1
|
Ahmadi F, Kariman K, Mousavi M, Rengel Z. Echinacea: Bioactive Compounds and Agronomy. PLANTS (BASEL, SWITZERLAND) 2024; 13:1235. [PMID: 38732450 PMCID: PMC11085449 DOI: 10.3390/plants13091235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
For centuries, medicinal plants have been used as sources of remedies and treatments for various disorders and diseases. Recently, there has been renewed interest in these plants due to their potential pharmaceutical properties, offering natural alternatives to synthetic drugs. Echinacea, among the world's most important medicinal plants, possesses immunological, antibacterial, antifungal, and antiviral properties. Nevertheless, there is a notable lack of thorough information regarding the echinacea species, underscoring the vital need for a comprehensive review paper to consolidate existing knowledge. The current review provides a thorough analysis of the existing knowledge on recent advances in understanding the physiology, secondary metabolites, agronomy, and ecology of echinacea plants, focusing on E. purpurea, E. angustifolia, and E. pallida. Pharmacologically advantageous effects of echinacea species on human health, particularly distinguished for its ability to safeguard the nervous system and combat cancer, are discussed. We also highlight challenges in echinacea research and provide insights into diverse approaches to boost the biosynthesis of secondary metabolites of interest in echinacea plants and optimize their large-scale farming. Various academic databases were employed to carry out an extensive literature review of publications from 2001 to 2024. The medicinal properties of echinacea plants are attributed to diverse classes of compounds, including caffeic acid derivatives (CADs), chicoric acid, echinacoside, chlorogenic acid, cynarine, phenolic and flavonoid compounds, polysaccharides, and alkylamides. Numerous critical issues have emerged, including the identification of active metabolites with limited bioavailability, the elucidation of specific molecular signaling pathways or targets linked to echinacoside effects, and the scarcity of robust clinical trials. This raises the overarching question of whether scientific inquiry can effectively contribute to harnessing the potential of natural compounds. A systematic review and analysis are essential to furnish insights and lay the groundwork for future research endeavors focused on the echinacea natural products.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Khalil Kariman
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Milad Mousavi
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia; (K.K.); (M.M.); (Z.R.)
- Institute for Adriatic Crops and Karst Reclamation, 21000 Split, Croatia
| |
Collapse
|
2
|
Lu C, Zhang S, Lei SS, Wang D, Peng B, Shi R, Chong CM, Zhong Z, Wang Y. A comprehensive review of the classical prescription Yiguan Jian: Phytochemistry, quality control, clinical applications, pharmacology, and safety profile. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117230. [PMID: 37778517 DOI: 10.1016/j.jep.2023.117230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/10/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Yiguan Jian (YGJ) is a classical prescription, which employs 6 kinds of medicinal herbs including Rehmanniae Radix, Lycii Fructus, Angelicae sinensis Radix, Glehniae Radix, Ophiopogonis Radix, and Toosendan Fructus. YGJ decoction is originally prescribed in Qing Dynasty (1636 CE ∼ 1912 CE) in China, and is commonly used to treat liver diseases. There remain abundant literature investigating YGJ decoction from multiple aspects, but few reviews summarized the research and gave a precise definition, which impedes further applications and commercialization of YGJ decoction. AIM OF THE REVIEW The aim of this review is to provide comprehensive descriptions of YGJ decoction, tackling with issues in the research and development of YGJ decoction. MATERIALS AND METHODS The literature and clinical reports were obtained from the databases including Web of Science, Science Direct, PubMed, Google Scholar, China National Knowledge Infrastructure, China Science Periodical Database, China Science and Technology Journal Database, and SinoMed since 2000. The phytochemical characteristics, quality control, pharmaceutical forms, clinical position, pharmacological effects, and toxic events of YGJ decoction were included for analysis. RESULT This review firstly summarized the progress of the chemical existences of YGJ decoction and discussed the advanced methods in monitoring quality of YGJ decoction and its herbal ingredients, particularly in the form of granules. Whilst this review aims to identify the pharmacological actions and clinical impacts of YGJ decoction, the medicinal materials that could provide these benefits were observed in the remaining herbs to exert the anti-fibrotic effects, anti-inflammatory activities, anti-cancer, and anti-diabetic effects, and to universally treat liver and gastric diseases. This review provided supplementary descriptions on the safety issues, especially in Glehniae Radix and Toosendan Fructus, to define the alterations between hepatoprotective activities and unclear toxics in YGJ decoction application. CONCLUSIONS Our comprehensively organized review discussed the chemical characteristics and the research in altering or identifying these essences. The effects of YGJ decoction on the non-clinical and clinical tests exert the good management of sophisticated diseases. In this review, current issues are discussed to inform and inspire subsequent research of YGJ decoction and other classical prescriptions.
Collapse
Affiliation(s)
- Changcheng Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Siyuan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Si San Lei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Danni Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Bo Peng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Ruipeng Shi
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Cheong-Meng Chong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Zhangfeng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China; Macao Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China.
| |
Collapse
|
3
|
Wang W, Jiang S, Zhao Y, Zhu G. Echinacoside: A promising active natural products and pharmacological agents. Pharmacol Res 2023; 197:106951. [PMID: 37804927 DOI: 10.1016/j.phrs.2023.106951] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Echinacoside, a natural phenylethanoid glycoside, was discovered and isolated from the garden plant Echinacea angustifolia DC., belonging to the Compositae family, approximately sixty years ago. Extensive investigations have revealed that it possesses a wide array of pharmacologically beneficial activities for human health, particularly notable for its neuroprotective and anticancer activity. Several crucial concerns surfaced, encompassing the recognition of active metabolites that exhibited inadequate bioavailability in their prototype form, the establishment of precise molecular signal pathways or targets associated with the aforementioned effects of echinacoside, and the scarcity of dependable clinical trials. Hence, the question remains unanswered as to whether scientific research can effectively utilize this natural compound. To support future studies on this natural product, it is imperative to provide a systematic overview and insights into potential future prospects. The current review provides a comprehensive analysis of the existing knowledge on echinacoside, encompassing its wide distribution, structural diversity and metabolism, diverse therapeutic applications, and improvement of echinacoside bioavailability for its potential utilization.
Collapse
Affiliation(s)
- Wang Wang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China; School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shujun Jiang
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Zhao
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| | - Guoxue Zhu
- Department of Neurology, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
4
|
Xie P, Gao Y, Wu C, Li X, Yang Y. The inhibitory mechanism of echinacoside against Staphylococcus aureus Ser/Thr phosphatase Stp1 by virtual screening and molecular modeling. J Mol Model 2023; 29:320. [PMID: 37725157 DOI: 10.1007/s00894-023-05723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/09/2023] [Indexed: 09/21/2023]
Abstract
CONTEXT Stp1 is a new potential target closely related to the pathogenicity of Staphylococcus aureus (S. aureus). In this study, effective Stp1 inhibitors were screened via virtual screening and enzyme activity experiments, and the inhibition mechanism was analyzed using molecular dynamics simulation. METHODS AutoDock Vina 4.0 software was used for virtual screening. The molecular structures of Stp1 and ligands were obtained from the RCSB Protein Data Bank and Zinc database, respectively. The molecular dynamics simulation used the Gromacs 4.5.5 software package with the Amberff99sb force field and TIP3P water model. AutoDock Tools was used to add polar hydrogen atoms to Stp1 and distribute part of the charge generated by Kollman's combined atoms. The binding free energies were calculated using the Amber 10 package. RESULTS The theoretical calculation results are consistent with the experimental results. We found that echinacoside (ECH) substantially inhibits the hydrolytic activity of Stp1. ECH competes with the substrate by binding to the active center of Stp1, resulting in a decrease in Stp1 activity. In addition, Met39, Gly41, Asp120, Asn162, and Ile163 were identified to play key roles in the binding of Stp1 to ECH. The benzene ring of ECH also plays an important role in complex binding. These findings provide a robust foundation for the development of innovative anti-infection drugs.
Collapse
Affiliation(s)
- Peng Xie
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Yue Gao
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Chenqi Wu
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China
| | - Xuenan Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun, 130118, Jilin, China
| | - Yanan Yang
- Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou, 215008, China.
| |
Collapse
|
5
|
Ding Y, Zhang Y, Wang Z, Zeng F, Zhen Q, Zhao H, Li J, Ma T, Huang C. Echinacoside from Cistanche tubulosa ameliorates alcohol-induced liver injury and oxidative stress by targeting Nrf2. FASEB J 2023; 37:e22792. [PMID: 36723904 DOI: 10.1096/fj.202201430r] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/26/2022] [Accepted: 01/13/2023] [Indexed: 02/02/2023]
Abstract
Cistanche tubulosa (Schrenk) Wight, named Guan hua Rou Cong-Rong in Chinese, is a traditional plant with liver, kidney, and intestine protective effects. Echinacoside (ECH) is its active constituent and has been found to have various biological effects, including antioxidative stress and anti-inflammatory effects. Liver injury caused by acetaminophen or CCL4 has been proven to benefit from ECH; however, the effects of ECH against alcoholic liver disease (ALD) remain unclear. This study was used to estimate the effect of echinacoside on nuclear factor erythroid 2-related factor 2 (Nrf2), which ameliorates ALD by inhibiting oxidative stress and cell apoptosis through affecting Nrf2.A mouse model of ALD was established with ethanol using hematoxylin and eosin (HE) staining, oiled staining, and biochemical indices. Alpha Mouse Liver 12 (AML-12) cells were induced with ethanol in vitro and analyzed using western blotting, flow cytometry, and biochemical assays. In the animal model of ALD, ECH dramatically reduced liver damage, as proven by the downregulation of aspartate aminotransferase (AST) and HE staining. In vitro, ECH distinctly reduced the damage caused by ethanol through the decreased expression of cleaved caspase-3 measured by western blotting. ECH significantly increased the activity of Nrf2 in vivo and in vitro. Nrf2 knockout may diminish the influence of ECH on ALD. Meanwhile, ECH also increased the expression of haem oxygenase-1 (HO-1) and glutamate-cysteine ligase catalytic subunit (GCLC), while it inhibited levels of oxidative stress and cell apoptosis. Our findings suggest that ECH protects against ethanol-induced liver injuries by alleviating oxidative stress and cell apoptosis by increasing the activity of Nrf2. Therefore, ECH is promising for the treatment of ALD.
Collapse
Affiliation(s)
- Yuhao Ding
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yuan Zhang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zhonghao Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fanle Zeng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Qianzhen Zhen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Huizi Zhao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Taotao Ma
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| |
Collapse
|
6
|
Lima MR, Costa FGP, Guerra RR, Vieira DVG, Cardoso AS, Fernandes ML, Macena WG, Nascimento DS, Rosendo HA, Silva MRJ, Oliveira JGR, Santana AGS. Adjusted Thr: Lys Ratio Improved the Performance and Efficiency of Japanese Quail. BRAZILIAN JOURNAL OF POULTRY SCIENCE 2023. [DOI: 10.1590/1806-9061-2022-1653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- MR Lima
- Federal Rural of Semi-Arid Region, Brazil; Federal University of South of Bahia, Brazil; Santa Cruz State University, Brazil
| | - FGP Costa
- Federal University of Paraiba, Brazil
| | - RR Guerra
- Federal University of Paraiba, Brazil
| | - DVG Vieira
- Federal University of North of Tocantins, Brazil
| | - AS Cardoso
- Federal University of South of Bahia, Brazil
| | | | - WG Macena
- Federal University of South of Bahia, Brazil
| | | | - HA Rosendo
- Federal University of South of Bahia, Brazil
| | - MRJ Silva
- Federal University of South of Bahia, Brazil
| | | | | |
Collapse
|
7
|
Liu J, Tang N, Liu N, Lei P, Wang F. Echinacoside inhibits the proliferation, migration, invasion and angiogenesis of ovarian cancer cells through PI3K/AKT pathway. J Mol Histol 2022; 53:493-502. [PMID: 35325326 DOI: 10.1007/s10735-022-10073-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/08/2022] [Indexed: 12/24/2022]
Abstract
Echinacoside is a group of natural compounds extracted from medicinal plants Cistanche and Echinacea, which has neuroprotective, antiaging, immunomodulatory and anticancer effects, but its specific role and mechanism in tumor remains partially unclear. To our knowledge, it was the first time to reported the effect of Echinacoside in ovarian cancer. Colony formation, TUNEL staining, Transwell and tube formation assays were conducted to analyze the proliferation, apoptosis, invasion and tube formation abilities of serous ovarian carcinoma cells (SKOV3 and OVCAR-3), respectively. The expressions of apoptosis-, invasion- and PI3K/AKT pathway-related proteins were measured by western blotting. In addition, PI3K agonist (740Y-P) was used to assess the regulatory effect of Echinacoside on PI3K/AKT signaling in ovarian cancer. Finally, the anti-tumor effect of Echinacoside on SKOV3-xenografted mice was evaluated by xenograft tumor mouse model. Our results demonstrated Echinacoside concentration-dependently reduced the proliferation, migration and angiogenesis of ovarian cancer cells, whereas promoted apoptosis. Moreover, western blotting revealed that Echinacoside suppressed the growth of ovarian cancer cells by downregulating the phosphorylation levels of PI3K, AKT and mTOR, which could be partially reversed by 740Y-P. Further, in vivo results showed that Echinacoside could effectively alleviate the tumor growth of xenograft mice, accompanied by the decrease of PI3K/AKT signaling. In general, our results demonstrate that Echinacoside could reduce the ovarian cancer progression through inhibition of PI3K/AKT pathway, suggesting that Echinacoside may be a new treatment option for ovarian cancer.
Collapse
Affiliation(s)
- Juan Liu
- Department of Gynecology, Weinan Maternal and Child Health Hospital, No. 114, Dongfeng Street, Weinan, 714000, Shaanxi, China
| | - Ni Tang
- Department of Gynecology, Weinan Maternal and Child Health Hospital, No. 114, Dongfeng Street, Weinan, 714000, Shaanxi, China
| | - Ni Liu
- Department of Gynecology, Weinan Maternal and Child Health Hospital, No. 114, Dongfeng Street, Weinan, 714000, Shaanxi, China
| | - Panpan Lei
- Department of Gynecology, Weinan Maternal and Child Health Hospital, No. 114, Dongfeng Street, Weinan, 714000, Shaanxi, China
| | - Fang Wang
- Department of Gynecology, Weinan Maternal and Child Health Hospital, No. 114, Dongfeng Street, Weinan, 714000, Shaanxi, China.
| |
Collapse
|
8
|
Bian P, Liu C, Hu W, Ding Y, Qiu S, Li L. Echinacoside Suppresses the Progression of Breast Cancer by Downregulating the Expression of miR-4306 and miR-4508. Integr Cancer Ther 2021; 20:15347354211062639. [PMID: 34903085 PMCID: PMC8679057 DOI: 10.1177/15347354211062639] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The main treatment of breast cancer includes surgical resection, radiotherapy,
chemotherapy, endocrine therapy, and molecular targeted therapy, but the
outcomes remain unsatisfactory. Previous studies demonstrated that echinacoside,
microRNA (miRNA/miR)-4306 and miR-4508 were associated with lymph node
metastasis, chemoresistance and self-renewal capability in breast cancer, but
in-depth studies on the underlying mechanism of their anticancer effects have
not been performed to date. In order to identify the role of miR-4306 and
miR-4508, and the mechanism of the antitumor effect of echinacoside in breast
cancer, the present study first examined the expression of miR-4306 and miR-4508
in breast cancer tissues to examine their possible role in the development of
breast cancer, then evaluated the effect of echinacoside on the expression of
miR-4306 and miR-4508 on the viability, apoptosis, cell cycle, migration, and
invasion abilities of breast cancer cells to explore the anti-cancer effect of
echinacoside and the involvement of miR-4306 and miR-4508. Finally, the breast
cancer cells and mice bearing breast cancer xenografts were treated with
echinacoside and inhibitors of miR-4508 or miR-4306 to confirm their role on the
anticancer effect of echinacoside. The results showed that miR-4306 and miR-4508
were decreased in breast cancer tissues and cells. Echinacoside inhibited cell
proliferation, invasion and migration, and promoted the apoptosis of breast
cancer cells by downregulating the expression of miR-4306 and miR-4508. In
conclusion, this is the first study to show the association between echinacoside
and miRNAs in cancer. The present study elucidates an underlying molecular
mechanism of the antitumor effect of echinacoside on breast cancer, and thus may
contribute to preventive and therapeutic strategies for breast cancer.
Collapse
Affiliation(s)
- Peng Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chuan Liu
- Central Hospital of Zibo, Zibo, China
| | - Wei Hu
- Central Hospital of Zibo, Zibo, China
| | - Yu Ding
- Central Hospital of Zibo, Zibo, China
| | | | - Liang Li
- Central Hospital of Zibo, Zibo, China
| |
Collapse
|
9
|
Yang D, Li J, Liang C, Tian L, Shi C, Hui N, Liu Y, Ling M, Xin L, Wan M, Li H, Zhao Q, Ren X, Liu H, Cao W. Syringa microphylla Diels: A comprehensive review of its phytochemical, pharmacological, pharmacokinetic, and toxicological characteristics and an investigation into its potential health benefits. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 93:153770. [PMID: 34678528 DOI: 10.1016/j.phymed.2021.153770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/31/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Syringa microphylla Diels is a plant in the family Syringa Linn. For hundreds of years, its flowers and leaves have been used as a folk medicine for the treatment of cough, inflammation, colds, sore throat, acute hepatitis, chronic hepatitis, early liver cirrhosis, fatty liver, and oesophageal cancer. PURPOSE For the first time, we have comprehensively reviewed information on Syringa microphylla Diels that is not included in the Pharmacopoeia, clarified the pharmacological mechanisms of Syringa microphylla Diels and its active ingredients from a molecular biology perspective, compiled in vivo and in vitro animal experimental data and clinical data, and summarized the toxicology and pharmacokinetics of Syringa microphylla Diels. The progress in toxicology research is expected to provide a theoretical basis for the development of new drugs from Syringa microphylla Diels, a natural source of compounds that are potentially beneficial to human health. METHODS The PubMed, Google Scholar, China National Knowledge Infrastructure, Web of Science, SciFinder Scholar and Thomson Reuters databases were utilized to conduct a comprehensive search of published literature as of July 2021 to find original literature related to Syringa microphylla Diels and its active ingredients. RESULTS To date, 72 compounds have been isolated and identified from Syringa microphylla Diels, and oleuropein, verbascoside, isoacteoside, echinacoside, forsythoside B, and eleutheroside B are the main active components. These compounds have antioxidant, antibacterial, anti-inflammatory, and neuroprotective effects, and their safety and effectiveness have been demonstrated in long-term traditional applications. Molecular pharmacology experiments have indicated that the active ingredients of Syringa microphylla Diels exert their pharmacological effects in various ways, primarily by reducing oxidative stress damage via Nrf2/ARE pathway regulation, regulating inflammatory factors and inducing apoptosis through the MAPK and NF-κB pathways. CONCLUSION This comprehensive review of Syringa microphylla Diels provides new insights into the correlations among molecular mechanisms, the importance of toxicology and pharmacokinetics, and potential ways to address the limitations of current research. As Syringa microphylla Diels is a natural low-toxicity botanical medicine, it is worthy of development and utilization and is an excellent choice for treating various diseases.
Collapse
Affiliation(s)
- Dan Yang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Jingyi Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chengyuan Liang
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Lei Tian
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China; College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Chunyang Shi
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Nan Hui
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yuan Liu
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Mei Ling
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Liang Xin
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Minge Wan
- School of Medicine and Pharmacy, Shaanxi University of Business & Commerce, Xi'an 712046, PR China
| | - Han Li
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Qianqian Zhao
- School of Food and Bioengineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, PR China.
| | - Hong Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China.
| | - Wenqiang Cao
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Hengqin New Area, Zhuhai 519030, PR China
| |
Collapse
|
10
|
Xu W, Zhu H, Hu B, Cheng Y, Guo Y, Yao W, Qian H. Echinacea in hepatopathy: A review of its phytochemistry, pharmacology, and safety. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 87:153572. [PMID: 34029938 DOI: 10.1016/j.phymed.2021.153572] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Echinacea, one of the most popular herbs with double function of immunity and anti-inflammatory activity, has now attracted much interest for a possible alternative for the treatment of hepatopathy. This review is aimed at providing a comprehensive overview of Echinacea regarding its chemical composition, pharmacological action against various hepatopathy, and safety. METHODS A comprehensive search of published articles was conducted to focus on original publications related to Echinacea and hepatopathy till the end of 2020 using various literature databases, including China National Knowledge Infrastructure, PubMed, and Web of Science database. RESULTS Echinacea exhibited excellent activities in resisting a variety of hepatopathy induced by different causes in preclinical experiments and clinical trials by regulating cell proliferation and apoptosis, antioxidant defense mechanism, voltage-gated sodium channels, lipid metabolism, circadian rhythm, p38 MAPK signaling pathway, JNK signaling pathway, Nrf2/HO-1 signaling pathway, PI3K/AKT signaling pathway, and Akt/GSK3 beta signaling pathways. The high efficacy of Echinacea is related to its immunomodulatory and anti-inflammatory activities. The main ingredients of Echinacea include caffeic acid derivatives, alkylamides, and polysaccharides, which have been well established in preclinical studies of liver diseases. Studies on acute and subacute toxicity show that Echinacea preparations are well-tolerated herbal medicines. CONCLUSION Echinacea may offer a novel potential strategy for clinical prevention and treatment of liver diseases and related diseases. Extensive studies are necessary to identify the underlying mechanisms and establish future therapeutic potentials of this herb. Well-designed clinical trials are still warranted to confirm the safety and effectiveness of Echinacea for hepatopathy.
Collapse
Affiliation(s)
- Wenqian Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Hongkang Zhu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Bin Hu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Weirong Yao
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, No. 1800, Lihu Ave, Wuxi, Jiangsu 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
11
|
Guo Y, Cui Q, Ren S, Hao D, Morikawa T, Wang D, Liu X, Pan Y. The hepatoprotective efficacy and biological mechanisms of three phenylethanoid glycosides from cistanches herba and their metabolites based on intestinal bacteria and network pharmacology. J Nat Med 2021; 75:784-797. [PMID: 34003414 DOI: 10.1007/s11418-021-01508-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 03/20/2021] [Indexed: 12/16/2022]
Abstract
Echinacoside (ECH), acteoside (ACT), and isoacteoside (ISAT), the typical phenylethanoid glycosides (PhGs) in cistanches herba, have various pharmacological activities. However, the ECH, ACT and ISAT have extremely low oral bioavailability, which is related to their metabolism under the intestinal flora. Previous studies showed that intestinal metabolites were the hepatoprotective substances in vivo, but the research on whether PhGs has effects without intestinal bacteria has not been studied. In this paper, ECH, ACT and ISAT were incubated with human or rat intestinal bacteria for 36 h. After incubating with human bacteria for 36 h, three prototype compounds were not detected and were mainly biotransformed to 3-HPP and HT. In the network pharmacology, a total of 6 common targets were obtained by analysing the prototypes, the metabolites and the liver injury. It was found that the combinations of three metabolites and common targets were more stable than those of the prototypes and common targets by molecular docking. Meanwhile, hepatocellular apoptosis, proliferation, inflammation and oxidative responses might play important roles in the mechanisms of the metabolites exerting hepatoprotective activities. Then normal and pseudo-sterile mice experiments were adopted to further compare the hepatoprotective activities of prototypes and metabolites. Animal experiment results showed that the prototypes and the metabolites in the normal mice had significantly hepatoprotective activity. Interestingly, in the pseudo-germfree mice, the metabolites showed significant hepatoprotective effect, but the prototypes had not effect. It indicated that the prototype cannot exert liver protective activity without the effect of intestinal bacteria.
Collapse
Affiliation(s)
- Yongli Guo
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Qingling Cui
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Shumeng Ren
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Deguo Hao
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Toshio Morikawa
- Pharmaceutical Research and Technology Institute, Joint Research Center, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka, 577-8502, Japan
| | - Dongmei Wang
- School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Xiaoqiu Liu
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China
| | - Yingni Pan
- School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
12
|
Lei H, Wang X, Zhang Y, Cheng T, Mi R, Xu X, Zu X, Zhang W. Herba Cistanche (Rou Cong Rong): A Review of Its Phytochemistry and Pharmacology. Chem Pharm Bull (Tokyo) 2021; 68:694-712. [PMID: 32741910 DOI: 10.1248/cpb.c20-00057] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herba Cistanche, known as Rou Cong Rong in Chinese, is a very valuable Chinese herbal medicine that has been recorded in the Chinese Pharmacopoeia. Rou Cong Rong has been extensively used in clinical practice in traditional herbal formulations and has also been widely used as a health food supplement for a long time in Asian countries such as China and Japan. There are many bioactive compounds in Rou Cong Rong, the most important of which are phenylethanoid glycosides. This article summarizes the up-to-date information regarding the phytochemistry, pharmacology, processing, toxicity and safety of Rou Cong Rong to reveal its pharmacodynamic basis and potential therapeutic effects, which could be of great value for its use in future research.
Collapse
Affiliation(s)
- Huibo Lei
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Xinyu Wang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | - Yuhao Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine
| | | | - Rui Mi
- School of Pharmacy, Anhui University of Chinese Medicine
| | - Xike Xu
- School of Pharmacy, Second Military Medical University
| | - Xianpeng Zu
- School of Pharmacy, Second Military Medical University
| | - Weidong Zhang
- Institute of Interdisciplinary Medical Sciences, Shanghai University of Traditional Chinese Medicine.,School of Pharmacy, Shanghai Jiao Tong University.,School of Pharmacy, Second Military Medical University
| |
Collapse
|
13
|
Tao Z, Zhang L, Wu T, Fang X, Zhao L. Echinacoside ameliorates alcohol-induced oxidative stress and hepatic steatosis by affecting SREBP1c/FASN pathway via PPARα. Food Chem Toxicol 2021; 148:111956. [PMID: 33378712 DOI: 10.1016/j.fct.2020.111956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/26/2020] [Accepted: 12/22/2020] [Indexed: 12/18/2022]
Abstract
Alcoholic liver disease (ALD) is one of the most common health problems for drinkers, especially in men. Echinacoside (ECH), a natural phenylethanoid glycoside welcomed by the market, has been shown to have a variety of biological activities, such as neuroprotective, anti-fatigue, anti-diabetes and so on. Here, the protective effect and the underlying mechanism of ECH on ethanol-induced liver injuries were studied. In vitro, the HepG2 cells were treated with ECH prior to ethanol. In vivo, C57BL/6 J mice were fed a Lieber-DeCarli ethanol liquid diet and gave with or without 100 mg/kg ECH for 10 days. Our experiments showed that ECH significantly enhanced the levels of antioxidants and reduced the level of ROS, thus attenuating ethanol-induced oxidative stress. Besides, ECH attenuated lipid accumulation caused by ethanol, as evidenced by oil-red O staining, histological examination and the quantification of TG and TC. Finally, ECH increased the level of PPAR-α, and reduced the levels of SREBP-1c and FASN. When PPAR-α inhibitor was introduced in the system, the effects of ECH on SREBP-1c and FASN were reversed. Taken together, our study suggest that ECH can protect against ethanol-induced liver injuries via alleviating oxidative stress and hepatic steatosis by affecting SREBP-1c/FASN pathway via PPAR-α.
Collapse
Affiliation(s)
- Zhi Tao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Lihu Zhang
- Department of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, Jiangsu, China
| | - Tao Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China
| | - Xianying Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| | - Linguo Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China; College of Chemical Engineering, Nanjing Forestry University, 159 Long Pan Road, Nanjing, 210037, China.
| |
Collapse
|
14
|
Study on Neuroendocrine-Immune Function of Cistanche deserticola and Its Rice Wine Steaming Products in Glucocorticoid-Induced Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2020:5321976. [PMID: 33505484 PMCID: PMC7811494 DOI: 10.1155/2020/5321976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 11/20/2020] [Accepted: 11/25/2020] [Indexed: 11/17/2022]
Abstract
The desert-dwelling Cistanche herb was first recorded in the “Shen Nong Herbal Classic” and is listed as the top-grade herbal medicine in this publication. The Chinese Pharmacopoeia records that pieces of Cistanche deserticola (CD) and rice wine-steamed Cistanche deserticola (WCD) can be used in the clinic as the main types of decoctions. After being steamed with rice wine, the antiaging and tonifying kidney-yang effects are enhanced. In this study, we detected the chemical content of CD and WCD and the pharmacological mechanism of invigorating kidney-yang deficiency in model rats. Aim. The purpose of this study was to examine the effects of CD and WCD on the neuroendocrine-immune function of kidney-yang deficiency in glucocorticoid-overdosed model rats. Materials and methods. Sprague Dawley (SD) rats were selected. The rats were subcutaneously injected with corticosterone water suspension for the glucocorticoid-overdosed model rats. The positive control rats were gavaged with Jinkuishenqi pills and high-, medium-, and low-dose CD/WCD suspensions (1.646 g/(kg day), 5.48 g/(kg day), 2.74 g/(kg day), and 1.37 g/(kg day), respectively); the blank control (BC) and model control (MC) groups were given the same volume of distilled water as those in the drug group for 40 consecutive days at a dose of 1 mL/100 g. After the last administration, the blood was collected from the abdominal aorta, and serum levels of T, CRH, ACTH, CORT, cortisol, IL-10, IL-6, IL-2, TNF-α, and IFN-γ were measured. Organ indexes of the thymus gland and the spleen were calculated. The expression of Bax, Bcl-2, caspase-3, Fas, and FasL in the adrenal gland was measured by immunohistochemistry. The pathological changes in the thymus gland and the adrenal gland were observed by HE staining (×200). T lymphocyte subsets in peripheral blood were detected by flow cytometry, and the expression of CaM mRNA in the hypothalamus and hypophysis tissues was also measured by RT-PCR. Results. Compared with the MC group, the CD and WCD groups exhibited increases in activity, the organ index of the thymus and the spleen, the serum levels of T, CRH, ACTH, CORT, cortisol, IL-2, and IL-10, the ratio of CD4+/CD8+, and the expression of Bcl-2, caspase-3, Fas, FasL, and CaM in the hypophysis tissue. The CD and WCD groups also exhibited reductions in the IL-6, TNF-α, and IFN-γ levels in serum and the expression of CaM mRNA in the hypothalamus. Conclusions. Each dose of CD and WCD could counteract the dysregulated sex hormone and immune factors in glucocorticoid-overdosed model rats, enhancing and restoring the effect of the hypothalamic nerve cells and improving immune function.
Collapse
|
15
|
Zhang X, Hao Y. Beneficial Effects of Echinacoside on Diabetic Cardiomyopathy in Diabetic Db/Db Mice. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:5575-5587. [PMID: 33376302 PMCID: PMC7755380 DOI: 10.2147/dddt.s276972] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/31/2022]
Abstract
Purpose In this study, we investigated the protective effects and mechanism of action of echinacoside (ECH) from cistanche tubulosa extract in cardiomyocytes of db/db diabetic mice. Methods Twenty healthy male db/db mice aged 8 weeks were randomly divided into db/db+ECH (n=10, ECH, 300 mg/(kg/d)), db/db (n=10, saline), and db/m control groups (n=9). Mice were monitored weekly for diet and activity. Mice were injected with 2% of pentobarbital sodium in week 10 and executed. Weight and free blood glucose (FBG) were measured weekly. Echocardiographs were used to detect cardiac function. HE staining, Sudan II staining, Masson’s trichrome staining and Tunel assays were used to evaluate myocardial tissue pathological changes, collagen fiber deposition, lipid accumulation and apoptosis rates in cardiomyocytes, respectively. Western blot and RT-PCR analysis were used to detect the expression of components of the PPAR-α/M-CPT-1 and p53/p38MAPK signaling axis. Results Compared to db/db mice, ECH groups showed lower blood glucose and lipid levels. Deterioration in cardiac function was also delayed following ECH treatment. Histopathological analysis showed that ECH significantly improved myocardial tissue in db/db mice, including reduced intercellular spaces, regular arrangements, improved extracellular matrix deposition, and reduced lipid accumulation. ECH also significantly reduced oxidative stress levels in myocardial tissue in db/db mice. Moreover, ECH inhibited PPAR-α/M-CPT-1 signaling, downregulated CD36, and upregulated glucose transporter type 4 (GLUT-4) expression in db/db mouse models of DCM. ECH also inhibited p53/p38MAPK signaling, downregulated caspase-3 and caspase-8, and upregulated Bcl-2/Bax in db/db mouse models of DCM. Conclusion ECH displays protective effects in DCM, including the inhibition of cardiac apoptosis and oxidative stress, and improved lipid metabolism in cardiomyocytes. ECH also inhibits cardiac apoptosis through its regulation of p53/p38MAPK signaling, and prevents lipid accumulation through suppression of the PPAR-α/M-CPT-1 signaling axis.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei, People's Republic of China
| | - Yarong Hao
- Department of Geriatrics, Renmin Hospital of Wuhan University, Hubei, People's Republic of China
| |
Collapse
|
16
|
de Oliveira JVB, Lima RPA, Pordeus Luna RC, da Silva Diniz A, de Almeida ATC, de Oliveira NFP, Gonçalves MDCR, de Lima RT, de Lima Ferreira FEL, Diniz SCPDOR, Silva AS, Andrade e Silva AH, Persuhn DC, de Carvalho Costa MJ. The direct correlation between oxidative stress and LDL-C levels in adults is maintained by the Friedewald and Martin equations, but the methylation levels in the MTHFR and ADRB3 genes differ. PLoS One 2020; 15:e0239989. [PMID: 33326437 PMCID: PMC7743960 DOI: 10.1371/journal.pone.0239989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Low-density lipoprotein (LDL-C) concentrations are a standard of care in the prevention of cardiovascular disease and are influenced by different factors. This study compared the LDL-C concentrations estimated by two different equations and determined their associations with inflammatory status, oxidative stress, anthropometric variables, food intake and DNA methylation levels in the LPL, ADRB3 and MTHFR genes. A cross-sectional population-based study was conducted with 236 adults (median age 37.5 years) of both sexes from the municipality of João Pessoa, Paraíba, Brazil. The LDL-C concentrations were estimated according to the Friedewald and Martin equations. LPL, ADRB3 and MTHFR gene methylation levels; malondialdehyde levels; total antioxidant capacity; ultra-sensitive C-reactive protein, alpha-1-acid glycoprotein, homocysteine, cobalamin, and folic acid levels; usual dietary intake; and epidemiological variables were also determined. For each unit increase in malondialdehyde concentration there was an increase in the LDL-C concentration from 6.25 to 10.29 mg/dL (p <0.000). Based on the Martin equation (≥70 mg/dL), there was a decrease in the DNA methylation levels in the ADRB3 gene and an increase in the DNA methylation levels in the MTHFR gene (p <0.05). There was a positive relation of homocysteine and cholesterol intake on LDL-C concentrations estimated according to the Friedewald equation and of waist circumference and age based on the two estimates. It is concluded the LDL-C concentrations estimated by the Friedewald and Martin equations were different, and the Friedewald equation values were significantly lower than those obtained by the Martin equation. MDA was the variable that was most positively associated with the estimated LDL-C levels in all multivariate models. Significant relationships were observed based on the two estimates and occurred for most variables. The methylation levels of the ADRB3 and MTHFR genes were different according to the Martin equation at low LDL-C concentrations (70 mg/dL).
Collapse
Affiliation(s)
- Jéssica Vicky Bernardo de Oliveira
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
- * E-mail:
| | - Raquel Patrícia Ataíde Lima
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | - Rafaella Cristhine Pordeus Luna
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | - Alcides da Silva Diniz
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Pernambuco (Universidade Federal de Pernambuco—UFPE), Recife, Pernambuco, Brazil
| | - Aléssio Tony Cavalcanti de Almeida
- Postgraduate Program in Applied Economics, Department of Economics, Centre for Applied Social Sciences, UFPB, João Pessoa, Paraíba, Brazil
| | | | - Maria da Conceição Rodrigues Gonçalves
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | - Roberto Texeira de Lima
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | - Flávia Emília Leite de Lima Ferreira
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | | | - Alexandre Sergio Silva
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| | | | - Darlene Camati Persuhn
- Department of Molecular Biology, Centre for Exact and Natural Sciences, UFPB, João Pessoa, Paraíba, Brazil
| | - Maria José de Carvalho Costa
- Postgraduate Program in Nutrition Sciences, Department of Nutrition, Health Sciences Centre, Federal University of Paraíba (Universidade Federal da Paraíba–UFPB), João Pessoa, Paraíba, Brazil
| |
Collapse
|
17
|
Wang Z, He C, Shi JS. Natural Products for the Treatment of Neurodegenerative Diseases. Curr Med Chem 2020; 27:5790-5828. [PMID: 31131744 DOI: 10.2174/0929867326666190527120614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/06/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders characterized by the progressive degeneration of the structure and function of the central nervous system or peripheral nervous system. Alzheimer's Disease (AD), Parkinson's Disease (PD) and Spinal Cord Injury (SCI) are the common neurodegenerative diseases, which typically occur in people over the age of 60. With the rapid development of an aged society, over 60 million people worldwide are suffering from these uncurable diseases. Therefore, the search for new drugs and therapeutic methods has become an increasingly important research topic. Natural products especially those from the Traditional Chinese Medicines (TCMs), are the most important sources of drugs, and have received extensive interest among pharmacist. In this review, in order to facilitate further chemical modification of those useful natural products by pharmacists, we will bring together recent studies in single natural compound from TCMs with neuroprotective effect.
Collapse
Affiliation(s)
- Ze Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Chunyang He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China.,Generic Drug Research Center of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, P.R. China
| | - Jing-Shan Shi
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi Guizhou 563003, China
| |
Collapse
|
18
|
Rakib A, Ahmed S, Islam MA, Haye A, Uddin SMN, Uddin MMN, Hossain MK, Paul A, Emran TB. Antipyretic and hepatoprotective potential of Tinospora crispa and investigation of possible lead compounds through in silico approaches. Food Sci Nutr 2020; 8:547-556. [PMID: 31993178 PMCID: PMC6977484 DOI: 10.1002/fsn3.1339] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 10/31/2019] [Accepted: 11/25/2019] [Indexed: 01/02/2023] Open
Abstract
This research describes an investigation of the antipyretic and hepatoprotective properties of both a crude organic extract and various subfractions of the ethnomedicinal plant Tinospora crispa, using appropriate animal models. In an attempt to identify potential lead hepatoprotective compounds, in silico experiments were utilized. Antipyretic activity was assessed via the Brewer's yeast-induced pyrexia method, while hepatoprotective effects were evaluated in a carbon tetrachloride (CCl4)-induced animal model. A computer-aided prediction of activity spectra for substances (PASS) model was applied to a selection of documented phytoconstituents, with the aim of identifying those compounds with most promising hepatoprotective effects. Results were analyzed using Molinspiration software. Our results showed that both the methanol extract (METC) and various subfractions (pet ether, PEFTC; n-hexane, NHFTC; and chloroform, CFTC) significantly (p < .05) reduced pyrexia in a dose-dependent manner. In CCl4-induced hepatotoxicity studies, METC ameliorated elevated hepatic markers including serum alanine amino transferase (ALT), aspartate amino transferase (AST), alkaline phosphatase (ALP), and total bilirubin. Malondialdehyde (MDA) levels were significantly reduced, while superoxide dismutase (SOD) levels were significantly increased. Among a selection of metabolites of T. crispa, genkwanin was found to be the most potent hepatoprotective constituent using PASS predictive models. These results demonstrate that both the methanolic extract of T. crispa and those fractions containing genkwanin may offer promise in reducing pyrexia and as a source of potential hepatoprotective agents.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Shahriar Ahmed
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Md. Ashiqul Islam
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Abdul Haye
- Department of Forensic MedicineUniversity of Science and Technology ChittagongChittagongBangladesh
| | - S. M. Naim Uddin
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | | | - Mohammed Kamrul Hossain
- Department of PharmacyFaculty of Biological ScienceUniversity of ChittagongChittagongBangladesh
| | - Arkajyoti Paul
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of MicrobiologyJagannath UniversityDhakaBangladesh
| | - Talha Bin Emran
- Drug DiscoveryGUSTO A Research GroupChittagongBangladesh
- Department of PharmacyBGC Trust University BangladeshChittagongBangladesh
| |
Collapse
|
19
|
Qiao J, Liu Q, Wu H, Cai H, Qi L. Non-enzymatic detection of serum glucose using a fluorescent nanopolymer probe. Mikrochim Acta 2019; 186:366. [PMID: 31114937 DOI: 10.1007/s00604-019-3475-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 01/05/2023]
Abstract
A fluorescent probe is described for the determination of serum glucose after hepatotoxin-induced liver injury. The probe is based on the use of a water-soluble polymer and has been prepared from a multi-functional azlactone polymer as the linker, amino boronic acid, and Alizarin Red as the signalling moiety. The excitation/emission peaks of the polymeric fluorescent probe are at 468/567 nm. Fluorescence is reduced on addition of glucose. Intensity drops linearly in the 0.1 mM to 14 mM glucose concentration range. The probe was applied to non-enzymatic detection of glucose in rat serum after CCl4-induced liver damage. Graphical abstract A polymer based fluorescent probe has been constructed and applied for non-enzymatic monitoring of serum glucose following hepatotoxin induced liver injury.
Collapse
Affiliation(s)
- Juan Qiao
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China
| | - Qianrong Liu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Han Wu
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China.,College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Huiwu Cai
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, 710054, China
| | - Li Qi
- Key Laboratory of Analytical Chemistry for Living Biosystems, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, No. 2 Zhongguancun Beiyijie, Beijing, 100190, China. .,School of Chemical Sciences, University of Chinese Academy of Sciences, No.19A Yuquanlu, Beijing, 100049, China.
| |
Collapse
|
20
|
GRP78/BIP/HSPA5 as a Therapeutic Target in Models of Parkinson's Disease: A Mini Review. Adv Pharmacol Sci 2019; 2019:2706783. [PMID: 30949202 PMCID: PMC6425347 DOI: 10.1155/2019/2706783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 01/09/2023] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by selective loss of dopamine neurons in the substantia nigra pars compacta of the midbrain. Reports from postmortem studies in the human PD brain, and experimental PD models reveal that endoplasmic reticulum (ER) stress is implicated in the pathogenesis of PD. In times of stress, the unfolded or misfolded proteins overload the folding capacity of the ER to induce a condition generally known as ER stress. During ER stress, cells activate the unfolded protein response (UPR) to handle increasing amounts of abnormal proteins, and recent evidence has demonstrated the activation of the ER chaperone GRP78/BiP (78 kDa glucose-regulated protein/binding immunoglobulin protein), which is important for proper folding of newly synthesized and partly folded proteins to maintain protein homeostasis. Although the activation of this protein is essential for the initiation of the UPR in PD, there are inconsistent reports on its expression in various PD models. Consequently, this review article aims to summarize current knowledge on neuroprotective agents targeting the expression of GRP78/BiP in the regulation of ER stress in experimental PD models.
Collapse
|
21
|
Ma H, Liu Y, Tang L, Ding H, Bao X, Song F, Zhu M, Li W. Echinacoside selectively rescues complex I inhibition-induced mitochondrial respiratory impairment via enhancing complex II activity. Neurochem Int 2019; 125:136-143. [PMID: 30797968 DOI: 10.1016/j.neuint.2019.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 02/07/2019] [Accepted: 02/18/2019] [Indexed: 02/02/2023]
Abstract
Previous investigations have implicated mitochondrial dysfunction characterized by Complex I deficiency in the death of dopaminergic neurons in Parkinson's disease (PD). To date, there are no efficient therapeutic approaches to rescue mitochondrial respiratory impairment or prevent neurodegeneration in PD. The beneficial effects of echinacoside (ECH) on neurodegeneration have been reported in both in vivo and in vitro studies, yet the mechanisms underlying remain elusive and little has been investigated concerning the influences of ECH on mitochondrial respiratory impairment. Here, we compared the protection of ECH on cell injury and mitochondrial dysfunction induced by various inhibitors of Complex I-IV using human neuroblastoma SH-SY5Y cell line. We found that ECH selectively attenuates cell injury, reverses mitochondrial depolarization and bioenergetic failure caused by Complex I inhibitors, whereas it has little protection against Complex II-IV inhibitors. Further investigation demonstrated that ECH enhances Complex II activity and mitochondrial respiration in the cells treated with Complex I inhibitors. This suggests that ECH selectively rescues Complex I inhibition-induced mitochondrial respiratory impairment though elevating Complex II activity, and further confirms that ECH might have a promising potential in PD treatment.
Collapse
Affiliation(s)
- Huihan Ma
- Laboratory of Neurophysiology and Neuropathology, Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Liu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Lin Tang
- Ophthalmology Department, Huashan Hospital, Fudan University, Shanghai, 200031, China
| | - Hao Ding
- Laboratory of Neurophysiology and Neuropathology, Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xuxia Bao
- Laboratory of Neurophysiology and Neuropathology, Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Fang Song
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China
| | - Min Zhu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Eye & ENT Hospital, Fudan University, Shanghai, 200031, China; NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, 200031, China.
| | - Wenwei Li
- Laboratory of Neurophysiology and Neuropathology, Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
22
|
Chen C, Xia B, Tang L, Wu W, Tang J, Liang Y, Yang H, Zhang Z, Lu Y, Chen G, Yang Y, Zhao Y. Echinacoside protects against MPTP/MPP +-induced neurotoxicity via regulating autophagy pathway mediated by Sirt1. Metab Brain Dis 2019; 34:203-212. [PMID: 30426321 PMCID: PMC6351520 DOI: 10.1007/s11011-018-0330-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/12/2018] [Indexed: 01/12/2023]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease and greatly affects the quality of PD patients' life. Current symptomatic treatment of PD is limited. There are no effective treatment and drugs that could radically cure PD. Increasing experimental evidence has proven a causal relationship between alpha-synuclein (α-synuclein, α-syn) and the neuropathology of Parkinson's diseases, although the exact pathophysiological role of α-synuclein is not fully clarified. Previous studies showed that monomers and polymers of α-synuclein were secreted from damaged nerve cells via exocytosis and occupied healthy nerve cells via endocytosis, which afford evidence for the prion-like role of α-synuclein. Autophagy is the known mechanism for eukaryotic cells to degrade protein polymers and damaged organelles that proteasome does not cope with. Therefore, promoting the clearance of α-synuclein by enhancing autophagy in neuronal cells could be a promising treatment in the early stage of PD. SIRT1 is a potent regulator of autophagy, because it deacetylates a mass of important transcription factors such as Forkhead Box subgroup O (FoxO) transcription factors family. SIRT1's action relates to FoxO, because FoxO transcription factors are involved in various molecular pathways underlying neuronal protection and autophagy. Moreover, Sirt1 deacetylates proautophagic proteins such as Atg5, Atg7, and Atg8. Echinacoside (ECH) is the main active ingredient of a widely used Chinese herb cistanche, which has been proven to elicit neuroprotective effects in models of neurodegenerative diseases. In this study, we found that ECH could improve PD-like symptoms in MPTP-lesioned mouse model. We further showed that the underlying mechanism of the action of ECH was associated with enhancing autophagy in neurons via bind to Sirt1 directly and affect FoxO expression. Our study demonstrated ECH as a potential therapeutic agent against PD.
Collapse
Affiliation(s)
- Chang Chen
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Baomei Xia
- Faculty of Rehabilitation Science, Nanjing Normal University of Special Education, Nanjing, Jiangsu, China
| | - Lili Tang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Wei Wu
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Juanjuan Tang
- Physiology Research Section, School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Liang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Zhennian Zhang
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yan Lu
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Gang Chen
- Center for Translational Systems Biology and Neuroscience, School of Basic Biomedical Science, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Ye Yang
- Center for Modernization of Chinese medicine and database, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| | - Yang Zhao
- Department of Neurology, The Third Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
23
|
Wu Y, Zhou F, Jiang H, Wang Z, Hua C, Zhang Y. Chicory (Cichorium intybus L.) polysaccharides attenuate high-fat diet induced non-alcoholic fatty liver disease via AMPK activation. Int J Biol Macromol 2018; 118:886-895. [PMID: 29964102 DOI: 10.1016/j.ijbiomac.2018.06.140] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 06/16/2018] [Accepted: 06/26/2018] [Indexed: 01/08/2023]
Abstract
Chicory polysaccharides (CP) from Cichorium intybus L. roots were extracted and fractionated to isolate two novel polysaccharide fractions, CP-1 and CP-2. CP-1 is a heteropolysaccharide that is mainly composed of sorbin, glucose, fructose, and glucitol at a molar ratio of 1.00:5.58:13.97:10.32. The molecular weight of CP-1 was 8511.4 Da. The hepatoprotective effect of CP-1 was investigated in a rat model of high-fat diet induced non-alcoholic fatty liver disease (NAFLD) rats. Results indicated that the oral administration of CP-1 significantly decreased body weight and liver index in NAFLD rats. CP-1 also significantly increased serum levels of SOD and HDLC, and decreased the levels of ALT, AST, TG, TC, LDL-C, GLU, ALP, LDH, and MDA in NAFLD rats. Meanwhile, CP-1 effectively decreased MDA, TC, and TG, and increased SOD and T-AOC in the livers of NAFLD rats. Furthermore, CP-1 also increased the hepatic expression of p-AMPKα, ATGL, CPT-1, and p-ACC, and reduced the hepatic expression of ACC, FAS, and SCD-1. Moreover, histopathological examination of the livers showed that CP-1 significantly ameliorated the symptoms of NAFLD rats. Therefore, CP-1 significantly attenuated the high-fat diet-induced NAFLD in rats via AMPK activation.
Collapse
Affiliation(s)
- Yulong Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China; School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, 211171, PR China
| | - Feng Zhou
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, 211171, PR China
| | - Haitao Jiang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, 211171, PR China
| | - Zhengjiong Wang
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, 211171, PR China
| | - Chun Hua
- School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, PR China; Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, 211171, PR China.
| | - Yuanshu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
24
|
Optimization of Fermentation Condition for Echinacoside Yield Improvement with Penicillium sp. H1, an Endophytic Fungus Isolated from Ligustrum lucidum Ait Using Response Surface Methodology. Molecules 2018; 23:molecules23102586. [PMID: 30308945 PMCID: PMC6222407 DOI: 10.3390/molecules23102586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 09/30/2018] [Accepted: 10/01/2018] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Application of echinacoside has become increasingly important for its significant biological activities. However, there are many disadvantages in existing synthesis methods such as contaminating the environment, harsh reaction conditions and so on. Therefore, it is urgent to invent a novel alternative method that can increase the yield of echinacoside. (2) Methods: In this study, we isolated and purified an endophyte from the leaves of Ligustrum lucidum Ait. Then, we improved the yield of echinacoside by optimizing the fermentation condition with an endophytic fungus. Penicillium sp. H1 was isolated from Ligustrum lucidum Ait. In addition, response surface methodology was used to optimize the fermentation condition. (3) Results: The results indicate that the maximal yield of echinacoside (37.16 mg/L) was obtained when inoculation rate, temperature and days were 13.98%, 27.85 °C and 26.06 days, respectively. The yield of echinacoside was 150.47 times higher under the optimal conditions than under the control conditions. The results indicate that the yield of echinacoside could be improved with endophytic fermentation by optimizing the fermentation condition. We provide an alternative method for echinacoside production by endophytic fermentation in this paper. It may have a profound effect on the application of echinacoside.
Collapse
|
25
|
Ye Y, Song Y, Zhuang J, Wang G, Ni J, Xia W. Anticancer effects of echinacoside in hepatocellular carcinoma mouse model and HepG2 cells. J Cell Physiol 2018; 234:1880-1888. [PMID: 30067868 DOI: 10.1002/jcp.27063] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
Abstract
Echinacoside (ECH) is a phenylethanoid glycoside extracted from a Chinese herbal medicine, Cistanches salsa. ECH possesses many biological properties, including anti-inflammation, neural protection, liver protection, and antitumor. In the current study, we aimed to explore the effects of ECH on hepatocellular carcinoma (HCC) and the underlying mechanisms. The results showed that ECH could attenuate diethylnitrosamine (DEN)-induced HCC in mice, and exerted antiproliferative and proapoptotic functions on HepG2 HCC cell line. ECH exposure in HepG2 cells dose-dependently reduced the phosphorylation of AKT (p-AKT) and enhanced the expression of p21 (a cell cycle inhibitor) and Bax (a proapoptotic protein). Furthermore, ECH significantly suppressed insulin-like growth factor-1-induced p-AKT and cell proliferation. These data indicated that phosphoinositide 3-kinase (PI3K)/AKT signaling was involved in the anti-HCC activity of ECH. Gene set enrichment analysis results revealed a positive correlation between the PI3K pathway and triggering receptors expressed on myeloid cells 2 (TREM2) expression in HCC tissues. ECH exposure significantly decreased TREM2 protein levels in HepG2 cells and DEN-induced HCC. Furthermore, ECH-mediated proliferation inhibition and AKT signaling inactivation were notably attenuated by TREM2 overexpression. In conclusion, ECH exerted its antitumor activity via decreasing TREM2 expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Ying Ye
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanan Song
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Juhua Zhuang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guoyu Wang
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Ni
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei Xia
- Department of Nuclear Medicine, The Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
26
|
Li S, Jiang H, Gu X. Echinacoside suppresses dexamethasone-induced growth inhibition and apoptosis in osteoblastic MC3T3-E1 cells. Exp Ther Med 2018; 16:643-648. [PMID: 30112029 PMCID: PMC6090444 DOI: 10.3892/etm.2018.6199] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 05/11/2018] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GCs) are widely used to treat chronic diseases. Prolonged and/or overdose administration of GCs has many side-effects to human health including GC-induced osteoporosis (GIOP). In this investigation, the objective was to assess the influence that echinacoside (ECH) exerts upon dexamethasone-treated murine osteoblastic MC3T3-E1 cells. We found that ECH (5, 10, 20 and 40 mg/l) inhibited dexamethasone (1,000 nM)-suppressed cell viability as demonstrated by Cell Counting Kit-8 (CCK-8) assay. The dose of 10 mg/l was selected for the following experiments because this dose had a better effect than the dose of 5 mg/l, and the doses >10 mg/l had a similar effect as this dose. ECH (10 mg/l) or pifithrin-α (PFT-α) (a p53 inhibitor, 20 µM) suppressed dexamethasone-induced MC3T3-E1 apoptosis as illustrated by Annexin V/propidium iodide (PI) double-labeling flow cytometry analysis. ECH or PFT-α treatment also alleviated dexamethasone's action of inhibiting Bcl-2 expression as well as dexamethasone's action of stimulating on the expression of p53 and Bax. Moreover, lentivirus mediated-p53 overexpression reversed the effects of ECH in dexamethasone-treated MC3T3-E1 cells, suggesting that ECH induced anti-apoptotic effects in dexamethasone-treated osteoblasts via p53-dependent pathway. In summary, ECH has a protective effect against osteoblastic cell apoptosis induced by dexamethasone, suggesting that ECH may have potentials for clinical application in the treatment of GIOP.
Collapse
Affiliation(s)
- Sibo Li
- Department of Orthopedics and Traumatology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Haitao Jiang
- Department of Orthopedics and Traumatology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| | - Xiaohua Gu
- Department of Orthopedics and Traumatology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, P.R. China
| |
Collapse
|
27
|
Fu Z, Fan X, Wang X, Gao X. Cistanches Herba: An overview of its chemistry, pharmacology, and pharmacokinetics property. JOURNAL OF ETHNOPHARMACOLOGY 2018; 219:233-247. [PMID: 29054705 DOI: 10.1016/j.jep.2017.10.015] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 10/14/2017] [Accepted: 10/15/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cistanches Herba is an Orobanchaceae parasitic plant. As a commonly used Traditional Chinese Medicine (TCM), its traditional functions include treating kidney deficiency, impotence, female infertility and senile constipation. Chemical analysis of Cistanches Herba revealed that phenylethanoid glycosides, iridoids, lignans, oligosaccharides, and polysaccharides were the main constituents. Pharmacological studies demonstrated that Cistanches Herba exhibited neuroprotective, immunomodulatory, hormonal balancing, anti-fatigue, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, anti-viral, and anti-tumor effects, etc. The aim of this review is to provide updated, comprehensive and categorized information on the phytochemistry, pharmacological research and pharmacokinetics studies of the major constituents of Cistanches Herba. MATERIALS AND METHODS The literature search was conducted by systematic searching multiple electronic databases including SciFinder, ISI Web of Science, PubMed, Google Scholar and CNKI. Information was also collected from journals, local magazines, books, monographs. RESULTS To date, more than 100 compounds have been isolated from this genus, include phenylethanoid glycosides, carbohydrates, lignans, iridoids, etc. The crude extracts and isolated compounds have exhibited a wide range of in vitro and in vivo pharmacologic effects, such as neuroprotective, immunomodulatory, anti-inflammatory, hepatoprotection, anti-oxidative, anti-bacterial, and anti-tumor effects. The phenylethanoid glycosides, echinacoside and acteoside have attracted the most attention for their significantly neuropharmacology effects. Pharmacokinetic studies of echinacoside and acteoside also have also been summarized. CONCLUSION Phenylethanoid glycosides have demonstrated wide pharmacological actions and have great clinical value if challenges such as poor bioavailability, fast and extensive metabolism are addressed. Apart from phenylethanoid glycosides, other constituents of Cistanches Herba, their pharmacological activities and underlying mechanisms are also need to be studied further.
Collapse
Affiliation(s)
- Zhifei Fu
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Metdicine, Tianjin 300193, China
| | - Xiang Fan
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Metdicine, Tianjin 300193, China
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; College of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China.
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Metdicine, Tianjin 300193, China.
| |
Collapse
|
28
|
Liu J, Yang L, Dong Y, Zhang B, Ma X. Echinacoside, an Inestimable Natural Product in Treatment of Neurological and other Disorders. Molecules 2018; 23:E1213. [PMID: 29783690 PMCID: PMC6100060 DOI: 10.3390/molecules23051213] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/12/2018] [Accepted: 05/15/2018] [Indexed: 01/19/2023] Open
Abstract
Echinacoside (ECH), a natural phenylethanoid glycoside, was first isolated from Echinacea angustifolia DC. (Compositae) sixty years ago. It was found to possess numerous pharmacologically beneficial activities for human health, especially the neuroprotective and cardiovascular effects. Although ECH showed promising potential for treatment of Parkinson's and Alzheimer's diseases, some important issues arose. These included the identification of active metabolites as having poor bioavailability in prototype form, the definite molecular signal pathways or targets of ECH with the above effects, and limited reliable clinical trials. Thus, it remains unresolved as to whether scientific research can reasonably make use of this natural compound. A systematic summary and knowledge of future prospects are necessary to facilitate further studies for this natural product. The present review generalizes and analyzes the current knowledge on ECH, including its broad distribution, different preparation technologies, poor pharmacokinetics and kinds of therapeutic uses, and the future perspectives of its potential application.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Lingling Yang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Yanhong Dong
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Bo Zhang
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| | - Xueqin Ma
- Department of Pharmaceutical Analysis, School of Pharmacy, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
- Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, 1160 Shenli Street, Yinchuan 750004, China.
| |
Collapse
|
29
|
Protective effects of echinacoside against anoxia/reperfusion injury in H9c2 cells via up-regulating p-AKT and SLC8A3. Biomed Pharmacother 2018; 104:52-59. [PMID: 29763795 DOI: 10.1016/j.biopha.2018.04.188] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/25/2018] [Accepted: 04/29/2018] [Indexed: 11/21/2022] Open
Abstract
Echinacoside is a natural ingredient with various pharmacological activities. In this study, we investigated the protective effects of echinacoside on cardiomyocytes (rat H9c2 cells) in an anoxia/reperfusion (A/R) model. Further, the regulatory function of sodium-calcium exchanger protein 3 (SLC8A3/NCX3) as well as the protein kinase B (AKT) signaling were studied. The present results indicated that echinacoside protected against A/R-induced apoptosis in a dose manner, which was characterized by a decrease in the apoptosis and caspase 3 protein levels in H9c2 cells. Further, Ca2+ uptake were dose-dependently reduced in H9c2 cells by echinacoside under A/R conditions. Whereas, relative mRNA expression of SLC8A3 and protein levels of SLC8A3 and p-AKT showed opposite tendency. On the one hand, the A/R-induced abnormalities in H9c2 cells were remarkably ameliorated by activated p-AKT and over-expression of SLC8A3 but aggravated by inhibited p-AKT, and the aggravated effection were ameliorated by echinacoside. Moreover, protein levels of SLC8A3 were positively regulated by p-AKT signaling. On the other hand, apoptosis and Ca2+ uptake as well as protein levels of caspase 3 were significantly increased by SLC8A3 silencing in H9c2 cells under normoxic conditions, and this symptom was remarkably reversed by echinacoside or Nimodipine (an antagonis of Ca2+) treatment. Collectively, echinacoside has showed a cardioprotective effect against A/R treatment in a dose dependent manner in vitro, and this cardioprotective effect was potentially achieved via up-regulating p-AKT and SLC8A3.
Collapse
|
30
|
Protective effect of flavonoids from Cyclocarya paliurus leaves against carbon tetrachloride-induced acute liver injury in mice. Food Chem Toxicol 2018; 119:392-399. [PMID: 29337229 DOI: 10.1016/j.fct.2018.01.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/05/2023]
Abstract
Cyclocarya paliurus (Batal.) Iljinskaja (C. paliurus), known locally as 'sweet tea tree', is commonly cultivated in China. Flavonoids from Cyclocarya paliurus (Batal.) Iljinskaja (FC) is reported to exhibit multiple biological effects, including anti-inflammatory, anti-oxidant and anti-diabetic activities. However, their influence on carbon tetrachloride (CCl4)-induced acute liver injury remains unclear. This study was designed to investigate the hepatoprotective effect of total flavonoids from C. paliurus leaves. Results revealed that flavonoids from C. paliurus significantly decreased CCl4-induced elevation of activities of aspartate transaminase (AST), alanine transaminase (ALT) and superoxide dismutase (SOD) as well as the level of malondialdehyde (MDA), and markedly increased the levels of SOD, total antioxidant capacity (T-AOC) and glutathione peroxidase (GSH-Px) compared with the model group. Structures of mainly compounds were elucidated by nuclear magnetic resonance (NMR), mass spectrometry (MS) spectroscopic and chemical analyses. This study clearly shows that flavonoids from C. paliurus exert a potent protective effect against CCl4-induced acute liver injury in mice. Its hepatoprotective effect appears to be closely associated with its antioxidant activity. The results indicated that flavonoids from C. paliurus leaves could be considered as a potent food supplement in the prevention of acute liver injury.
Collapse
|
31
|
Wang N, Ji S, Zhang H, Mei S, Qiao L, Jin X. Herba Cistanches: Anti-aging. Aging Dis 2017; 8:740-759. [PMID: 29344414 PMCID: PMC5758349 DOI: 10.14336/ad.2017.0720] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/20/2017] [Indexed: 12/11/2022] Open
Abstract
The Cistanche species ("Rou Cong Rong" in Chinese) is an endangered wild species growing in arid or semi-arid areas. The dried fleshy stem of Cistanches has been used as a tonic in China for many years. Modern pharmacological studies have since demonstrated that Herba Cistanches possesses broad medicinal functions, especially for use in anti-senescence, anti-oxidation, neuroprotection, anti-inflammation, hepatoprotection, immunomodulation, anti-neoplastic, anti-osteoporosis and the promotion of bone formation. This review summarizes the up-to-date and comprehensive information on Herba Cistanches covering the aspects of the botany, traditional uses, phytochemistry and pharmacology, to lay ground for fully elucidating the potential mechanisms of Herba Cistanches' anti-aging effect and promote its clinical application as an anti-aging herbal medicine.
Collapse
Affiliation(s)
- Ningqun Wang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Shaozhen Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Hao Zhang
- Department of Radiology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China
| | - Shanshan Mei
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
| | - Lumin Qiao
- Department of Emergency, Traditional Chinese Medicine Hospital of Yinchuan, Ningxia Hui Nationality Autonomous Region 750001, China.
| | - Xianglan Jin
- Department of Neurology, Dongfang Hospital of Beijing University of Chinese Medicine, Beijing 100078, China.
| |
Collapse
|
32
|
The Antidepressant and Cognitive Improvement Activities of the Traditional Chinese Herb Cistanche. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:3925903. [PMID: 28744316 PMCID: PMC5506466 DOI: 10.1155/2017/3925903] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/11/2017] [Accepted: 05/28/2017] [Indexed: 12/23/2022]
Abstract
More than ten percent of people suffer from at least one episode of depression and related mental disorders in a lifetime, and depression and related mental disorders are one of the world's greatest public health problems. A multiple system theory holds that dysregulation of the multiple systems underlies the pathogenesis of depression and related mental disorders, and new therapies based on the multiple system dysregulation theory are urgently needed. In this study, the antidepressant effect of decoction from herb Cistanche deserticola Y.C.Ma and Cistanche tubulosa was examined. Herb Cistanche decoction reduced the immobility period significantly in the mouse tail suspension test. Mice treated with herb decoction showed an improved ability of spatial learning and memory in the Morris water maze test. Groups treated herb decoction displayed a downregulated monoamine oxidase (MAO) activity; the dopamine (DA) concentration in the brain was upregulated, indicating herb Cistanche decoction improved the nerve excitability; the serum concentration of corticosterone (CORT) was downregulated, showing that mice benefited from a reduced stress level. Hence, the antidepressant efficacy and mechanism of traditional Chinese herb Cistanche were explored in this study. Herb Cistanche showed a potential to be developed as a complementary and alternative therapy for depression.
Collapse
|
33
|
Sadeghi A, Kalantar M, Molavinia S, Houshmand G, Bahadoram M, Esmaeilizadeh M, Goudarzi M. Ameliorative effects of hydroalcoholic extract of Lavandula officinalis L. on cyclophosphamide-induced nephrotoxicity in mice. J Nephropathol 2017. [DOI: 10.15171/jnp.2017.52] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
|
34
|
Venditti A, Frezza C, Bianco A, Serafini M, Cianfaglione K, Nagy DU, Iannarelli R, Caprioli G, Maggi F. Polar Constituents, Essential Oil and Antioxidant Activity of Marsh Woundwort (Stachys palustris L.). Chem Biodivers 2017; 14. [PMID: 27943586 DOI: 10.1002/cbdv.201600401] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 11/23/2016] [Indexed: 11/06/2022]
Abstract
Stachys palustris, well-known as marsh woundwort, is a perennial herb growing in wet environments of Europe. Its tubers, leaves and seeds are eaten raw or cooked. Alike other Stachys species, the plant is also used as a traditional remedy. Despite S. palustris has been consumed for centuries, little is known about its chemical constituents. In this work the main secondary metabolites of S. palustris from Hungary and France have been analysed. From the plant ethanolic extracts, ethanoid glucosides, isoscutellarein derivatives, caffeoyl-quinic acids and iridoids have been isolated and structurally characterized by NMR. The essential oils were analysed by GC/MS and showed (E)-phytol, fatty acids and carbonylic compounds as the most abundant compounds. The radical scavenging capacity of plant ethanolic extracts, as evaluated by the DPPH assay, was noteworthy, with IC50 values of 92.08 - 105.42 μg/ml.
Collapse
Affiliation(s)
- Alessandro Venditti
- Department of Chemistry, University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Claudio Frezza
- Department of Environmental Biology, University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Armandodoriano Bianco
- Department of Chemistry, University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Mauro Serafini
- Department of Environmental Biology, University of Rome 'La Sapienza', Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Kevin Cianfaglione
- EA 2219 - Géoarchitecture, UFR Sciences & Techniques, Université de Bretagne Occidentale, 6 Avenue Victor Le Gorgeu, 29200, Brest, France.,School of Biosciences and Veterinary Medicine, University of Camerino, Via Pontoni 5, 62032, Camerino, Italy
| | - David U Nagy
- Department of Ecology, Institute of Biology, University of Pécs, Ifjúság u. 6, 7624, Pécs, Hungary
| | - Romilde Iannarelli
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
35
|
Yu Y, Sun X, Gu J, Yu C, Wen Y, Gao Y, Xia Q, Kong X. Deficiency of DJ-1 Ameliorates Liver Fibrosis through Inhibition of Hepatic ROS Production and Inflammation. Int J Biol Sci 2016; 12:1225-1235. [PMID: 27766037 PMCID: PMC5069444 DOI: 10.7150/ijbs.15154] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 08/08/2016] [Indexed: 12/19/2022] Open
Abstract
Liver fibrosis is a global health problem and previous studies have demonstrated that reactive oxygen species (ROS) play important roles in fibrogenesis. Parkinson disease (autosomal recessive, early onset) 7 (Park7) also called DJ-1 has an essential role in modulating cellular ROS levels. DJ-1 therefore may play functions in liver fibrogenesis and modulation of DJ-1 may be a promising therapeutic approach. Here, wild-type (WT) and DJ-1 knockout (DJ-1 KO) mice were administrated with carbon tetrachloride (CCl4) to induce liver fibrosis or acute liver injury. Results showed that DJ-1 depletion significantly blunted liver fibrosis, accompanied by marked reductions in liver injury and ROS production. In the acute CCl4 model, deficiency of DJ-1 showed hepatic protective functions as evidenced by decreased hepatic damage, reduced ROS levels, diminished hepatic inflammation and hepatocyte proliferation compared to WT mice. In vitro hepatic stellate cells (HSCs) activation assays indicated that DJ-1 has no direct effect on the activation of HSCs in the context of with or without TGFβ treatment. Thus our present study demonstrates that in CCl4-induced liver fibrosis, DJ-1 deficiency attenuates mice fibrosis by inhibiting ROS production and liver injury, and further indirectly affecting the activation of HSCs. These results are in line with previous studies that ROS promote HSC activation and fibrosis development, and suggest the therapeutic value of DJ-1 in treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yingxue Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehua Sun
- Department of liver diseases, Shuguang Hospital affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Jinyang Gu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Chang Yu
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yankai Wen
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.; School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yueqiu Gao
- Department of liver diseases, Shuguang Hospital affiliated to Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoni Kong
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
36
|
Kalantar M, Goudarzi M, Khodayar MJ, Babaei J, Foruozandeh H, Bakhtiari N, Alidadi H. Protective Effects of the Hydroalcoholic Extract of Capparis spinosa L. Against Cyclophosphamide-Induced Nephrotoxicity in Mice. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-37240] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
37
|
Frezza C, Venditti A, Di Cecco M, Ciaschetti G, Serafini M, Bianco A. Iridoids and phenylethanoid glycosides from the aerial parts of Ajuga tenorei, an endemic Italian species. Nat Prod Res 2016; 31:218-223. [PMID: 27492580 DOI: 10.1080/14786419.2016.1218490] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
We report the first analysis in absolute, and in particular, concerning the phytochemical pattern, about an endemic Italian species, Ajuga tenorei C. Presl. The analysis, performed by means of techniques such as Column Chromatography and NMR spectroscopy and Mass spectrometry, led to the isolation and the identification of five compounds namely verbascoside (1), echinacoside (2), ajugoside (3), harpagide (4) and 8-O-acetylharpagide (5). The presence of these compounds is important from both chemotaxonomic and ethno-pharmacological point of view. For what concerns the first point is confirmed the correct botanical classification of the species. The isolated compounds are also known to exert peculiar pharmacological activities and their presence may give a rationale to the historical medicinal properties associated to the Ajuga genus in general, since these plants have a long traditional use in many parts of the world. Such fact might suggest the use of also this species in this sense.
Collapse
Affiliation(s)
- Claudio Frezza
- b Dipartimento di Biologia Ambientale , Università di Roma 'La Sapienza' , Roma , Italy
| | | | | | | | - Mauro Serafini
- b Dipartimento di Biologia Ambientale , Università di Roma 'La Sapienza' , Roma , Italy
| | | |
Collapse
|
38
|
Feng XY, Zhu M, Zhang QQ, Chen YP, Li WW. Selective protection of nigral dopaminergic neurons by echinacoside in a rat model of Parkinson disease induced by rotenone. ACTA ACUST UNITED AC 2016; 10:777-83. [PMID: 22805084 DOI: 10.3736/jcim20120708] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To observe the protective effects of echinacoside on rotenone-induced damages in rats. METHODS Healthy male Sprague-Dawley rats, weighing from 200 to 220 g, were randomly divided into five groups with 20 rats in each group: control group, rotenone group and echinacoside groups of low, medium and high doses (20, 40 and 80 mg/(kg·d)). Rats in the rotenone group were injected intraperitoneally for four weeks with rotenone (2.75 mg/(kg·d)), dissolved into dimethyl sulfoxide; rats in the control group were injected intraperitoneally with dimethyl sulfoxide daily, and rats in the echinacoside groups received daily intraperitoneal injection of rotenone along with echinacoside gastric perfusion for four weeks. Modified neurological severity score was used to evaluate neurobehavior of the animals; dopaminergic neurons in substantia nigra were observed by immunochemical method and dopamine concentration in striatum was determined by a fluorescence spectrophotometer. Biomarkers of liver and kidney damage were also measured. RESULTS In the rotenone group, the rats suffered from severe neurological disability (P<0.01), and the number of dopaminergic neurons in substantia nigra and dopamine concentration in striatum were decreased (P<0.05) compared with the normal control group; levels of the biomarkers for evaluating liver and kidney damage were increased (P<0.05). In the echinacoside groups, the neurological disability and the loss of dopaminergic neurons in substantia nigra were suppressed and dopamine concentrations in striatum were increased (P<0.05), but the liver and kidney damage was not improved (P>0.05). CONCLUSION Rotenone causes severe damages to dopaminergic neurons, liver and kidney in rats and echinacoside selectively reverses dopaminergic neuronal injury.
Collapse
Affiliation(s)
- Xin-ying Feng
- Department of Integrative Medicine, Fudan University, Shanghai, China
| | | | | | | | | |
Collapse
|
39
|
Singh D, Cho WC, Upadhyay G. Drug-Induced Liver Toxicity and Prevention by Herbal Antioxidants: An Overview. Front Physiol 2016; 6:363. [PMID: 26858648 PMCID: PMC4726750 DOI: 10.3389/fphys.2015.00363] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/16/2015] [Indexed: 12/14/2022] Open
Abstract
The liver is the center for drug and xenobiotic metabolism, which is influenced most with medication/xenobiotic-mediated toxic activity. Drug-induced hepatotoxicity is common and its actual frequency is hard to determine due to underreporting, difficulties in detection or diagnosis, and incomplete observation of exposure. The death rate is high, up to about 10% for drug-induced liver damage. Endorsed medications represented >50% of instances of intense liver failure in a study from the Acute Liver Failure Study Group of the patients admitted in 17 US healing facilities. Albeit different studies are accessible uncovering the mechanistic aspects of medication prompted hepatotoxicity, we are in the dilemma about the virtual story. The expanding prevalence and effectiveness of Ayurveda and natural products in the treatment of various disorders led the investigators to look into their potential in countering drug-induced liver toxicity. Several natural products have been reported to date to mitigate the drug-induced toxicity. The dietary nature and less adverse reactions of the natural products provide them an extra edge over other candidates of supplementary medication. In this paper, we have discussed the mechanism involved in drug-induced liver toxicity and the potential of herbal antioxidants as supplementary medication.
Collapse
Affiliation(s)
- Divya Singh
- Department of Biology, City College of New YorkNew York, NY, USA
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth HospitalKowloon, Hong Kong
| | | |
Collapse
|
40
|
Etani R, Kataoka T, Nishiyama Y, Takata Y, Yamaoka K. Combined effects of radon inhalation and antioxidant vitamin administration on acute alcohol-induced hepatopathy in mice. J NUCL SCI TECHNOL 2015. [DOI: 10.1080/00223131.2015.1014875] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Shen JY, Yang XL, Yang ZL, Kou JP, Li F. Enhancement of absorption and bioavailability of echinacoside by verapamil or clove oil. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:4685-93. [PMID: 26316707 PMCID: PMC4544722 DOI: 10.2147/dddt.s87581] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose This present study investigated the absorption kinetics of echinacoside (ECH) in situ and in vitro and its oral bioavailability in rats. Additional aim was to find an agent(s) to promote ECH absorption and oral bioavailability among two efflux proteins and three absorption promoters. Methods ECH absorption behaviors were investigated by everted gut sac model in vitro and single-pass intestinal perfusion model in situ. Pharmacokinetics study was performed to investigate the influences of verapamil and clove oil on ECH bioavailability in vivo. All samples were measured at different time intervals by high performance liquid chromatography. Results The results showed that the effective permeability coefficient (Peff) and apparent permeability coefficient of ECH were 0.83×10−6–3.23×10−6 cm/s and 2.99×10−6–9.86×10−6 cm/s, respectively. The Peff among duodenum, jejunum, and ileum were not statistically different, but they were higher than colon (P<0.01), which demonstrated that intestinal ECH absorption was poor and site dependent. Additionally, verapamil and clove oil significantly increased the jejunal Peff of ECH both in situ and in vitro. Moreover, the bioavailability of ECH in combination with verapamil and clove oil were increased by 1.37-fold (P<0.05) and 2.36-fold (P<0.001), respectively, when compared to ECH group. Overall, verapamil and clove oil facilitated ECH absorption and oral bioavailability. Conclusion The absorption and bioavailability of ECH were enhanced by verapamil and clove oil, respectively, both in vitro and in vivo. Consequently, the combination of verapamil and clove oil with ECH will be a promising and effective approach to promote intestinal absorption and oral bioavailability of ECH.
Collapse
Affiliation(s)
- Jin-Yang Shen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Xiao-Lin Yang
- Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zhong-Lin Yang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Jun-Ping Kou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| | - Fei Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
42
|
El Naggar EMB, Chalupová M, Pražanová G, Parák T, Švajdlenka E, Žemlička M, Suchý P. Hepatoprotective and proapoptotic effect of Ecballium elaterium on CCl4-induced hepatotoxicity in rats. ASIAN PAC J TROP MED 2015; 8:526-31. [DOI: 10.1016/j.apjtm.2015.06.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 05/20/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022] Open
|
43
|
Dong L, Yu D, Wu N, Wang H, Niu J, Wang Y, Zou Z. Echinacoside Induces Apoptosis in Human SW480 Colorectal Cancer Cells by Induction of Oxidative DNA Damages. Int J Mol Sci 2015; 16:14655-68. [PMID: 26132569 PMCID: PMC4519864 DOI: 10.3390/ijms160714655] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/10/2015] [Accepted: 06/24/2015] [Indexed: 02/06/2023] Open
Abstract
Echinacoside is a natural compound with potent reactive oxygen species (ROS)-scavenging and anti-oxidative bioactivities, which protect cells from oxidative damages. As cancer cells are often under intense oxidative stress, we therefore tested if Echinacoside treatment would promote cancer development. Surprisingly, we found that Echinacoside significantly inhibited the growth and proliferation of a panel of cancer cell lines. Treatment of the human SW480 cancer cells with Echinacoside resulted in marked apoptosis and cell cycle arrest, together with a significant increase in active caspase 3 and cleaved PARP, and upregulation of the G1/S-CDK blocker CDKN1B (p21). Interestingly, immunocytochemistry examination of drug-treated cancer cells revealed that Echinacoside caused a significant increase of intracellular oxidized guanine, 8-oxoG, and dramatic upregulation of the double-strand DNA break (DSB)-binding protein 53BP1, suggesting that Echinacoside induced cell cycle arrest and apoptosis in SW480 cancer cells via induction of oxidative DNA damages. These results establish Echinacoside as a novel chemical scaffold for development of anticancer drugs.
Collapse
Affiliation(s)
- Liwei Dong
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Debin Yu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Nuoting Wu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Hongge Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Jiajing Niu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Ye Wang
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| | - Zhihua Zou
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
| |
Collapse
|
44
|
Wang LL, Ding H, Yu HS, han LF, Lai QH, Zhang LJ, Song XB. Cistanches Herba: Chemical Constituents and Pharmacological Effects. CHINESE HERBAL MEDICINES 2015. [DOI: 10.1016/s1674-6384(15)60017-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Li F, Yang X, Yang Y, Li P, Yang Z, Zhang C. Phospholipid complex as an approach for bioavailability enhancement of echinacoside. Drug Dev Ind Pharm 2015; 41:1777-84. [PMID: 25686726 DOI: 10.3109/03639045.2015.1004183] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Echinacoside (ECH) has been shown to possess a multitude of pharmacological activities, however, oral administered ECH failed to fulfill its therapeutic potential due to poor absorption and low bioavailability. Thus, there is a pressing need to develop a new oral dosage form to enhance its intestinal absorption and improve bioavailability. OBJECTIVE The aim of this study was to formulate ECH into phospholipid complex (phytosome, PHY) to enhance intestinal absorption and oral bioavailability of ECH in vivo. METHODS The PHY was prepared by a solvent evaporation method and was characterized by differential scanning calorimetry (DSC) and infrared spectroscopy (IR), and then the physicochemical properties, intestinal absorption and bioavailability of the PHY were investigated. RESULTS Compared with the physical mixture (MIX) or ECH alone, the n-octanol/water partition coefficient (P) determination results showed that the lipophilicity of ECH was significantly enhanced by formation of PHY. Accordingly, the intestinal absorption rate (Ka) was improved to 2.82-fold and the effective permeability coefficient (Peff) increased to 3.39-fold. The concentrations of ECH in rat plasma at different times after oral administration of PHY were determined by HPLC. Pharmacokinetic parameters of the PHY in rats were Tmax = 1.500 h, Cmax = 3.170 mg/mL, AUC0-∞ = 9.375 mg/L h and AUC0-24 = 7.712 mg/L h, respectively. CONCLUSIONS Compared with ECH alone or the MIX group, the relative bioavailability of ECH was increased significantly after formulation into PHY (p < 0.05). This might be mainly due to an improvement of the absorption of PHY.
Collapse
Affiliation(s)
- Fei Li
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing , P R China
| | - Xiaolin Yang
- b Key Laboratory of Pharmaceutical and Biological Marine Resources Research and Development of Jiangsu Province, Nanjing University of Chinese Medicine , Nanjing , PR China , and
| | - Yanan Yang
- c R & D Division, Amphastar Nanjing Pharmaceuticals Inc. , Nanjing , PR China
| | - Ping Li
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing , P R China
| | - Zhonglin Yang
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing , P R China
| | - Chunfeng Zhang
- a State Key Laboratory of Natural Medicines, China Pharmaceutical University , Nanjing , P R China
| |
Collapse
|
46
|
Wang S, Zheng G, Tian S, Zhang Y, Shen L, Pak Y, Shen Y, Qian J. Echinacoside improves hematopoietic function in 5-FU-induced myelosuppression mice. Life Sci 2015; 123:86-92. [PMID: 25623854 DOI: 10.1016/j.lfs.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 11/21/2014] [Accepted: 01/06/2015] [Indexed: 11/16/2022]
Abstract
AIMS We aimed to investigate the effects of echinacoside (ECH) on hematopoietic function in 5-FU-induced bone marrow depression mice. MAIN METHODS In vitro, after stimulation with ECH, the proliferation ability of bone marrow (BM) cells and bone marrow stromal cells (BMSCs) derived from myelosuppression mice were assessed by CCK8 assay and morphology, respectively. In vivo, 5-FU-induced myelosuppression or control mice were intragastrically administrated with either ECH at 15 mg/kg or the equal volume of normal saline daily for 12 days before BM cells were isolated for colony-forming cell assay. Meanwhile, BMSCs were cultured for 4 weeks before cells were observed for growth pattern, cell culture supernatants were collected for GM-CSF secretion by ELISA, and RNA of the cells were extracted for EPO and GM-CSF RT-PCR. BM cells or BMSCs stimulated with ECH for 24 h or 48 h were collected for protein extraction and Western blotting. KEY FINDINGS ECH stimulated the growth of BM cells but not BMSCs derived from 5-FU treated mice. The intragastric administration of ECH in 5-FU treated mice could increase the number of total hematopoietic progenitor cells and GM progenitor cells to healthy control mice level, but not BFU progenitor cells. BMSCs from ECH treated myelosuppression mice grew more vigorously and expressed more GM-CSF, but not EPO. ECH activated the PI3K signaling pathway in 5-FU suppressed BM cells. SIGNIFICANCE ECH could improve the hematopoietic function of bone marrow in 5-FU-induced myelosuppression mice. ECH can be considered as an alternative effective therapy for patients during chemotherapy or HSC transplantation.
Collapse
Affiliation(s)
- Saisai Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Gang Zheng
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Shousheng Tian
- Engineering Technology Research Center of Glue of Traditional Medicine, Shandong Dongeejiao Co., Ltd, Shandong 252201, China
| | - Yan Zhang
- Engineering Technology Research Center of Glue of Traditional Medicine, Shandong Dongeejiao Co., Ltd, Shandong 252201, China
| | - Lijuan Shen
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yongchol Pak
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Yong Shen
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jing Qian
- Department of Medical Microbiology and Parasitology, Research Center of Infection and Immunity, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
47
|
Alebachew M, Kinfu Y, Makonnen E, Bekuretsion Y, Urga K, Afework M. Toxicological evaluation of methanol leaves extract of Vernonia bipontini Vatke in blood, liver and kidney tissues of mice. Afr Health Sci 2014; 14:1012-24. [PMID: 25834514 DOI: 10.4314/ahs.v14i4.33] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Various medicinal plants have been studied using modern scientific approaches. These plants have a variety of properties and various biological components that can be used to treat various diseases. However, harmful effects of plants are common clinical occurrence. OBJECTIVE This study was designed to investigate toxicological assessment of acute and chronic methanol leaf extract of Vernonia bipontini Vatke (V.bipontini V) on blood, liver and kidney tissues of mice. METHODS Lethal dose (LD) at which 50% of experimental mice died and long term toxicity of methanolic leaf extract of V. bipontini V were determined. Some hematological and biochemical parameters were evaluated. Then, liver and kidney tissues of each animal were taken and processed for light microscopy. RESULTS Almost all mice treated with 800mg/kg methanol leaf extract of V. bipontini V showed swellings on the left part of abdominal region related to location of spleen, mild diarrhea and enlargement of spleen. The LD50 of the methanol leaf extract of V. bipontini V was 2130.6±1.5mg/kg. Treatment with 800mg/kg body weight of methanol leaf extract significantly decreased body, liver and kidney weights, red blood cells (RBC), haemoglobin (Hgb), mean cell haemoglobin (Mch), Mchc, platelet and significantly increased serum aspartate transferance (AST), vatanine tranferance(ALT) and alkaline phosphate (ALP) levels while 400mg/kg dose had no effect on these parameters. The reduced organ weights did not correlate with loss of body weight at 800mg/kg of methanol leaf extract of the plant. Light microscope observations of liver tissue of mice treated with 800mg/kg of the methanol leaf extract revealed dilated sinusoids, nuclear enlargement, lots of bi-nucleation of hepatocytes, peripheral cramped chromatin, shrinkages (single cell death) of hepatocytes, fragmentation of hepatocytes while no histopathological changes were observed in liver and kidney of mice treated at 400mg/kg. Kidney tissue sections of mice did not show significant histopathological changes at 400mg/kg. However, at 800mg/kg kidney sections showed increased cellularity of glomerulus, urinary space obliteration and enlarged macula densa. CONCLUSION This study suggests that the methanol leaf extract may have been phytotoxic to liver that resulted in a rise in serum AST, ALT and ALP levels.
Collapse
Affiliation(s)
- Mebratu Alebachew
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yamrot Kinfu
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eyasu Makonnen
- Department of Pharmacology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Yonas Bekuretsion
- Department of Pathology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kelbesa Urga
- Department of Drug Research, Ethiopian Health and Nutrition Research Institute, Addis Ababa, Ethiopia
| | - Mekbeb Afework
- Department of Anatomy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
48
|
Moreira PR, Maioli MA, Medeiros HCD, Guelfi M, Pereira FTV, Mingatto FE. Protective effect of bixin on carbon tetrachloride-induced hepatotoxicity in rats. Biol Res 2014; 47:49. [PMID: 25299839 PMCID: PMC4192761 DOI: 10.1186/0717-6287-47-49] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/10/2022] Open
Abstract
Background The liver is an important organ for its ability to transform xenobiotics, making the liver tissue a prime target for toxic substances. The carotenoid bixin present in annatto is an antioxidant that can protect cells and tissues against the deleterious effects of free radicals. In this study, we evaluated the protective effect of bixin on liver damage induced by carbon tetrachloride (CCl4) in rats. Results The animals were divided into four groups with six rats in each group. CCl4 (0.125 mL kg-1 body wt.) was injected intraperitoneally, and bixin (5.0 mg kg-1 body wt.) was given by gavage 7 days before the CCl4 injection. Bixin prevented the liver damage caused by CCl4, as noted by the significant decrease in serum aminotransferases release. Bixin protected the liver against the oxidizing effects of CCl4 by preventing a decrease in glutathione reductase activity and the levels of reduced glutathione and NADPH. The peroxidation of membrane lipids and histopathological damage of the liver was significantly prevented by bixin treatment. Conclusion Therefore, we can conclude that the protective effect of bixin against hepatotoxicity induced by CCl4 is related to the antioxidant activity of the compound.
Collapse
Affiliation(s)
- Priscila R Moreira
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Marcos A Maioli
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Hyllana C D Medeiros
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Marieli Guelfi
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Flávia T V Pereira
- Laboratório de Morfologia da Placenta e Embrião (L@MPE), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| | - Fábio E Mingatto
- Laboratório de Bioquímica Metabólica e Toxicológica (LaBMeT), UNESP - Univ Estadual Paulista, Campus de Dracena, Dracena, SP, 17900-000, Brazil.
| |
Collapse
|
49
|
Lin S, Ye S, Huang J, Tian Y, Xu Y, Wu M, Wang J, Wu S, Cai J. How do Chinese medicines that tonify the kidney inhibit dopaminergic neuron apoptosis? Neural Regen Res 2014; 8:2820-6. [PMID: 25206603 PMCID: PMC4146012 DOI: 10.3969/j.issn.1673-5374.2013.30.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 04/20/2013] [Indexed: 01/31/2023] Open
Abstract
Wistar rats were intragastrically perfused with Chinese medicines used for tonifying the kidney. These included 0.180 g/mL of Herba Epimedii (Epimedium), Semen Cuscutae (Dodder Seed), or Herba Cistanches (Desertliving Cistanche), 0.04 mg/mL monoamine oxidase-B inhibitor selegiline, or distilled water for 14 consecutive days to prepare drug-containing serum or blank serum. MES23.5 cells in the logarithmic phase were cultured in media supplemented with 15% drug-containing serum for 24 hours, followed by incubation in culture solution containing 100 μmol/L H2O2 for 3 hours. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow tometry results showed that all drug-containing serums improved the survival rate of H2O2-injured MES23.5 cells, inhibited pro-apoptotic FasL and caspase-3 expression, promoted anti-apoptotic Bcl-2 expression. However, drug-containing serums had little influence on Fas expression in H2O2-injured MES23.5 cells. Enzyme-linked immunosorbent assay results showed that serum containing Herba Cistanches or Herba Epimedii increased the expression of nerve growth factor, brain-derived neurotrophic factor, and glial cell line-derived neurotrophic factor in injured MES23.5 cells; serum containing Semen Cuscutae only increased brain-derived neurotrophic factor expression; while expression of the above neurotrophic factors remained the same in cells treated with serum containing selegiline. These findings indicate that Chinese medicines used to tonify the kidney can protect nerve cells by regulating the expression of apoptosis-related factors and neuro-trophic factors in MES23.5 cells.
Collapse
Affiliation(s)
- Shaogang Lin
- Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Shuifen Ye
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jinmu Huang
- Hospital of Putian University, Putian 351100, Fujian Province, China
| | - Yun Tian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Yihui Xu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Mengqi Wu
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Jingxia Wang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| | - Songying Wu
- The Second People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou 350003, Fujian Province, China
| | - Jing Cai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian Province, China
| |
Collapse
|
50
|
Li X, Gou C, Yang H, Qiu J, Gu T, Wen T. Echinacoside ameliorates D-galactosamine plus lipopolysaccharide-induced acute liver injury in mice via inhibition of apoptosis and inflammation. Scand J Gastroenterol 2014; 49:993-1000. [PMID: 24797709 DOI: 10.3109/00365521.2014.913190] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE This study aimed to investigate the protective effects of echinacoside, one of the phenylethanoids isolated from the stems of Cistanche salsa, a Chinese herbal medicine, on D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced acute liver injury in mice. METHODS We administered GalN (650 mg/kg) together with LPS (30 μg/kg) to mice by intraperitoneal injection to induce acute liver damage. Echinacoside (60 mg/kg) was given intraperitoneally to mice at 1 h prior to GalN/LPS exposure. Mice were sacrificed at different time points following GalN/LPS treatment, and the liver and blood samples were collected for future analysis. RESULTS It showed that GalN/LPS treatment produced severe hepatic injury, evidenced by significantly elevated plasma alanine aminotransferase (ALT) levels and abnormal histological changes such as hepatocyte necrosis or apoptosis, hemorrhage, fatty degeneration, and neutrophil infiltration. Notably, pretreatment with echinacoside remarkably improved the survival rate of GalN/LPS-treated mice and attenuated acute hepatotoxicity, as demonstrated by decreased ALT levels and improved histological signs. Echinacoside shows both anti-apoptotic and anti-inflammatory properties, characterized by a substantial inhibition of hepatocyte apoptosis and a significant reduction in the inflammatory markers, including myeloperoxidase, extracellular nucleosomes, high-mobility group box 1, and inflammatory cytokines in the plasma of mice, which may be important mechanisms related to its protective effect. CONCLUSION Our results suggest that echinacoside can provide a pronounced protection against GalN/LPS-induced acute liver injury in mice, which may complement the available strategies for management of acute liver damage in clinical settings.
Collapse
Affiliation(s)
- Xiuhui Li
- Department of Integrated TCM and Western Medicine, Beijing Youan Hospital Affiliated with Capital Medical University , Beijing, 100069 , P.R.China
| | | | | | | | | | | |
Collapse
|