1
|
Zhu Y, Pan X, Jia Y, Yang X, Song X, Ding J, Zhong W, Feng J, Zhu L. Exploring Route-Specific Pharmacokinetics of PFAS in Mice by Coupling in Vivo Tests and Physiologically Based Toxicokinetic Models. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127012. [PMID: 38088889 PMCID: PMC10718298 DOI: 10.1289/ehp11969] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/08/2023] [Accepted: 11/08/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Oral ingestion, inhalation, and skin contact are important exposure routes for humans to uptake per- and polyfluoroalkyl substances (PFAS). However, nasal and dermal exposure to PFAS remains unclear, and accurately predicting internal body burden of PFAS in humans via multiple exposure pathways is urgently required. OBJECTIVES We aimed to develop multiple physiologically based toxicokinetic (PBTK) models to unveil the route-specific pharmacokinetics and bioavailability of PFAS via respective oral, nasal, and dermal exposure pathways using a mouse model and sought to predict the internal concentrations in various tissues through multiple exposure routes and extrapolate it to humans. METHODS Mice were administered the mixed solution of perfluorohexane sulfonate, perfluorooctane sulfonate, and perfluorooctanoic acid through oral, nasal, and dermal exposure separately or jointly. The time-dependent concentrations of PFAS in plasma and tissues were determined to calibrate and validate the individual and combined PBTK models, which were applied in single- and repeated-dose scenarios. RESULTS The developed route-specific PBTK models successfully simulated the tissue concentrations of PFAS in mice following single or joint exposure routes as well as long-term repeated dose scenarios. The time to peak concentration of PFAS in plasma via dermal exposure was much longer (34.1-83.0 h) than that via nasal exposure (0.960 h). The bioavailability of PFAS via oral exposure was the highest (73.2%-98.0%), followed by nasal (33.9%-66.8%) and dermal exposure (4.59%-7.80%). This model was extrapolated to predict internal levels in human under real environment. DISCUSSION Based on these data, we predict the following: PFAS were absorbed quickly via nasal exposure, whereas a distinct hysteresis effect was observed for dermal exposure. Almost all the PFAS to which mice were exposed via gastrointestinal route were absorbed into plasma, which exhibited the highest bioavailability. Exhalation clearance greatly depressed the bioavailability of PFAS via nasal exposure, whereas the lowest bioavailability in dermal exposure was because of the interception of PFAS within the skin layers. https://doi.org/10.1289/EHP11969.
Collapse
Affiliation(s)
- Yumin Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaoyu Pan
- Beijing Sankuai Online Technology Co., Ltd., Beijing, P. R. China
| | - Yibo Jia
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xin Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Xiaohua Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jiaqi Ding
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Jianfeng Feng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, P. R. China
| |
Collapse
|
2
|
Ribeiro AC, Hawkins E, Jahr FM, McClay JL, Deshpande LS. Repeated exposure to chlorpyrifos is associated with a dose-dependent chronic neurobehavioral deficit in adult rats. Neurotoxicology 2022; 90:172-183. [DOI: 10.1016/j.neuro.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/16/2022]
|
3
|
Development of KVO treatment strategies for chronic pain in a rat model of Gulf War Illness. Toxicol Appl Pharmacol 2022; 434:115821. [PMID: 34896435 DOI: 10.1016/j.taap.2021.115821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/01/2021] [Accepted: 12/04/2021] [Indexed: 12/19/2022]
Abstract
We examined whether combinations of Kv7 channel openers could be effective modifiers of deep tissue nociceptor activity; and whether such combinations could then be optimized for use as safe analgesics for pain-like signs that developed in a rat model of GWI (Gulf War Illness) pain. Voltage clamp experiments were performed on subclassified nociceptors isolated from rat DRG (dorsal root ganglion). A stepped voltage protocol was applied (-55 to -40 mV; Vh = -60 mV; 1500 ms) and Kv7 evoked currents were subsequently isolated by linopirdine subtraction. Directly activated and voltage activated K+ currents were characterized in the presence and absence of Retigabine (5-100 μM) and/or Diclofenac (50-140 μM). Retigabine produced substantial voltage dependent effects and a maximal sustained current of 1.14 pA/pF ± 0.15 (ED50: 62.7 ± 3.18 μM). Diclofenac produced weak voltage dependent effects but a similar maximum sustained current of 1.01 ± 0.26 pA/pF (ED50: 93.2 ± 8.99 μM). Combinations of Retigabine and Diclofenac substantially amplified resting currents but had little effect on voltage dependence. Using a cholinergic challenge test (Oxotremorine, 10 μM) associated with our GWI rat model, combinations of Retigabine (5 uM) and Diclofenac (2.5, 20 and 50 μM) substantially reduced or totally abrogated action potential discharge to the cholinergic challenge. When combinations of Retigabine and Diclofenac were used to relieve pain-signs in our rat model of GWI, only those combinations associated with serious subacute side effects could relieve pain-like behaviors.
Collapse
|
4
|
Silva MH. Chlorpyrifos and Δ 9 Tetrahydrocannabinol exposure and effects on parameters associated with the endocannabinoid system and risk factors for obesity. Curr Res Toxicol 2021; 2:296-308. [PMID: 34467221 PMCID: PMC8384771 DOI: 10.1016/j.crtox.2021.08.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/26/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Marilyn Silva. Retired from a career in toxicology and risk assessment. Increased childhood and adult obesity are associated with chlorpyrifos (CPF), an organophosphate pesticide. Cannabis (Δ9Tetrahydrocannabinol: Δ9THC) use has increased globally with legalization. CPF applications on cannabis crops lacks federally regulated tolerances and may pose health risks through exposure during development and in adulthood. Both CPF and Δ9THC affect the endocannabinoid system (eCBS), a regulator of appetite, energy balance, and gut microbiota, which, if disrupted, increases risk for obesity and related diseases. CPF inhibits eCB metabolism and Δ9THC is a partial agonist/antagonist at the cannabinoid receptor (CB1R). Effects of each on obesogenic parameters were examined via literature search. Male rodents with CPF exposure showed increased body weights, dysbiosis, inflammation and oxidative stress, potentially associated with increased eCBs acting through the gut-microbiota-adipose-brain regulatory loop. Δ9THC generally decreased body weights via partial agonism at the CB1R, lowering levels of eCBs. Dysbiosis and/or oxidative stress associated inflammation occurred with CPF, but these parameters were not tested with Δ9THC. Database deficiencies included limited endpoints to compare between chemicals/age-groups, inter-study variables (dose ranges, dosing vehicle, rodent strain, treatment duration, etc.). CPF and Δ9THC were not tested together, but human co-chemical effects would depend on exposure ratio, subject age, exposure duration, and health status, among others. An overriding concern is that both chemicals are well-documented developmental neurotoxins in addition to their low dose effects on energy balance. A co-exposure risk assessment is warranted with increased use and lack of federal CPF regulation on cannabis.
Collapse
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in toxicology and risk assessment 2437, Evenstar Lane, Davis, CA 95616, United States
| |
Collapse
|
5
|
Ubaid Ur Rahman H, Asghar W, Nazir W, Sandhu MA, Ahmed A, Khalid N. A comprehensive review on chlorpyrifos toxicity with special reference to endocrine disruption: Evidence of mechanisms, exposures and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142649. [PMID: 33059141 DOI: 10.1016/j.scitotenv.2020.142649] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 04/15/2023]
Abstract
Chlorpyrifos (CPF) is a broad-spectrum chlorinated organophosphate (OP) pesticide used for the control of a variety of insects and pathogens in crops, fruits, vegetables, as well as households, and various other locations. The toxicity of CPF has been associated with neurological dysfunctions, endocrine disruption, and cardiovascular diseases (CVDs). It can also induce developmental and behavioral anomalies, hematological malignancies, genotoxicity, histopathological aberrations, immunotoxicity, and oxidative stress as evidenced by animal modeling. Moreover, eye irritation and dermatological defects are also reported due to CPF toxicity. The mechanism of action of CPF involves blocking the active sites of the enzyme, acetylcholinesterase (AChE), thereby producing adverse nervous system effects. Although CPF has low persistence in the body, its active metabolites, 3,5,6-trichloro-2-pyridinol (TCP), and chlorpyrifos-oxon (CPO) are comparatively more persistent, albeit equally toxic, and thus produce serious health complications. The present review has been compiled taking into account the work related to CPF toxicity and provides a brief compilation of CPF-induced defects in animals and humans, emphasizing the abnormalities leading to endocrine disruption, neurotoxicity, reproductive carcinogenesis, and disruptive mammary gland functionality. Moreover, the clinical signs and symptoms associated with the CPF exposure along with the possible pharmacological treatment are reported in this treatise. Additionally, the effect of food processing methods in reducing CPF residues from different agricultural commodities and dietary interventions to curtail the toxicity of CPF has also been discussed.
Collapse
Affiliation(s)
- Hafiz Ubaid Ur Rahman
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Waqas Asghar
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Wahab Nazir
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan
| | - Mansur Abdullah Sandhu
- Department of Biomedical Sciences, Faculty of Veterinary & Animal Sciences, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Anwaar Ahmed
- Institute of Food and Nutrition Sciences, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Nauman Khalid
- School of Food and Agricultural Sciences, University of Management and Technology, Lahore, Pakistan.
| |
Collapse
|
6
|
Berg EL, Ching TM, Bruun DA, Rivera JK, Careaga M, Ellegood J, Lerch JP, Wöhr M, Lein PJ, Silverman JL. Translational outcomes relevant to neurodevelopmental disorders following early life exposure of rats to chlorpyrifos. J Neurodev Disord 2020; 12:40. [PMID: 33327943 PMCID: PMC7745485 DOI: 10.1186/s11689-020-09342-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Neurodevelopmental disorders (NDDs), including intellectual disability, attention deficit hyperactivity disorder (ADHD), and autism spectrum disorder (ASD), are pervasive, lifelong disorders for which pharmacological interventions are not readily available. Substantial increases in the prevalence of NDDs over a relatively short period may not be attributed solely to genetic factors and/or improved diagnostic criteria. There is now a consensus that multiple genetic loci combined with environmental risk factors during critical periods of neurodevelopment influence NDD susceptibility and symptom severity. Organophosphorus (OP) pesticides have been identified as potential environmental risk factors. Epidemiological studies suggest that children exposed prenatally to the OP pesticide chlorpyrifos (CPF) have significant mental and motor delays and strong positive associations for the development of a clinical diagnosis of intellectual delay or disability, ADHD, or ASD. METHODS We tested the hypothesis that developmental CPF exposure impairs behavior relevant to NDD phenotypes (i.e., deficits in social communication and repetitive, restricted behavior). Male and female rat pups were exposed to CPF at 0.1, 0.3, or 1.0 mg/kg (s.c.) from postnatal days 1-4. RESULTS These CPF doses did not significantly inhibit acetylcholinesterase activity in the blood or brain but significantly impaired pup ultrasonic vocalizations (USV) in both sexes. Social communication in juveniles via positive affiliative 50-kHz USV playback was absent in females exposed to CPF at 0.3 mg/kg and 1.0 mg/kg. In contrast, this CPF exposure paradigm had no significant effect on gross locomotor abilities or contextual and cued fear memory. Ex vivo magnetic resonance imaging largely found no differences between the CPF-exposed rats and the corresponding vehicle controls using strict false discovery correction; however, there were interesting trends in females in the 0.3 mg/kg dose group. CONCLUSIONS This work generated and characterized a rat model of developmental CPF exposure that exhibits adverse behavioral phenotypes resulting from perinatal exposures at levels that did not significantly inhibit acetylcholinesterase activity in the brain or blood. These data suggest that current regulations regarding safe levels of CPF need to be reconsidered.
Collapse
Affiliation(s)
- Elizabeth L Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Tianna M Ching
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Donald A Bruun
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Josef K Rivera
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Milo Careaga
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Jacob Ellegood
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Toronto Centre for Phenogenomics, The Hospital for Sick Children, Toronto, Ontario, Canada
- Wellcome Centre for Integrative Neuroimaging, The University of Oxford, Oxford, UK
| | - Markus Wöhr
- Behavioral Neuroscience, Experimental and Biological Psychology, Philipps University of Marburg, Marburg, Germany
- Laboratory for Behavioral Neuroscience, Department of Biology, Faculty of Science, University of Southern Denmark, Campusvej 55, DK-5230, Odense M, Denmark
| | - Pamela J Lein
- MIND Institute and Department of Molecular Biosciences, University of California Davis School of Veterinary Medicine, Davis, CA, USA
| | - Jill L Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
7
|
Impact of pesticide exposure on adipose tissue development and function. Biochem J 2020; 477:2639-2653. [DOI: 10.1042/bcj20200324] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/15/2022]
Abstract
Obesity is a leading cause of morbidity, mortality and health care expenditure whose incidence is rapidly rising across the globe. Although the cause of the obesity epidemic is typically viewed as a product of an increased availability of high calorie foods and/or a reduction in physical activity, there is mounting evidence that exposure to synthetic chemicals in our environment may play an important role. Pesticides, are a class of chemicals whose widespread use has coincided with the global rise of obesity over the past two decades. Importantly, given their lipophilic nature many pesticides have been shown to accumulate with adipose tissue depots, suggesting they may be disrupting the function of white adipose tissue (WAT), brown adipose tissue (BAT) and beige adipose tissue to promote obesity and metabolic diseases such as type 2 diabetes. In this review, we discuss epidemiological evidence linking pesticide exposure with body mass index (BMI) and the incidence of diabetes. We then review preclinical studies in rodent models which have directly evaluated the effects of different classes of insecticides and herbicides on obesity and metabolic dysfunction. Lastly, we review studies conducted in adipose tissue cells lines and the purported mechanisms by which pesticides may induce alterations in adipose tissue function. The review of the literature reveals major gaps in our knowledge regarding human exposure to pesticides and our understanding of whether physiologically relevant concentrations promote obesity and elicit alterations in key signaling pathways vital for maintaining adipose tissue metabolism.
Collapse
|
8
|
Silva MH. Effects of low‐dose chlorpyrifos on neurobehavior and potential mechanisms: A review of studies in rodents, zebrafish, and
Caenorhabditis elegans. Birth Defects Res 2020; 112:445-479. [DOI: 10.1002/bdr2.1661] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/10/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Marilyn H. Silva
- Retired from a career in regulatory toxicology and risk assessment
| |
Collapse
|
9
|
Blood pharmacokinetic of 17 common pesticides in mixture following a single oral exposure in rats: implications for human biomonitoring and exposure assessment. Arch Toxicol 2019; 93:2849-2862. [DOI: 10.1007/s00204-019-02546-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
|
10
|
Experimental evolution of aerobic exercise performance and hematological traits in bank voles. Comp Biochem Physiol A Mol Integr Physiol 2019; 234:1-9. [DOI: 10.1016/j.cbpa.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 04/07/2019] [Accepted: 04/11/2019] [Indexed: 01/19/2023]
|
11
|
Atropine counteracts the depressive-like behaviour elicited by acute exposure to commercial chlorpyrifos in rats. Neurotoxicol Teratol 2019; 71:6-15. [DOI: 10.1016/j.ntt.2018.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 12/30/2022]
|
12
|
Behavioral, cellular and molecular maladaptations covary with exposure to pyridostigmine bromide in a rat model of gulf war illness pain. Toxicol Appl Pharmacol 2018; 352:119-131. [PMID: 29803855 DOI: 10.1016/j.taap.2018.05.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/12/2022]
Abstract
Many veterans of Operation Desert Storm (ODS) struggle with the chronic pain of Gulf War Illness (GWI). Exposure to insecticides and pyridostigmine bromide (PB) have been implicated in the etiology of this multisymptom disease. We examined the influence of 3 (DEET (N,N-diethyl-meta-toluamide), permethrin, chlorpyrifos) or 4 GW agents (DEET, permethrin, chlorpyrifos, pyridostigmine bromide (PB)) on the post-exposure ambulatory and resting behaviors of rats. In three independent studies, rats that were exposed to all 4 agents consistently developed both immediate and delayed ambulatory deficits that persisted at least 16 weeks after exposures had ceased. Rats exposed to a 3 agent protocol (PB excluded) did not develop any ambulatory deficits. Cellular and molecular studies on nociceptors harvested from 16WP (weeks post-exposure) rats indicated that vascular nociceptor Nav1.9 mediated currents were chronically potentiated following the 4 agent protocol but not following the 3 agent protocol. Muscarinic linkages to muscle nociceptor TRPA1 were also potentiated in the 4 agent but not the 3 agent, PB excluded, protocol. Although Kv7 activity changes diverged from the behavioral data, a Kv7 opener, retigabine, transiently reversed ambulation deficits. We concluded that PB played a critical role in the development of pain-like signs in a GWI rat model and that shifts in Nav1.9 and TRPA1 activity were critical to the expression of these pain behaviors.
Collapse
|
13
|
Poet TS, Timchalk C, Bartels MJ, Smith JN, McDougal R, Juberg DR, Price PS. Use of a probabilistic PBPK/PD model to calculate Data Derived Extrapolation Factors for chlorpyrifos. Regul Toxicol Pharmacol 2017; 86:59-73. [PMID: 28238854 DOI: 10.1016/j.yrtph.2017.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/24/2017] [Accepted: 02/17/2017] [Indexed: 11/16/2022]
Abstract
A physiologically based pharmacokinetic and pharmacodynamic (PBPK/PD) model combined with Monte Carlo analysis of inter-individual variation was used to assess the effects of the insecticide, chlorpyrifos and its active metabolite, chlorpyrifos oxon in humans. The PBPK/PD model has previously been validated and used to describe physiological changes in typical individuals as they grow from birth to adulthood. This model was updated to include physiological and metabolic changes that occur with pregnancy. The model was then used to assess the impact of inter-individual variability in physiology and biochemistry on predictions of internal dose metrics and quantitatively assess the impact of major sources of parameter uncertainty and biological diversity on the pharmacodynamics of red blood cell acetylcholinesterase inhibition. These metrics were determined in potentially sensitive populations of infants, adult women, pregnant women, and a combined population of adult men and women. The parameters primarily responsible for inter-individual variation in RBC acetylcholinesterase inhibition were related to metabolic clearance of CPF and CPF-oxon. Data Derived Extrapolation Factors that address intra-species physiology and biochemistry to replace uncertainty factors with quantitative differences in metrics were developed in these same populations. The DDEFs were less than 4 for all populations. These data and modeling approach will be useful in ongoing and future human health risk assessments for CPF and could be used for other chemicals with potential human exposure.
Collapse
Affiliation(s)
| | | | | | - Jordan N Smith
- Battelle, Pacific Northwest Division, Richland, WA, 99354, USA
| | - Robin McDougal
- Dug Safety and Metabolism, AstraZeneca, Gatehouse Park, Waltham, Boston, 02451, USA
| | | | | |
Collapse
|
14
|
Flunker LK, Nutter TJ, Johnson RD, Cooper BY. DEET potentiates the development and persistence of anticholinesterase dependent chronic pain signs in a rat model of Gulf War Illness pain. Toxicol Appl Pharmacol 2016; 316:48-62. [PMID: 28025109 DOI: 10.1016/j.taap.2016.12.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/16/2016] [Accepted: 12/20/2016] [Indexed: 12/18/2022]
Abstract
Exposure to DEET (N,N-diethyl-meta-toluamide) may have influenced the pattern of symptoms observed in soldiers with GWI (Gulf War Illness; Haley and Kurt, 1997). We examined how the addition of DEET (400mg/kg; 50% topical) to an exposure protocol of permethrin (2.6mg/kg; topical), chlorpyrifos (CP; 120mg/kg), and pyridostigmine bromide (PB;13mg/kg) altered the emergence and pattern of pain signs in an animal model of GWI pain (Nutter et al., 2015). Rats underwent behavioral testing before, during and after a 4week exposure: 1) hindlimb pressure withdrawal threshold; 2) ambulation (movement distance and rate); and 3) resting duration. Additional studies were conducted to assess the influence of acute DEET (10-100μM) on muscle and vascular nociceptor Kv7, KDR, Nav1.8 and Nav1.9. We report that a 50% concentration of DEET enhanced the development and persistence of pain-signs. Rats exposed to all 4 compounds exhibited ambulation deficits that appeared 5-12weeks post-exposure and persisted through weeks 21-24. Rats exposed to only three agents (CP or PB excluded), did not fully develop ambulation deficits. When PB was excluded, rats also developed rest duration pain signs, in addition to ambulation deficits. There was no evidence that physiological doses of DEET acutely modified nociceptor Kv7, KDR, Nav1.8 or Nav1.9 activities. Nevertheless, DEET augmented protocols decreased the conductance of Kv7 expressed in vascular nociceptors harvested from chronically exposed rats. We concluded that DEET enhanced the development and persistence of pain behaviors, but the anticholinesterases CP and PB played a determinant role.
Collapse
Affiliation(s)
- L K Flunker
- Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - T J Nutter
- Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| | - R D Johnson
- Dept. of Physiological Sciences, University of Florida College of Veterinary Science, Gainesville, FL 32610, USA.
| | - B Y Cooper
- Division of Neuroscience, Dept. of Oral and Maxillofacial Surgery, Box 100416, JHMHC, University of Florida College of Dentistry, Gainesville, FL 32610, USA.
| |
Collapse
|
15
|
Dheyongera G, Grzebyk K, Rudolf AM, Sadowska ET, Koteja P. The effect of chlorpyrifos on thermogenic capacity of bank voles selected for increased aerobic exercise metabolism. CHEMOSPHERE 2016; 149:383-390. [PMID: 26878110 DOI: 10.1016/j.chemosphere.2015.12.120] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/24/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
Agro-chemicals potentially cause adverse effects in non-target organisms. The rate of animal energy metabolism can influence their susceptibility to pesticides by influencing food consumption, biotransformation and elimination rates of toxicants. We used experimental evolution to study the effects of inherent differences in energy metabolism rate and exposure to the organophosphate insecticide, chlorpyrifos (CPF) on thermogenic capacity in a wild rodent, the bank vole (Myodes = Clethrionomys glareolus). The voles were sampled from four replicate lines selected for high swim-induced aerobic metabolism (A) and four unselected control (C) lines. Thermogenic capacity, measured as the maximum cold-induced rate of oxygen consumption (VO2cold), was higher in the A - than C lines, and it decreased after continuous exposure to CPF via food or after a single dose administered via oral gavage, but only when measured shortly after exposure. VO2cold measured 24 h after repeated exposure was not affected. In addition, gavage with a single dose led to decreased food consumption and loss in body mass. Importantly, the adverse effects of CPF did not differ between the selected and control lines. Therefore, exposure to CPF has adverse effects on thermoregulatory performance and energy balance in this species. The effects are short-lived and their magnitude is not associated with the inherent level of energy metabolism. Even without severe symptoms of poisoning, fitness can be compromised under harsh environmental conditions, such as cold and wet weather.
Collapse
Affiliation(s)
- Geoffrey Dheyongera
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland.
| | - Katherine Grzebyk
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Agata M Rudolf
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Edyta T Sadowska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| | - Paweł Koteja
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Krakow, Poland
| |
Collapse
|
16
|
Terry C, Hays S, McCoy AT, McFadden LG, Aggarwal M, Rasoulpour RJ, Juberg DR. Implementing a framework for integrating toxicokinetics into human health risk assessment for agrochemicals. Regul Toxicol Pharmacol 2016; 75:89-104. [DOI: 10.1016/j.yrtph.2015.10.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 10/01/2015] [Accepted: 10/04/2015] [Indexed: 01/25/2023]
|
17
|
Nutter T, Johnson R, Cooper B. A delayed chronic pain like condition with decreased Kv channel activity in a rat model of Gulf War Illness pain syndrome. Neurotoxicology 2015; 51:67-79. [DOI: 10.1016/j.neuro.2015.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 12/26/2022]
|
18
|
A human life-stage physiologically based pharmacokinetic and pharmacodynamic model for chlorpyrifos: Development and validation. Regul Toxicol Pharmacol 2014; 69:580-97. [DOI: 10.1016/j.yrtph.2013.10.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 12/25/2022]
|
19
|
Disposition and acute toxicity of imidacloprid in female rats after single exposure. Food Chem Toxicol 2014; 68:190-5. [DOI: 10.1016/j.fct.2014.03.019] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 02/11/2014] [Accepted: 03/15/2014] [Indexed: 11/18/2022]
|
20
|
Poet TS, Timchalk C, Hotchkiss JA, Bartels MJ. Chlorpyrifos PBPK/PD model for multiple routes of exposure. Xenobiotica 2014; 44:868-81. [DOI: 10.3109/00498254.2014.918295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
21
|
Bednarska AJ, Edwards P, Sibly R, Thorbek P. A toxicokinetic model for thiamethoxam in rats: implications for higher-tier risk assessment. ECOTOXICOLOGY (LONDON, ENGLAND) 2013; 22:548-57. [PMID: 23430408 PMCID: PMC3599210 DOI: 10.1007/s10646-013-1047-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/03/2013] [Indexed: 05/11/2023]
Abstract
Risk assessment for mammals is currently based on external exposure measurements, but effects of toxicants are better correlated with the systemically available dose than with the external administered dose. So for risk assessment of pesticides, toxicokinetics should be interpreted in the context of potential exposure in the field taking account of the timescale of exposure and individual patterns of feeding. Internal concentration is the net result of absorption, distribution, metabolism and excretion (ADME). We present a case study for thiamethoxam to show how data from ADME study on rats can be used to parameterize a body burden model which predicts body residue levels after exposures to LD50 dose either as a bolus or eaten at different feeding rates. Kinetic parameters were determined in male and female rats after an intravenous and oral administration of (14)C labelled by fitting one-compartment models to measured pesticide concentrations in blood for each individual separately. The concentration of thiamethoxam in blood over time correlated closely with concentrations in other tissues and so was considered representative of pesticide concentration in the whole body. Body burden model simulations showed that maximum body weight-normalized doses of thiamethoxam were lower if the same external dose was ingested normally than if it was force fed in a single bolus dose. This indicates lower risk to rats through dietary exposure than would be estimated from the bolus LD50. The importance of key questions that should be answered before using the body burden approach in risk assessment, data requirements and assumptions made in this study are discussed in detail.
Collapse
|
22
|
Proskocil BJ, Bruun DA, Jacoby DB, van Rooijen N, Lein PJ, Fryer AD. Macrophage TNF-α mediates parathion-induced airway hyperreactivity in guinea pigs. Am J Physiol Lung Cell Mol Physiol 2013; 304:L519-29. [PMID: 23377347 DOI: 10.1152/ajplung.00381.2012] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Organophosphorus pesticides (OPs) are implicated in human asthma. We previously demonstrated that, at concentrations that do not inhibit acetylcholinesterase activity, the OP parathion causes airway hyperreactivity in guinea pigs as a result of functional loss of inhibitory M2 muscarinic receptors on parasympathetic nerves. Because macrophages are associated with asthma, we investigated whether macrophages mediate parathion-induced M2 receptor dysfunction and airway hyperreactivity. Airway physiology was measured in guinea pigs 24 h after a subcutaneous injection of parathion. Pretreatment with liposome-encapsulated clodronate induced alveolar macrophage apoptosis and prevented parathion-induced airway hyperreactivity in response to electrical stimulation of the vagus nerves. As determined by qPCR, TNF-α and IL-1β mRNA levels were increased in alveolar macrophages isolated from parathion-treated guinea pigs. Parathion treatment of alveolar macrophages ex vivo did not significantly increase IL-1β and TNF-α mRNA but did significantly increase TNF-α protein release. Consistent with these data, pretreatment with the TNF-α inhibitor etanercept but not the IL-1β receptor inhibitor anakinra prevented parathion-induced airway hyperreactivity and protected M2 receptor function. These data suggest a novel mechanism of OP-induced airway hyperreactivity in which low-level parathion activates macrophages to release TNF-α-causing M2 receptor dysfunction and airway hyperreactivity. These observations have important implications regarding therapeutic approaches for treating respiratory disease associated with OP exposures.
Collapse
Affiliation(s)
- Becky J Proskocil
- Division of Pulmonary and Critical Care Medicine, Oregon Health and Science University, Portland, OR 97239, USA.
| | | | | | | | | | | |
Collapse
|
23
|
López-Granero C, Cañadas F, Cardona D, Yu Y, Giménez E, Lozano R, Avila DS, Aschner M, Sánchez-Santed F. Chlorpyrifos-, diisopropylphosphorofluoridate-, and parathion-induced behavioral and oxidative stress effects: are they mediated by analogous mechanisms of action? Toxicol Sci 2013; 131:206-16. [PMID: 22986948 PMCID: PMC3537130 DOI: 10.1093/toxsci/kfs280] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 09/11/2012] [Indexed: 12/12/2022] Open
Abstract
Exposure to organophosphates (OPs) can lead to cognitive deficits and oxidative damage. Little is known about the relationship between behavioral deficits and oxidative stress within the context of such exposures. Accordingly, the first experiment was carried out to address this issue. Male Wistar rats were administered 250 mg/kg of chlorpyrifos (CPF), 1.5 mg/kg of diisopropylphosphorofluoridate (DFP), or 15 mg/kg of parathion (PTN). Spatial learning in the water maze task was evaluated, and F(2)-isoprostanes (F(2)-IsoPs) and prostaglandin (PGE(2)) were analyzed in the hippocampus. A second experiment was designed to determine the degree of inhibition of brain acetylcholinesterase (AChE) activity, both the soluble and particulate forms of the enzyme, and to assess changes in AChE gene expression given evidence on alternative splicing of the gene in response to OP exposures. In addition, brain acylpeptide hydrolase (APH) activity was evaluated as a second target for OP-mediated effects. In both experiments, rats were sacrificed at various points to determine the time course of OPs toxicity in relation to their mechanism of action. Results from the first experiment suggest cognitive and emotional deficits after OPs exposure, which could be due to, at least in part, increased F(2)-IsoPs levels. Results from the second experiment revealed inhibition of brain AChE and APH activity at various time points post OP exposure. In addition, we observed increased brain read-through splice variant AChE (AChE-R) mRNA levels after 48 h PTN exposure. In conclusion, this study provides novel data on the relationship between cognitive alterations and oxidative stress, and the diverse mechanisms of action along a temporal axis in response to OP exposures in the rat.
Collapse
Affiliation(s)
- Caridad López-Granero
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Fernando Cañadas
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Diana Cardona
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Yingchun Yu
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Estela Giménez
- Departamento de Biología Vegetal y Ecología, E. Politécnica Superior; and
| | - Rafael Lozano
- Departamento de Biología Aplicada, Centro de Investigación en Biotecnología Agroalimentaria, Universidad de Almería, La Cañada, 04120 Almería, Spain
| | - Daiana Silva Avila
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Michael Aschner
- Department of Pediatrics/Pediatric Toxicology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-0414
| | - Fernando Sánchez-Santed
- Departamento de Neurociencia y Ciencias de la Salud, Universidad de Almería, La Cañada, 04120 Almería, Spain
| |
Collapse
|
24
|
Burns CJ, McIntosh LJ, Mink PJ, Jurek AM, Li AA. Pesticide exposure and neurodevelopmental outcomes: review of the epidemiologic and animal studies. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2013; 16:127-283. [PMID: 23777200 PMCID: PMC3705499 DOI: 10.1080/10937404.2013.783383] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Assessment of whether pesticide exposure is associated with neurodevelopmental outcomes in children can best be addressed with a systematic review of both the human and animal peer-reviewed literature. This review analyzed epidemiologic studies testing the hypothesis that exposure to pesticides during pregnancy and/or early childhood is associated with neurodevelopmental outcomes in children. Studies that directly queried pesticide exposure (e.g., via questionnaire or interview) or measured pesticide or metabolite levels in biological specimens from study participants (e.g., blood, urine, etc.) or their immediate environment (e.g., personal air monitoring, home dust samples, etc.) were eligible for inclusion. Consistency, strength of association, and dose response were key elements of the framework utilized for evaluating epidemiologic studies. As a whole, the epidemiologic studies did not strongly implicate any particular pesticide as being causally related to adverse neurodevelopmental outcomes in infants and children. A few associations were unique for a health outcome and specific pesticide, and alternative hypotheses could not be ruled out. Our survey of the in vivo peer-reviewed published mammalian literature focused on effects of the specific active ingredient of pesticides on functional neurodevelopmental endpoints (i.e., behavior, neuropharmacology and neuropathology). In most cases, effects were noted at dose levels within the same order of magnitude or higher compared to the point of departure used for chronic risk assessments in the United States. Thus, although the published animal studies may have characterized potential neurodevelopmental outcomes using endpoints not required by guideline studies, the effects were generally observed at or above effect levels measured in repeated-dose toxicology studies submitted to the U.S. Environmental Protection Agency (EPA). Suggestions for improved exposure assessment in epidemiology studies and more effective and tiered approaches in animal testing are discussed.
Collapse
Affiliation(s)
| | | | - Pamela J. Mink
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Anne M. Jurek
- Allina Health Center for Healthcare Research & Innovation, Minneapolis, Minnesota, USA
| | - Abby A. Li
- Exponent, Inc., Menlo Park, California, USA
- Address correspondence to Abby A. Li, PhD, Attn: Rebecca Edwards, Exponent, Inc., Health Sciences Group, 149 Commonwealth Drive, Menlo Park, CA 94025-1133, USA. E-mail:
| |
Collapse
|
25
|
Goodman JE, Prueitt RL, Rhomberg LR. Incorporating Low-Dose Epidemiology Data in a Chlorpyrifos Risk Assessment. Dose Response 2012. [DOI: 10.2203/dose-response.12-022.goodman] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
USEPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing the current most sensitive endpoint, 10% inhibition of blood acetyl-cholinesterase (AChE). We previously conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure levels. The epidemiology studies fail to show consistent patterns; the few associations are likely attributable to alternative explanations. Human data are inappropriate for a dose-response assessment because biomarkers were only measured at one time point, may reflect exposure to other pesticides, and many values are at or below limits of quantification. When considered with pharmacokinetic data, however, these biomarkers provide information on exposure levels relative to those in experimental studies and indicate a margin of exposure of at least 1,000. Because animal data take into account the most sensitive lifestages, the use of AChE inhibition as a regulatory endpoint is protective of adverse effects in sensitive populations.
Collapse
|
26
|
Goodman JE, Prueitt RL, Rhomberg LR. Incorporating Low-dose Epidemiology Data in a Chlorpyrifos Risk Assessment. Dose Response 2012; 11:207-19. [PMID: 23930102 PMCID: PMC3682198 DOI: 10.2203/doseresponse.12022.goodman] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
USEPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing the current most sensitive endpoint, 10% inhibition of blood acetylcholinesterase (AChE). We previously conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure levels. The epidemiology studies fail to show consistent patterns; the few associations are likely attributable to alternative explanations. Human data are inappropriate for a dose-response assessment because biomarkers were only measured at one time point, may reflect exposure to other pesticides, and many values are at or below limits of quantification. When considered with pharmacokinetic data, however, these biomarkers provide information on exposure levels relative to those in experimental studies and indicate a margin of exposure of at least 1,000. Because animal data take into account the most sensitive lifestages, the use of AChE inhibition as a regulatory endpoint is protective of adverse effects in sensitive populations.
Collapse
|
27
|
Integration of epidemiology and animal neurotoxicity data for risk assessment. Neurotoxicology 2012; 33:823-32. [PMID: 22327016 DOI: 10.1016/j.neuro.2012.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/25/2012] [Accepted: 01/25/2012] [Indexed: 11/23/2022]
Abstract
Most human health risk assessments are based on animal studies that can be conducted under conditions where exposure to multiple doses of a single chemical can be controlled. Data from epidemiology studies also provide valuable information about human exposure and response to pesticides. Human studies have the potential of evaluating neurobehavioral and other outcomes that may be more difficult to evaluate in animals. The human data together with animal data can contribute to a weight-of-evidence analysis in the characterization of human health risks. Epidemiology data do, however, pose challenges with respect to characterizing human health risks. Similarly, animal data at high doses or routes of exposure not typical for humans also pose challenges to dose-response evaluations needed for risk assessments. This paper summarizes some of the presentations given at a symposium held at the Xi'an, China, International Neurotoxicology Conference held in June 2011. This symposium brought together scientists from government, industry and academia to discuss approaches to evaluating and conducting animal and human neurotoxicity studies for risk assessment purposes, using the pesticides paraquat and chlorpyrifos as case studies.
Collapse
|
28
|
Khokhar JY, Tyndale RF. Rat Brain CYP2B-Enzymatic Activation of Chlorpyrifos to the Oxon Mediates Cholinergic Neurotoxicity. Toxicol Sci 2012; 126:325-35. [DOI: 10.1093/toxsci/kfs029] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
29
|
Speed HE, Blaiss CA, Kim A, Haws ME, Melvin NR, Jennings M, Eisch AJ, Powell CM. Delayed reduction of hippocampal synaptic transmission and spines following exposure to repeated subclinical doses of organophosphorus pesticide in adult mice. Toxicol Sci 2012; 125:196-208. [PMID: 21948870 PMCID: PMC3247802 DOI: 10.1093/toxsci/kfr253] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/19/2011] [Indexed: 12/12/2022] Open
Abstract
Agricultural and household organophosphorus (OP) pesticides inhibit acetylcholinesterase (AchE), resulting in increased acetylcholine (Ach) in the central nervous system. In adults, acute and prolonged exposure to high doses of AchE inhibitors causes severe, clinically apparent symptoms, followed by lasting memory impairments and cognitive dysfunction. The neurotoxicity of repeated environmental exposure to lower, subclinical doses of OP pesticides in adults is not as well studied. However, repeated exposure to acetylcholinesterase inhibitors, such as chlorpyrifos (CPF), pyridostigmine, and sarin nerve agent, has been epidemiologically linked to delayed onset symptoms in Gulf War Illness and may be relevant to environmental exposure in farm workers among others. We treated adult mice with a subclinical dose (5 mg/kg) of CPF for 5 consecutive days and investigated hippocampal synaptic transmission and spine density early (2-7 days) and late (3 months) after CPF administration. No signs of cholinergic toxicity were observed at any time during or after treatment. At 2-7 days after the last injection, we found increased synaptic transmission in the CA3-CA1 region of the hippocampus of CPF-treated mice compared with controls. In contrast, at 3 months after CPF administration, we observed a 50% reduction in synaptic transmission likely due to a corresponding 50% decrease in CA1 pyramidal neuron synaptic spine density. This study is the first to identify a biphasic progression of synaptic abnormalities following repeated OP exposure and suggests that even in the absence of acute cholinergic toxicity, repeated exposure to CPF causes delayed persistent damage to the adult brain in vivo.
Collapse
MESH Headings
- Acetylcholinesterase/metabolism
- Animals
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/enzymology
- CA1 Region, Hippocampal/pathology
- CA1 Region, Hippocampal/physiopathology
- CA3 Region, Hippocampal/drug effects
- CA3 Region, Hippocampal/enzymology
- CA3 Region, Hippocampal/pathology
- CA3 Region, Hippocampal/physiopathology
- Cell Count
- Chlorpyrifos/toxicity
- Dendritic Spines/drug effects
- Dendritic Spines/pathology
- Dose-Response Relationship, Drug
- Hippocampus/drug effects
- Hippocampus/enzymology
- Hippocampus/pathology
- Hippocampus/physiopathology
- Male
- Mice
- Mice, Inbred C57BL
- Patch-Clamp Techniques
- Pesticides/toxicity
- Pyramidal Cells/drug effects
- Pyramidal Cells/pathology
- Synaptic Transmission/drug effects
- Time Factors
Collapse
Affiliation(s)
| | | | - Ahleum Kim
- Department of Neurology & Neurotherapeutics
| | - Michael E. Haws
- Department of Neurology & Neurotherapeutics
- Neuroscience Graduate Program
| | - Neal R. Melvin
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | | | - Amelia J. Eisch
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| | - Craig M. Powell
- Department of Neurology & Neurotherapeutics
- Neuroscience Graduate Program
- Department of Psychiatry, The University of Texas Southwestern Medical Center, Dallas, Texas 75390-8813
| |
Collapse
|
30
|
Li AA, Lowe KA, McIntosh LJ, Mink PJ. Evaluation of epidemiology and animal data for risk assessment: chlorpyrifos developmental neurobehavioral outcomes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2012; 15:109-184. [PMID: 22401178 PMCID: PMC3386549 DOI: 10.1080/10937404.2012.645142] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Developmental neurobehavioral outcomes attributed to exposure to chlorpyrifos (CPF) obtained from epidemiologic and animal studies published before June 2010 were reviewed for risk assessment purposes. For epidemiological studies, this review considered (1) overall strength of study design, (2) specificity of CPF exposure biomarkers, (3) potential for bias, and (4) Hill guidelines for causal inference. In the case of animal studies, this review focused on evaluating the consistency of outcomes for developmental neurobehavioral endpoints from in vivo mammalian studies that exposed dams and/or offspring to CPF prior to weaning. Developmental neuropharmacologic and neuropathologic outcomes were also evaluated. Experimental design and methods were examined as part of the weight of evidence. There was insufficient evidence that human developmental exposures to CPF produce adverse neurobehavioral effects in infants and children across different cohort studies that may be relevant to CPF exposure. In animals, few behavioral parameters were affected following gestational exposures to 1 mg/kg-d but were not consistently reported by different laboratories. For postnatal exposures, behavioral effects found in more than one study at 1 mg/kg-d were decreased errors on a radial arm maze in female rats and increased errors in males dosed subcutaneously from postnatal day (PND) 1 to 4. A similar finding was seen in rats exposed orally from PND 1 to 21 with incremental dose levels of 1, 2, and 4 mg/kg-d, but not in rats dosed with constant dose level of 1 mg/kg-d. Neurodevelopmental behavioral, pharmacological, and morphologic effects occurred at doses that produced significant brain or red blood cell acetylcholinesterase inhibition in dams or offspring.
Collapse
Affiliation(s)
- Abby A Li
- Exponent Health Sciences Group, Menlo Park, California, USA.
| | | | | | | |
Collapse
|
31
|
Terry AV, Beck WD, Warner S, Vandenhuerk L, Callahan PM. Chronic impairments in spatial learning and memory in rats previously exposed to chlorpyrfos or diisopropylfluorophosphate. Neurotoxicol Teratol 2011; 34:1-8. [PMID: 22024239 DOI: 10.1016/j.ntt.2011.08.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 10/16/2022]
Abstract
The acute toxicity of organophosphates (OPs) has been studied extensively; however, much less attention has been given to the subject of repeated exposures that are not associated with overt signs of toxicity (i.e., subthreshold exposures). The objective of this study was to determine if the protracted spatial learning impairments we have observed previously after repeated subthreshold exposures to the insecticide chlorpyrifos (CPF) or the alkylphosphate OP, diisopropylfluorophosphate (DFP) persisted for longer periods after exposure. Male Wistar rats (beginning at two months of age) were initially injected subcutaneously with CPF (10.0 or 18.0mg/kg) or DFP (0.25 or 0.75 mg/kg) every other day for 30 days. After an extended OP-free washout period (behavioral testing begun 50 days after the last OP exposure), rats previously exposed to CPF, but not DFP, were impaired in a radial arm maze (RAM) win-shift task as well as a delayed non-match to position procedure. Later experiments (i.e., beginning 140 days after the last OP exposure) revealed impairments in the acquisition of a water maze hidden platform task associated with both OPs. However, only rats previously exposed to DFP were impaired in a second phase of testing when the platform location was changed (indicative of deficits of cognitive flexibility). These results indicate, therefore, that repeated, subthreshold exposures to CPF and DFP may lead to chronic deficits in spatial learning and memory (i.e., long after cholinesterase inhibition has abated) and that insecticide and alkylphosphate-based OPs may have differential effects depending on the cognitive domain evaluated.
Collapse
Affiliation(s)
- A V Terry
- Department of Pharmacology and Toxicology, Georgia Health Sciences University, Augusta, Georgia 30912, USA.
| | | | | | | | | |
Collapse
|
32
|
Development of a source-to-outcome model for dietary exposures to insecticide residues: An example using chlorpyrifos. Regul Toxicol Pharmacol 2011; 61:82-92. [DOI: 10.1016/j.yrtph.2011.06.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 06/11/2011] [Accepted: 06/13/2011] [Indexed: 11/21/2022]
|
33
|
Ellison CA, Smith JN, Lein PJ, Olson JR. Pharmacokinetics and pharmacodynamics of chlorpyrifos in adult male Long-Evans rats following repeated subcutaneous exposure to chlorpyrifos. Toxicology 2011; 287:137-44. [PMID: 21708215 PMCID: PMC3176336 DOI: 10.1016/j.tox.2011.06.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/31/2011] [Accepted: 06/11/2011] [Indexed: 01/11/2023]
Abstract
Chlorpyrifos (CPF) is a commonly used organophosphorus pesticide. Several pharmacokinetic and pharmacodynamic studies have been conducted in rats in which CPF was administered as a single bolus dose. However, there is limited data regarding the pharmacokinetics and pharmacodynamics following daily exposure. Since occupational exposures often consist of repeated, daily exposures, there is a need to evaluate the pharmacokinetics and pharmacodynamics of CPF under exposure conditions which more accurately reflect real world human exposures. In this study, the pharmacokinetics and pharmacodynamics of CPF were assessed in male Long-Evans rats exposed daily to CPF (0, 3 or 10mg/kg/day, s.c. in peanut oil) over a 10 day study period. Throughout the study, multiple pharmacokinetic (urinary TCPy levels and tissue CPF and metabolite levels) and pharmacodynamic (blood and brain AChE activity) determinants were measured. Average blood AChE activity on day 10 was 54% and 33% of baseline among animals in the 3 and 10mg/kg/day CPF treatment groups, respectively, while average brain AChE activity was 67% and 28% of baseline. Comparable dose-response relationships between brain AChE inhibition and blood AChE inhibition, suggests that blood AChE activity is a valid biomarker of brain AChE activity. The pharmacokinetic and pharmacodynamic measures collected in this study were also used to optimize a rat physiologically based pharmacokinetic/pharmacodynamic (PBPK/PD) model for multiple s.c. exposures to CPF based on a previously published rat PBPK/PD model for CPF following a single bolus injection. This optimized model will be useful for determining pharmacokinetic and pharmacodynamic responses over a wide range of doses and durations of exposure, which will improve extrapolation of results between rats and humans.
Collapse
Affiliation(s)
- Corie A Ellison
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
34
|
Foxenberg RJ, Ellison CA, Knaak JB, Ma C, Olson JR. Cytochrome P450-specific human PBPK/PD models for the organophosphorus pesticides: chlorpyrifos and parathion. Toxicology 2011; 285:57-66. [PMID: 21514354 DOI: 10.1016/j.tox.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 03/30/2011] [Accepted: 04/05/2011] [Indexed: 10/18/2022]
Abstract
Organophosphorus pesticides (OPs) remain a potential concern to human health because of their continuing use worldwide. Phosphororthioate OPs like chlorpyrifos and parathion are directly activated and detoxified by various cytochrome P450s (CYPs), with the primary CYPs involved being CYP2B6 and CYP2C19. The goal of the current study was to convert a previously reported human pharmacokinetic and pharmacodynamic (PBPK/PD) model for chlorpyrifos, that used chlorpyrifos metabolism parameters from rat liver, into a human CYP based/age-specific model using recombinant human CYP kinetic parameters (V(max), K(m)), hepatic CYP content and plasma binding measurements to estimate new values for acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition and to use the model as a template for the development of a comparable parathion PBPK/PD model. The human CYP based/age-specific PBPK/PD models were used to simulate single oral exposures of adults (19 year old) and infants (1 year) to chlorpyrifos (10,000, 1000 and 100 μg/kg) or parathion (100, 25 and 5 μg/kg). Model simulations showed that there is an age dependency in the amount of blood cholinesterase inhibition observed, however additional age-dependent data are needed to further optimize age-specific human PBPK/PD modeling for these OP compounds. PBPK/PD model simulations estimated that a 4-fold increase or decrease in relative CYP2B6 and CYP2C19 content would produce a 9-22% inhibition in blood AChE activity following exposure of an adult to chlorpyrifos (1000 μg/kg). Similar model simulation produced an 18-22% inhibition in blood AChE activity following exposure of an adult to parathion (25 μg/kg). Individuals with greater CYP2B6 content and lower CYP2C19 content were predicted to be most sensitive to both OPs. Changes in hepatic CYP2B6 and CYP2C19 content had more of an influence on cholinesterase inhibition for exposures to chlorpyrifos than parathion, which agrees with previously reported literature that these CYPs are more reaction biased for desulfurization (activation) and dearylation (detoxification) of chlorpyrifos compared to parathion. The data presented here illustrate how PBPK/PD models with human enzyme-specific parameters can assist ongoing risk assessment efforts and aid in the identification of sensitive individuals and populations.
Collapse
Affiliation(s)
- Robert J Foxenberg
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14214, USA
| | | | | | | | | |
Collapse
|
35
|
Lee S, Poet TS, Smith JN, Hjerpe AL, Gunawan R, Timchalk C. Impact of repeated nicotine and alcohol coexposure on in vitro and in vivo chlorpyrifos dosimetry and cholinesterase inhibition. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:1334-1350. [PMID: 21899407 DOI: 10.1080/15287394.2011.567958] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)). Hepatic microsomes were prepared from groups of naive, ethanol-only (1 g/kg/d, 7 d, po), and ethanol + nicotine (1 mg/kg/d 7 d, sc)-treated rats, and the in vitro metabolism of CPF was evaluated. For in vivo studies, rats were treated with saline or ethanol (1 g/kg/d, po) + nicotine (1 mg/kg/d, sc) in addition to CPF (1 or 5 mg/kg/d, po) for 7 d. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), in blood and urine and the plasma ChE and brain acetylcholinesterase (AChE) activities were measured in rats. There were differences in pharmacokinetics, with higher TCPy peak concentrations and increased blood TCPy AUC in ethanol + nicotine groups compared to CPF only (approximately 1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain AChE activities after ethanol + nicotine treatments showed significantly less inhibition following repeated 5 mg CPF/kg dosing compared to CPF only (96 ± 13 and 66 ± 7% of naive at 4 h post last CPF dosing, respectively). Although brain AChE activity was minimal inhibited for the 1-mg CPF/kg/d groups, the ethanol + nicotine pretreatment resulted in a similar trend (i.e., slightly less inhibition). No marked differences were observed in plasma ChE activities due to the alcohol + nicotine treatments. In vitro, CPF metabolism was not markedly affected by repeated ethanol or both ethanol + nicotine exposures. Compared with a previous study of nicotine and CPF exposure, there were no apparent additional exacerbating effects due to ethanol coexposure.
Collapse
Affiliation(s)
- S Lee
- Food and Drug Administration, Atlanta, Georgia, USA
| | | | | | | | | | | |
Collapse
|
36
|
Jacobson SM, Birkholz DA, McNamara ML, Bharate SB, George KM. Subacute developmental exposure of zebrafish to the organophosphate pesticide metabolite, chlorpyrifos-oxon, results in defects in Rohon-Beard sensory neuron development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:101-11. [PMID: 20701988 PMCID: PMC2940976 DOI: 10.1016/j.aquatox.2010.07.015] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 07/07/2010] [Accepted: 07/12/2010] [Indexed: 05/07/2023]
Abstract
Organophosphate pesticides (OPs) are environmental toxicants known to inhibit the catalytic activity of acetylcholinesterase (AChE) resulting in hypercholinergic toxicity symptoms. In developing embryos, OPs have been hypothesized to affect both cholinergic and non-cholinergic pathways. In order to understand the neurological pathways affected by OP exposure during embryogenesis, we developed a subacute model of OP developmental exposure in zebrafish by exposing embryos to a dose of the OP metabolite chlorpyrifos-oxon (CPO) that is non-lethal and significantly inhibited AChE enzymatic activity compared to control embryos (43% at 1 day post-fertilization (dpf) and 11% at 2dpf). Phenotypic analysis of CPO-exposed embryos demonstrated that embryonic growth, as analyzed by gross morphology, was normal in 85% of treated embryos. Muscle fiber formation was similar to control embryos as analyzed by birefringence, and nicotinic acetylcholine receptor (nAChR) cluster formation was quantitatively similar to control embryos as analyzed by α-bungarotoxin staining. These results indicate that partial AChE activity during the early days of zebrafish development is sufficient for general development, muscle fiber, and nAChR development. Rohon-Beard (RB) sensory neurons exhibited aberrant peripheral axon extension and gene expression profiling suggests that several genes responsible for RB neurogenesis are down-regulated. Stability of CPO in egg water at 28.5 °C was determined by HPLC-UV-MS analysis which revealed that the CPO concentration used in our studies hydrolyzes in egg water with a half-life of 1 day. The result that developmental CPO exposure affected RB neurogenesis without affecting muscle fiber or nAChR cluster formation demonstrates that zebrafish are a strong model system for characterizing subtle neurological pathologies resulting from environmental toxicants.
Collapse
Affiliation(s)
- Saskia M. Jacobson
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, U.S.A
| | - Denise A. Birkholz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, U.S.A
| | - Marcy L. McNamara
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, U.S.A
| | - Sandip B. Bharate
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, U.S.A
| | - Kathleen M. George
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, U.S.A
- To whom correspondence should be addressed: Dr. Kathleen M. George, Department of Biomedical and Pharmaceutical Sciences, Skaggs 481, 32 Campus Drive, University of Montana, Missoula, MT, 59812, U.S.A., Phone: 001-406-243-5876, Fax: 001-406-243-5228,
| |
Collapse
|
37
|
Zhang Y, Liu CZ, Li XJ, Wang ZL, Zhang HT, Miao ZG. Structures and energies of the radicals and anions generated from chlorpyrifos. J Mol Model 2010; 16:1369-76. [PMID: 20146076 DOI: 10.1007/s00894-010-0648-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Accepted: 12/19/2009] [Indexed: 11/27/2022]
Abstract
The radicals and anions generated from chlorpyrifos by removing a hydrogen atom have been investigated using the hybrid density functional B3PW91 method. The results show that all the radicals have been classified as three groups and their stability order is methylene (radical 1, 3, 5, and 7) > methyl (radical 9, 11 and 13) > ring (15); the anions have the relative energetic order: methyl > methylene > ring. Moreover, some decomposition reactions are also reported. The large HOMO-LUMO gaps indicate that both radicals and anions are predicted to be high-kinetic stable molecules. We also find that radicals 9, 11 and 13 have the highest AEAs and anions 2, 4 and 6 have higher VDEs. Additionally, natural population analysis charges show that there is the lowest Deltaq (0.14) for the C7 and C9 atoms. We hope that our theoretical results may provide a reference for further experiment and practical application.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Animal Science, Southwest University, Rongchang, Chongqing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
38
|
Busby-Hjerpe AL, Campbell JA, Smith JN, Lee S, Poet TS, Barr DB, Timchalk C. Comparative pharmacokinetics of chlorpyrifos versus its major metabolites following oral administration in the rat. Toxicology 2010; 268:55-63. [DOI: 10.1016/j.tox.2009.11.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 11/02/2009] [Accepted: 11/28/2009] [Indexed: 10/20/2022]
|
39
|
Smith JN, Wang J, Lin Y, Timchalk C. Pharmacokinetics of the Chlorpyrifos Metabolite 3,5,6-Trichloro-2-Pyridinol (TCPy) in Rat Saliva. Toxicol Sci 2009; 113:315-25. [DOI: 10.1093/toxsci/kfp283] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|