positive correlation between iHg exposure and serum autoantibody concentrations in gold miners, although the clinical impact of iHg remains unknown. Furthermore, a limited number of studies have reported individuals with autoimmune disease have higher concentrations of blood Hg compared to healthy controls. In summary, it appears that iHg perpetuates markers of autoimmunity to a greater extent than oHg, albeit the impact on clinical outcomes in humans is yet to be elucidated.
Collapse
Affiliation(s)
- William Crowe
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - Philip J Allsopp
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - Gene E Watson
- Eastman Institute for Oral Health and Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, United States.
| | - Pamela J Magee
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - J J Strain
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| | - David J Armstrong
- Department of Rheumatology, Altnagelvin Area Hospital, Glenshane Road, Londonderry BT47 6SB, Northern, Ireland.
| | - Elizabeth Ball
- Department of Rheumatology, Musgrave Park Hospital, Stockman's Lane, Belfast, BT9 7JB, Northern, Ireland.
| | - Emeir M McSorley
- Northern Ireland Centre for Food and Health (NICHE), Ulster University, BT52 1SA, Northern, Ireland.
| |
Collapse
|
8
|
Yeter D, Portman MA, Aschner M, Farina M, Chan WC, Hsieh KS, Kuo HC. Ethnic Kawasaki Disease Risk Associated with Blood Mercury and Cadmium in U.S. Children. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:E101. [PMID: 26742052 PMCID: PMC4730492 DOI: 10.3390/ijerph13010101] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 01/26/2023]
Abstract
Kawasaki disease (KD) primarily affects children <5 years of age (75%-80%) and is currently the leading cause of acquired heart disease in developed nations. Even when residing in the West, East Asian children are 10 to 20 times more likely to develop KD. We hypothesized cultural variations influencing pediatric mercury (Hg) exposure from seafood consumption may mediate ethnic KD risk among children in the United States. Hospitalization rates of KD in US children aged 0-4 years (n = 10,880) and blood Hg levels in US children aged 1-5 years (n = 713) were determined using separate US federal datasets. Our cohort primarily presented with blood Hg levels <0.1 micrograms (µg) per kg bodyweight (96.5%) that are considered normal and subtoxic. Increased ethnic KD risk was significantly associated with both increasing levels and detection rates of blood Hg or cadmium (Cd) in a linear dose-responsive manner between ethnic African, Asian, Caucasian, and Hispanic children in the US (p ≤ 0.05). Increasing low-dose exposure to Hg or Cd may induce KD or contribute to its later development in susceptible children. However, our preliminary results require further replication in other ethnic populations, in addition to more in-depth examination of metal exposure and toxicokinetics.
Collapse
Affiliation(s)
- Deniz Yeter
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
| | - Michael A Portman
- Division of Cardiology, Department of Pediatrics, Seattle Children's Research Institute, University of Washington, Seattle, WA 98101, USA.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA.
| | - Marcelo Farina
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina 88040, Brazil.
| | - Wen-Ching Chan
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
| | - Kai-Sheng Hsieh
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
- College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.
| | - Ho-Chang Kuo
- Kawasaki Disease Center, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Niaosong, Kaohsiung 83301, Taiwan.
- College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.
| |
Collapse
|
9
|
Arefieva AS, Kamaeva AG, Krasilshchikova MS. Low doses of mercuric chloride cause the main features of anti-nucleolar autoimmunity in female outbred CFW mice. Toxicol Ind Health 2015; 32:1663-74. [PMID: 25765285 DOI: 10.1177/0748233715573691] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The growth of the influence of anthropogenic factors aimed on the improvement of human life has its side effect, for example, living organisms receive increasing exposure to toxic mercuric compounds. Experimental data show that mercury (Hg) salts are able to induce systemic autoimmunity in rodents. This Hg-induced autoimmune process (HgIA) is characterized by T cell-dependent polyclonal activation of B lymphocytes, increased level of serum immunoglobulin G1 (IgG1) and immunoglobulin E (IgE), production of antinucleolar autoantibodies (ANoA), and immune complex deposition in multiple organs. HgIA in mice is used as a model of human systemic autoimmune disorders. However, the dose of mercuric chloride (HgCl2) usually used in laboratory mice to induce HgIA is above the allowable limit for everyday levels of Hg exposure in humans. So, we decided to determine the lowest dose of HgCl2 that is able to trigger autoimmunity in outbred Carworth Farms Swiss Webster (CFW) mice not genetically prone to HgIA development. The lowest dose (50 µg/kg body weight (b.w.)/week) was chosen to match the World Health Organization provisional weekly tolerable intake of total Hg for humans. We also tested HgCl2 at 500 and 1500 µg/kg b.w./week (6.5- and 2-fold less than usually used for induction of HgIA in mice). We found that even the lowest dose of Hg resulted in a statistically significant increase in serum level of IgG1 after 8 weeks of treatment. HgCl2 in doses 500 and 1500 µg/kg b.w./week resulted in a significant increase in serum level of IgG1 after 4 weeks of treatment, followed by ANoA production. Sera of HgCl2-treated mice stained the regions in which the major autoantigen in HgIA, fibrillarin, was revealed. These results suggest that low doses of Hg are able to induce the main features of HgIA in genetically heterozygous mice, and that humans chronically exposed to low doses of Hg may be at risk of autoimmunity induction regardless of their genetic background.
Collapse
Affiliation(s)
- Alla S Arefieva
- Laboratory of Structural Biochemistry, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Alfia G Kamaeva
- Group of Experimental Biology, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Marina S Krasilshchikova
- Group of Experimental Biology, M.M. Shemyakin-Yu.A. Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
10
|
Elli L, Rossi V, Conte D, Ronchi A, Tomba C, Passoni M, Bardella MT, Roncoroni L, Guzzi G. Increased Mercury Levels in Patients with Celiac Disease following a Gluten-Free Regimen. Gastroenterol Res Pract 2015; 2015:953042. [PMID: 25802516 PMCID: PMC4352902 DOI: 10.1155/2015/953042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 02/02/2015] [Indexed: 02/06/2023] Open
Abstract
Background and Aim. Although mercury is involved in several immunological diseases, nothing is known about its implication in celiac disease. Our aim was to evaluate blood and urinary levels of mercury in celiac patients. Methods. We prospectively enrolled 30 celiac patients (20 treated with normal duodenal mucosa and 10 untreated with duodenal atrophy) and 20 healthy controls from the same geographic area. Blood and urinary mercury concentrations were measured by means of flow injection inductively coupled plasma mass spectrometry. Enrolled patients underwent dental chart for amalgam fillings and completed a food-frequency questionnaire to evaluate diet and fish intake. Results. Mercury blood/urinary levels were 2.4 ± 2.3/1.0 ± 1.4, 10.2 ± 6.7/2.2 ± 3.0 and 3.7 ± 2.7/1.3 ± 1.2 in untreated CD, treated CD, and healthy controls, respectively. Resulting mercury levels were significantly higher in celiac patients following a gluten-free diet. No differences were found regarding fish intake and number of amalgam fillings. No demographic or clinical data were significantly associated with mercury levels in biologic samples. Conclusion. Data demonstrate a fourfold increase of mercury blood levels in celiac patients following a gluten-free diet. Further studies are needed to clarify its role in celiac mechanism.
Collapse
Affiliation(s)
- Luca Elli
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Valentina Rossi
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| | - Dario Conte
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Anna Ronchi
- Pavia Poison Control Center and National Toxicology Information Centre, Toxicology Unit, IRCCS Maugeri Foundation and University of Pavia, Via Salvatore Maugeri 10, 27100 Pavia, Italy
| | - Carolina Tomba
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Manuela Passoni
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| | - Maria Teresa Bardella
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Leda Roncoroni
- Center for the Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gianpaolo Guzzi
- Italian Association for Metals and Biocompatibility Research (AIRMEB), Via Banfi 4, 20122 Milan, Italy
| |
Collapse
|
11
|
Trümpler S, Meermann B, Nowak S, Buscher W, Karst U, Sperling M. In vitro study of thimerosal reactions in human whole blood and plasma surrogate samples. J Trace Elem Med Biol 2014; 28:125-130. [PMID: 24613139 DOI: 10.1016/j.jtemb.2014.01.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 01/28/2014] [Accepted: 01/29/2014] [Indexed: 01/28/2023]
Abstract
Because of its bactericidal and fungicidal properties, thimerosal is used as a preservative in drugs and vaccines and is thus deliberately injected into the human body. In aqueous environment, it decomposes into thiosalicylic acid and the ethylmercury cation. This organomercury fragment is a potent neurotoxin and is suspected to have similar toxicity and bioavailability like the methylmercury cation. In this work, human whole blood and physiological simulation solutions were incubated with thimerosal to investigate its behaviour and binding partners in the blood stream. Inductively coupled plasma with optical emission spectrometry (ICP-OES) was used for total mercury determination in different blood fractions, while liquid chromatography (LC) coupled to electrospray ionisation time-of-flight (ESI-TOF) and inductively coupled plasma-mass spectrometry (ICP-MS) provided information on the individual mercury species in plasma surrogate samples. Analogous behaviour of methylmercury and ethylmercury species in human blood was shown and an ethylmercury-glutathione adduct was identified.
Collapse
Affiliation(s)
- Stefan Trümpler
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany
| | - Björn Meermann
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany; Federal Institute of Hydrology, Department G2 - Aquatic Chemistry, Am Mainzer Tor 1, 56068 Koblenz, Germany
| | - Sascha Nowak
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany
| | - Wolfgang Buscher
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany
| | - Uwe Karst
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany
| | - Michael Sperling
- University of Münster, Institute of Inorganic and Analytical Chemistry, Corrensstr. 30, Münster 48149, Germany; European Virtual Institute for Speciation Analysis, Mendelstr. 11, Münster 48149, Germany.
| |
Collapse
|
12
|
Dórea JG, Farina M, Rocha JBT. Toxicity of ethylmercury (and Thimerosal): a comparison with methylmercury. J Appl Toxicol 2013; 33:700-11. [PMID: 23401210 DOI: 10.1002/jat.2855] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/10/2012] [Accepted: 12/11/2012] [Indexed: 12/18/2022]
Abstract
Ethylmercury (etHg) is derived from the metabolism of thimerosal (o-carboxyphenyl-thio-ethyl-sodium salt), which is the most widely used form of organic mercury. Because of its application as a vaccine preservative, almost every human and animal (domestic and farmed) that has been immunized with thimerosal-containing vaccines has been exposed to etHg. Although methylmercury (meHg) is considered a hazardous substance that is to be avoided even at small levels when consumed in foods such as seafood and rice (in Asia), the World Health Organization considers small doses of thimerosal safe regardless of multiple/repetitive exposures to vaccines that are predominantly taken during pregnancy or infancy. We have reviewed in vitro and in vivo studies that compare the toxicological parameters among etHg and other forms of mercury (predominantly meHg) to assess their relative toxicities and potential to cause cumulative insults. In vitro studies comparing etHg with meHg demonstrate equivalent measured outcomes for cardiovascular, neural and immune cells. However, under in vivo conditions, evidence indicates a distinct toxicokinetic profile between meHg and etHg, favoring a shorter blood half-life, attendant compartment distribution and the elimination of etHg compared with meHg. EtHg's toxicity profile is different from that of meHg, leading to different exposure and toxicity risks. Therefore, in real-life scenarios, a simultaneous exposure to both etHg and meHg might result in enhanced neurotoxic effects in developing mammals. However, our knowledge on this subject is still incomplete, and studies are required to address the predictability of the additive or synergic toxicological effects of etHg and meHg (or other neurotoxicants).
Collapse
Affiliation(s)
- José G Dórea
- Department of Nutrition, Faculty of Health Sciences, Universidade de Brasilia, 70919-970, Brasilia, DF, Brazil.
| | | | | |
Collapse
|
13
|
Barygina VV, Aref’eva AS, Zatsepina OV. The role of mercury in the processes of vital activity of the human and mammalian organisms. RUSS J GEN CHEM+ 2011. [DOI: 10.1134/s1070363210130037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Dietert RR, Dietert JM, Gavalchin J. Risk of autoimmune disease: challenges for immunotoxicity testing. Methods Mol Biol 2010; 598:39-51. [PMID: 19967505 DOI: 10.1007/978-1-60761-401-2_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Autoimmunity represents a potentially diverse and complex category among the range of adverse outcomes for detection with immunotoxicity testing. For this reason, the risk of autoimmune disease is discussed in this overview chapter with additional mention among the later specific protocol chapters. Improvements in clinical diagnostic capabilities and disease recognition have led to a more accurate picture of the extent of autoimmune diseases across different human populations. While the risk of any single autoimmune disease remains modest when compared with that of lung or heart disease, the cumulative prevalence of autoimmune diseases is both significant and increasing. Autoimmune diseases are usually viewed in the context of the damaged tissue or organ (e.g., as a thyroid, gastrointestinal, cardiovascular or neurological disease). But improved recognition that underlying immune dysfunction can connect the risks for these as well as other diseases is critical for optimizing risk assessment. Since autoimmune diseases are chronic in nature with many first appearing in children or in young adults, these diseases exert a serious impact on both health care costs and quality of life. This chapter provides a discussion of the issues that should be considered with immunotoxicity testing for risk of autoimmunity.
Collapse
|
15
|
Laks DR. Luteinizing hormone provides a causal mechanism for mercury associated disease. Med Hypotheses 2009; 74:698-701. [PMID: 19914008 DOI: 10.1016/j.mehy.2009.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 10/18/2009] [Indexed: 10/20/2022]
Abstract
Previous studies have demonstrated that the pituitary is a main target for inorganic mercury (I-Hg) deposition and accumulation within the brain. My recent study of the US population (1999-2006) has uncovered a significant, inverse relationship between chronic mercury exposure and levels of luteinizing hormone (LH). This association with LH signifies more than its presumed role as bioindicator for pituitary neurosecretion and function. LH is the only hormone with a rare and well characterized, high affinity binding site for mercury. On its catalytic beta subunit, LH has the structure to preferentially bind inorganic mercury almost irreversibly, and, by that manner, accumulate the neurotoxic element. Thus, it is likely that LH is an early and significant target of chronic mercury exposure. Moreover, due to the role of LH in immune-modulation and neurogenesis, I present LH as a central candidate to elucidate a causal mechanism for chronic mercury exposure and associated disease.
Collapse
Affiliation(s)
- Dan R Laks
- Mental Retardation Research Center, David Geffen School of Medicine at UCLA, 635 Charles E. Young Dr. South, Neuroscience Research Building, Los Angeles, CA 90095-7332, USA.
| |
Collapse
|
16
|
Trümpler S, Lohmann W, Meermann B, Buscher W, Sperling M, Karst U. Interaction of thimerosal with proteins—ethylmercuryadduct formation of human serum albumin and β-lactoglobulin A. Metallomics 2009. [DOI: 10.1039/b815978e] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Havarinasab S, Pollard KM, Hultman P. Gold- and silver-induced murine autoimmunity--requirement for cytokines and CD28 in murine heavy metal-induced autoimmunity. Clin Exp Immunol 2008; 155:567-76. [PMID: 19077085 DOI: 10.1111/j.1365-2249.2008.03831.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Treatment with gold in the form of aurothiomaleate, silver or mercury (Hg) in genetically susceptible mouse strains (H-2(s)) induces a systemic autoimmune condition characterized by anti-nuclear antibodies targeting the 34-kDa nucleolar protein fibrillarin, as well as lymphoproliferation and systemic immune-complex (IC) deposits. In this study we have examined the effect of single-gene deletions for interferon (IFN)-gamma, interleukin (IL)-4, IL-6 or CD28 in B10.S (H-2(s)) mice on heavy metal-induced autoimmunity. Targeting of the genes for IFN-gamma, IL-6 or CD28 abrogated the development of both anti-fibrillarin antibodies (AFA) and IC deposits using a modest dose of Hg (130 microg Hg/kg body weight/day). Deletion of IL-4 severely reduced the IgG1 AFA induced by all three metals, left the total IgG AFA response intact, but abrogated the Hg-induced systemic IC deposits. In conclusion, intact IFN-gamma and CD28 genes are necessary for induction of AFA with all three metals and systemic IC deposits using Hg, while lack of IL-4 distinctly skews the metal-induced AFA response towards T helper type 1. In a previous study using a higher dose of Hg (415 microg Hg/kg body weight/day), IC deposits were preserved in IL-4(-/-) and IL-6(-/-) mice, and also AFA in the latter mice. Therefore, the attenuated autoimmunity following loss of IL-4 and IL-6 is dose-dependent, as higher doses of Hg are able to override the attenuation observed using lower doses.
Collapse
Affiliation(s)
- S Havarinasab
- Molecular and Immunological Pathology, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | | | | |
Collapse
|
18
|
Dietert RR, Dietert JM. Potential for early-life immune insult including developmental immunotoxicity in autism and autism spectrum disorders: focus on critical windows of immune vulnerability. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2008; 11:660-680. [PMID: 18821424 DOI: 10.1080/10937400802370923] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Early-life immune insults (ELII) including xenobiotic-induced developmental immunotoxicity (DIT) are important factors in childhood and adult chronic diseases. However, prenatal and perinatal environmentally induced immune alterations have yet to be considered in depth in the context of autism and autism spectrum disorders (ASDs). Numerous factors produce early-life-induced immune dysfunction in offspring, including exposure to xenobiotics, maternal infections, and other prenatal-neonatal stressors. Early life sensitivity to ELII, including DIT, results from the heightened vulnerability of the developing immune system to disruption and the serious nature of the adverse outcomes arising after disruption of one-time immune maturational events. The resulting health risks extend beyond infectious diseases, cancer, allergy, and autoimmunity to include pathologies of the neurological, reproductive, and endocrine systems. Because these changes may include misregulation of resident inflammatory myelomonocytic cells in tissues such as the brain, they are a potential concern in cases of prenatal-neonatal brain pathologies and neurobehavioral deficits. Autism and ASDs are chronic developmental neurobehavioral disorders that are on the rise in the United States with prenatal and perinatal environmental factors suspected as contributors to this increase. Evidence for an association between environmentally associated childhood immune dysfunction and ASDs suggests that ELII and DIT may contribute to these conditions. However, it is not known if this linkage is directly associated with the brain pathologies or represents a separate (or secondary) outcome. This review considers the known features of ELII and DIT and how they may provide important clues to prenatal brain inflammation and the risk of autism and ASDs.
Collapse
Affiliation(s)
- Rodney R Dietert
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY14852, USA.
| | | |
Collapse
|
19
|
Wang G, König R, Ansari GAS, Khan MF. Lipid peroxidation-derived aldehyde-protein adducts contribute to trichloroethene-mediated autoimmunity via activation of CD4+ T cells. Free Radic Biol Med 2008; 44:1475-82. [PMID: 18267128 PMCID: PMC2440665 DOI: 10.1016/j.freeradbiomed.2008.01.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/11/2007] [Accepted: 01/09/2008] [Indexed: 10/22/2022]
Abstract
Lipid peroxidation is implicated in the pathogenesis of various autoimmune diseases. Lipid peroxidation-derived aldehydes such as malondialdehyde (MDA) and 4-hydroxynonenal (HNE) are highly reactive and bind to proteins, but their role in eliciting an autoimmune response and their contribution to disease pathogenesis remain unclear. To investigate the role of lipid peroxidation in the induction and/or exacerbation of autoimmune response, 6-week-old autoimmune-prone female MRL+/+ mice were treated for 4 weeks with trichloroethene (TCE; 10 mmol/kg, ip, once a week), an environmental contaminant known to induce lipid peroxidation. Sera from TCE-treated mice showed significant levels of antibodies against MDA-and HNE-adducted proteins along with antinuclear antibodies. This suggested that TCE exposure not only caused increased lipid peroxidation, but also accelerated autoimmune responses. Furthermore, stimulation of cultured splenic lymphocytes from both control and TCE-treated mice with MDA-adducted mouse serum albumin (MDA-MSA) or HNE-MSA for 72 h showed significant proliferation of CD4+ T cells in TCE-treated mice as analyzed by flow cytometry. Also, splenic lymphocytes from TCE-treated mice released more IL-2 and IFN-gamma into cultures when stimulated with MDA-MSA or HNE-MSA, suggesting a Th1 cell activation. Thus, our data suggest a role for lipid peroxidation-derived aldehydes in TCE-mediated autoimmune responses and involvement of Th1 cell activation.
Collapse
Affiliation(s)
- Gangduo Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Rolf König
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - G. A. S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
20
|
Havarinasab S, Johansson U, Pollard KM, Hultman P. Gold causes genetically determined autoimmune and immunostimulatory responses in mice. Clin Exp Immunol 2007; 150:179-88. [PMID: 17680821 PMCID: PMC2219286 DOI: 10.1111/j.1365-2249.2007.03469.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Natrium aurothiomaleate (GSTM) is a useful disease-modifying anti-rheumatic drug, but causes a variety of immune-mediated adverse effects in many patients. A murine model was used to study further the interaction of GSTM with the immune system, including induction of systemic autoimmunity. Mice were given weekly intramuscular injections of GSTM and controls equimolar amounts of sodium thiomaleate. The effects of gold on lymphocyte subpopulations were determined by flow cytometry. Humoral autoimmunity was measured by indirect immunofluorescence and immunoblotting, and deposition of immunoglobulin and C3 used to assess immunopathology. Gold, in the form of GSTM, stimulated the murine immune system causing strain-dependent lymphoproliferation and autoimmunity, including a major histocompatibility complex (MHC)-restricted autoantibody response against the nucleolar protein fibrillarin. GSTM did not cause glomerular or vessel wall IgG deposits. However, it did elicit a strong B cell-stimulating effect, including both T helper 1 (Th1)- and Th2-dependent isotypes. All these effects on the immune system were dependent on the MHC genotype, emphasizing the clinical observations of a strong genetic linkage for the major adverse immune reactions seen with GSTM treatment.
Collapse
Affiliation(s)
- S Havarinasab
- Department of Clinical and Experimental Medicine, Molecular and Immunological Pathology, Linköping University, Linköping, Sweden
| | | | | | | |
Collapse
|