1
|
Wang X, Zhang X, Zhang J, Zhou Y, Wang F, Wang Z, Li X. Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. Crit Rev Biotechnol 2025; 45:727-742. [PMID: 39266251 DOI: 10.1080/07388551.2024.2391881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/14/2024]
Abstract
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
Collapse
Affiliation(s)
- Xun Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Xinyi Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Jia Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yujunjie Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Fei Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhiguo Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Laboratory for the Chemistry and Utilization of Agro-Forest Biomass, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
2
|
Verma R, Zeyaullah M, Singh V, Saxena PS, Koch B, Kumar M. Chitosan-Functionalized Fluorescent Calcium Carbonate Nanoparticle Loaded with Methotrexate: Future Theranostics for Triple Negative Breast Cancer. ACS Biomater Sci Eng 2025; 11:981-999. [PMID: 39883480 DOI: 10.1021/acsbiomaterials.4c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Herein, fluorescent calcium carbonate nanoclusters encapsulated with methotrexate (Mtx) and surface functionalized with chitosan (25 nm) (@Calmat) have been developed for the imaging and treatment of triple-negative breast cancer (TNBC). These biocompatible, pH-sensitive nanoparticles demonstrate significant potential for targeted therapy and diagnostic applications. The efficacy of nanoparticles (NPs) was evaluated in MDA-MB-231 TNBC cell lines. The enhanced permeability and retention effect facilitated the accumulation of NPs, in tumor-bearing rats, as confirmed by in vivo fluorescence imaging. Treatment with @Calmat resulted in a marked reduction in pro-inflammatory cytokines, with levels of IL-6 (1225 ± 67 pg/mL), IL-1β (379 ± 69 pg/mL), and TNF-α (14.1 ± 2 pg/mL), in contrast to the diseased control group (IL-6: 2223 ± 99; IL-1β: 1632 ± 90; TNF-α: 40 ± 3 pg/mL). A similar trend was observed for liver and kidney function biomarkers. Mechanistic studies revealed that @Calmat treatment activates the Bax/Bcl-2 signaling pathway, leading to cell cycle arrest in the G1 phase and subsequent late-phase apoptosis. As a result, the tumor inhibition rate reached 88%, with 80% of treated rats surviving beyond 100 days. These findings highlight the strong potential of @Calmat as a dual-function theranostic agent for the management of TNBC.
Collapse
Affiliation(s)
- Rinki Verma
- School of Biomedical Engineering, IIT (BHU), Varanasi 221005, India
| | - Md Zeyaullah
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Preeti Suman Saxena
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Manoj Kumar
- Nano 2 Micro Material Design Lab, Department of Chemical Engineering and Technology, IIT (BHU), Varanasi 221005, India
| |
Collapse
|
3
|
Bagheri S, Rashno M, Salehi I, Karimi SA, Raoufi S, Komaki A. Protective effects of geraniol in a male rat model of Alzheimer's disease: A behavioral, biochemical, and histological study. J Alzheimers Dis 2024; 102:646-658. [PMID: 39587789 DOI: 10.1177/13872877241290695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) as a neurodegenerative disease can cause behavioral impairments due to oxidative stress. Aging and oxidative conditions are some AD risk factors. OBJECTIVE We assessed the influence of geraniol (GR), an acyclic monoterpene alcohol, on behavioral functions, hippocampal oxidative status, and histological alterations in AD rats induced by amyloid-β (Aβ). METHODS Male Wistar rats (n = 70) were randomly allocated to the control, sham, AD, control-GR (100 mg/kg; per oral: P.O.), AD-GR (100 mg/kg; P.O.; treatment), GR-AD (100 mg/kg; P.O.; pretreatment), and GR-AD-GR (100 mg/kg; P.O.; pretreatment + treatment) groups. GR administration was done for four continuous weeks. After treatments, novel object recognition (NOR) and Morris water maze (MWM) tests assessed the animals' behavior. Then, hippocampal specimens were collected for biochemical assessment. Finally, the number of intact neurons was identified in the hippocampus using hematoxylin and eosin staining. RESULTS Aβ microinjection increased learning and memory deficits in both NOR and MWM tests, oxidative stress status, and neuronal loss. Oral GR administration improved behavioral deficits and reduced oxidative stress status and neuronal loss in the Aβ-infused animals. CONCLUSIONS GR ameliorates behavioral impairments through a decrease in neuronal degeneration and oxidative stress.
Collapse
Affiliation(s)
- Shokufeh Bagheri
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Iraj Salehi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Seyed Asaad Karimi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Safoura Raoufi
- Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
4
|
de Sousa DP, de Assis Oliveira F, Arcanjo DDR, da Fonsêca DV, Duarte ABS, de Oliveira Barbosa C, Ong TP, Brocksom TJ. Essential Oils: Chemistry and Pharmacological Activities-Part II. Biomedicines 2024; 12:1185. [PMID: 38927394 PMCID: PMC11200837 DOI: 10.3390/biomedicines12061185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of essential oils and their components in the industrial sector is attributed to their chemical characteristics and their application in the development of products in the areas of cosmetology, food, and pharmaceuticals. However, the pharmacological properties of this class of natural products have been extensively investigated and indicate their applicability for obtaining new drugs. Therefore, this review discusses the use of these oils as starting materials to synthesize more complex molecules and products with greater commercial value and clinic potential. Furthermore, the antiulcer, cardiovascular, and antidiabetic mechanisms of action are discussed. The main mechanistic aspects of the chemopreventive properties of oils against cancer are also presented. The data highlight essential oils and their derivatives as a strategic chemical group in the search for effective therapeutic agents against various diseases.
Collapse
Affiliation(s)
| | | | - Daniel Dias Rufino Arcanjo
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Diogo Vilar da Fonsêca
- Collegiate of Medicine, Federal University of São Francisco Valley, Bahia 48607-190, Brazil;
| | - Allana Brunna S. Duarte
- Laboratory of Pharmaceutical Chemistry, Federal University of Paraíba, João Pessoa 58051-900, Brazil;
| | - Celma de Oliveira Barbosa
- LAFMOL—Laboratory of Functional and Molecular Studies in Physiopharmacology, Department of Biophysics and Physiology, Federal University of Piaui, Teresina 64049-550, Brazil; (D.D.R.A.); (C.d.O.B.)
| | - Thomas Prates Ong
- Department of Food Science and Nutrition, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo 05508-000, Brazil;
- Food Research Center (FoRC), University of São Paulo, São Paulo 05508-000, Brazil
| | - Timothy John Brocksom
- Department of Chemistry, Federal University of São Carlos, São Carlos 13565-905, Brazil;
| |
Collapse
|
5
|
Yu H, Ning N, He F, Xu J, Zhao H, Duan S, Zhao Y. Targeted Delivery of Geraniol via Hyaluronic Acid-Conjugation Enhances Its Anti-Tumor Activity Against Prostate Cancer. Int J Nanomedicine 2024; 19:155-169. [PMID: 38204602 PMCID: PMC10778230 DOI: 10.2147/ijn.s444815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background Targeted delivery systems have been developed to improve cancer treatment by reducing side effects and enhancing drug efficacy. Geraniol, a natural product, has demonstrated promising anti-cancer effects in various cancer types, including prostate cancer, which is the most commonly diagnosed cancer in men. Hyaluronic acid (HA), a natural carrier targeting CD44-positive prostate cancer cells, can be utilized in a targeted delivery system. Purpose This study investigated the efficacy of a conjugate of HA and geraniol linked via a disulfide bond linker (HA-SS-Geraniol) in prostate cancer. Materials and Methods The cytotoxicity of HA-SS-Geraniol was evaluated on human PC-3 prostate cancer cells. Flow cytometry was used to assess its effects on mitochondrial membrane potential, apoptosis, and cell cycle arrest. Additionally, proteomic analysis was conducted to explore the underlying mechanism of action induced by HA-SS-Geraniol treatment. A subcutaneous xenograft tumor model was established in nude mice to evaluate the toxicity and efficacy of HA-SS-Geraniol in vivo. Results The results demonstrated that HA-SS-Geraniol exhibited potent cytotoxicity against PC-3 prostate cancer cells by inducing mitochondrial membrane potential loss and apoptosis in vitro. The proteomic analysis further supported the hypothesis that HA-SS-Geraniol induces cell death through mitochondria-mediated apoptosis, as evidenced by differential protein expression. The in vivo mouse model confirmed the safety of HA-SS-Geraniol and its ability to inhibit tumor growth. Conclusion HA-SS-Geraniol holds promise as a biologically safe and potentially effective therapeutic agent for prostate cancer treatment. Its targeted delivery system utilizing HA as a carrier shows potential for improving the efficacy of geraniol in cancer therapy.
Collapse
Affiliation(s)
- Han Yu
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| | - Na Ning
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
| | - Fujin He
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Jiao Xu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325001, People’s Republic of China
| | - Han Zhao
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Shaofeng Duan
- School of Pharmacy, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| | - Yunqi Zhao
- College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, 325060, People’s Republic of China
- Wenzhou Municipal Key Laboratory for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Wenzhou, Zhejiang, 325060, People’s Republic of China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, Union, NJ, 07083, USA
| |
Collapse
|
6
|
Yeasmin MS, Uddin MJ, Dey SS, Barmon J, Ema NT, Rana GM, Rahman MM, Begum M, Ferdousi L, Ahmed S, Khan MS, Khatun MH, Muzahid AA. Optimization of green microwave-assisted extraction of essential oil from lemon (Citrus limon) leaves: Bioactive, antioxidant and antimicrobial potential. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2024; 8:100413. [DOI: 10.1016/j.crgsc.2024.100413] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
|
7
|
Álvarez-González B, Porras-Quesada P, Arenas-Rodríguez V, Tamayo-Gómez A, Vázquez-Alonso F, Martínez-González LJ, Hernández AF, Álvarez-Cubero MJ. Genetic variants of antioxidant and xenobiotic metabolizing enzymes and their association with prostate cancer: A meta-analysis and functional in silico analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165530. [PMID: 37453710 DOI: 10.1016/j.scitotenv.2023.165530] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/23/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The development and progression of prostate cancer (PCa) depends on complex interactions between genetic, environmental and dietary factors that modulate the carcinogenesis process. Interactions between chemical exposures and genetic polymorphisms in genes encoding xenobiotic metabolizing enzymes (XME), antioxidant enzymes and DNA repair enzymes have been reported as the main drivers of cancer. Thus, a better understanding of the causal risk factors for PCa will provide avenues to identify men at increased risk and will contribute to develop effective detection and prevention methods. We performed a meta-analysis on 17,518 cases and 42,507 controls obtained from 42 studies to determine whether seven SNPs and one CNV pertaining to oxidative stress, xenobiotic detoxification and DNA repair enzymes are associated with the risk of PCa (GPX1 (rs1050450), XRCC1 (rs25487), PON1 (rs662), SOD2 (rs4880), CAT (rs1001179), GSTP1 (rs1695) and CNV GSTM1). A significant increased risk of PCa was found for SOD2 (rs4880) ORGG+GA vs. AA 1.08; 95%CI 1.01-1.15, CAT (rs1001179) ORTT vs. TC+CC 1.39; 95%CI 1.17-1.66, PON1 (rs662) ORCT vs. CC+TT 1.17; 95%CI 1.01-1.35, GSTP1 (rs1695) ORGG vs. GA+AA 1.20; 95%CI 1.05-1.38 and GSTM1 (dual null vs. functional genotype) ORN vs. NN1+NN2 1.34; 95%CI 1.10-1.64. The meta-analysis showed that the CNV GSTM1, and the SNPs GSTP1 (rs1695) and CAT (rs1001179) are strongly associated with a greater risk of PCa and, to a lesser extent, the genetic variants SOD2 (rs4880) and PON1 (rs662). Although several antioxidant enzymes and XME play an important role in the PCa development, other risk factors such as chemical exposures should also be considered to gain insight on PCa risk. The functional in silico analysis showed that the genetic variants studied had no clinical implication regarding malignancy, except for GPX1 (rs1050450) SNP.
Collapse
Affiliation(s)
- Beatriz Álvarez-González
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Patricia Porras-Quesada
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Verónica Arenas-Rodríguez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain
| | - Alba Tamayo-Gómez
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Fernando Vázquez-Alonso
- Urology Department, University Hospital Virgen de las Nieves, Av. de las Fuerzas Armadas 2, Granada, Spain
| | - Luis Javier Martínez-González
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain.
| | - Antonio F Hernández
- University of Granada, Legal Medicine and Toxicology Department, Faculty of Medicine, PTS, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - María Jesús Álvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, PTS Granada, Granada, Spain; University of Granada, Department of Biochemistry and Molecular Biology III and Immunology, Faculty of Medicine, PTS, Granada, Spain; Biosanitary Research Institute, ibs.GRANADA, Granada, Spain
| |
Collapse
|
8
|
Ben Ammar R. Potential Effects of Geraniol on Cancer and Inflammation-Related Diseases: A Review of the Recent Research Findings. Molecules 2023; 28:molecules28093669. [PMID: 37175079 PMCID: PMC10180430 DOI: 10.3390/molecules28093669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/01/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023] Open
Abstract
Geraniol (GNL), a natural monoterpene, is found in many essential oils of fruits, vegetables, and herbs, including lavender, citronella, lemongrass, and other medicinal and aromatic plants. GNL is commonly used by the cosmetic and food industries and has shown a wide spectrum of pharmacological activities including anti-inflammatory, anticancer, antimicrobial, antioxidant, and neuroprotective activities. It represents a potential anti-inflammatory agent and a promising cancer chemopreventive agent, as it has been found to be effective against a broad range of cancers, including colon, prostate, breast, lung, skin, kidney, liver, and pancreatic cancer. Moreover, GNL scavenges free radicals and preserves the activity of antioxidant enzymes. In addition, GNL induces apoptosis and cell cycle arrest, modulates multiple molecular targets, including p53 and STAT3, activates caspases, and modulates inflammation via transcriptional regulation. In the present study, different modes of action are described for GNL's activity against cancer and inflammatory diseases. This compound protects various antioxidant enzymes, such as catalase, glutathione-S-transferase, and glutathione peroxidase. Experiments using allergic encephalomyelitis, diabetes, asthma, and carcinogenesis models showed that GNL treatment had beneficial effects with low toxicity. GNL has been shown to be effective in animal models and tumor cell lines, but there have not been any clinical studies carried out for it. The aim of the present review is to provide updated data on the potential effects of GNL on cancer and inflammation, and to enhance our understanding of molecular targets, involved pathways, and the possible use of GNL for clinical studies and therapeutic purposes in the treatment of cancer and inflammation-related diseases.
Collapse
Affiliation(s)
- Rebai Ben Ammar
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj-Cedria, Technopole of Borj-Cedria, P.O. Box 901, Hammam-Lif 2050, Tunisia
| |
Collapse
|
9
|
Renal cell carcinoma management: A step to nano-chemoprevention. Life Sci 2022; 308:120922. [PMID: 36058262 DOI: 10.1016/j.lfs.2022.120922] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/12/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Renal cell carcinoma (RCC) is one of the most common kidney cancers, responsible for nearly 90 % of all renal malignancies. Despite the availability of many treatment strategies, RCC still remains to be an incurable disease due to its resistivity towards conventional therapies. Nanotechnology is an emerging field of science that offers newer possibilities in therapeutics including cancer medicine, specifically by targeted delivery of anticancer drugs. Several phytochemicals are known for their anti-cancer properties and have been regarded as chemopreventive agents. However, the hydrophobic nature of many phytochemicals decreases its bioavailability and distribution, thus showing limited therapeutic effect. Application of nanotechnology to enhance chemoprevention is an effective strategy to increase the bioavailability of phytochemicals and thereby its therapeutic efficacy. The present review focuses on the utility of nanotechnology in RCC treatment and chemopreventive agents of RCC. We have also visualized the future prospects of nanomolecules in the prevention and cure of RCC.
Collapse
|
10
|
Silva GDSE, de Jesus Marques JN, Moreira Linhares EP, Bonora CM, Costa ÉT, Saraiva MF. Review of anticancer activity of monoterpenoids: Geraniol, nerol, geranial and neral. Chem Biol Interact 2022; 362:109994. [DOI: 10.1016/j.cbi.2022.109994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/24/2022] [Indexed: 01/18/2023]
|
11
|
Huang Y, Liu C, Song X, An M, Liu M, Yao L, Famurewa AC, Olatunji OJ. Antioxidant and Anti-inflammatory Properties Mediate the Neuroprotective Effects of Hydro-ethanolic Extract of Tiliacora triandra Against Cisplatin-induced Neurotoxicity. J Inflamm Res 2021; 14:6735-6748. [PMID: 34916822 PMCID: PMC8668253 DOI: 10.2147/jir.s340176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background Cisplatin (CDDP) is an efficacious anticancer agent used widely in chemotherapy despite its severe side effect related to neurotoxicity. Redox imbalance and inflammatory mechanism have been implicated in the pathophysiology of CDDP-induced neurotoxicity. Herein, we investigated whether Tiliacora triandra (TT) extract could inhibit CDDP-induced redox-mediated neurotoxicity and behavioural deficit in rats. Materials and Methods CDDP-induced redox-mediated neurotoxicity and behavioral deficit in rats. Rats were administered TT for five consecutive weeks (250 and 500 mg/kg bw), while weekly i.p. injection of CDDP commenced on the second week (2.5 mg/kg bw) of the TT administration. Results CCDDP caused significant body weight reduction and cognitive diminution as revealed by Morris water maze and Y maze tests. In the CDDP-induced cognitive impairment (CICI) rats, there were remarkable increases in the brain levels of TNF-α, IL-6 and IL-1β and malondialdehyde (MDA), whereas catalase (CAT), glutathione (GSH), glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities considerably decreased compared to normal control. The brain acetylcholinesterase (AChE) activity in CDDP control rats was significantly increased compared to the normal control. The expression of caspase-3 and p53 proteins was upregulated by CDDP injection, whereas Bcl2 was downregulated coupled with histopathological alterations in the rat brain. Interestingly, treatment with TT significantly abated neurobehavioral deficits, MDA and cytokine levels and restored CAT, GPx, GSH, SOD, and AChE activities compared to the CDDP control rats. Caspase-3 level as well as Bcl2 and p53 expressions were modulated with alleviated changes in histopathology. Conclusion The findings highlight neuroprotective and cognitive function improvement efficacy of TT against CICI via redox-inflammatory balance and antiapoptotic mechanism in rats.
Collapse
Affiliation(s)
- Yanping Huang
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Chunhong Liu
- Second Peoples Hospital of Wuhu City, Wuhu, 241001, Anhui, People's Republic of China
| | - Xianbing Song
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Mei An
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Meimei Liu
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Lei Yao
- Department of Human Anatomy, Histology and Embryology, Anhui Medical College, Hefei, 230601, People's Republic of China
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, Alex Ekwueme Federal University, Ndufu Alike Ikwo, Ebonyi State, Nigeria
| | - Opeyemi Joshua Olatunji
- Faculty of Thai Traditional Medicine, Prince of Songkla University, Hat Yai, 90110, Thailand
| |
Collapse
|
12
|
Mamur S. Geraniol, a natural monoterpene, identifications of cytotoxic and genotoxic effects in vitro. JOURNAL OF ESSENTIAL OIL RESEARCH 2021. [DOI: 10.1080/10412905.2021.1974581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sevcan Mamur
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| |
Collapse
|
13
|
El-Said YAM, Sallam NAA, Ain-Shoka AAM, Abdel-Latif HAT. Geraniol ameliorates diabetic nephropathy via interference with miRNA-21/PTEN/Akt/mTORC1 pathway in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:2325-2337. [PMID: 32666288 DOI: 10.1007/s00210-020-01944-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
Abstract
Deregulated activity of protein kinase B/mammalian target of rapamycin complex-1 (Akt/mTORC1) incites crucial pathological characteristics of diabetic nephropathy. The acyclic monoterpene geraniol has been recently reported to possess antidiabetic effects; however, its potential renoprotective effect in diabetes has not yet been elucidated. This study aimed to assess the possible modulatory effect of geraniol on the Akt/mTORC1 pathway in diabetes-induced nephropathy in rats compared to the standard antidiabetic drug gliclazide. Geraniol and gliclazide was administered daily to diabetic rats for 6 weeks starting on the 3rd-day post diabetes induction by streptozotocin (STZ). Geraniol amended the deteriorated renal function (serum creatinine; blood urea nitrogen). It exerted a remarkable antihyperglycemic effect that is comparable to that of gliclazide and suppressed the fibrotic marker, transforming growth factor-β. Geraniol restored redox balance and inhibited lipid peroxidation by reducing nicotine amide adenine dinucleotide phosphate oxidase and enhancing the antioxidant enzyme, superoxide dismutase. These beneficial effects were associated with a robust downregulation of miRNA-21 and consequently, reversion of tumor suppressor protein phosphatase and tension homolog (PTEN)/Akt/mTORC1 cue and its downstream proteins required for mesangial cell proliferation and matrix protein synthesis. The current study indicates that geraniol interfered with miRNA-21/ PTEN/AKT/mTORC1 pathway signaling that contributes largely to the progression of mesangial expansion and extracellular matrix deposition in diabetic nephropathy.
Collapse
|
14
|
Kandeil MA, Gomaa SB, Mahmoud MO. The effect of some natural antioxidants against cisplatin-induced neurotoxicity in rats: behavioral testing. Heliyon 2020; 6:e04708. [PMID: 32885073 PMCID: PMC7452551 DOI: 10.1016/j.heliyon.2020.e04708] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/06/2019] [Accepted: 08/10/2020] [Indexed: 11/16/2022] Open
Abstract
Background Cisplatin (CP) is a common antineoplastic agent widely used to treat a broad spectrum of cancers. However, its usage for cancer treatment was restricted due to various side effects such as neurotoxicity, nephrotoxicity, hepatotoxicity and ototoxicity. Neurotoxicity in patients who have undergone a complete course of chemotherapy is clinically evident. CP administration caused problems in rats with memory and learning. Methods The effect of combination of CP with either thymoquinone (TQ) or geraniol (Ger) on cell viability of human breast cancer cells (MCF-7) was detected by MTT assay. Forty male Wistar albino rats, healthy and adult, were divided into four groups: normal control, CP-treated group, CP + TQ-treated group and CP + Ger-treated group. Results Our results demonstrated that prophylactic treatment with either TQ or Ger plus CP enhanced the anticancer effect of CP in MCF-7 cell line. In vivo study showed that CP-treated rats had higher depressives like behavior in open field and Morris water maze test while prophylactic treatment with either TQ or Ger and CP significantly enhanced the performance of depressive-like behavior. Also, histopathological evaluation of brain tissues proved the neurotoxic effect of CP and the possible protective activity of either TQ or Ger. Conclusion The findings of the present work revealed that TQ or Ger along with CP may enhance the antitumor effect of CP. Also, spontaneous administration of CP with either TQ or Ger as natural antioxidants may prevent CP-induced neurotoxicity in rats through diminishing the memory and learning impairment.
Collapse
Affiliation(s)
- Mohamed A Kandeil
- Department of Biochemistry, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Safaa B Gomaa
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| | - Mohamed O Mahmoud
- Department of Biochemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt
| |
Collapse
|
15
|
Akintunde JK, Akintola TE, Adenuga GO, Odugbemi ZA, Adetoye RO, Akintunde OG. Naringin attenuates Bisphenol-A mediated neurotoxicity in hypertensive rats by abrogation of cerebral nucleotide depletion, oxidative damage and neuroinflammation. Neurotoxicology 2020; 81:18-33. [PMID: 32810514 DOI: 10.1016/j.neuro.2020.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/07/2023]
Abstract
We examined whether active fruit naringin can reduce the risk of BPA-mediated neurotoxicity in L-NAME induced hypertensive rats and whether the modulation could be linked to improvement of brain NO signaling. Male albino rats were randomly distributed into eight (n = 7) groups. Group I was control animals, Group II was orally-treated with L-NAME, Group III was orally treated with 100 mg/kg BPA, Group IV was orally-treated with L-NAME +100 mg/kg BPA. Group V was orally-administered with L-NAME +80 mg/kg NAR. Group VI was orally-administered with 100 mg/kg BPA +80 mg/kg NAR. Group VII was orally-administered with L-NAME+100 mg/kg BPA +80 mg/kg NAR. Lastly, group VIII was orally-treated with 80 mg/kg NAR. The treatment lasted for 14 days. Sub-acute exposure to L-NAME and BPA induced hypertension and mediated-neuroinflammation at CA-2 and CA-4 of hippocampus cells. It was evident by increase in PDE-51 and enzymes of ATP hydrolysis (ATPase, ADPase and AMPase) with corresponding upsurge in cholinergic (AChE and BuChE), dopaminergic (MAO-A) and adenosinergic (ADA) enzymes as well as movement disorder. The hypertensive-mediated neurotoxicity was related to alteration of NO signaling and higher release of pro-inflammatory cytokines (TNF-α and IL-1β), apoptotic proteins (P53 and caspace-9) and facilitated entry of T-lymphocytes (CD43+) into CNS through blood brain barrier potentiated by antigen presenting cells. Hence, these features of BPA-mediated neurotoxicity in L-NAME induced hypertensive rats were prohibited by co-administration of NAR through production of neuro-inflammatory mediators, stabilizing neurotransmitter enzymes, normalizing NO signaling and improving brain histology.
Collapse
Affiliation(s)
- J K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - T E Akintola
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - G O Adenuga
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - Z A Odugbemi
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria; Department of Physiology and Biochemistry, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| | - R O Adetoye
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - O G Akintunde
- Department of Physiology and Biochemistry, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
16
|
Mączka W, Wińska K, Grabarczyk M. One Hundred Faces of Geraniol. Molecules 2020; 25:molecules25143303. [PMID: 32708169 PMCID: PMC7397177 DOI: 10.3390/molecules25143303] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022] Open
Abstract
Geraniol is a monoterpenic alcohol with a pleasant rose-like aroma, known as an important ingredient in many essential oils, and is used commercially as a fragrance compound in cosmetic and household products. However, geraniol has a number of biological activities, such as antioxidant and anti-inflammatory properties. In addition, numerous in vitro and in vivo studies have shown the activity of geraniol against prostate, bowel, liver, kidney and skin cancer. It can induce apoptosis and increase the expression of proapoptotic proteins. The synergy of this with other drugs may further increase the range of chemotherapeutic agents. The antibacterial activity of this compound was also observed on respiratory pathogens, skin and food-derived strains. This review discusses some of the most important uses of geraniol.
Collapse
Affiliation(s)
- Wanda Mączka
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | - Katarzyna Wińska
- Correspondence: (W.M.); (K.W.); (M.G.); Tel.: +48-71-320-5213 (W.M. & K.W.)
| | | |
Collapse
|
17
|
Akintunde JK, Akintola TE, Aliu FH, Fajoye MO, Adimchi SO. Naringin regulates erectile dysfunction by abolition of apoptosis and inflammation through NOS/cGMP/PKG signalling pathway on exposure to Bisphenol-A in hypertensive rat model. Reprod Toxicol 2020; 95:123-136. [PMID: 32428650 DOI: 10.1016/j.reprotox.2020.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/13/2022]
Abstract
This study investigated the effect of naringin (NRG) on extracellular metabolism of ATP through the NOS/cGMP/PKG signaling pathway induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME) on exposure to Bisphenol-A (BPA) in penis. Fifty-six adult male albino rats were randomly distributed into eight (n = 7) groups. Group I: control animals, Group II was treated with 40 mg/kg L-NAME, Group III was treated with 50 mg/kg BPA, Group IV was treated with 40 mg/kg L-NAME +50 mg/kg BPA. Group V was administered with 40 mg/kg L-NAME +80 mg/kg NRG. Group VI was administered with 50 mg/kg BPA + 80 mg/kg NRG. Group VII was administered with 40 mg/kg L-NAME+50 mg/kg BPA + 80 mg/kg NRG. Lastly, group VIII was treated with 80 mg/kg NRG for 14 days. NRG prevented hypertension and erectile dysfunction by inhibiting the activities of angiotensin-converting enzymes, arginase, and phosphodiesterase-51 (PDE-51) with corresponding down-regulation of inflammatory markers including TNF-α and IL-B. Additionally, hypertensive erectile dysfunction was remarkably prevented by NRG as manifested by the declined activities of AChE, MAO-A and enzymes of ATP hydrolysis (ATPase, ADPase, AMPase and ADA) with resultant increase in NO level. Also, penile expression of antigen presenting cells, CD43 transcript, caspace-9 and tumor suppressor P53 proteins were repressed on treatment with NRG. This study validates the hypothesis that NRG may be a valuable remedy in abrogating penile inflammatory markers, apoptosis and enzymes of ATP-hydrolysis via NOS/cGMP/PKG signaling pathways in hypertensive rat model on exposure to environmental toxicant.
Collapse
Affiliation(s)
- J K Akintunde
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| | - T E Akintola
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - F H Aliu
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Fajoye
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| | - S O Adimchi
- Applied Biochemistry and Molecular Toxicology Research Group, Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
18
|
Rajendran J, Pachaiappan P, Subramaniyan S. Dose-dependent chemopreventive effects of citronellol in DMBA-induced breast cancer among rats. Drug Dev Res 2019; 80:867-876. [PMID: 31313341 DOI: 10.1002/ddr.21570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 01/28/2023]
Abstract
Breast cancer is one of the most common cancers among women world wide and its incidence is on tremendous increase. The present study is aimed to analyze the dose-dependent chemopreventive efficacy of citronellol on 7,12-dimethylbenz(a)anthracene (DMBA)-induced rat mammary carcinogenesis. The mammary tumor was induced through a single dose of DMBA (25 mg/rat) injected subcutaneously near the mammary gland of rats. In DMBA-injected rats, 100% tumor incidence, increased tumor volume, and tumor burden along with loss of body weight were observed. Biochemical analysis revealed the increased levels of phase I detoxification proteins (cytochrome P450 and b5) and decreased activities of phase II detoxification enzymes (glutathione-S-transferase and glutathione reductase) in hepatic and mammary tissues. The levels of enzymatic and non-enzymatic antioxidants (superoxidedismutase, catalase, glutathione peroxidase, and (GPx) and reduced glutathione) were decreased and lipid peroxidation by-products (thiobarbituric acid reactive substance and lipid hydroperoxide) got increased in plasma and mammary tissues. Oral administration of different doses of citronellol (25, 50, and 100 mg/kg body weight) to DMBA-treated rats for 16 weeks absolutely inhibited the tumor incidence and restored the biochemical parameters near to normal level in 50 and 100 mg doses whereas the histopathological studies also supported the biochemical findings. Hence, the result suggests that the citronellol of 50 mg/kg body weight exerted significant chemopreventive effects and can be considered as a minimum optimum dose in the prevention of mammary carcinogenesis.
Collapse
MESH Headings
- 9,10-Dimethyl-1,2-benzanthracene
- Acyclic Monoterpenes/pharmacology
- Animals
- Anticarcinogenic Agents/pharmacology
- Female
- Humans
- Liver/drug effects
- Liver/metabolism
- Mammary Glands, Human/drug effects
- Mammary Glands, Human/metabolism
- Mammary Glands, Human/pathology
- Mammary Neoplasms, Experimental/chemically induced
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mammary Neoplasms, Experimental/prevention & control
- Rats, Sprague-Dawley
- Tumor Burden/drug effects
Collapse
Affiliation(s)
- Jayaganesh Rajendran
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Pugalendhi Pachaiappan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| | - Suganthi Subramaniyan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar, Tamil Nadu, India
| |
Collapse
|
19
|
Petrović J, Stojković D, Soković M. Terpene core in selected aromatic and edible plants: Natural health improving agents. ADVANCES IN FOOD AND NUTRITION RESEARCH 2019; 90:423-451. [PMID: 31445600 DOI: 10.1016/bs.afnr.2019.02.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Aromatic plants synthesize and produce aromatic molecules, among these compounds some of them belong to terpenes and terpenoids. Plant species have specific genes involved in secondary metabolism which allows them to synthesize various compounds with terpene core. These kinds of plant species are also known as herbal drugs and they are primarily used as components in medicinal products or simply as health foods. This chapter will focus on terpene and terpenoid compounds found in selected edible and aromatic plants belonging to several plant families. Selected plant species are briefly discussed. Biologically active compounds with terpene core are most frequently found in essential oils of the edible and aromatic species, as well as they are separately isolated and identified from the extracts. Health beneficial effects coming from terpene compounds found in edible and aromatic plants are further presented and include antimicrobial, antiviral, cytotoxic, anticancer, anti-inflammatory and many other pharmacological activities.
Collapse
Affiliation(s)
- Jovana Petrović
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Dejan Stojković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
20
|
Bouyahya A, Abrini J, Bakri Y, Dakka N. Les huiles essentielles comme agents anticancéreux : actualité sur le mode d’action. ACTA ACUST UNITED AC 2018. [DOI: 10.3166/s10298-016-1058-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Le cancer est une maladie complexe qui présente un réel problème de santé publique à travers le monde et cause statiquement sept millions de décès chaque année. Au cours des dernières décennies, la thérapie anticancéreuse a connu un réel bouleversement et un foisonnement de découvertes fondamentales. Plusieurs études accumulatives ont révélé l’activité antitumorale des substances naturelles isolées à partir de plantes. Les huiles essentielles (HE) et leurs constituants ont montré des activités anticancéreuses puissantes in vitro et in vivo. Cependant, les mécanismes d’action sont encore peu étudiés et moins connus. Par ailleurs, leur application dans l’industrie pharmaceutique nécessite une spécificité– sélectivité pharmacodynamique absolue. Dans le présent travail, nous présentons une synthèse des travaux réalisés sur les mécanismes d’actions anticancéreuses des HE et leurs composés bioactifs.
Collapse
|
21
|
Tomadoni B, Moreira M, Pereda M, Ponce A. Gellan-based coatings incorporated with natural antimicrobials in fresh-cut strawberries: Microbiological and sensory evaluation through refrigerated storage. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.07.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
22
|
Quintans JSS, Shanmugam S, Heimfarth L, Araújo AAS, Almeida JRGDS, Picot L, Quintans-Júnior LJ. Monoterpenes modulating cytokines - A review. Food Chem Toxicol 2018; 123:233-257. [PMID: 30389585 DOI: 10.1016/j.fct.2018.10.058] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/11/2018] [Accepted: 10/24/2018] [Indexed: 12/15/2022]
Abstract
Inflammatory response can be driven by cytokine production and is a pivotal target in the management of inflammatory diseases. Monoterpenes have shown that promising profile as agents which reduce the inflammatory process and also modulate the key chemical mediators of inflammation, such as pro and anti-inflammatory cytokines. The main interest focused on monoterpenes were to develop the analgesic and anti-inflammatory drugs. In this review, we summarized current knowledge on monoterpenes that produce anti-inflammatory effects by modulating the release of cytokines, as well as suggesting that which monoterpenoid molecules may be most effective in the treatment of inflammatory disease. Several different inflammatory markers were evaluated as a target of monoterpenes. The proinflammatory and anti-inflammatory cytokines were found TNF-α, IL-1β, IL-2, IL-5, IL-4, IL-6, IL-8, IL-10, IL-12 IL-13, IL-17A, IFNγ, TGF-β1 and IFN-γ. Our review found evidence that NF-κB and MAPK signaling are important pathways for the anti-inflammatory action of monoterpenes. We found 24 monoterpenes that modulate the production of cytokines, which appears to be the major pharmacological mechanism these compounds possess in relation to the attenuation of inflammatory response. Despite the compelling evidence supporting the anti-inflammatory effect of monoterpenes, further studies are necessary to fully explore their potential as anti-inflammatory compounds.
Collapse
Affiliation(s)
- Jullyana S S Quintans
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Saravanan Shanmugam
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Luana Heimfarth
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | | | - Jackson R G da S Almeida
- Center for Studies and Research of Medicinal Plants (NEPLAME), Federal University of San Francisco Valley (UNIVASF), Petrolina, Pernambuco, Brazil
| | - Laurent Picot
- UMRi CNRS 7266 LIENSs, University of La Rochelle, 17042, La Rochelle, France
| | - Lucindo J Quintans-Júnior
- Laboratory of Neuroscience and Pharmacological Assays, Department of Physiology, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| |
Collapse
|
23
|
Siddiqi A, Saidullah B, Sultana S. Anti-carcinogenic effect of hesperidin against renal cell carcinoma by targeting COX-2/PGE2 pathway in Wistar rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:1069-1077. [PMID: 30098279 DOI: 10.1002/tox.22626] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/02/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
The present study was designed to evaluate the protective effects of hesperidin, a flavonoid on DEN initiated and Fe-NTA promoted renal carcinogenesis in Wistar rats. Renal cancer was initiated by a single i.p. injection of DEN (200 mg/kg b.wt.) and promoted with Fe-NTA (9 mg Fe/kg b.wt. i.p.) twice a week for 16 weeks. Rats were simultaneously administered with hesperidin (100 and 200 mg/kg b.wt.) for 16 consecutive weeks. The chemopreventive effect of hesperidin was assessed in terms of antioxidant activities, renal function, PGE2 level, and the expressions of COX-2 and VEGF. Hesperidin decreased the DEN and Fe-NTA induced lipid peroxidation, improved the renal function (by decreasing the levels of BUN, creatinine, and KIM-1) and restored the renal antioxidant armory (GSH, GPx, GR, SOD, and catalase). Hesperidin was also found to decrease the level of PGE2 and downregulate the expressions of COX-2 and VEGF. Histological findings further revealed the protective effects of hesperidin against DEN and Fe-NTA induced kidney damage. The result of our present findings suggest that hesperidin may be a promising modulator in preventing renal cancer possibly by virtue of its ability to alleviate oxidative stress and inhibit COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Aisha Siddiqi
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Bano Saidullah
- Discipline of Life Sciences, School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), New Delhi, India
| |
Collapse
|
24
|
Oliveira JLD, Campos EVR, Pereira AES, Pasquoto T, Lima R, Grillo R, Andrade DJD, Santos FAD, Fraceto LF. Zein Nanoparticles as Eco-Friendly Carrier Systems for Botanical Repellents Aiming Sustainable Agriculture. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1330-1340. [PMID: 29345934 DOI: 10.1021/acs.jafc.7b05552] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Botanical repellents represent one of the main ways of reducing the use of synthetic pesticides and the contamination of soil and hydric resources. However, the poor stability and rapid degradation of these compounds in the environment hinder their effective application in the field. Zein nanoparticles can be used as eco-friendly carrier systems to protect these substances against premature degradation, provide desirable release characteristics, and reduce toxicity in the environment and to humans. In this study, we describe the preparation and characterization of zein nanoparticles loaded with the main constituents of the essential oil of citronella (geraniol and R-citronellal). The phytotoxicity, cytotoxicity, and insect activity of the nanoparticles toward target and nontarget organisms were also evaluated. The botanical formulations showed high encapsulation efficiency (>90%) in the nanoparticles, good physicochemical stability, and effective protection of the repellents against UV degradation. Cytotoxicity and phytotoxicity assays showed that encapsulation of the botanical repellents decreased their toxicity. Repellent activity tests showed that nanoparticles containing the botanical repellents were highly repellent against the Tetranychus urticae Koch mite. This nanotechnological formulation offers a new option for the effective use of botanical repellents in agriculture, reducing toxicity, protecting against premature degradation, and providing effective pest control.
Collapse
Affiliation(s)
- Jhones L de Oliveira
- Institute of Science and Technology, São Paulo State University (UNESP) , Sorocaba, São Paulo 18087-180, Brazil
| | - Estefânia V R Campos
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Anderson E S Pereira
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, São Paulo 13083-862, Brazil
| | - Tatiane Pasquoto
- Department of Biotechnology, University of Sorocaba , Sorocaba, São Paulo 18023-000, Brazil
| | - Renata Lima
- Department of Biotechnology, University of Sorocaba , Sorocaba, São Paulo 18023-000, Brazil
| | - Renato Grillo
- Department of Physics and Chemistry, School of Engineering, São Paulo State University (UNESP) , Ilha Solteira, São Paulo 15385-000, Brazil
| | - Daniel Junior de Andrade
- College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP) , Jaboticabal, São Paulo 14884-900, Brazil
| | - Fabiano Aparecido Dos Santos
- College of Agricultural and Veterinary Sciences, São Paulo State University (UNESP) , Jaboticabal, São Paulo 14884-900, Brazil
| | - Leonardo Fernandes Fraceto
- Institute of Science and Technology, São Paulo State University (UNESP) , Sorocaba, São Paulo 18087-180, Brazil
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas , Campinas, São Paulo 13083-862, Brazil
| |
Collapse
|
25
|
Pandey P, Bhatt PC, Rahman M, Patel DK, Anwar F, Al-Abbasi F, Verma A, Kumar V. Preclinical renal chemo-protective potential of Prunus amygdalus Batsch seed coat via alteration of multiple molecular pathways. Arch Physiol Biochem 2018; 124:88-96. [PMID: 28835129 DOI: 10.1080/13813455.2017.1364773] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Prunus amygdalus Batsch (almond) is a classical nutritive traditional Indian medicine. Along with nutritive with anti-oxidant properties, it is, clinically, used in the treatment of various diseases with underlying anti-oxidant mechanism. This study is an effort to scrutinise the renal protective effect of P. amygdalus Batsch or green almond (GA) seed coat extract and its underlying mechanism in animal model of Ferric nitrilotriacetate (Fe-NTA) induced renal cell carcinoma (RCC). RCC was induced in Swiss Albino Wistar rats by intraperitoneal injection of Fe-NTA. The rats were then treated with ethanolic extract of GA (25, 50 and 100 mg/kg per oral) for 22 weeks. Efficacy of GA administration was evaluated by change in biochemical, renal, macroscopical and histopathological parameters and alterations. Additionally, interleukin-6 (IL-6), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and inflammatory mediator including prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB) were also observed to explore the possible mechanisms. The oral administration of GA significantly (p < .001) altered the Fe-NTA induced RCC in rats by inhibition of renal nodules, decolourisation of tissues, tumour promoter marker including thymidine 3[H] incorporation, ornithine decarboxylase, renal parameters and anti-oxidant parameters in serum. Additionally, GA treatment significantly (p < .001) down-regulated the IL-6, IL-1β, TNF-α, inflammatory mediators PGE2 and NF-κB in a dose-dependent manner. Histopathology observation supported the renal protective effect of GA by alteration in necrosis, size of Bowman capsules and inflammatory cells. Hence, it can be concluded that GA possesses observable chemo-protective action and effect on Fe-NTA induced RCC via dual inhibition mechanism one by inhibiting free radical generation and second by inhibiting inflammation.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/chemistry
- Anti-Inflammatory Agents, Non-Steroidal/pharmacology
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Antineoplastic Agents, Phytogenic/administration & dosage
- Antineoplastic Agents, Phytogenic/chemistry
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Carcinoma, Renal Cell/diet therapy
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Cell Proliferation
- Dietary Supplements/analysis
- Dietary Supplements/economics
- Ethnopharmacology
- Free Radical Scavengers/administration & dosage
- Free Radical Scavengers/chemistry
- Free Radical Scavengers/pharmacology
- Free Radical Scavengers/therapeutic use
- Inflammation Mediators/blood
- Inflammation Mediators/metabolism
- Kidney Neoplasms/diet therapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/pathology
- Liver/immunology
- Liver/metabolism
- Liver/pathology
- Male
- Medicine, Ayurvedic
- Necrosis
- Nuts/chemistry
- Nuts/economics
- Plant Epidermis/chemistry
- Plant Extracts/administration & dosage
- Plant Extracts/chemistry
- Plant Extracts/pharmacology
- Plant Extracts/therapeutic use
- Prunus dulcis/chemistry
- Random Allocation
- Rats
- Seeds/chemistry
- Tumor Burden
Collapse
Affiliation(s)
- Preeti Pandey
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Prakash Chandra Bhatt
- b Centre for Advanced Research in Pharmaceutical Sciences, Microbial and Pharmaceutical Biotechnology Laboratory, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Mahfoozur Rahman
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Dinesh Kumar Patel
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Firoz Anwar
- c Department of Biochemistry, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Fahad Al-Abbasi
- c Department of Biochemistry, Faculty of Science , King Abdulaziz University , Jeddah , Saudi Arabia
| | - Amita Verma
- d Bio-organic & Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| | - Vikas Kumar
- a Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Faculty of Health Sciences , Sam Higginbottom University of Agriculture, Technology & Sciences , Allahabad , India
| |
Collapse
|
26
|
Kannappan A, Sivaranjani M, Srinivasan R, Rathna J, Pandian SK, Ravi AV. Inhibitory efficacy of geraniol on biofilm formation and development of adaptive resistance in Staphylococcus epidermidis RP62A. J Med Microbiol 2017; 66:1506-1515. [DOI: 10.1099/jmm.0.000570] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Arunachalam Kannappan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Murugesan Sivaranjani
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Ramanathan Srinivasan
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | - Janarthanam Rathna
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| | | | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|
27
|
Ginger Ingredients Alleviate Diabetic Prostatic Complications: Effect on Oxidative Stress and Fibrosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:6090269. [PMID: 28904557 PMCID: PMC5585679 DOI: 10.1155/2017/6090269] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/28/2017] [Accepted: 06/12/2017] [Indexed: 12/17/2022]
Abstract
Prostatic complications are common in patients with diabetes. This study investigated the effect of different ginger ingredients: zingerone, geraniol, and 6-gingerol on the prostate in diabetic rats. Diabetes was induced in Wistar rats by streptozotocin intraperitoneal injection (50 mg/kg), and the rats were left for 10 weeks to develop prostatic complications. In diabetic treated groups, rats received daily oral zingerone, geraniol, and 6-gingerol in doses of 20, 200, and 75 mg/kg, respectively, in the last 8 weeks. Treatment with the compounds caused changes in the ventral prostate of diabetic animals as indicated by the columnar ductal epithelium and dense secretions. There was an amelioration of oxidative stress as evidenced by the lowering of prostate malondialdehyde and elevating prostate oxidized to reduced glutathione (GSH/GSSG) ratios by geraniol and 6-gingerol. None of the three ginger ingredients affected the hyperglycemia, reduction in body weight gain, and testosterone deficiency seen in diabetic animals. Interleukin-1β and interleukin-6 levels remained unchanged. However, zingerone and geraniol ameliorated the fibrosis in diabetic prostate through suppressing the elevated prostate transforming growth factor beta 1 (TGFβ1) and collagen IV. Therefore, ginger ingredients could be beneficial in alleviating diabetic prostatic complications through suppressing oxidative stress and tissue fibrosis.
Collapse
|
28
|
Diosmin Attenuates Methotrexate-Induced Hepatic, Renal, and Cardiac Injury: A Biochemical and Histopathological Study in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3281670. [PMID: 28819543 PMCID: PMC5551532 DOI: 10.1155/2017/3281670] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 06/08/2017] [Accepted: 06/12/2017] [Indexed: 12/20/2022]
Abstract
The current study was designed to investigate the beneficial role of diosmin, a biologically active flavonoid, against methotrexate- (MTX-) induced hepatic, renal, and cardiac injuries in mice. Male Swiss albino mice received a single intraperitoneal injection of MTX (at 20 mg/kg, body weight) either alone or in combination with oral diosmin (at 50 or 100 mg/kg body weight, for 10 days). Serum was used to evaluate tissue injury markers, while hepatic, renal, and cardiac tissue samples were obtained for determination of antioxidant activity as well as histopathological examination. Diosmin treatment ameliorated the MTX-induced elevation of serum alkaline phosphatase, aminotransferases, urea, creatinine, lactate dehydrogenase, and creatine kinases as well as plasma proinflammatory cytokines (interleukin-1-beta, interleukin-6, and tumor necrosis factor-alpha). Additionally, both diosmin doses significantly reduced tissue levels of malondialdehyde and nitric oxide and increased those of glutathione, glutathione peroxidase, glutathione reductase, glutathione S-transferase, superoxide dismutase, and catalase, compared to the MTX-intoxicated group. Histopathological examination showed that diosmin significantly minimized the MTX-induced histological alterations and nearly restored the normal architecture of hepatic, renal, and cardiac tissues. Based on these findings, diosmin may be a promising agent for protection against MTX-induced cytotoxicity in patients with cancer and autoimmune diseases.
Collapse
|
29
|
Geraniol attenuates 4NQO-induced tongue carcinogenesis through downregulating the activation of NF-κB in rats. Mol Cell Biochem 2017; 434:7-15. [DOI: 10.1007/s11010-017-3030-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 04/01/2017] [Indexed: 12/24/2022]
|
30
|
Geraniol Inhibits Endometrial Carcinoma via Downregulating Oncogenes and Upregulating Tumour Suppressor Genes. Indian J Clin Biochem 2016; 32:214-219. [PMID: 28428697 DOI: 10.1007/s12291-016-0601-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/29/2016] [Indexed: 12/15/2022]
Abstract
Endometrial carcinoma is the fourth most abundant cancer worldwide in women. Female Wistar rats were segregated into five groups: group I-control, group II-MNNG (N-methyl-N'-nitro-N-nitrosoguanidine-150 mg/kg) administered through intravaginal detention of cotton absorbent, group III-geraniol (GOH) only, group IV-GOH-pretreated (7 days before the start of MNNG administration); and group V-Co-administration of geraniol with MNNG. In this study, reverse transcriptase- PCR of K-ras, MAPK, PI3K, Wnt/β-catenin genes, TGF-β and expressions of PCNA, PTEN, progesterone receptor and E-cadherin by Western blotting were performed from endometrial cancer tissue and control tissues. The mRNA expressions of K-ras, MAPK, PI3K, Wnt/β-catenin and TGF-β were amplified in MNNG induced group. Oral administration of GOH (both pre and co-administration) reversed the mRNA expression towards normal. The reversibility is more predominant in pretreatment groups (p < 0.05). The expression of PCNA was upregulated and downregulation of PTEN, progesterone receptor and E-cadherin was noticed in MNNG induced rats. Pre and co-administration of GOH significantly reversed the expression pattern of proteins. GOH treatment is more effective in pretreatment groups (p < 0.05). These results provide powerful evidences that GOH could influence modulation of MAPK pathways and Wnt signalling pathways in the prevention of endometrial carcinoma in rats.
Collapse
|
31
|
La Rocca V, da Fonsêca DV, Silva-Alves KS, Ferreira-da-Silva FW, de Sousa DP, Santos PL, Quintans-Júnior LJ, Leal-Cardoso JH, de Almeida RN. Geraniol Induces Antinociceptive Effect in Mice Evaluated in Behavioural and Electrophysiological Models. Basic Clin Pharmacol Toxicol 2016; 120:22-29. [PMID: 27277137 DOI: 10.1111/bcpt.12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 06/06/2016] [Indexed: 12/24/2022]
Abstract
Geraniol (GER) is a monoterpene alcohol with various biochemical and pharmacological properties present in the essential oil of more than 160 species of herbs (especially the Cymbopogon genus). In this study, we evaluated the antinociceptive activity of GER in behavioural and electrophysiological in vitro experimental models of nociception using male Swiss mice. GER (12.5, 25 or 50 mg/kg i.p. and 50 or 200 mg/kg p.o.) reduced the number of writhes induced by acetic acid. The opioid antagonist naloxone (5 mg/kg s.c.) administered in mice subsequently treated with GER (25 mg/kg i.p.) did not reverse such antinociceptive activity, suggesting a non-opioid pathway for the mechanism of action. GER (12.5, 25 and 50 mg/kg i.p.) reduced paw licking time in the second phase of the formalin test. Also, in the glutamate test, GER when administered 50 mg/kg i.p. reduced paw licking time, probably modulating glutamatergic neurotransmission. GER blocked reversibly components of the compound action potential (CAP) recorded in isolated sciatic nerve in a concentration- and drug exposure time-dependent manner: 1 mM to 120 min. for the first component and 0.6 mM to 90 min. for the second component. The IC50 was calculated for the peak-to-peak amplitude (PPA) at 0.48 ± 0.04 mM. The conduction velocity was also reduced by exposure to GER starting from the concentration of 0.3 mM for both components of the CAP. In conclusion, it is suggested that GER has antinociceptive activity, especially in pain related to inflammation, and in part related to reduced peripheral nerve excitability.
Collapse
Affiliation(s)
- Viviana La Rocca
- Postgraduate Program in Biotechnology (Renorbio), Federal University of Paraíba, João Pessoa, Brazil
| | - Diogo Vilar da Fonsêca
- Postgraduate Program in Natural and Bioactive Synthetics Products (PgPNSB), Federal University of Paraíba, João Pessoa, Brazil
| | - Kerly Shamyra Silva-Alves
- Laboratory of Electrophysiology, Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Brazil
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| | | | | | - José Henrique Leal-Cardoso
- Laboratory of Electrophysiology, Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Brazil
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Health Science Center, Federal University of Paraíba, João Pessoa, Brazil
| |
Collapse
|
32
|
Rashid S, Nafees S, Vafa A, Afzal SM, Ali N, Rehman MU, Hasan SK, Siddiqi A, Barnwal P, Majed F, Sultana S. Inhibition of precancerous lesions development in kidneys by chrysin via regulating hyperproliferation, inflammation and apoptosis at pre clinical stage. Arch Biochem Biophys 2016; 606:1-9. [PMID: 27403965 DOI: 10.1016/j.abb.2016.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 12/13/2022]
Abstract
Chrysin (CH) is natural, biologically active compound, belongs to flavoniod family and possesses diverse pharmacological activities as anti-inflammatory, anti-oxidant and anti-cancer. It is found in many plants, honey and propolis. In the present study, we investigated the chemopreventive efficacy of CH against N-nitrosodiethylamine (DEN) initiated and Fe-NTA induced precancerous lesions and its role in regulating oxidative injury, hyperproliferation, tumor incidences, histopathological alterations, inflammation, and apoptosis in the kidneys of Wistar rats. Renal cancer was initiated by single intraperitoneal (i.p.) injection of DEN (200 mg/kg bw) and promoted by twice weekly injection of ferric nitrilotriacetate (Fe-NTA) 9 mg Fe/kg bw for 16 weeks. CH attenuated Fe-NTA enhanced renal lipid peroxidation, serum toxicity markers and restored renal anti oxidant armory significantly. CH supplementation suppressed the development of precancerous lesions via down regulation of cell proliferation marker like PCNA; inflammatory mediators like TNF-α, IL-6, NFkB, COX-2, iNOS; tumor incidences. CH up regulated intrinsic apoptotic pathway proteins like bax, caspase-9 and caspase-3 along with down regulation of Bcl-2 triggering apoptosis. Histopathological and ultra structural alterations further confirmed biochemical and immunohistochemical results. These results provide powerful evidence for the chemopreventive efficacy of CH against chemically induced renal carcinogenesis possibly by modulation of multiple molecular pathways.
Collapse
Affiliation(s)
- Summya Rashid
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sana Nafees
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Abul Vafa
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Shekh Muhammad Afzal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Nemat Ali
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Muneeb U Rehman
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Syed Kazim Hasan
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Aisha Siddiqi
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Preeti Barnwal
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Ferial Majed
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India
| | - Sarwat Sultana
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India.
| |
Collapse
|
33
|
Cho M, So I, Chun JN, Jeon JH. The antitumor effects of geraniol: Modulation of cancer hallmark pathways (Review). Int J Oncol 2016; 48:1772-82. [PMID: 26983575 PMCID: PMC4809657 DOI: 10.3892/ijo.2016.3427] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/18/2016] [Indexed: 12/30/2022] Open
Abstract
Geraniol is a dietary monoterpene alcohol that is found in the essential oils of aromatic plants. To date, experimental evidence supports the therapeutic or preventive effects of geraniol on different types of cancer, such as breast, lung, colon, prostate, pancreatic, and hepatic cancer, and has revealed the mechanistic basis for its pharmacological actions. In addition, geraniol sensitizes tumor cells to commonly used chemotherapy agents. Geraniol controls a variety of signaling molecules and pathways that represent tumor hallmarks; these actions of geraniol constrain the ability of tumor cells to acquire adaptive resistance against anticancer drugs. In the present review, we emphasize that geraniol is a promising compound or chemical moiety for the development of a safe and effective multi-targeted anticancer agent. We summarize the current knowledge of the effects of geraniol on target molecules and pathways in cancer cells. Our review provides novel insight into the challenges and perspectives with regard to geraniol research and to its application in future clinical investigation.
Collapse
Affiliation(s)
- Minsoo Cho
- Undergraduate Research Program, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Insuk So
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Jung Nyeo Chun
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Ju-Hong Jeon
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| |
Collapse
|
34
|
De Fazio L, Spisni E, Cavazza E, Strillacci A, Candela M, Centanni M, Ricci C, Rizzello F, Campieri M, Valerii MC. Dietary Geraniol by Oral or Enema Administration Strongly Reduces Dysbiosis and Systemic Inflammation in Dextran Sulfate Sodium-Treated Mice. Front Pharmacol 2016; 7:38. [PMID: 26973525 PMCID: PMC4776160 DOI: 10.3389/fphar.2016.00038] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/11/2016] [Indexed: 12/13/2022] Open
Abstract
(Trans)-3,7-Dimethyl-2,6-octadien-1-ol, commonly called geraniol (Ge-OH), is an acyclic monoterpene alcohol with well-known anti-inflammatory, antitumoral, and antimicrobial properties. It is widely used as a preservative in the food industry and as an antimicrobial agent in animal farming. The present study investigated the role of Ge-OH as an anti-inflammatory and anti-dysbiotic agent in the dextran sulfate sodium (DSS)-induced colitis mouse model. Ge-OH was orally administered to C57BL/6 mice at daily doses of 30 and 120 mg kg((-1)) body weight, starting 6 days before DSS treatment and ending the day after DSS removal. Furthermore, Ge-OH 120 mg kg((-1)) dose body weight was administered via enema during the acute phase of colitis to facilitate its on-site action. The results show that orally or enema-administered Ge-OH is a powerful antimicrobial agent able to prevent colitis-associated dysbiosis and decrease the inflammatory systemic profile of colitic mice. As a whole, Ge-OH strongly improved the clinical signs of colitis and significantly reduced cyclooxygenase-2 (COX-2) expression in colonocytes and in the gut wall. Ge-OH could be a powerful drug for the treatment of intestinal inflammation and dysbiosis.
Collapse
Affiliation(s)
- Luigia De Fazio
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Enzo Spisni
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Elena Cavazza
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Antonio Strillacci
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Manuela Centanni
- Department of Pharmacy and Biotechnology, University of Bologna Bologna, Italy
| | - Chiara Ricci
- Department of Clinical and Experimental Sciences, University of Brescia Brescia, Italy
| | - Fernando Rizzello
- Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Massimo Campieri
- Department of Medical and Surgical Sciences, University of Bologna Bologna, Italy
| | - Maria C Valerii
- Biology Unit, Department of Biological, Geological and Environmental Sciences, University of Bologna Bologna, Italy
| |
Collapse
|
35
|
Siddiqi A, Hasan SK, Nafees S, Rashid S, Saidullah B, Sultana S. Chemopreventive efficacy of hesperidin against chemically induced nephrotoxicity and renal carcinogenesis via amelioration of oxidative stress and modulation of multiple molecular pathways. Exp Mol Pathol 2015; 99:641-53. [DOI: 10.1016/j.yexmp.2015.11.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022]
|
36
|
Galle M, Kladniew BR, Castro MA, Villegas SM, Lacunza E, Polo M, de Bravo MG, Crespo R. Modulation by geraniol of gene expression involved in lipid metabolism leading to a reduction of serum-cholesterol and triglyceride levels. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2015; 22:696-704. [PMID: 26141755 DOI: 10.1016/j.phymed.2015.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/18/2015] [Accepted: 04/24/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Geraniol (G) is a natural isoprenoid present in the essential oils of several aromatic plants, with various biochemical and pharmacologic properties. Nevertheless, the mechanisms of action of G on cellular metabolism are largely unknown. HYPOTHESIS/PURPOSE We propose that G could be a potential agent for the treatment of hyperlipidemia that could contribute to the prevention of cardiovascular disease. The aim of the present study was to advance our understanding of its mechanism of action on cholesterol and TG metabolism. STUDY DESIGN/METHODS NIH mice received supplemented diets containing 25, 50, and 75 mmol G/kg chow. After a 3-week treatment, serum total-cholesterol and triglyceride levels were measured by commercial kits and lipid biosynthesis determined by the [(14)C] acetate incorporated into fatty acids plus nonsaponifiable and total hepatic lipids of the mice. The activity of the mRNA encoding HMGCR-the rate-limiting step in cholesterol biosynthesis-along with the enzyme levels and catalysis were assessed by real-time RT-PCR, Western blotting, and HMG-CoA-conversion assays, respectively. In-silico analysis of several genes involved in lipid metabolism and regulated by G in cultured cells was also performed. Finally, the mRNA levels encoded by the genes for the low-density-lipoprotein receptor (LDLR), the sterol-regulatory-element-binding transcription factor (SREBF2), the very-low-density-lipoprotein receptor (VLDLR), and the acetyl-CoA carboxylase (ACACA) were determined by real-time RT-PCR. RESULTS Plasma total-cholesterol and triglyceride levels plus hepatic fatty-acid, total-lipid, and nonsaponifiable-lipid biosynthesis were significantly reduced by feeding with G. Even though an up-regulation of the mRNA encoding HMGCR occurred in the G treated mouse livers, the protein levels and specific activity of the enzyme were both inhibited. G also enhanced the mRNAs encoding the LDL and VLDL receptors and reduced ACACA mRNA, without altering the transcription of the mRNA encoding the SREBF2. CONCLUSIONS The following mechanisms may have mediated the decrease in plasma lipids levels in mice: a down-regulation of hepatocyte-cholesterol synthesis occurred as a result of decreased HMGCR protein levels and catalytic activity; the levels of LDLR mRNA became elevated, thus suggesting an increase in the uptake of serum LDL, especially by the liver; and TG synthesis became reduced very likely because of a decrease in fatty-acid synthesis.
Collapse
Affiliation(s)
- Marianela Galle
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - Boris Rodenak Kladniew
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - María Agustina Castro
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - Sandra Montero Villegas
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - Ezequiel Lacunza
- CINIBA (UNLP-CONICET CCT La Plata), Facultad de Ciencias MéG dicas, Calles 60 y 120, La Plata, Argentina
| | - Mónica Polo
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - Margarita García de Bravo
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina
| | - Rosana Crespo
- INIBIOLP (UNLP-CONICET CCT La Plata), Facultad de Ciencias Médicas, Calles 60 y 120, La Plata, Argentina.
| |
Collapse
|
37
|
Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling. PLoS One 2015; 10:e0131946. [PMID: 26154255 PMCID: PMC4496091 DOI: 10.1371/journal.pone.0131946] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 06/08/2015] [Indexed: 11/19/2022] Open
Abstract
Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.
Collapse
|
38
|
Irtiza S, Samie AU, Ali S, Siddiqi MA, Naqash SH, Sameer AS. IL-1β polymorphism and expression associated with decreased risk of gastric carcinoma: a case control study in the ethnic Kashmiri population, India. Asian Pac J Cancer Prev 2015; 16:1987-1992. [PMID: 25773799 DOI: 10.7314/apjcp.2015.16.5.1987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The aim of this research was to investigate the possible association between gastric carcinoma (GC) and polymorphisms of the IL-1β gene in the Kashmiri population using peripheral blood DNA from 150 gastric carcinoma cases and 250 population controls with detailed data for clinicopathological characteristics of the disease. Two SNPs in the IL-1β gene were selected for this study. Expression of IL-1β was studied in 50 gastric carcinoma cases using immunohistochemistry and RT-PCR and then correlated with genotype. The frequency of the IL-1β-511 C allele was significantly higher in the GC case group (53.3%) than in controls (45.4%) with an odds ratio (OR) of 0.73 and a P value of 0.03. Multivariate regression analysis showed associations of gastric carcinoma with mutant form of IL-1β-511 TT (OR 0.309; P value <0.001) and the CC genotype of IL-1β-31 (OR 0.313; P value of 0.002). Haplotype analysis of IL-1β-31 and IL-1β-511 showed decreased association of IL- 1β-31 T with IL-1β-511 C with gastric carcinoma (OR 0.728; P value 0.03). Expression study of 50 samples by immunohistochemistry (IHC) and RT-PCR showed association with grade III and stage III+IV. After correlating the expression with polymorphism no association was found.
Collapse
Affiliation(s)
- Syed Irtiza
- Department of Biochemistry, Faculty of Life Sciences, Jamia Hamdard University, New Delhi, India E-mail :
| | | | | | | | | | | |
Collapse
|
39
|
Majed F, Rashid S, Khan AQ, Nafees S, Ali N, Ali R, Khan R, Hasan SK, Mehdi SJ, Sultana S. Tannic acid mitigates the DMBA/croton oil-induced skin cancer progression in mice. Mol Cell Biochem 2014; 399:217-28. [DOI: 10.1007/s11010-014-2248-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 10/09/2014] [Indexed: 12/14/2022]
|
40
|
Mitigation of acrylamide-induced behavioral deficits, oxidative impairments and neurotoxicity by oral supplements of geraniol (a monoterpene) in a rat model. Chem Biol Interact 2014; 223:27-37. [DOI: 10.1016/j.cbi.2014.08.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 08/06/2014] [Accepted: 08/28/2014] [Indexed: 01/09/2023]
|
41
|
Rekha KR, Selvakumar GP. Gene expression regulation of Bcl2, Bax and cytochrome-C by geraniol on chronic MPTP/probenecid induced C57BL/6 mice model of Parkinson’s disease. Chem Biol Interact 2014; 217:57-66. [DOI: 10.1016/j.cbi.2014.04.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/23/2014] [Accepted: 04/16/2014] [Indexed: 12/16/2022]
|
42
|
Lesgards JF, Baldovini N, Vidal N, Pietri S. Anticancer Activities of Essential Oils Constituents and Synergy with Conventional Therapies: A Review. Phytother Res 2014; 28:1423-46. [DOI: 10.1002/ptr.5165] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/09/2014] [Accepted: 04/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
| | - Nicolas Baldovini
- Faculté des Sciences; University of Nice-Sophia Antipolis, CNRS UMR 7272, Institut de Chimie de Nice; Avenue Valrose 06108 Nice Cedex 2 France
| | - Nicolas Vidal
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| | - Sylvia Pietri
- Aix Marseille Université, CNRS, ICR UMR 7273; 13397 Marseille France
| |
Collapse
|
43
|
Prasad SN, Muralidhara. Protective effects of geraniol (a monoterpene) in a diabetic neuropathy rat model: Attenuation of behavioral impairments and biochemical perturbations. J Neurosci Res 2014; 92:1205-16. [DOI: 10.1002/jnr.23393] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/26/2014] [Accepted: 03/18/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Sathya N. Prasad
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| | - Muralidhara
- Department of Biochemistry and Nutrition; CSIR-Central Food Technological Research Institute (CFTRI); Karnataka India
| |
Collapse
|
44
|
Rashid S, Ali N, Nafees S, Hasan SK, Sultana S. Amelioration of renal carcinogenesis by bee propolis: a chemo preventive approach. Toxicol Int 2014; 20:227-34. [PMID: 24403733 PMCID: PMC3877491 DOI: 10.4103/0971-6580.121676] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the chemo preventive efficacy of bee propolis (BP) against diethylnitrosamine (DEN) initiated and ferric nitrilotriacetate (Fe-NTA) promoted renal carcinogenesis in Wistar rats. Chronic treatment of Fe-NTA induced oxidative stress, inflammation and cellular proliferation in Wistar rats. BP is a resinous material collected by bees from various plants which has been used from centuries in folk medicine. MATERIALS AND METHODS Renal cancer was initiated by single intraperitoneal injection of N-nitrosodiethylamine (DEN 200 mg/kg body weight) and promoted by twice weekly administration of Fe-NTA 9 mg Fe/kg body weight for 16 weeks. The chemo preventive efficacy of BP was studied in terms of lipid peroxidation (LPO), renal anti-oxidant armory such as catalase, superoxide dismustase, glutathione S-transferase, glutathione peroxidase, glutathione reductase and glutathione (GSH), serum toxicity markers, cell proliferation, tumor suppressor protein and inflammation markers. RESULTS Administration of Fe-NTA enhances renal LPO, with concomitant reduction in reduced GSH content and antioxidant enzymes. It induces serum toxicity markers, viz., blood urea nitrogen, creatinine and lactate dehydrogenase. Chemo preventive effects of BP were associated with upregulation of antioxidant armory and down regulation of serum toxicity markers. BP was also able to down regulate expression of proliferative cell nuclear antigen, cyclooxygenase-2, tumor necrosis factor-alpha and upregulated p53 along with induction of apoptosis. Histopathological changes further confirmed the biochemical and immunohistochemical results. CONCLUSION These results provide a powerful evidence for the chemo preventive efficacy of BP against renal carcinogenesis possibly by modulation of multiple molecular pathways.
Collapse
Affiliation(s)
- Summya Rashid
- Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard University, New Delhi, India
| | - Nemat Ali
- Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard University, New Delhi, India
| | - Sana Nafees
- Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard University, New Delhi, India
| | - Syed Kazim Hasan
- Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard University, New Delhi, India
| | - Sarwat Sultana
- Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard University, New Delhi, India
| |
Collapse
|
45
|
Prasad SN. Neuroprotective effect of geraniol and curcumin in an acrylamide model of neurotoxicity in Drosophila melanogaster: relevance to neuropathy. JOURNAL OF INSECT PHYSIOLOGY 2014; 60:7-16. [PMID: 24231732 DOI: 10.1016/j.jinsphys.2013.10.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 10/18/2013] [Accepted: 10/23/2013] [Indexed: 06/02/2023]
Abstract
Chronic exposure of acrylamide (ACR) leads to neuronal damage in both experimental animals and humans. The primary focus of this study was to assess the ameliorative effect of geraniol, (a natural monoterpene) against ACR-induced oxidative stress, mitochondrial dysfunction and neurotoxicity in a Drosophila model and compare its efficacy to that of curcumin, a spice active principle with pleiotropic biological activity. Adult male flies (8-10 days) were exposed (7 days) to ACR (5 mM) with or without geraniol and curcumin (5-10 μM) in the medium. Both phytoconstituents significantly reduced the incidence of ACR-induced mortality, rescued the locomotor phenotype and alleviated the enhanced levels of oxidative stress markers in head/body regions. The levels of reduced glutathione (GSH) and total thiols (TSH) resulting from ACR exposure was also restored with concomitant elevation in the activities of detoxifying enzymes. Interestingly, ACR induced mitochondrial dysfunctions (MTT reduction, activities of SDH and citrate synthase enzymes) were alleviated by both phytoconstituents. While ACR elevated the activity of acetylcholinesterase in head/body regions, marked diminution in enzyme activity ensued with co-exposure to phytoconstituents suggesting their potency to mitigate cholinergic function. Furthermore, phytoconstituents also restored the dopamine levels in head/body regions. The neuroprotective effect of geraniol was comparable to curcumin in terms of phenotypic and biochemical markers. Based on our evidences in fly model we hypothesise that geraniol possess significant neuromodulatory propensity and may be exploited for therapeutic application in human pathophysiology associated with neuropathy. However, the precise mechanism/s by which geraniol offers neuroprotection needs to be investigated in appropriate neuronal cell models.
Collapse
Affiliation(s)
- Sathya N Prasad
- Department of Biochemistry and Nutrition, CSIR- Central Food Technological Research Institute (CFTRI), Mysore 570020, Karnataka, India
| |
Collapse
|
46
|
|
47
|
Marcuzzi A, Zanin V, Kleiner G, Monasta L, Crovella S. Mouse model of mevalonate kinase deficiency: comparison of cytokine and chemokine profile with that of human patients. Pediatr Res 2013; 74:266-71. [PMID: 23760140 DOI: 10.1038/pr.2013.96] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 01/18/2013] [Indexed: 01/22/2023]
Abstract
BACKGROUND Mevalonate kinase deficiency (MKD) is a rare genetic autoinflammatory disease caused by blocking of the enzyme mevalonate kinase in the pathway of cholesterol and isoprenoids. The pathogenic mechanism originating an immune response in MKD patients has not been clearly understood. METHODS We investigated the dysregulation of expression of selected cytokines and chemokines in the serum of MKD patients. The results have been compared with those observed in an MKD mouse model obtained by treating the mice with aminobisphosphonate, a molecule that is able to inhibit the cholesterol pathway, mimicking the genetic block characteristic of the disease. RESULTS Interleukin (IL)-1β, IL-5, IL-6, IL-9, IL-17, granulocyte colony-stimulating factor, monocyte chemotactic protein-1, tumor necrosis factor-α, and IL-4 expression were dysregulated in sera from MKD patients and mice. Moreover, geraniol, an exogenous isoprenoid, when administered to MKD mice, restored cytokines and chemokines levels with values similar to those of untreated mice. CONCLUSION Our findings, which were obtained in patients and a mouse model mimicking the human disease, suggest that these cytokines and chemokines could be MKD specific and that isoprenoids could be considered as potential therapeutic molecules. The mouse model, even if with some limitations, was robust and suitable for routine testing of potential MKD drugs.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Health Genetics Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, Trieste, Italy.
| | | | | | | | | |
Collapse
|
48
|
Hamiza OO, Rehman MU, Khan R, Tahir M, Khan AQ, Lateef A, Sultana S. Chemopreventive effects of aloin against 1,2-dimethylhydrazine-induced preneoplastic lesions in the colon of Wistar rats. Hum Exp Toxicol 2013; 33:148-63. [PMID: 23928829 DOI: 10.1177/0960327113493307] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Chemoprevention opens new window in the prevention of all types of cancers including colon cancer. Aloin, an anthracycline in plant pigment, can be utilized as a protective agent in cancer induction. In the present study, we have evaluated the chemopreventive efficacy of aloin against 1,2-dimethylhydrazine (DMH)-induced preneoplastic lesions in the colon of Wistar rats. DMH-induced aberrant crypt foci (ACF) and mucin-depleted foci (MDF) have been used as biomarkers of colon cancer. Efficacy of aloin against the colon toxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, lipid peroxidation, ACF, MDF, histopathological changes, and expression levels of molecular markers of inflammation and tumor promotion. Aloin pretreatment ameliorates the damaging effects induced by DMH through a protective mechanism that involved reduction in increased oxidative stress enzymes (p < 0.001), ACF, MDF, cyclooxygenase-2, inducible nitric oxide synthase, interleukin-6, proliferating cell nuclear antigen protein expression, and tumor necrosis factor-α (p < 0.001) release. From the results, it could be concluded that aloin clearly protects against chemically induced colon toxicity and acts reasonably by inducing antioxidant level, anti-inflammatory and antiproliferative markers.
Collapse
Affiliation(s)
- O O Hamiza
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, India
| | | | | | | | | | | | | |
Collapse
|
49
|
Nafees S, Ahmad ST, Arjumand W, Rashid S, Ali N, Sultana S. Carvacrol ameliorates thioacetamide-induced hepatotoxicity by abrogation of oxidative stress, inflammation, and apoptosis in liver of Wistar rats. Hum Exp Toxicol 2013; 32:1292-304. [PMID: 23925945 DOI: 10.1177/0960327113499047] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present study was designed to investigate the protective effects of carvacrol against thioacetamide (TAA)-induced oxidative stress, inflammation and apoptosis in liver of Wistar rats. In this study, rats were subjected to concomitant prophylactic oral pretreatment of carvacrol (25 and 50 mg kg(-1) body weight (b.w.)) against the hepatotoxicity induced by intraperitoneal administration of TAA (300 mg kg(-1) b.w.). Efficacy of carvacrol against the hepatotoxicity was evaluated in terms of biochemical estimation of antioxidant enzyme activities, histopathological changes, and expressions of inflammation and apoptosis. Carvacrol pretreatment prevented deteriorative effects induced by TAA through a protective mechanism in a dose-dependent manner that involved reduction of oxidative stress, inflammation and apoptosis. We found that the protective effect of carvacrol pretreatment is mediated by its inhibitory effect on nuclear factor kappa B activation, Bax and Bcl-2 expression, as well as by restoration of histopathological changes against TAA administration. We may suggest that carvacrol efficiently ameliorates liver injury caused by TAA.
Collapse
Affiliation(s)
- S Nafees
- Section of Molecular Carcinogenesis and Chemoprevention, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard, Hamdard University, Hamdard Nagar, New Delhi, India
| | | | | | | | | | | |
Collapse
|
50
|
Jin X, Sun J, Miao X, Liu G, Zhong D. Inhibitory effect of geraniol in combination with gemcitabine on proliferation of BXPC-3 human pancreatic cancer cells. J Int Med Res 2013; 41:993-1001. [PMID: 23801065 DOI: 10.1177/0300060513480919] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective To investigate the inhibitory effect of geraniol alone, or in combination with gemcitabine, on the proliferation of BXPC-3 pancreatic cancer cells. Methods BXPC-3 cells were treated under different conditions: with geraniol at 10, 20, 40, 80 and 160 µmol/l each for 24 h, 48 h or 72 h; with 20 µmol/l geraniol for 24 h or 0 h before 20 µmol/l gemcitabine for 24 h; with 20 µmol/l geraniol for 24 h, 48 h and 72 h following 20 µmol/l gemcitabine for 24 h; or with 20 µmol/l gemcitabine alone as a control. Cell proliferation was assessed and changes in cell morphology were assessed by light and fluorescence microscopy. Apoptosis was detected using flow cytometry. Results Geraniol inhibited BXPC-3 cell proliferation in a time- and dosa-dependent manner. Geraniol alone or combined with gemcitabine induced BXPC-3 cell apoptosis. BXPC-3 inhibition rates with combined treatment were 55.24%, 50.69%, 49.83%, 41.85% and 45.27% following treatment with 20 µmol/l geraniol for 24 h or 0 h before 20 µmol/l gemcitabine for 24 h, or 20 µmol/l geraniol for 24 h, 48 h and 72 h, following 20 µmol/l gemcitabine for 24 h, respectively. Conclusion Geraniol inhibited the proliferation of BXPC-3 cells. Geraniol significantly increased the antiproliferative and apoptosis-inducing effects of gemcitabine on BXPC-3 cells. Maximum inhibition of BXPC-3 cells was achieved with geraniol treatment for 24 h before gemcitabine treatment.
Collapse
Affiliation(s)
- Xiaoxin Jin
- Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jichun Sun
- Department of Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiongyong Miao
- Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Guoli Liu
- Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Dewu Zhong
- Department of Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| |
Collapse
|