1
|
Lyu Q, Nie Y, Gao J, Wang D. The association between urinary BPA concentrations and urinary incontinence in women. Sci Rep 2025; 15:16390. [PMID: 40355584 PMCID: PMC12069705 DOI: 10.1038/s41598-025-99079-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 04/16/2025] [Indexed: 05/14/2025] Open
Abstract
Urinary incontinence (UI) significantly impacts the quality of life and psychological well-being of female patients. Although emerging evidence suggests potential links between endocrine-disrupting chemicals and pelvic floor disorders, previous studies on the association between bisphenol A (BPA) exposure and UI in women have yielded inconsistent results. This study aimed to examine this potential association using data from the 2015-2016 National Health and Nutrition Examination Survey (NHANES) (n = 467). Through multiple logistic regression analysis with three adjustment models: Model 1 (crude), Model 2 (adjusted for socio-demographic factors: age, race/ethnicity, education, marital status, and poverty ratio), and Model 3 (further adjusted for BMI, hypertension, diabetes, alcohol/smoking status, and delivery history), we assessed BPA exposure categorized into quartiles. No significant associations were observed between BPA exposure and either stress urinary incontinence (SUI) or mixed urinary incontinence (MUI) across all models (P > 0.05). However, participants in the highest BPA quartile (> 7.6 ng/mg creatinine) exhibited a significantly increased risk of urge urinary incontinence (UUI) in Model 1 (OR = 2.01, 95% CI [1.12-3.63]), Model 2 (OR = 2.04, 95% CI [1.08-3.85]), and Model 3 (OR = 2.48, 95% CI [1.18-5.20]). This study has several limitations, including its cross-sectional design, reliance on self-reported UI outcomes, single measurement of urinary BPA, and potential residual confounding from unmeasured factors. While these findings suggest that environmental BPA exposure may contribute to UUI risk in women, future longitudinal studies with repeated biomarker measurements and objective UI assessments are needed to confirm these observations and explore potential mechanisms. If validated, reducing BPA exposure through public health interventions could emerge as a novel preventive strategy for UUI.
Collapse
Affiliation(s)
- Qian Lyu
- Robot Minimally Invasive Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Yu Nie
- Robot Minimally Invasive Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China
| | - Jianyong Gao
- Urology Department, Panzhihua Central Hospital, Panzhihua, 617000, China
| | - Dong Wang
- Robot Minimally Invasive Center, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, 610072, China.
| |
Collapse
|
2
|
Ren J, Bai W, Guo Y, Liu Q, Wang Y, Wang C. Maternal Bisphenol A Exposure Induces Hippocampal-Dependent Learning and Memory Deficits Through the PI3K/Akt/mTOR Pathway in Male Offspring Rats. J Biochem Mol Toxicol 2025; 39:e70100. [PMID: 39799553 DOI: 10.1002/jbt.70100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/18/2024] [Accepted: 12/08/2024] [Indexed: 01/15/2025]
Abstract
Bisphenol A (BPA), an environmental endocrine disrupting chemical, is one of the most widely used chemicals in the world and is widely distributed in the external environment, specifically in food, water, dust, and soil. BPA exposure is associated with abnormal cognitive behaviors. However, the underlying mechanism remains unclear. In this study, pregnant female Sprague Dawley rats were orally exposed to BPA at a low dose of 0, 0.04, 0.4, or 4 mg per kg·of body weight per day from embryonic Day 0 (ED 0) to postnatal Day 21 (PND 21). Spatial learning and memory were measured via a Morris water maze test on PND 22. PI3K/Akt/mTOR signaling pathway protein expression was detected in the hippocampi of male offspring using a western blot. The water maze test demonstrated that BPA exposure considerably reduced the learning and memory capacities of the male offspring exposure groups when compared to the control group. The male offspring rats' latency to escape increased significantly, the time taken to traverse a platform reduced, and latency to find a hidden platform showed an increasing trend. Meanwhile, maternal exposure to BPA downregulated the expression of PI3K/Akt/mTOR/p70S6K pathway in the hippocampi of the offspring. Moreover, BPA exposure improved the GSK3β and phosphorylated tau protein (T231) levels, increased malondialdehyde levels, and activated caspase-3 expression in the hippocampi of the male offspring rats. Taken together, these findings indicate that maternal exposure to BPA causes learning and memory impairment and that the PI3K/Akt/mTOR pathway participates in the mechanism of BPA-induced neurocognitive decline.
Collapse
Affiliation(s)
- Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Wenjie Bai
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
- Nursing College, Shanxi Datong University, Datong, China
| | - Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, China
| |
Collapse
|
3
|
Nayan NM, Husin A, Siran R. The risk of prenatal bisphenol A exposure in early life neurodevelopment: Insights from epigenetic regulation. Early Hum Dev 2024; 198:106120. [PMID: 39293157 DOI: 10.1016/j.earlhumdev.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bisphenols are mainly used as protective coatings for plastics and resin-based materials in various consumer products. Industrial producers have a high demand for bisphenol A (BPA) among all bisphenol substitutes for various consumer products. However, according to reports, prolonged exposure to BPA can cause multiple health issues, including neurodevelopmental disorders in young children. BPA exposure during pregnancy has been considered as the primary cause of increasing the risk of neurological disorders in children as their neural systems are designed to respond to any environmental changes during prenatal life. Recently, there has been an increased focus on the effects of prenatal exposure to BPA, as it has been found to alter gene expression related to epigenetic mechanisms like DNA methylation, histone modification, and microRNA expression. Based on the evidence, frequent interactions can lead to inherited changes in an individual's neural profile. In this review, we delve into the current knowledge regarding the toxicity mechanism of BPA for expecting mothers. Next, we will discuss the possible action of BPA on the epigenetic mechanism during brain development. This is especially important to portray an overview on the role of epigenetic modification caused by prenatal BPA exposure and next, give future directions for improving human health risk assessment caused by BPA exposure.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Institute of Medical Molecular and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia.
| |
Collapse
|
4
|
Nayan NM, Kadir SHSA, Husin A, Siran R. Neurodevelopmental effects of prenatal Bisphenol A exposure on the role of microRNA regulating NMDA receptor subunits in the male rat hippocampus. Physiol Behav 2024; 280:114546. [PMID: 38583549 DOI: 10.1016/j.physbeh.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Maternal bisphenol A (BPA) exposure has been reported to cause learning and memory deficits in born offspring. However, little is known that this impairment is potentially caused by epigenetic modulation on the development of NMDA receptor subunits. This study investigates the effect of prenatal BPA exposure on the hippocampal miR-19a and miR-539, which are responsible for regulating NMDA receptor subunits as well as learning and memory functions. Pregnant Sprague Dawley rats were orally administered with 5 mg/kg/day of BPA from pregnancy day 1 (PD1) until gestation day 21 (GD21), while control mothers received no BPA. The mothers were observed daily until GD21 for either a cesarean section or spontaneous delivery. The male offspring were sacrificed when reaching GD21 (fetus), postnatal days 7, 14, 21 (PND7, 14, 21) and adolescent age 35 (AD35) where their hippocampi were dissected from the brain. The expression of targeted miR-19a, miR-539, GRIN2A, and GRIN2B were determined by qRT-PCR while the level of GluN2A and GluN2B were estimated by western blot. At AD35, the rats were assessed with neurobehavioral tests to evaluate their learning and memory function. The findings showed that prenatal BPA exposure at 5 mg/kg/day significantly reduces the expression of miR-19a, miR-539, GRIN2A, and GRIN2B genes in the male rat hippocampus at all ages. The level of GluN2A and GluN2B proteins is also significantly reduced when reaching adolescent age. Consequently, the rats showed spatial and fear memory impairments when reaching AD35. In conclusion, prenatal BPA exposure disrupts the role of miR-19a and miR-539 in regulating the NMDA receptor subunit in the hippocampus which may be one of the causes of memory and learning impairment in adolescent rats.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Laboratory Animal Care Unit (LACU), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abd Kadir
- Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia..
| |
Collapse
|
5
|
Zhang X, Zhang X, Shi Y, Zhang Z, Wang J, Ru S, Tian H. Interacting with luteinizing hormone receptor provides a new elucidation of the mechanism of anti-androgenicity of bisphenol S. CHEMOSPHERE 2024; 350:141056. [PMID: 38158086 DOI: 10.1016/j.chemosphere.2023.141056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) exhibited inhibitory effects on androgen synthesis, but its target of action remains unclear. We investigated the effects of BPS exposure at environmentally relevant concentrations (1 μg/L, 10 μg/L and 100 μg/L) for 48 h on androgen synthesis in rat ovarian theca cells and explored the underlying mechanisms, target site and target molecule. The results showed that BPS exposure inhibited the transcript levels of steroidogenic genes and reduced the contents of androgen precursors, testosterone and dihydrotestosterone. BPS exposure decreased the phosphorylation levels of extracellular signal-related kinase 1/2 (ERK1/2), and the inhibitory effects of BPS on testosterone content and steroidogenic gene expression were blocked by ERK1/2 agonist LY2828360, suggesting that ERK1/2 signaling pathway mediates the inhibitory effects of BPS on androgen synthesis. BPS mainly accumulated on the cell membrane, impermeable BPS-bovine serum albumin exposure still inhibited androgen synthesis, BPS interacted with rat luteinizing hormone receptor (LHR) via formation of hydrogen bonds in the transmembrane region, and the inhibitory effects of BPS on ERK1/2 phosphorylation were blocked by luteinizing hormone (the natural agonist of LHR), indicating that LHR located on the cell membrane is the target of action of BPS. This paper provides a new elucidation of the mechanism of anti-androgenicity of BPS, especially for the non-genomic pathways.
Collapse
Affiliation(s)
- Xinda Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xiaorong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yijiao Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zhenzhong Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Shaoguo Ru
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hua Tian
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
6
|
Mallick R, Duttaroy AK. Epigenetic modification impacting brain functions: Effects of physical activity, micronutrients, caffeine, toxins, and addictive substances. Neurochem Int 2023; 171:105627. [PMID: 37827244 DOI: 10.1016/j.neuint.2023.105627] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/06/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
Changes in gene expression are involved in many brain functions. Epigenetic processes modulate gene expression by histone modification and DNA methylation or RNA-mediated processes, which is important for brain function. Consequently, epigenetic changes are also a part of brain diseases such as mental illness and addiction. Understanding the role of different factors on the brain epigenome may help us understand the function of the brain. This review discussed the effects of caffeine, lipids, addictive substances, physical activity, and pollutants on the epigenetic changes in the brain and their modulatory effects on brain function.
Collapse
Affiliation(s)
- Rahul Mallick
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Finland
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, POB 1046 Blindern, Oslo, Norway.
| |
Collapse
|
7
|
Yang S, Lee S, Lee Y, Cho JH, Kim SH, Ha ES, Jung YS, Chung HY, Kim MS, Kim HS, Chang SC, Min KJ, Lee J. Cationic nanoplastic causes mitochondrial dysfunction in neural progenitor cells and impairs hippocampal neurogenesis. Free Radic Biol Med 2023; 208:194-210. [PMID: 37553025 DOI: 10.1016/j.freeradbiomed.2023.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Nanoplastics (NPs) exposure to humans can occur through various routes, including the food chain, drinking water, skin contact, and respiration. NPs are plastics with a diameter of less than 100 nm and have the potential to accumulate in tissues, leading to toxic effects. This study aimed to investigate the neurotoxicity of polystyrene NPs on neural progenitor cells (NPCs) and hippocampal neurogenesis in a rodent model. Toxicity screening of polystyrene NPs based on their charge revealed that cationic amine-modified polystyrene (PS-NH3+) exhibited cytotoxicity, while anionic carboxylate-modified polystyrene (PS-COO-) and neutral NPs (PS) did not. NPCs treated with PS-NH3+ showed a significant reduction in growth rate due to G1 cell cycle arrest. PS-NH3+ increased the expression of cell cycle arrest markers p21 and p27, while decreasing cyclin D expression in NPCs. Interestingly, PS-NH3+ accumulated in mitochondria, leading to mitochondrial dysfunction and energy depletion, which caused G1 cell cycle arrest. Prolonged exposure to PS-NH3+ in C17.2 NPCs increased the expression of p16 and senescence-associated secretory phenotype factors, indicating cellular senescence. In vivo studies using C57BL/6 mice demonstrated impaired hippocampal neurogenesis and memory retention after 10 days of PS-NH3+ administration. This study suggests that NPs could deplete neural stem cell pools in the brain by mitochondrial dysfunction, thereby adversely affecting hippocampal neurogenesis and neurocognitive functions.
Collapse
Affiliation(s)
- Seonguk Yang
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seulah Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Yujeong Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea; Cognitive Science Research Group, Korea Brain Research Institute, Daegu, 41068, Republic of Korea
| | - Jung-Hyun Cho
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Sou Hyun Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Eun-Sol Ha
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Young-Suk Jung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hae Young Chung
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Min-Soo Kim
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 2066, Republic of Korea
| | - Seung-Cheol Chang
- Department of Cogno-Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan, 46241, Republic of Korea
| | - Kyung-Jin Min
- Department of Biological Sciences, Inha University, Incheon, South Korea
| | - Jaewon Lee
- College of Pharmacy, Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
8
|
Yi D, Kim K, Lee M, Jung EM, Jeung EB. Effects of Maternal Exposure to Decamethylcyclopentasiloxane on the Alternations in Offspring Behaviors in Mice. Biomedicines 2022; 11:biomedicines11010035. [PMID: 36672543 PMCID: PMC9855567 DOI: 10.3390/biomedicines11010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
D5, a member of the cyclic siloxane family, is widely used in personal care products such as shampoo, cosmetics, and deodorant and as an industrial intermediate. D5 can mainly be absorbed orally or through inhalation. Through these routes, people are exposed to D5 daily. However, the risk of prenatal exposure to D5 has not been fully elucidated. In this study, the effect of D5 on neural development was established through behavioral tests on offspring mice. The result confirmed that the maternal administration of 12 mg/kg of D5 showed depression in tail suspension and decreased performance in the forced swimming test as well as an increase in repetitive activity in both the marble-burying test and grooming test compared to the vehicle group. Furthermore, the 12 mg/kg group showed a decrease in cognitive ability and social behavior in the three-chamber test. In the novel object recognition test, memory impairment and a lack of exploring ability were found in the 12 mg/kg group. In conclusion, it is suggested that maternal D5 exposure has developmental neurotoxicity and can cause behavioral disorders in the offspring of mice. Thus, the usage of D5 needs to be considered carefully.
Collapse
Affiliation(s)
- Donglin Yi
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kangmin Kim
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Minsu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Eui-man Jung
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan 46241, Republic of Korea
| | - Eui-Bae Jeung
- College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
- Correspondence: ; Tel.:+82-43-261-3317
| |
Collapse
|
9
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
10
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
11
|
Takesono A, Kudoh T, Tyler CR. Application of Transgenic Zebrafish Models for Studying the Effects of Estrogenic Endocrine Disrupting Chemicals on Embryonic Brain Development. Front Pharmacol 2022; 13:718072. [PMID: 35264948 PMCID: PMC8900011 DOI: 10.3389/fphar.2022.718072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 01/14/2022] [Indexed: 11/13/2022] Open
Abstract
Endocrine disrupting chemicals (EDCs) are environmental pollutants that mimic hormones and/or disrupt their function. Estrogenic EDCs (eEDCs) interfere with endogenous estrogen signalling pathway(s) and laboratory animal and human epidemiological studies have provided evidence for a causal link between exposure to them during embryonic/early life and neurological impairments. However, our understanding of the molecular and cellular mechanism(s) underlying eEDCs exposure effects on brain development, tissue architecture and function and behaviour are limited. Transgenic (TG) zebrafish models offer new approach methodologies (NAMs) to help identify the modes of action (MoAs) of EDCs and their associated impacts on tissue development and function. Estrogen biosensor TG zebrafish models have been applied to study eEDC interactions and resulting transcriptional activation (via a fluorescent reporter expression) across the entire body of the developing zebrafish embryo, including in real time. These estrogen biosensor TG zebrafish models are starting to deepen our understanding of the spatiotemporal actions of eEDCs and their resulting impacts on neurological development, brain function and behaviour. In this review, we first investigate the links between early life exposure to eEDCs and neurodevelopmental alterations in model organisms (rodents and zebrafish) and humans. We then present examples of the application of estrogen biosensor and other TG zebrafish models for elucidating the mechanism(s) underlying neurodevelopmental toxicities of eEDCs. In particular we illustrate the utility of combining estrogen biosensor zebrafish models with other TG zebrafish models for understanding the effects of eEDCs on the brain, spanning cellular processes, brain circuitry, neurophysiology and behaviour. Finally, we discuss the future prospects of TG zebrafish models as experimental models for studying more complex scenarios for exposure to contaminant mixtures on neurological development and function.
Collapse
Affiliation(s)
- Aya Takesono
- *Correspondence: Aya Takesono, ; Charles R. Tyler,
| | | | | |
Collapse
|
12
|
ERK/MAPK signalling in the developing brain: Perturbations and consequences. Neurosci Biobehav Rev 2021; 131:792-805. [PMID: 34634357 DOI: 10.1016/j.neubiorev.2021.10.009] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 09/26/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
The extracellular regulated kinase/microtubule-associated protein kinase (ERK/MAPK) signalling pathway transduces signals that cause an alteration in the ongoing metabolic pathways and modifies gene expression patterns; thus, influencing cellular behaviour. ERK/MAPK signalling is essential for the proper development of the nervous system from neural progenitor cells derived from the embryonic mesoderm. Several signalling molecules that regulate the well-coordinated process of neurodevelopment transduce developmental information through the ERK/MAPK signalling pathway. The ERK/MAPK is a potential novel therapeutic target in several neurodevelopmental disorders, however, despite years of study, there is still significant uncertainty about the exact mechanism by which the ERK/MAPK signalling pathway elicits specific responses in neurodevelopment. Here, we will review the evidence highlighting the role of ERK/MAPK signalling in neurodevelopment. We will also discuss the structural implication and behavioural deficits associated with perturbed ERK/MAPK signalling pathway in cortical development, whilst examining its contribution to the neuropathology of several neurodevelopmental disorders, such as Autism Spectrum Disorder, Schizophrenia, Fragile X, and Attention Deficit Hyperactive Disorder.
Collapse
|
13
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
14
|
Sex-biased impact of endocrine disrupting chemicals on behavioral development and vulnerability to disease: Of mice and children. Neurosci Biobehav Rev 2020; 121:29-46. [PMID: 33248148 DOI: 10.1016/j.neubiorev.2020.11.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 10/16/2020] [Accepted: 11/14/2020] [Indexed: 12/14/2022]
Abstract
Sex is a fundamental biological characteristic that influences many aspects of an organism's phenotype, including neurobiological functions and behavior as a result of species-specific evolutionary pressures. Sex differences have strong implications for vulnerability to disease and susceptibility to environmental perturbations. Endocrine disrupting chemicals (EDCs) have the potential to interfere with sex hormones functioning and influence development in a sex specific manner. Here we present an updated descriptive review of findings from animal models and human studies regarding the current evidence for altered sex-differences in behavioral development in response to early exposure to EDCs, with a focus on bisphenol A and phthalates. Overall, we show that animal and human studies have a good degree of consistency and that there is strong evidence demonstrating that EDCs exposure during critical periods of development affect sex differences in emotional and cognitive behaviors. Results are more heterogeneous when social, sexual and parental behaviors are considered. In order to pinpoint sex differences in environmentally-driven disease vulnerabilities, researchers need to consider sex-biased developmental effects of EDCs.
Collapse
|
15
|
Naderi M, Salahinejad A, Attaran A, Chivers DP, Niyogi S. Chronic exposure to environmentally relevant concentrations of bisphenol S differentially affects cognitive behaviors in adult female zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 261:114060. [PMID: 32045791 DOI: 10.1016/j.envpol.2020.114060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 12/02/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Evidence is emerging that environmental exposure to bisphenol S (BPS), a substitute for bisphenol A (BPA), to humans and wildlife is on the rise. However, research on the neurobehavioral effects of this endocrine disruptive chemical is still in its infancy. In this study, we aimed to investigate the effects of long-term exposure to environmentally relevant concentrations of BPS on recognition memory and its mechanism(s) of action, especially focusing on the glutamatergic/ERK/CREB pathway in the brain. Adult female zebrafish were exposed to the vehicle, 17β-estradiol (E2, 1 μg/L), or BPS (1, 10 and 30 μg/L) for 120 days. Fish were then tested in the object recognition (OR), object placement (OP), and social recognition tasks (SR). Chronic exposure to E2 and 1 μg/L of BPS improved fish performance in OP task. This was associated with an up-regulation in the mRNA expression of several subtypes of metabotropic and ionotropic glutamate receptors, an increase in the phosphorylation levels of ERK1/2 and CREB, and an elevated transcript abundance of several immediate early genes involved in synaptic plasticity and memory formation. In contrast, the exposure to 10 and 30 μg/L of BPS attenuated fish performance in all recognition memory tasks. The impairment of these memory functions was associated with a marked down-regulation in the expression and activity of genes and proteins involved in glutamatergic/ERK/CREB signaling cascade. Collectively, our study demonstrated that the long-term exposure to BPS elicits hermetic effects on the recognition memory in zebrafish. Furthermore, the effect of BPS on the recognition memory seems to be mediated by the glutamatergic/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK S7N 5B3, Canada
| |
Collapse
|
16
|
Bisphenol a Exposure in Utero Disrupts Hypothalamic Gene Expression Particularly Genes Suspected in Autism Spectrum Disorders and Neuron and Hormone Signaling. Int J Mol Sci 2020; 21:ijms21093129. [PMID: 32365465 PMCID: PMC7246794 DOI: 10.3390/ijms21093129] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 01/09/2023] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting compound detected in the urine of more than 92% of humans, easily crosses the placental barrier, and has been shown to influence gene expression during fetal brain development. The purpose of this study was to investigate the effect of in utero BPA exposure on gene expression in the anterior hypothalamus, the basal nucleus of the stria terminalis (BNST), and hippocampus in C57BL/6 mice. Mice were exposed in utero to human-relevant doses of BPA, and then RNA sequencing was performed on male PND 28 tissue from whole hypothalamus (n = 3/group) that included the medial preoptic area (mPOA) and BNST to determine whether any genes were differentially expressed between BPA-exposed and control mice. A subset of genes was selected for further study using RT-qPCR on adult tissue from hippocampus to determine whether any differentially expressed genes (DEGs) persisted into adulthood. Two different RNA-Seq workflows indicated a total of 259 genes that were differentially expressed between BPA-exposed and control mice. Gene ontology analysis indicated that those DEGs were overrepresented in categories relating to mating, cell-cell signaling, behavior, neurodevelopment, neurogenesis, synapse formation, cognition, learning behaviors, hormone activity, and signaling receptor activity, among others. Ingenuity Pathway Analysis was used to interrogate novel gene networks and upstream regulators, indicating the top five upstream regulators as huntingtin, beta-estradiol, alpha-synuclein, Creb1, and estrogen receptor (ER)-alpha. In addition, 15 DE genes were identified that are suspected in autism spectrum disorders.
Collapse
|
17
|
Santoro A, Chianese R, Troisi J, Richards S, Nori SL, Fasano S, Guida M, Plunk E, Viggiano A, Pierantoni R, Meccariello R. Neuro-toxic and Reproductive Effects of BPA. Curr Neuropharmacol 2020; 17:1109-1132. [PMID: 31362658 PMCID: PMC7057208 DOI: 10.2174/1570159x17666190726112101] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/04/2019] [Accepted: 07/19/2019] [Indexed: 02/08/2023] Open
Abstract
Background: Bisphenol A (BPA) is one of the highest volume chemicals produced worldwide. It has recognized activity as an endocrine-disrupting chemical and has suspected roles as a neurological and reproductive toxicant. It interferes in steroid signaling, induces oxidative stress, and affects gene expression epigenetically. Gestational, perinatal and neonatal exposures to BPA affect developmental processes, including brain development and gametogenesis, with consequences on brain functions, behavior, and fertility. Methods: This review critically analyzes recent findings on the neuro-toxic and reproductive effects of BPA (and its ana-logues), with focus on neuronal differentiation, synaptic plasticity, glia and microglia activity, cognitive functions, and the central and local control of reproduction. Results: BPA has potential human health hazard associated with gestational, peri- and neonatal exposure. Beginning with BPA’s disposition, this review summarizes recent findings on the neurotoxicity of BPA and its analogues, on neuronal dif-ferentiation, synaptic plasticity, neuro-inflammation, neuro-degeneration, and impairment of cognitive abilities. Furthermore, it reports the recent findings on the activity of BPA along the HPG axis, effects on the hypothalamic Gonadotropin Releas-ing Hormone (GnRH), and the associated effects on reproduction in both sexes and successful pregnancy. Conclusion: BPA and its analogues impair neuronal activity, HPG axis function, reproduction, and fertility. Contrasting re-sults have emerged in animal models and human. Thus, further studies are needed to better define their safety levels. This re-view offers new insights on these issues with the aim to find the “fil rouge”, if any, that characterize BPA’s mechanism of action with outcomes on neuronal function and reproduction.
Collapse
Affiliation(s)
- Antonietta Santoro
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Rosanna Chianese
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Sean Richards
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States.,Department of Biology, Geology and Environmental Sciences, University of Tennessee at Chattanooga, Chattanooga, TN, United States
| | - Stefania Lucia Nori
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Silvia Fasano
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Maurizio Guida
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy.,Theoreo srl - Spin-off company of the University of Salerno, Salerno, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Salerno, Italy
| | - Elizabeth Plunk
- University of Tennessee College of Medicine, Department of Obstetrics and Gynecology, Chattanooga, TN, United States
| | - Andrea Viggiano
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Baronissi, SA, Italy
| | - Riccardo Pierantoni
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Rosaria Meccariello
- Department of Movement Sciences and Wellbeing, Parthenope University of Naples, Naples, Italy
| |
Collapse
|
18
|
Martini M, Corces VG, Rissman EF. Mini-review: Epigenetic mechanisms that promote transgenerational actions of endocrine disrupting chemicals: Applications to behavioral neuroendocrinology. Horm Behav 2020; 119:104677. [PMID: 31927019 PMCID: PMC9942829 DOI: 10.1016/j.yhbeh.2020.104677] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 01/01/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022]
Abstract
It is our hope this mini-review will stimulate discussion and new research. Here we briefly examine the literature on transgenerational actions of endocrine disrupting chemicals (EDCs) on brain and behavior and their underlying epigenetic mechanisms including: DNA methylation, histone modifications, and non-coding RNAs. We stress that epigenetic modifications need to be examined in a synergistic manner, as they act together in situ on chromatin to change transcription. Next we highlight recent work from one of our laboratories (VGC). The data provide new evidence that the sperm genome is poised for transcription. In developing sperm, gene enhancers and promoters are accessible for transcription and these activating motifs are also found in preimplantation embryos. Thus, DNA modifications associated with transcription factors during fertilization, in primordial germ cells (PGCs), and/or during germ cell maturation may be passed to offspring. We discuss the implications of this model to EDC exposures and speculate on whether natural variation in hormone levels during fertilization and PGC migration may impart transgenerational effects on brain and behavior. Lastly we discuss how this mechanism could apply to neural sexual differentiation.
Collapse
Affiliation(s)
- Mariangela Martini
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, United States of America
| | - Emilie F Rissman
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, United States of America.
| |
Collapse
|
19
|
Pistollato F, de Gyves EM, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 2020; 19:23. [PMID: 32093744 PMCID: PMC7038628 DOI: 10.1186/s12940-020-00578-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.
Collapse
Affiliation(s)
| | | | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Carolina Nunes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
20
|
Zhang H, Wang Z, Meng L, Kuang H, Liu J, Lv X, Pang Q, Fan R. Maternal exposure to environmental bisphenol A impairs the neurons in hippocampus across generations. Toxicology 2020; 432:152393. [PMID: 32027964 DOI: 10.1016/j.tox.2020.152393] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Humans from fetal to adult stages are chronically and passively exposed to bisphenol A (BPA, an endocrine disruptor) due to its ubiquitous existence in daily life. To investigate the long-term neurotoxicity of maternal exposure to BPA for offspring, mice were used as the animal model. In this study, pregnant mice (F0) were orally dosed with BPA (i.e. mice from low-, medium- and high-exposed groups were treated with 0.5, 50, 5000 μg/kg·bw of BPA per day) until weaning. Then, the first generation (F1) mice were used to generate the F2 ones. The offspring of mice not exposed to BPA served as the control groups. The Y-maze test, comet assay, hematoxylin-eosin (HE) staining method, Golgi-Cox assay and liquid chromatography-tandem mass spectrometry (LC/MS/MS) were conducted to study any alterations to learning and memory abilities, the morphological variations in hippocampal neurons and transmitter levels of F1 and F2 mice induced by BPA exposure. Results showed that even a low-dose of maternal BPA exposure could sex-dependently and significantly impair the learning and memory ability of F1 male mice, but not of generation F2. Furthermore, decreased neuron quantities and spine densities in hippocampi were observed in both F1 and F2 generations after maternal BPA exposure. However, DNA damage of brain cells were only limited to F1 offspring, in which DNA damage was only observed in the low-exposed male mice and medium-exposed female mice. Additionally, maternal BPA exposure leads to variations in hippocampal neurotransmitter levels, indicated by the decreased ratio of Glu/GABA in F1 offspring. In conclusion, maternal exposure to an environmental dose of BPA resulted in lasting adverse effects on neurological development for offspring mice.
Collapse
Affiliation(s)
- Haibin Zhang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhouyu Wang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lingxue Meng
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Hongxuan Kuang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jian Liu
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xuejing Lv
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Qihua Pang
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Ruifang Fan
- Guangdong Provincial Engineering Technology Research Center for Drug and Food Biological Resources Processing and Comprehensive Utilization, School of Life Sciences, South China Normal University, Guangzhou, 510631, China; Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Nelson W, Wang YX, Sakwari G, Ding YB. Review of the Effects of Perinatal Exposure to Endocrine-Disrupting Chemicals in Animals and Humans. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2020; 251:131-184. [PMID: 31129734 DOI: 10.1007/398_2019_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maternal exposure to endocrine-disrupting chemicals (EDCs) is associated with long-term hormone-dependent effects that are sometimes not revealed until maturity, middle age, or adulthood. The aim of this study was to conduct descriptive reviews on animal experimental and human epidemiological evidence of the adverse health effects of in utero and lactational exposure to selected EDCs on the first generation and subsequent generation of the exposed offspring. PubMed, Web of Science, and Toxline databases were searched for relevant human and experimental animal studies on 29 October 29 2018. Search results were screened for relevance, and studies that met the inclusion criteria were evaluated and qualitative data extracted for analysis. The search yielded 73 relevant human and 113 animal studies. Results from studies show that in utero and lactational exposure to EDCs is associated with impairment of reproductive, immunologic, metabolic, neurobehavioral, and growth physiology of the exposed offspring up to the fourth generation without additional exposure. Little convergence is seen between animal experiments and human studies in terms of the reported adverse health effects which might be associated with methodologic challenges across the studies. Based on the available animal and human evidence, in utero and lactational exposure to EDCs is detrimental to the offspring. However, more human studies are necessary to clarify the toxicological and pathophysiological mechanisms underlying these effects.
Collapse
Affiliation(s)
- William Nelson
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Gloria Sakwari
- Department of Environmental and Occupational Health, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es salaam, Tanzania
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproductive and Development, Department of Reproductive Biology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
22
|
Arita Y, Park HJ, Cantillon A, Getahun D, Menon R, Peltier MR. Effect of bisphenol-A (BPA) on placental biomarkers for inflammation, neurodevelopment and oxidative stress. J Perinat Med 2019; 47:741-749. [PMID: 31339859 DOI: 10.1515/jpm-2019-0045] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/17/2019] [Indexed: 12/21/2022]
Abstract
Background Bisphenol-A (BPA) is a widespread pollutant whose effects on pregnant women are poorly understood. Therefore, we investigated the effects of BPA on basal and bacteria-stimulated production of proinflammatory cytokines [interleukin (IL)-1β, tumor necrosis factor-α (TNF-α) and IL-6], anti-inflammatory mediators [soluble glycoprotein 130 (sgp) 130, heme oxidase-1 (HO-1) and IL-10] and biomarkers for neurodevelopment [brain-derived neurotrophic factor (BDNF)], and oxidative stress [8-isoprostane (8-IsoP)] by the placenta. Methods Placental explant cultures were treated with BPA (0-10,000 nM) in the presence or absence of 107 colony-forming unit (CFU)/mL heat-killed Escherichia coli for 24 h. Biomarker concentrations in conditioned medium were quantified by the enzyme-linked immunosorbent assay (ELISA). Results Under basal conditions, IL-1β and IL-6 production was enhanced by BPA in a dose-dependent manner. Sgp130, a soluble receptor that reduces IL-6 bioactivity, was suppressed by BPA at 1000-10,000 nM. BPA also enhanced BDNF production at 1000 and 10,000 nM, and 8-IsoP expression at 10 and 100 nM. For bacteria-treated cultures, BPA increased IL-6 production at 100 nM and reduced sgp130 at 1000 nM but had no effect on IL-1β, TNF-α, BDNF, HO-1, 8-IsoP or IL-10 production. Conclusion BPA may increase placental inflammation by promoting IL-1β and IL-6 but inhibiting sgp130. It may also disrupt oxidative balance and neurodevelopment by increasing 8-IsoP and BDNF production.
Collapse
Affiliation(s)
- Yuko Arita
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Hyeon Jeong Park
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Aisling Cantillon
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA
| | - Darios Getahun
- Department of Research and Evaluation, Kaiser-Permanente Southern California, Pasadena, CA, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, UTMB-Galveston, Galveston, TX, USA
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetrics and Gynecology; NYU-Long Island School of Medicine, Mineola, NY, USA.,Department of Obstetric and Gynecology, NYU-Winthrop Hospital, 101 Mineola Blvd Rm. 4-040, Mineola, NY, USA
| |
Collapse
|
23
|
Wolstenholme JT, Drobná Z, Henriksen AD, Goldsby JA, Stevenson R, Irvin JW, Flaws JA, Rissman EF. Transgenerational Bisphenol A Causes Deficits in Social Recognition and Alters Postsynaptic Density Genes in Mice. Endocrinology 2019; 160:1854-1867. [PMID: 31188430 PMCID: PMC6637794 DOI: 10.1210/en.2019-00196] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/24/2019] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is a ubiquitous endocrine-disrupting chemical. Developmental exposure produces changes in behavior and gene expression in the brain. Here, we examined social recognition behaviors in mice from the third familial generation (F3) after exposure to gestational BPA. Second-generation mice were bred in one of four mating combinations to reveal whether characteristics in F3 were acquired via maternal or paternal exposures. After repeated habituation to the same mouse, offspring of dams from the BPA lineage failed to display increased investigation of a novel mouse. Genes involved in excitatory postsynaptic densities (PSDs) were examined in F3 brains using quantitative PCR. Differential expression of genes important for function and stability of PSDs were assessed at three developmental ages. Several related PSD genes-SH3 and multiple ankyrin repeat domains 1 (Shank1), Homer scaffolding protein 1c (Homer1c), DLG associated protein 1 (Gkap), and discs large MAGUK scaffold protein 4 (PSD95)-were differentially expressed in control- vs BPA-lineage brains. Using a second strain of F3 inbred mice exposed to BPA, we noted the same differences in Shank1 and PSD95 expression in C57BL/6J mice. In sum, transgenerational BPA exposure disrupted social interactions in mice and dysregulated normal expression of PSD genes during neural development. The fact that the same genetic effects were found in two different mouse strains and in several brain regions increased potential for translation. The genetic and functional relationship between PSD and abnormal neurobehavioral disorders is well established, and our data suggest that BPA may contribute in a transgenerational manner to neurodevelopmental diseases.
Collapse
Affiliation(s)
- Jennifer T Wolstenholme
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Zuzana Drobná
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Anne D Henriksen
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia
| | - Jessica A Goldsby
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachel Stevenson
- Department of Pharmacology & Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Joshua W Irvin
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
| | - Jodi A Flaws
- Department of Comparative Biosciences, University of Illinois, Urbana, Illinois
| | - Emilie F Rissman
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
- Center for Human Health and the Environment and Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina
- Correspondence: Emilie F. Rissman, PhD, North Carolina State University, Thomas Hall Room 3526, Raleigh, North Carolina 27695. E-mail:
| |
Collapse
|
24
|
Lee W, Cho JH, Lee Y, Lee S, Kim DH, Ha S, Kondo Y, Ishigami A, Chung HY, Lee J. Dibutyl phthalate impairs neural progenitor cell proliferation and hippocampal neurogenesis. Food Chem Toxicol 2019; 129:239-248. [DOI: 10.1016/j.fct.2019.04.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/18/2023]
|
25
|
Sex Differences in the Effects of Prenatal Bisphenol A Exposure on Genes Associated with Autism Spectrum Disorder in the Hippocampus. Sci Rep 2019; 9:3038. [PMID: 30816183 PMCID: PMC6395584 DOI: 10.1038/s41598-019-39386-w] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/21/2019] [Indexed: 11/30/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder inexplicably biased towards males. Although prenatal exposure to bisphenol A (BPA) has recently been associated with the ASD risk, whether BPA dysregulates ASD-related genes in the developing brain remains unclear. In this study, transcriptome profiling by RNA-seq analysis of hippocampi isolated from neonatal pups prenatally exposed to BPA was conducted and revealed a list of differentially expressed genes (DEGs) associated with ASD. Among the DEGs, several ASD candidate genes, including Auts2 and Foxp2, were dysregulated and showed sex differences in response to BPA exposure. The interactome and pathway analyses of DEGs using Ingenuity Pathway Analysis software revealed significant associations between the DEGs in males and neurological functions/disorders associated with ASD. Moreover, the reanalysis of transcriptome profiling data from previously published BPA studies consistently showed that BPA-responsive genes were significantly associated with ASD-related genes. The findings from this study indicate that prenatal BPA exposure alters the expression of ASD-linked genes in the hippocampus and suggest that maternal BPA exposure may increase ASD susceptibility by dysregulating genes associated with neurological functions known to be negatively impacted in ASD, which deserves further investigations.
Collapse
|
26
|
Awada Z, Sleiman F, Mailhac A, Mouneimne Y, Tamim H, Zgheib NK. BPA exposure is associated with non-monotonic alteration in ESR1 promoter methylation in peripheral blood of men and shorter relative telomere length in peripheral blood of women. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2019; 29:118-128. [PMID: 29643374 DOI: 10.1038/s41370-018-0030-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/01/2017] [Accepted: 12/29/2017] [Indexed: 05/20/2023]
Abstract
The aim of this study was to evaluate the potential association of urinary Bisphenol A (BPA) levels with estrogen receptor alpha (ESR1) promoter % methylation and relative telomere length in a sample of 482 participants. Urinary BPA concentration was measured using organic phase extraction followed by high performance liquid chromatography mass spectroscopy. Peripheral blood ESR1 promoter % methylation and relative telomere length were measured using direct bisulfite sequencing and real-time polymerase chain reaction, respectively. The mean ± SD urinary BPA concentration adjusted for urinary creatinine was 2.90 ± 4.81 (μg/g creatinine) with a median of 1.86 μg/g creatinine (min-max: <LOD -69.85). There was a potentially non-monotonic relationship between adjusted urinary BPA concentrations and ESR1 promoter % methylation in men. As a matter of fact, for the lowest tertile of ESR1 promoter % methylation, the OR and 95% CI of the middle and highest tertiles of urinary adjusted BPA were 2.54 (1.01-6.39) and 1.64 (0.55-4.86) when compared to the lowest BPA tertile, respectively. After adjustment for potential confounders, similar results remained in men and appeared in the whole cohort. As for relative telomere length, there was a significant trend whereby higher adjusted urinary BPA concentrations were significantly associated with shorter relative telomere length in females. For instance, for the shortest relative telomere length tertile, the OR and 95% CI of the middle and highest tertiles of urinary adjusted BPA were 2.91 (1.38-6.16) and 3.19 (1.57-6.49) when compared to the lowest BPA tertile, respectively. This trend remained significant after adjustment for potential confounders.
Collapse
Affiliation(s)
- Z Awada
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - F Sleiman
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - A Mailhac
- Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Y Mouneimne
- Kamal A. Shair Central Research Science Laboratory, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - H Tamim
- Clinical Research Institute, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - N K Zgheib
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
27
|
Mhaouty-Kodja S, Belzunces LP, Canivenc MC, Schroeder H, Chevrier C, Pasquier E. Impairment of learning and memory performances induced by BPA: Evidences from the literature of a MoA mediated through an ED. Mol Cell Endocrinol 2018; 475:54-73. [PMID: 29605460 DOI: 10.1016/j.mce.2018.03.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 03/28/2018] [Accepted: 03/28/2018] [Indexed: 11/29/2022]
Abstract
Many rodent studies and a few non-human primate data report impairments of spatial and non-spatial memory induced by exposure to bisphenol A (BPA), which are associated with neural modifications, particularly in processes involved in synaptic plasticity. BPA-induced alterations involve disruption of the estrogenic pathway as established by reversal of BPA-induced effects with estrogenic receptor antagonist or by interference of BPA with administered estradiol in ovariectomized animals. Sex differences in hormonal impregnation during critical periods of development and their influence on maturation of learning and memory processes may explain the sexual dimorphism observed in BPA-induced effects in some studies. Altogether, these data highly support the plausibility that alteration of learning and memory and synaptic plasticity by BPA is essentially mediated by disturbance of the estrogenic pathways. As memory function in humans involves similar signaling pathways, this mode of action of BPA has the potential to alter human cognitive abilities.
Collapse
Affiliation(s)
- Sakina Mhaouty-Kodja
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine, Institut de Biologie Paris Seine, 75005 Paris, France
| | - Luc P Belzunces
- INRA, Laboratoire de Toxicologie Environnementale, UR 406 A&E, CS 40509, 84914 Avignon Cedex 9, France
| | - Marie-Chantal Canivenc
- Centre des Sciences du Goût et de l'Alimentation, INRA, CNRS, agrosup, Université de Bourgogne, Franche-Comté, Dijon, 21000, France
| | - Henri Schroeder
- Calbinotox, EA7488, Faculté des Sciences et Technologies, Université de Lorraine, 54500, Vandoeuvre les Nancy, France
| | - Cécile Chevrier
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France
| | | |
Collapse
|
28
|
Sensitive neurotoxicity assessment of bisphenol A using double immunocytochemistry of DCX and MAP2. Arch Pharm Res 2018; 41:1098-1107. [DOI: 10.1007/s12272-018-1077-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/11/2018] [Indexed: 02/01/2023]
|
29
|
Desai M, Ferrini MG, Han G, Jellyman JK, Ross MG. In vivo maternal and in vitro BPA exposure effects on hypothalamic neurogenesis and appetite regulators. ENVIRONMENTAL RESEARCH 2018; 164:45-52. [PMID: 29476947 PMCID: PMC8085909 DOI: 10.1016/j.envres.2018.02.011] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 02/08/2018] [Accepted: 02/10/2018] [Indexed: 06/01/2023]
Abstract
In utero exposure to the ubiquitous plasticizer, bisphenol A (BPA) is associated with offspring obesity. As food intake/appetite is one of the critical elements contributing to obesity, we determined the effects of in vivo maternal BPA and in vitro BPA exposure on newborn hypothalamic stem cells which form the arcuate nucleus appetite center. For in vivo studies, female rats received BPA prior to and during pregnancy via drinking water, and newborn offspring primary hypothalamic neuroprogenitor (NPCs) were obtained and cultured. For in vitro BPA exposure, primary hypothalamic NPCs from healthy newborns were utilized. In both cases, we studied the effects of BPA on NPC proliferation and differentiation, including putative signal and appetite factors. Maternal BPA increased hypothalamic NPC proliferation and differentiation in newborns, in conjunction with increased neuroproliferative (Hes1) and proneurogenic (Ngn3) protein expression. With NPC differentiation, BPA exposure increased appetite peptide and reduced satiety peptide expression. In vitro BPA-treated control NPCs showed results that were consistent with in vivo data (increase appetite vs satiety peptide expression) and further showed a shift towards neuronal versus glial fate as well as an increase in the epigenetic regulator lysine-specific histone demethylase1 (LSD1). These findings emphasize the vulnerability of stem-cell populations that are involved in life-long regulation of metabolic homeostasis to epigenetically-mediated endocrine disruption by BPA during early life.
Collapse
Affiliation(s)
- Mina Desai
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Monica G Ferrini
- Department of Health and Life Sciences Department of Internal Medicine, Charles R. Drew University, Los Angeles, CA, USA
| | - Guang Han
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Juanita K Jellyman
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA
| | - Michael G Ross
- Perinatal Research Laboratory, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Department of Obstetrics and Gynecology, Torrance, CA, USA; Department of Obstetrics and Gynecology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA; Department of Obstetrics and Gynecology, Charles R. Drew University, Los Angeles, CA, USA
| |
Collapse
|
30
|
Müller SG, Jardim NS, Quines CB, Nogueira CW. Diphenyl diselenide regulates Nrf2/Keap-1 signaling pathway and counteracts hepatic oxidative stress induced by bisphenol A in male mice. ENVIRONMENTAL RESEARCH 2018; 164:280-287. [PMID: 29554619 DOI: 10.1016/j.envres.2018.03.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/01/2018] [Accepted: 03/03/2018] [Indexed: 06/08/2023]
Abstract
Bisphenol A (BPA) is a chemical toxicant that has deleterious effects on human. BPA causes oxidative stress in tissues, including the liver. Diphenyl diselenide (PhSe)2 improves the antioxidant response via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2)/Kelch-like ECH-associated protein (keap 1) pathway in macrophage cells. In the present study, we investigated whether (PhSe)2 counteracts hepatic oxidative stress induced by BPA in male and female Swiss mice. Three-week-old mice received by the intragastric (i.g.) route BPA (5 mg/kg) from 21st to 60th postnatal day (PND). At PND 61, the mice were treated with (PhSe)2 (1 mg/kg, i.g.) for seven days. Parameters of hepatic damage and oxidative stress were determined in male and female mice. The results show that BPA increased the activity of aspartate aminotransferase in female mice, and in male mice the activity of alanine aminotranseferase was increased. Male and female mice had an increase in fat mass accumulation. Male mice showed an increase in hepatic oxidative damage of proteins and a decrease in non-enzymatic (ascorbic acid and non-protein thiol) and enzymatic (superoxide dismutase) defenses, which are consistent with oxidative stress status. Male mice were more susceptible than female mice to hepatic oxidative stress induced by BPA. BPA decreased Nrf2/Keap1 protein content in male mice. (PhSe)2 reduced hepatic oxidative stress induced by BPA in male mice. Our results demonstrate that male mice were more susceptible to hepatic oxidative stress induced by BPA than female mice. (PhSe)2 regulated Nrf2/Keap-1 signaling pathway and countered hepatic oxidative stress induced by BPA in male mice.
Collapse
Affiliation(s)
- Sabrina G Müller
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Natália S Jardim
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Caroline B Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil
| | - Cristina W Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, RS, Brazil.
| |
Collapse
|
31
|
Johnson SA, Farrington MJ, Murphy CR, Caldo PD, McAllister LA, Kaur S, Chun C, Ortega MT, Marshall BL, Hoffmann F, Ellersieck MR, Schenk AK, Rosenfeld CS. Multigenerational effects of bisphenol A or ethinyl estradiol exposure on F2 California mice (Peromyscus californicus) pup vocalizations. PLoS One 2018; 13:e0199107. [PMID: 29912934 PMCID: PMC6005501 DOI: 10.1371/journal.pone.0199107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/24/2018] [Indexed: 01/08/2023] Open
Abstract
Rodent pups use vocalizations to communicate with one or both parents in biparental species, such as California mice (Peromyscus californicus). Previous studies have shown California mice developmentally exposed to endocrine disrupting chemicals, bisphenol A (BPA) or ethinyl estradiol (EE), demonstrate later compromised parental behaviors. Reductions in F1 parental behaviors might also be due to decreased emissions of F2 pup vocalizations. Thus, vocalizations of F2 male and female California mice pups born to F1 parents developmentally exposed to BPA, EE, or controls were examined. Postnatal days (PND) 2-4 were considered early postnatal period, PND 7 and 14 were defined as mid-postnatal period, and PND 21 and 28 were classified as late postnatal period. EE pups showed increased latency to emit the first syllable compared to controls. BPA female pups had decreased syllable duration compared to control and EE female pups during the early postnatal period but enhanced responses compared to controls at late postnatal period; whereas, male BPA and EE pups showed greater syllable duration compared to controls during early postnatal period. In mid-postnatal period, F2 BPA and EE pups emitted greater number of phrases than F2 control pups. Results indicate aspects of vocalizations were disrupted in F2 pups born to F1 parents developmentally exposed to BPA or EE, but their responses were not always identical, suggesting BPA might not activate estrogen receptors to the same extent as EE. Changes in vocalization patterns by F2 pups may be due to multigenerational exposure to BPA or EE and/or reduced parental care received.
Collapse
Affiliation(s)
- Sarah A. Johnson
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
- Department of Gastroenterology, School of Medicine, University of Missouri, Columbia, Missouri, United States of America
| | - Michelle J. Farrington
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Claire R. Murphy
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Paul D. Caldo
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Leif A. McAllister
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Sarabjit Kaur
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Catherine Chun
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Madison T. Ortega
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Brittney L. Marshall
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Frauke Hoffmann
- Department of Chemicals and Product Safety, The German Federal Institute for Risk Assessment, Berlin, Germany
| | - Mark R. Ellersieck
- Department of Agriculture Experimental Station-Statistics, University of Missouri, Columbia, Missouri, United States of America
| | - A. Katrin Schenk
- Department of Physics, Randolph College, Lynchburg, Virginia, United States of America
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States of America
- Genetics Area Program, University of Missouri, Columbia, Missouri, United States of America
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
32
|
Nesan D, Sewell LC, Kurrasch DM. Opening the black box of endocrine disruption of brain development: Lessons from the characterization of Bisphenol A. Horm Behav 2018; 101:50-58. [PMID: 29241697 DOI: 10.1016/j.yhbeh.2017.12.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/04/2017] [Accepted: 12/06/2017] [Indexed: 01/14/2023]
Abstract
Bisphenol A (BPA) is among the best-studied endocrine disrupting chemicals, known to act via multiple steroid hormone receptors to mediate a myriad of cellular effects. Pre-, peri-, and postnatal BPA exposure have been linked to a variety of altered behaviors in multiple model organisms, ranging from zebrafish to frogs to mammalian models. Given that BPA can cross the human placental barrier and has been found in the serum of human fetuses during gestation, BPA has been postulated to adversely affect ongoing neurodevelopment, ultimately leading to behavioral disorders later in life. Indeed, the brain has been identified as a key developmental target for BPA disruption. Despite these known associations between gestational BPA exposure and adverse developmental outcomes, as well as an extensive body of evidence existing in the literature, the mechanisms by which BPA induces its cellular- and tissue-specific effects on neurodevelopmental processes still remains poorly understood at a mechanistic level. In this review we will briefly summarize the effects of gestational BPA exposure on neural developmental mechanisms and resulting behaviors, and then present suggestions for how we might address gaps in our knowledge to develop a fuller understanding of endocrine neurodevelopmental disruption to better inform governmental policy against the use of BPA or other endocrine disruptors.
Collapse
Affiliation(s)
- Dinushan Nesan
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Laronna C Sewell
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada; Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada; Hotckhiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
33
|
Gonzalez-Casanova I, Stein AD, Barraza-Villarreal A, Feregrino RG, DiGirolamo A, Hernandez-Cadena L, Rivera JA, Romieu I, Ramakrishnan U. Prenatal exposure to environmental pollutants and child development trajectories through 7 years. Int J Hyg Environ Health 2018; 221:616-622. [PMID: 29699913 PMCID: PMC5988245 DOI: 10.1016/j.ijheh.2018.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/27/2018] [Accepted: 04/11/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prenatal exposure to environmental pollutants such as mold, lead, pesticides, tobacco, and air pollutants has been suggested to impair cognitive development. Evidence is needed from longitudinal studies to understand their joint impact on child development across time. OBJECTIVE To study associations between exposure to indoor environmental pollutants or outdoor air pollution during pregnancy and offspring cognitive development trajectories through 7 years. METHODS We included 718 Mexican mother-child pairs. Prenatal exposure to indoor environmental pollutants (mold, ventilation, pesticides, tobacco smoke, and use of vidiartred clay pots) was self-reported by the mothers and integrated into an index, or objectively measured in the case of outdoor air pollutants (nitrogen oxides, benzene, toluene, and xylene). Child global cognitive development was measured at 12, 18, 60, or 84 months. Using Latent Class Growth Analysis, we identified three developmental trajectories (positive = 108, average = 362, low = 248). We used multinomial logistic models to test associations between environmental pollutant score (EPS) or outdoor air pollutants, and cognitive development trajectories. RESULTS After adjustment for sociodemographic covariates, EPS was associated with the average (OR = 1.26 95%CI = 1.01, 1.55) and low (OR = 1.41 95%CI = 1.11, 1.79) trajectories compared to positive; where a unit increase in EPS means an additional prenatal exposure to a pollutant. There was no association between outdoor air pollutants and cognitive development trajectories. CONCLUSION Children of women who reported higher exposure to indoor environmental pollutants during pregnancy were more likely to follow worse developmental trajectories through 7 years. These results support the development and testing of interventions to reduce exposure to environmental pollutants during pregnancy and early childhood as a potential strategy to improve long-term cognitive development.
Collapse
Affiliation(s)
- Ines Gonzalez-Casanova
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | - Aryeh D Stein
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Albino Barraza-Villarreal
- Department of Environmental Health, Population Health Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Raquel Garcia Feregrino
- Center for the Study of Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Ann DiGirolamo
- Center of Excellence for Children's Behavioral Health, Georgia Health Policy Center, Georgia State University, Atlanta, GA, USA
| | - Leticia Hernandez-Cadena
- Department of Environmental Health, Population Health Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Juan A Rivera
- Center for the Study of Nutrition and Health, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Isabelle Romieu
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA; Department of Environmental Health, Population Health Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico; International Agency for Research on Cancer, Lyon, France
| | - Usha Ramakrishnan
- Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
34
|
Kim AH, Chun HJ, Lee S, Kim HS, Lee J. High dose tetrabromobisphenol A impairs hippocampal neurogenesis and memory retention. Food Chem Toxicol 2017; 106:223-231. [PMID: 28564613 DOI: 10.1016/j.fct.2017.05.053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/24/2017] [Accepted: 05/26/2017] [Indexed: 12/20/2022]
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant that is commonly used in commercial and household products, such as, computers, televisions, mobile phones, and electronic boards. TBBPA can accumulate in human body fluids, and it has been reported that TBBPA possesses endocrine disruptive activity. However, the neurotoxic effect of TBBPA on hippocampal neurogenesis has not yet been investigated. Accordingly, the present study was undertaken to evaluate the effect of TBBPA on adult hippocampal neurogenesis and cognitive function. Male C57BL/6 mice were orally administrated vehicle or TBBPA (20 mg/kg, 100 mg/kg, or 500 mg/kg daily) for two weeks. TBBPA was observed to significantly and dose-dependently reduce the survival of newly generated cells in the hippocampus but not to affect the proliferation of newly generated cells. Numbers of hippocampal BrdU and NeuN positive cells were dose-dependently reduced by TBBPA, indicating impaired neurogenesis in the hippocampus. Interestingly, glial activation without neuronal death was observed in hippocampi exposed to TBBPA. Furthermore, memory retention was found to be adversely affected by TBBPA exposure by a mechanism involving suppression of the BDNF-CREB signaling pathway. The study suggests high dose TBBPA disrupts hippocampal neurogenesis and induces associated memory deficits.
Collapse
Affiliation(s)
- Ah Hyun Kim
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, South Korea
| | - Hye Jeong Chun
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, South Korea
| | - Seulah Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, South Korea
| | - Hyung Sik Kim
- Laboratory of Molecular Toxicology, School of Pharmacy, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Jaewon Lee
- Department of Pharmacy, College of Pharmacy, Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan 609-735, South Korea.
| |
Collapse
|
35
|
Fang Z, Zhu Q, Gu T, Shen X, Yang Y, Liang Y, Zhang Z, Xu X. Anti-androgenic effects of bisphenol-A on spatial memory and synaptic plasticity of the hippocampus in mice. Horm Behav 2017; 93:151-158. [PMID: 28576649 DOI: 10.1016/j.yhbeh.2017.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 05/19/2017] [Accepted: 05/28/2017] [Indexed: 12/31/2022]
Abstract
Bisphenol-A (BPA) is a common environmental endocrine disruptor. Our recent studies found that exposure to BPA in both adolescent and adulthood sex-specifically impaired spatial memory in male mice. In this study, 11-week-old gonadectomied (GDX) male mice daily received subcutaneous injections of testosterone propionate (TP, 0.5mg/kg), TP and BPA (0.4 and 4mg/kg), or vehicle for 45days. The results of Morris water maze task showed that exposure to BPA did not affect the spatial memory of GDX mice but impaired that of sham (4mg/kg/day) and TP-treated GDX mice (0.4mg/kg/day). In addition, BPA reduced the level of testosterone (T) in the serum and brain of sham and TP-treated GDX mice. Exposure to BPA decreased the synaptic density and had an adverse effect on the synaptic interface of the hippocampus in sham and TP-treated GDX mice. The results of western blot analysis further showed that BPA (4mg/kg) reduced the levels of synaptic proteins (synapsin I and PSD-95) and NMDA receptor subunit NR2B in sham and TP-treated GDX mice. BPA decreased the phosphorylation of ERK1/2 but increased the phosphorylation of p38 in sham and TP-treated GDX mice. These results suggest that impairment of spatial memory and adverse effects on synaptic remodeling of hippocampal neurons in males after long-term BPA exposure is related to the anti-androgen effect of BPA. These effects of BPA may be associated with downregulated synaptic proteins and NMDA receptor through inhibiting ERKs and promoting the p38 pathways.
Collapse
Affiliation(s)
- Zhaoqing Fang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Qingjie Zhu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Ting Gu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiuying Shen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Yang Yang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Yufeng Liang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Zigui Zhang
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China
| | - Xiaohong Xu
- Chemistry and Life Sciences College, Xingzhi College, Zhejiang Provincial Key Laboratory of Ecology, Key laboratory of wildlife biotechnology and conservation and utilization of Zhejiang Province, Zhejiang Normal University, China.
| |
Collapse
|
36
|
Aiba T, Saito T, Hayashi A, Sato S, Yunokawa H, Maruyama T, Fujibuchi W, Kurita H, Tohyama C, Ohsako S. Methylated site display (MSD)-AFLP, a sensitive and affordable method for analysis of CpG methylation profiles. BMC Mol Biol 2017; 18:7. [PMID: 28279161 PMCID: PMC5345256 DOI: 10.1186/s12867-017-0083-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/02/2017] [Indexed: 02/22/2023] Open
Abstract
Background It has been pointed out that environmental factors or chemicals can cause diseases that are developmental in origin. To detect abnormal epigenetic alterations in DNA methylation, convenient and cost-effective methods are required for such research, in which multiple samples are processed simultaneously. We here present methylated site display (MSD), a unique technique for the preparation of DNA libraries. By combining it with amplified fragment length polymorphism (AFLP) analysis, we developed a new method, MSD-AFLP. Results Methylated site display libraries consist of only DNAs derived from DNA fragments that are CpG methylated at the 5′ end in the original genomic DNA sample. To test the effectiveness of this method, CpG methylation levels in liver, kidney, and hippocampal tissues of mice were compared to examine if MSD-AFLP can detect subtle differences in the levels of tissue-specific differentially methylated CpGs. As a result, many CpG sites suspected to be tissue-specific differentially methylated were detected. Nucleotide sequences adjacent to these methyl-CpG sites were identified and we determined the methylation level by methylation-sensitive restriction endonuclease (MSRE)-PCR analysis to confirm the accuracy of AFLP analysis. The differences of the methylation level among tissues were almost identical among these methods. By MSD-AFLP analysis, we detected many CpGs showing less than 5% statistically significant tissue-specific difference and less than 10% degree of variability. Additionally, MSD-AFLP analysis could be used to identify CpG methylation sites in other organisms including humans. Conclusion MSD-AFLP analysis can potentially be used to measure slight changes in CpG methylation level. Regarding the remarkable precision, sensitivity, and throughput of MSD-AFLP analysis studies, this method will be advantageous in a variety of epigenetics-based research. Electronic supplementary material The online version of this article (doi:10.1186/s12867-017-0083-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Toshiki Aiba
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Toshiyuki Saito
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan.
| | - Akiko Hayashi
- Department of Radiation Effects Research, National Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Shinji Sato
- Maze, Inc., 1-2-17 Sennincho, Hachioji-shi, Tokyo, 193-0835, Japan
| | | | - Toru Maruyama
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.,Department of Life Science & Medical Bioscience, Graduate School of Advanced Science & Engineering, Waseda University, Tokyo, Japan
| | - Wataru Fujibuchi
- Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Hisaka Kurita
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Laboratory of Medical Therapeutics and Molecular Therapeutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Chiharu Tohyama
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.,Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiichiroh Ohsako
- Laboratory of Environmental Health Sciences, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| |
Collapse
|
37
|
Preciados M, Yoo C, Roy D. Estrogenic Endocrine Disrupting Chemicals Influencing NRF1 Regulated Gene Networks in the Development of Complex Human Brain Diseases. Int J Mol Sci 2016; 17:E2086. [PMID: 27983596 PMCID: PMC5187886 DOI: 10.3390/ijms17122086] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/21/2016] [Accepted: 11/29/2016] [Indexed: 12/13/2022] Open
Abstract
During the development of an individual from a single cell to prenatal stages to adolescence to adulthood and through the complete life span, humans are exposed to countless environmental and stochastic factors, including estrogenic endocrine disrupting chemicals. Brain cells and neural circuits are likely to be influenced by estrogenic endocrine disruptors (EEDs) because they strongly dependent on estrogens. In this review, we discuss both environmental, epidemiological, and experimental evidence on brain health with exposure to oral contraceptives, hormonal therapy, and EEDs such as bisphenol-A (BPA), polychlorinated biphenyls (PCBs), phthalates, and metalloestrogens, such as, arsenic, cadmium, and manganese. Also we discuss the brain health effects associated from exposure to EEDs including the promotion of neurodegeneration, protection against neurodegeneration, and involvement in various neurological deficits; changes in rearing behavior, locomotion, anxiety, learning difficulties, memory issues, and neuronal abnormalities. The effects of EEDs on the brain are varied during the entire life span and far-reaching with many different mechanisms. To understand endocrine disrupting chemicals mechanisms, we use bioinformatics, molecular, and epidemiologic approaches. Through those approaches, we learn how the effects of EEDs on the brain go beyond known mechanism to disrupt the circulatory and neural estrogen function and estrogen-mediated signaling. Effects on EEDs-modified estrogen and nuclear respiratory factor 1 (NRF1) signaling genes with exposure to natural estrogen, pharmacological estrogen-ethinyl estradiol, PCBs, phthalates, BPA, and metalloestrogens are presented here. Bioinformatics analysis of gene-EEDs interactions and brain disease associations identified hundreds of genes that were altered by exposure to estrogen, phthalate, PCBs, BPA or metalloestrogens. Many genes modified by EEDs are common targets of both 17 β-estradiol (E2) and NRF1. Some of these genes are involved with brain diseases, such as Alzheimer's Disease (AD), Parkinson's Disease, Huntington's Disease, Amyotrophic Lateral Sclerosis, Autism Spectrum Disorder, and Brain Neoplasms. For example, the search of enriched pathways showed that top ten E2 interacting genes in AD-APOE, APP, ATP5A1, CALM1, CASP3, GSK3B, IL1B, MAPT, PSEN2 and TNF-underlie the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) AD pathway. With AD, the six E2-responsive genes are NRF1 target genes: APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1. These genes are also responsive to the following EEDs: ethinyl estradiol (APBB2, DPYSL2, EIF2S1, ENO1, MAPT, and PAXIP1), BPA (APBB2, EIF2S1, ENO1, MAPT, and PAXIP1), dibutyl phthalate (DPYSL2, EIF2S1, and ENO1), diethylhexyl phthalate (DPYSL2 and MAPT). To validate findings from Comparative Toxicogenomics Database (CTD) curated data, we used Bayesian network (BN) analysis on microarray data of AD patients. We observed that both gender and NRF1 were associated with AD. The female NRF1 gene network is completely different from male human AD patients. AD-associated NRF1 target genes-APLP1, APP, GRIN1, GRIN2B, MAPT, PSEN2, PEN2, and IDE-are also regulated by E2. NRF1 regulates targets genes with diverse functions, including cell growth, apoptosis/autophagy, mitochondrial biogenesis, genomic instability, neurogenesis, neuroplasticity, synaptogenesis, and senescence. By activating or repressing the genes involved in cell proliferation, growth suppression, DNA damage/repair, apoptosis/autophagy, angiogenesis, estrogen signaling, neurogenesis, synaptogenesis, and senescence, and inducing a wide range of DNA damage, genomic instability and DNA methylation and transcriptional repression, NRF1 may act as a major regulator of EEDs-induced brain health deficits. In summary, estrogenic endocrine disrupting chemicals-modified genes in brain health deficits are part of both estrogen and NRF1 signaling pathways. Our findings suggest that in addition to estrogen signaling, EEDs influencing NRF1 regulated communities of genes across genomic and epigenomic multiple networks may contribute in the development of complex chronic human brain health disorders.
Collapse
Affiliation(s)
- Mark Preciados
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| | - Changwon Yoo
- Department of Biostatistics, Florida International University, Miami, FL 33199, USA.
| | - Deodutta Roy
- Department of Environmental & Occupational Health, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
38
|
Early developmental bisphenol-A exposure sex-independently impairs spatial memory by remodeling hippocampal dendritic architecture and synaptic transmission in rats. Sci Rep 2016; 6:32492. [PMID: 27578147 PMCID: PMC5006158 DOI: 10.1038/srep32492] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 08/09/2016] [Indexed: 01/10/2023] Open
Abstract
Bisphenol-A (BPA, 4, 4'-isopropylidene-2-diphenol), a synthetic xenoestrogen that widely used in the production of polycarbonate plastics, has been reported to impair hippocampal development and function. Our previous study has shown that BPA exposure impairs Sprague-Dawley (SD) male hippocampal dendritic spine outgrowth. In this study, the sex-effect of chronic BPA exposure on spatial memory in SD male and female rats and the related synaptic mechanism were further investigated. We found that chronic BPA exposure impaired spatial memory in both SD male and female rats, suggesting a dysfunction of hippocampus without gender-specific effect. Further investigation indicated that BPA exposure causes significant impairment of dendrite and spine structure, manifested as decreased dendritic complexity, dendritic spine density and percentage of mushroom shaped spines in hippocampal CA1 and dentate gyrus (DG) neurons. Furthermore, a significant reduction in Arc expression was detected upon BPA exposure. Strikingly, BPA exposure significantly increased the mIPSC amplitude without altering the mEPSC amplitude or frequency, accompanied by increased GABAARβ2/3 on postsynaptic membrane in cultured CA1 neurons. In summary, our study indicated that Arc, together with the increased surface GABAARβ2/3, contributed to BPA induced spatial memory deficits, providing a novel molecular basis for BPA achieved brain impairment.
Collapse
|
39
|
Huang B, Ning S, Zhang Q, Chen A, Jiang C, Cui Y, Hu J, Li H, Fan G, Qin L, Liu J. Bisphenol A Represses Dopaminergic Neuron Differentiation from Human Embryonic Stem Cells through Downregulating the Expression of Insulin-like Growth Factor 1. Mol Neurobiol 2016; 54:3798-3812. [DOI: 10.1007/s12035-016-9898-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/03/2016] [Indexed: 01/05/2023]
|
40
|
Keil KP, Lein PJ. DNA methylation: a mechanism linking environmental chemical exposures to risk of autism spectrum disorders? ENVIRONMENTAL EPIGENETICS 2016; 2:dvv012. [PMID: 27158529 PMCID: PMC4856164 DOI: 10.1093/eep/dvv012] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is now compelling evidence that gene by environment interactions are important in the etiology of autism spectrum disorders (ASDs). However, the mechanisms by which environmental factors interact with genetic susceptibilities to confer individual risk for ASD remain a significant knowledge gap in the field. The epigenome, and in particular DNA methylation, is a critical gene expression regulatory mechanism in normal and pathogenic brain development. DNA methylation can be influenced by environmental factors such as diet, hormones, stress, drugs, or exposure to environmental chemicals, suggesting that environmental factors may contribute to adverse neurodevelopmental outcomes of relevance to ASD via effects on DNA methylation in the developing brain. In this review, we describe epidemiological and experimental evidence implicating altered DNA methylation as a potential mechanism by which environmental chemicals confer risk for ASD, using polychlorinated biphenyls (PCBs), lead, and bisphenol A (BPA) as examples. Understanding how environmental chemical exposures influence DNA methylation and how these epigenetic changes modulate the risk and/or severity of ASD will not only provide mechanistic insight regarding gene-environment interactions of relevance to ASD but may also suggest potential intervention strategies for these and potentially other neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kimberly P. Keil
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Pamela J. Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
- *Correspondence address. Department of Molecular Biosciences, School of Veterinary Medicine, University of California Davis, 1089 Veterinary Medicine Drive, Davis, CA 95616, USA. Tel:
(530) 752-1970
; Fax:
(530) 752-7690
; E-mail:
| |
Collapse
|
41
|
Wang C, Li Z, Han H, Luo G, Zhou B, Wang S, Wang J. Impairment of object recognition memory by maternal bisphenol A exposure is associated with inhibition of Akt and ERK/CREB/BDNF pathway in the male offspring hippocampus. Toxicology 2016; 341-343:56-64. [PMID: 26827910 DOI: 10.1016/j.tox.2016.01.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 12/25/2022]
Abstract
Bisphenol A (BPA) is a commonly used endocrine-disrupting chemical used as a component of polycarbonates plastics that has potential adverse effects on human health. Exposure to BPA during development has been implicated in memory deficits, but the mechanism of action underlying the effect is not fully understood. In this study, we investigated the effect of maternal exposure to BPA on object recognition memory and the expressions of proteins important for memory, especially focusing on the ERK/CREB/BDNF pathway. Pregnant Sprague-Dawley female rats were orally treated with either vehicle or BPA (0.05, 0.5, 5 or 50 mg/kg BW/day) during days 9-20 of gestation. Male offspring were tested on postnatal day 21 with the object recognition task. Recognition memory was assessed using the object recognition index (index=the time spent exploring the novel object/(the time spent exploring the novel object+the time spent exploring the familiar object)). In the test session performed 90 min after the training session, BPA-exposed male offspring not only spent more time in exploring the familiar object at the highest dose than the control, but also displayed a significantly decreased the object recognition index at the doses of 0.5, 5 and 50 mg/kg BW/day. During the test session performed 24h after the training session, BPA-treated males did not change the time spent exploring the familiar object, but had a decreased object recognition index at 5 and 50 mg/kg BW/day, when compared to control group. These findings indicate that object recognition memory was susceptible to maternal BPA exposure. Western blot analysis of hippocampi from BPA-treated male offspring revealed a decrease in Akt, phospho-Akt, p44/42 MAPK and phospho-p44/42 MAPK protein levels, compared to controls. In addition, BPA significantly inhibited the levels of phosphorylation of CREB and BDNF in the hippocampus. Our results show that maternal BPA exposure may full impair object recognition memory, and that impairment may be related to a decrease in Akt activation and an inhibition of the ERK/CREB/BDNF pathway in the hippocampus. This study also adds new evidence that suggests BPA has an antagonistic effect on the action of estrogen in the brain.
Collapse
Affiliation(s)
- Chong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China
| | - Zhihui Li
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Haijun Han
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; The First Affiliated Hospital of College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | - Guangying Luo
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China; School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, PR China
| | - Bingrui Zhou
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China
| | - Shaolin Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agriculture University, Beijing 100193, PR China.
| | - Jundong Wang
- Shanxi Key Laboratory of Ecological Animal Science and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, PR China.
| |
Collapse
|
42
|
Castro B, Sánchez P, Torres JM, Ortega E. Bisphenol A, bisphenol F and bisphenol S affect differently 5α-reductase expression and dopamine-serotonin systems in the prefrontal cortex of juvenile female rats. ENVIRONMENTAL RESEARCH 2015; 142:281-287. [PMID: 26186136 DOI: 10.1016/j.envres.2015.07.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/02/2015] [Accepted: 07/01/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Early-life exposure to the endocrine disruptor bisphenol A (BPA) affects brain function and behavior, which might be attributed to its interference with hormonal steroid signaling and/or neurotransmitter systems. Alternatively, the use of structural analogs of BPA, mainly bisphenol F (BPF) and bisphenol S (BPS), has increased recently. However, limited in vivo toxicity data exist. OBJECTIVES We investigated the effects of BPA, BPF and BPS on 5α-reductase (5α-R), a key enzyme involved in neurosteroidogenesis, as well as on dopamine (DA)- and serotonin (5-HT)-related genes, in the prefrontal cortex (PFC) of juvenile female rats. METHODS Gestating Wistar rats were treated with either vehicle or 10 μg/kg/day of BPA, BPF or BPS from gestational day 12 to parturition. Then, female pups were exposed from postnatal day 1 through day 21 (PND21), when they were euthanized and RT-PCR, western blot and quantitative PCR-array experiments were performed. RESULTS BPA decreased 5α-R2 and 5α-R3 mRNA and protein levels, while both BPF and BPS decreased 5α-R3 mRNA levels in PFC at PND21. Further, BPA, BPF and BPS significantly altered, respectively, the transcription of 25, 56 and 24 genes out of the 84 DA and 5-HT-related genes assayed. Of particular interest was the strong induction by all these bisphenols of Cyp2d4, implicated in corticosteroids synthesis. CONCLUSIONS Our results demonstrate for the first time that BPA, BPF and BPS differentially affect 5α-R and genes related to DA/5-HT systems in the female PFC. In vivo evidence of the potential adverse effects of BPF and BPS in the brain of mammals is provided in this work, raising questions about the safety of these chemicals as substitutes for BPA.
Collapse
Affiliation(s)
- Beatriz Castro
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain
| | - Pilar Sánchez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain
| | - Jesús M Torres
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain; Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain.
| | - Esperanza Ortega
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Granada, Avda. de Madrid s/n, 18012 Granada, Spain; Institute of Neurosciences, Faculty of Medicine, University of Granada, Granada, Spain.
| |
Collapse
|
43
|
Abstract
Rapidly growing evidences link maternal lifestyle and prenatal factors with serious health consequences and diseases later in life. Extensive epidemiological studies have identified a number of factors such as diet, stress, gestational diabetes, exposure to tobacco and alcohol during gestation as influencing normal fetal development. In light of recent discoveries, epigenetic mechanisms such as alteration of DNA methylation, chromatin modifications and modulation of gene expression during gestation are believed to possibly account for various types of plasticity such as neural tube defects, autism spectrum disorder, congenital heart defects, oral clefts, allergies and cancer. The purpose of this article is to review a number of published studies to fill the gap in our understanding of how maternal lifestyle and intrauterine environment influence molecular modifications in the offspring, with an emphasis on epigenetic alterations. To support these associations, we highlighted laboratory studies of rodents and epidemiological studies of human based on sampling population cohorts.
Collapse
Affiliation(s)
- Subit Barua
- Structural Neurobiology Laboratory, Department of Developmental Biochemistry, New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, USA
| | | |
Collapse
|
44
|
Bhandari RK, Deem SL, Holliday DK, Jandegian CM, Kassotis CD, Nagel SC, Tillitt DE, Vom Saal FS, Rosenfeld CS. Effects of the environmental estrogenic contaminants bisphenol A and 17α-ethinyl estradiol on sexual development and adult behaviors in aquatic wildlife species. Gen Comp Endocrinol 2015; 214:195-219. [PMID: 25277515 DOI: 10.1016/j.ygcen.2014.09.014] [Citation(s) in RCA: 192] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/08/2014] [Accepted: 09/20/2014] [Indexed: 12/12/2022]
Abstract
Endocrine disrupting chemicals (EDCs), including the mass-produced component of plastics, bisphenol A (BPA) are widely prevalent in aquatic and terrestrial habitats. Many aquatic species, such as fish, amphibians, aquatic reptiles and mammals, are exposed daily to high concentrations of BPA and ethinyl estradiol (EE2), estrogen in birth control pills. In this review, we will predominantly focus on BPA and EE2, well-described estrogenic EDCs. First, the evidence that BPA and EE2 are detectable in almost all bodies of water will be discussed. We will consider how BPA affects sexual and neural development in these species, as these effects have been the best characterized across taxa. For instance, such chemicals have been in many cases reported to cause sex-reversal of males to females. Even if these chemicals do not overtly alter the gonadal sex, there are indications that several EDCs might demasculinize male-specific behaviors that are essential for attracting a mate. In so doing, these chemicals may reduce the likelihood that these males reproduce. If exposed males do reproduce, the concern is that they will then be passing on compromised genetic fitness to their offspring and transmitting potential transgenerational effects through their sperm epigenome. We will thus consider how diverse epigenetic changes might be a unifying mechanism of how BPA and EE2 disrupt several processes across species. Such changes might also serve as universal species diagnostic biomarkers of BPA and other EDCs exposure. Lastly, the evidence that estrogenic EDCs-induced effects in aquatic species might translate to humans will be considered.
Collapse
Affiliation(s)
- Ramji K Bhandari
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | - Sharon L Deem
- Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Veterinary Clinical Medicine, University of Missouri, Columbia, MO 65211, USA
| | - Dawn K Holliday
- Department of Biology and Environmental Science, Westminster College, Fulton, MO 65251, USA; Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Caitlin M Jandegian
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA; Institute for Conservation Medicine, Saint Louis Zoo, Saint Louis, MO 63110, USA; Masters in Public Health Program, University of Missouri, Columbia, MO 65211, USA
| | | | - Susan C Nagel
- Biological Sciences, University of Missouri, Columbia, MO 65211, USA; Obstetrics, Gynecology, & Women's Health, University of Missouri, Columbia, MO 65211, USA
| | - Donald E Tillitt
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, MO 65201, USA
| | | | - Cheryl S Rosenfeld
- Biomedical Sciences, University of Missouri, Columbia, MO 65211, USA; Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA; Genetics Area Program Faculty Member, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
45
|
Rosenfeld CS. Bisphenol A and phthalate endocrine disruption of parental and social behaviors. Front Neurosci 2015; 9:57. [PMID: 25784850 PMCID: PMC4347611 DOI: 10.3389/fnins.2015.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/09/2015] [Indexed: 11/24/2022] Open
Abstract
Perinatal exposure to endocrine disrupting chemicals (EDCs) can induce promiscuous neurobehavioral disturbances. Bisphenol A and phthalates are two widely prevalent and persistent EDCs reported to lead to such effects. Parental and social behaviors are especially vulnerable to endocrine disruption, as these traits are programmed by the organizational-activational effects of testosterone and estrogen. Exposure to BPA and other EDCs disrupts normal maternal care provided by rodents and non-human primates, such as nursing, time she spends hunched over and in the nest, and grooming her pups. Paternal care may also be affected by BPA. No long-term study has linked perinatal exposure to BPA or other EDC and later parental behavioral deficits in humans. The fact that the same brain regions and neural hormone substrates govern parental behaviors in animal models and humans suggests that this suite of behaviors may also be vulnerable in the latter. Social behaviors, such as communication, mate choice, pair bonding, social inquisitiveness and recognition, play behavior, social grooming, copulation, and aggression, are compromised in animal models exposed to BPA, phthalates, and other EDCs. Early contact to these chemicals is also correlated with maladaptive social behaviors in children. These behavioral disturbances may originate by altering the fetal or adult gonadal production of testosterone or estrogen, expression of ESR1, ESR2, and AR in the brain regions governing these behaviors, neuropeptide/protein hormone (oxytocin, vasopressin, and prolactin) and their cognate neural receptors, and/or through epimutations. Robust evidence exists for all of these EDC-induced changes. Concern also exists for transgenerational persistence of such neurobehavioral disruptions. In sum, evidence for social and parental deficits induced by BPA, phthalates, and related chemicals is strongly mounting, and such effects may ultimately compromise the overall social fitness of populations to come.
Collapse
Affiliation(s)
- Cheryl S Rosenfeld
- Bond Life Sciences Center, Genetics Area Program, Biomedical Sciences, University of Missouri Columbia, MO, USA
| |
Collapse
|
46
|
Scientific Opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2015. [DOI: 10.2903/j.efsa.2015.3978] [Citation(s) in RCA: 586] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
47
|
Liu ZH, Yang Y, Ge MM, Xu L, Tang Y, Hu F, Xu Y, Wang HL. Bisphenol-A exposure alters memory consolidation and hippocampal CA1 spine formation through Wnt signaling in vivo and in vitro. Toxicol Res (Camb) 2015. [DOI: 10.1039/c4tx00093e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Based on Wnt signaling pathway, this study aims to further mechanistically understand memory alteration after BPA exposure.
Collapse
Affiliation(s)
- Zhi-Hua Liu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Ye Yang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Meng-Meng Ge
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Li Xu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Yuqing Tang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Fan Hu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Yi Xu
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| | - Hui-Li Wang
- School of Biotechnology and Food Engineering
- Hefei University of Technology
- Hefei
- PR China
| |
Collapse
|
48
|
Skinner MK. Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 2014; 398:4-12. [PMID: 25088466 PMCID: PMC4262585 DOI: 10.1016/j.mce.2014.07.019] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 07/25/2014] [Accepted: 07/28/2014] [Indexed: 02/07/2023]
Abstract
Environmental exposures such as toxicants, nutrition and stress have been shown to promote the epigenetic transgenerational inheritance of disease susceptibility. Endocrine disruptors are one of the largest groups of specific toxicants shown to promote this form of epigenetic inheritance. These environmental compounds that interfere with normal endocrine signaling are one of the largest classes of toxicants we are exposed to on a daily level. The ability of ancestral exposures to promote disease susceptibility significantly increases the potential biohazards of these toxicants. Therefore, what your great-grandmother was exposed to during pregnancy may influence your disease development, even in the absence of any exposure, and you are going to pass this on to your grandchildren. This non-genetic form of inheritance significantly impacts our understanding of biology from the origins of disease to evolutionary biology. The current review will describe the previous studies and endocrine disruptors shown to promote the epigenetic transgenerational inheritance of disease.
Collapse
Affiliation(s)
- Michael K Skinner
- Center for Reproductive Biology, School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.
| |
Collapse
|
49
|
Tiwari SK, Agarwal S, Seth B, Yadav A, Ray RS, Mishra VN, Chaturvedi RK. Inhibitory Effects of Bisphenol-A on Neural Stem Cells Proliferation and Differentiation in the Rat Brain Are Dependent on Wnt/β-Catenin Pathway. Mol Neurobiol 2014; 52:1735-1757. [PMID: 25381574 DOI: 10.1007/s12035-014-8940-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 10/13/2014] [Indexed: 02/07/2023]
Abstract
Neurogenesis, a process of generation of new neurons, occurs throughout the life in the hippocampus and sub-ventricular zone (SVZ). Bisphenol-A (BPA), an endocrine disrupter used as surface coating for packaged food cans, injures the developing and adult brain. However, the effects of BPA on neurogenesis and underlying cellular and molecular mechanism(s) are still unknown. Herein, we studied the effect(s) of prenatal and early postnatal exposure of low dose BPA on Wnt/β-catenin signaling pathway that controls different steps of neurogenesis such as neural stem cell (NSC) proliferation and neuronal differentiation. Pregnant rats were treated with 4, 40, and 400 μg BPA/kg body weight orally daily from gestational day 6 to postnatal day 21. Both in vivo and in vitro studies showed that BPA alters NSC proliferation and differentiation. BPA impaired NSC proliferation (5'-bromo-2'-deoxyuridine (BrdU(+)) and nestin(+) cells) and neuronal differentiation (BrdU/doublecortin(+) and BrdU/neuronal nuclei (NeuN(+)) cells) in the hippocampus and SVZ as compared to control. It significantly altered expression/protein levels of neurogenic genes and the Wnt pathway genes in the hippocampus. BPA reduced cellular β-catenin and p-GSK-3β levels and decreased β-catenin nuclear translocation, and cyclin-D1 and TCF/LEF promoter luciferase activity. Specific activation and blockage of the Wnt pathway suggested involvement of this pathway in BPA-mediated inhibition of neurogenesis. Further, blockage of GSK-3β activity by SB415286 and GSK-3β small interfering RNA (siRNA) attenuated BPA-induced downregulation of neurogenesis. Overall, these results suggest significant inhibitory effects of BPA on NSC proliferation and differentiation in the rat via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Shashi Kant Tiwari
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Swati Agarwal
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Brashket Seth
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anuradha Yadav
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Ratan Singh Ray
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Photobiology Division, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India
| | - Vijay Nath Mishra
- Department of Neurology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Division, Systems Toxicology Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 80-MG Marg, Lucknow, Uttar Pradesh, India. .,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.
| |
Collapse
|
50
|
Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, Hunt PA, Newbold RR, Rubin BS, Saili KS, Soto AM, Wang HS, vom Saal FS. Low dose effects of bisphenol A. ACTA ACUST UNITED AC 2014. [DOI: 10.4161/endo.26490] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|