1
|
Attema B, Kummu O, Krutáková M, Pavek P, Hakkola J, Hooiveld GJEJ, Kersten S. The fungicide propiconazole induces hepatic steatosis and activates PXR in a mouse model of diet-induced obesity. Arch Toxicol 2025; 99:1203-1221. [PMID: 39718591 DOI: 10.1007/s00204-024-03942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
Propiconazole is a triazole fungicide previously shown to induce triglyceride accumulation in human liver HepaRG cells, potentially via activation of the Pregnane X Receptor (PXR). However, whether propiconazole can disrupt hepatic and whole-body metabolism in vivo is currently unknown. Therefore, we aimed to examine the metabolic effects of propiconazole in the context of metabolic dysfunction-associated steatotic liver disease (MASLD), obesity, and insulin resistance. To this end, male C57BL/6J mice were fed a high-fat diet for 20 weeks. During the last 10 weeks, mice additionally received vehicle, 0.04, 30, or 100 mg/kg body weight (bw)/day propiconazole via oral gavage. High-dose propiconazole, but not low or intermediate dose, reduced body weight gain and adipose tissue weight in obese mice. Mice receiving high-dose propiconazole displayed improved glucose tolerance and reduced levels of plasma triglycerides and cholesterol. Propiconazole dose-dependently increased liver weight and triglyceride levels and at high dose caused signs of hepatic inflammation. RNA sequencing on the liver revealed that propiconazole mainly induced PXR target genes. At intermediate and high dose, propiconazole induced pathways related to cell-cell interactions and inflammation, while oxidative phosphorylation was repressed by propiconazole. Comparison of gene regulation in wildtype and PXR knockout primary hepatocytes as well as gene reporter assays confirmed the activation of PXR by propiconazole. All in all, our data underscore the capacity of propiconazole to activate PXR in the liver and thereby promote the development of hepatic steatosis in vivo.
Collapse
Affiliation(s)
- Brecht Attema
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Outi Kummu
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Mária Krutáková
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Ak. Heyrovského 1203, 50005, Hradec Králové, Czech Republic
| | - Jukka Hakkola
- Research Unit of Biomedicine and Internal Medicine, Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Guido J E J Hooiveld
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Sander Kersten
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands.
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
2
|
Bitencourt de Morais Valentim JM, Fagundes TR, Okamoto Ferreira M, Lonardoni Micheletti P, Broto Oliveira GE, Cremer Souza M, Geovana Leite Vacario B, da Silva JC, Scandolara TB, Gaboardi SC, Zanetti Pessoa Candiotto L, Mara Serpeloni J, Rodrigues Ferreira Seiva F, Panis C. Monitoring residues of pesticides in food in Brazil: A multiscale analysis of the main contaminants, dietary cancer risk estimative and mechanisms associated. Front Public Health 2023; 11:1130893. [PMID: 36908412 PMCID: PMC9992878 DOI: 10.3389/fpubh.2023.1130893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 01/27/2023] [Indexed: 02/24/2023] Open
Abstract
Introduction Pesticides pose a risk for cancer development and progression. People are continuously exposed to such substances by several routes, including daily intake of contaminated food and water, especially in countries that are highly pesticide consumers and have very permissive legislation about pesticide contamination as Brazil. This work investigated the relationship among pesticides, food contamination, and dietary cancer risk. Methods Analyzed two social reports from the Brazilian Government: the Program for Analysis of Residues of Pesticides in Food (PARA) and The National Program for Control of Waste and Contaminants (PNCRC). Results and discussion First, we characterized the main pesticide residues detected over the maximum limits allowed by legislation or those prohibited for use in food samples analyzed across the country. Based on this list, we estimated the dietary cancer risks for some of the selected pesticides. Finally, we searched for data about dietary cancer risks and carcinogenic mechanisms of each pesticide. We also provided a critical analysis concerning the pesticide scenario in Brazil, aiming to discuss the food contamination levels observed from a geographical, political, and public health perspective. Exposures to pesticides in Brazil violate a range of human rights when food and water for human consumption are contaminated.
Collapse
Affiliation(s)
| | - Tatiane Renata Fagundes
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Mariane Okamoto Ferreira
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| | | | | | - Milena Cremer Souza
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | | | | | | | - Shaiane Carla Gaboardi
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
- Instituto Federal Catarinense, Blumenau, Brazil
| | | | - Juliana Mara Serpeloni
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Fábio Rodrigues Ferreira Seiva
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Department of Biological Sciences, Universidade Estadual do Norte do Paraná (UENP), Jacarezinho, Brazil
| | - Carolina Panis
- Department of Pathological Sciences, Universidade Estadual de Londrina (UEL), Londrina, Brazil
- Center of Health Sciences, Universidade Estadual do Oeste do Paraná (UNIOESTE), Blumenau, Brazil
| |
Collapse
|
3
|
Stern S, Kurian R, Wang H. Clinical Relevance of the Constitutive Androstane Receptor. Drug Metab Dispos 2022; 50:1010-1018. [PMID: 35236665 PMCID: PMC11022901 DOI: 10.1124/dmd.121.000483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 02/10/2022] [Indexed: 11/22/2022] Open
Abstract
Constitutive androstane receptor (CAR) (NR1I3), a xenobiotic receptor, has long been considered a master mediator of drug disposition and detoxification. Accumulating evidence indicates that CAR also participates in various physiologic and pathophysiological pathways regulating the homeostasis of glucose, lipid, and bile acids, and contributing to cell proliferation, tissue regeneration and repair, as well as cancer development. The expression and activity of CAR can be regulated by various factors, including small molecular modulators, CAR interaction with other transcription factors, and naturally occurring genetic variants. Given that the influence of CAR has extended beyond the realm of drug metabolism and disposition and has expanded into a potential modulator of human diseases, growing efforts have centered on understanding its clinical relevance and impact on human pathophysiology. This review highlights the current information available regarding the contribution of CAR to various metabolic disorders and cancers and ponders the possible challenges that might arise from pursuing CAR as a potential therapeutic target for these diseases. SIGNIFICANCE STATEMENT: The growing importance of the constitutive androstane receptor (CAR) in glucose and lipid metabolism as well as its potential implication in cell proliferation emphasizes a need to keenly understand the biological function and clinical impact of CAR. This minireview captures the clinical relevance of CAR by highlighting its role in metabolic disorders and cancer development.
Collapse
Affiliation(s)
- Sydney Stern
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Ritika Kurian
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland
| |
Collapse
|
4
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
5
|
Oliviero F, Lukowicz C, Boussadia B, Forner-Piquer I, Pascussi JM, Marchi N, Mselli-Lakhal L. Constitutive Androstane Receptor: A Peripheral and a Neurovascular Stress or Environmental Sensor. Cells 2020; 9:E2426. [PMID: 33171992 PMCID: PMC7694609 DOI: 10.3390/cells9112426] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
Xenobiotic nuclear receptors (NR) are intracellular players involved in an increasing number of physiological processes. Examined and characterized in peripheral organs where they govern metabolic, transport and detoxification mechanisms, accumulating data suggest a functional expression of specific NR at the neurovascular unit (NVU). Here, we focus on the Constitutive Androstane Receptor (CAR), expressed in detoxifying organs such as the liver, intestines and kidneys. By direct and indirect activation, CAR is implicated in hepatic detoxification of xenobiotics, environmental contaminants, and endogenous molecules (bilirubin, bile acids). Importantly, CAR participates in physiological stress adaptation responses, hormonal and energy homeostasis due to glucose and lipid sensing. We next analyze the emerging evidence supporting a role of CAR in NVU cells including the blood-brain barrier (BBB), a key vascular interface regulating communications between the brain and the periphery. We address the emerging concept of how CAR may regulate specific P450 cytochromes at the NVU and the associated relevance to brain diseases. A clear understanding of how CAR engages during pathological conditions could enable new mechanistic, and perhaps pharmacological, entry-points within a peripheral-brain axis.
Collapse
Affiliation(s)
- Fabiana Oliviero
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Céline Lukowicz
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| | - Badreddine Boussadia
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Isabel Forner-Piquer
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Jean-Marc Pascussi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Nicola Marchi
- Cerebrovascular and Glia Research, Institute of Functional Genomics (UMR 5203 CNRS–U 1191 INSERM, University of Montpellier), 34094 Montpellier, France; (B.B.); (I.F.-P.); (J.-M.P.)
| | - Laila Mselli-Lakhal
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31027 Toulouse, France; (F.O.); (C.L.)
| |
Collapse
|
6
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
7
|
Nicolaidou V, Koufaris C. Application of transcriptomic and microRNA profiling in the evaluation of potential liver carcinogens. Toxicol Ind Health 2020; 36:386-397. [PMID: 32419640 DOI: 10.1177/0748233720922710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hepatocarcinogens are agents that increase the incidence of liver cancer in exposed animals or humans. It is now established that carcinogenic exposures have a widespread impact on the transcriptome, inducing both adaptive and adverse changes in the activities of genes and pathways. Chemical hepatocarcinogens have also been shown to affect expression of microRNA (miRNA), the evolutionarily conserved noncoding RNA that regulates gene expression posttranscriptionally. Considerable effort has been invested into examining the involvement of mRNA in chemical hepatocarcinogenesis and their potential usage for the classification and prediction of new chemical entities. For miRNA, there has been an increasing number of studies reported over the past decade, although not to the same degree as for transcriptomic studies. Current data suggest that it is unlikely that any gene or miRNA signature associated with short-term carcinogen exposure can replace the rodent bioassay. In this review, we discuss the application of transcriptomic and miRNA profiles to increase mechanistic understanding of chemical carcinogens and to aid in their classification.
Collapse
Affiliation(s)
- Vicky Nicolaidou
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Costas Koufaris
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020; 9:cells9051192. [PMID: 32403288 PMCID: PMC7290820 DOI: 10.3390/cells9051192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.
Collapse
|
9
|
Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Arch Toxicol 2018; 92:3471-3486. [DOI: 10.1007/s00204-018-2321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
|
10
|
Yamada T. Case examples of an evaluation of the human relevance of the pyrethroids/pyrethrins-induced liver tumours in rodents based on the mode of action. Toxicol Res (Camb) 2018; 7:681-696. [PMID: 30090614 PMCID: PMC6062351 DOI: 10.1039/c7tx00288b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/10/2018] [Indexed: 01/01/2023] Open
Abstract
Rodent carcinogenicity studies are useful for screening for human carcinogens but they are not perfect. Some modes of action (MOAs) lead to cancers in both experimental rodents and humans, but others that lead to cancers in rodents do not do so in humans. Therefore, analysing the MOAs by which chemicals produce tumours in rodents and determining the relevance of such tumour data for human risk are critical. Recently, experimental data were obtained as case examples of an evaluation of the human relevance of pyrethroid (metofluthrin and momfluorothrin)- and pyrethrins-induced liver tumours in rats based on MOA. The MOA analysis, based on the International Programme on Chemical Safety (IPCS) framework, concluded that experimental data strongly support that the postulated MOA for metofluthrin-, momfluorothrin- and pyrethrins-produced rat hepatocellular tumours is mediated by constitutive androstane receptor (CAR) activation. Since metofluthrin and momfluorothrin are close structural analogues, reproducible outcomes for both chemicals provide confidence in the MOA findings. Furthermore, cultured human hepatocyte studies and humanized chimeric mouse liver studies demonstrated species difference between human hepatocytes (refractory to the mitogenic effects of these compounds) and rat hepatocytes (sensitive to their mitogenic effects). These data strongly support the hypothesis that the CAR-mediated MOA for liver tumorigenesis is of low carcinogenic risk for humans. In this research, in addition to cultured human hepatocyte studies, the usefulness of the humanized chimeric liver mouse models was clearly demonstrated. These data substantially influenced decisions in regulatory toxicology. In this review I comprehensively discuss the human relevance of the CAR-mediated MOA for rodent liver tumorigenesis based on published information, including our recent molecular research on CAR-mediated MOA.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory , Sumitomo Chemical Co. , Ltd , 1-98 , 3-Chome , Kasugade-Naka , Konohana-ku , Osaka 554-8558 , Japan . ; ; Tel: +81-66466-5322
| |
Collapse
|
11
|
Lake BG. Human relevance of rodent liver tumour formation by constitutive androstane receptor (CAR) activators. Toxicol Res (Camb) 2018; 7:697-717. [PMID: 30090615 PMCID: PMC6060665 DOI: 10.1039/c8tx00008e] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 03/09/2018] [Indexed: 01/01/2023] Open
Abstract
A large number of nongenotoxic chemicals have been shown to increase the incidence of liver tumours in rats and/or mice by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with the model CAR activator phenobarbital (PB) and its sodium salt (sodium phenobarbital; NaPB) have demonstrated that the key and associative events for rat and mouse liver tumour formation include CAR activation, increased hepatocyte replicative DNA synthesis (RDS), induction of cytochrome P450 CYP2B subfamily enzymes, liver hypertrophy, increased altered hepatic foci and hepatocellular adenomas/carcinomas. The key species difference between the rat and mouse compared to humans, is that human hepatocytes are refractory to the mitogenic effects of PB/NaPB and other CAR activators. While PB/NaPB and other CAR activators stimulate RDS in rat and mouse hepatocytes in both in vitro and in vivo studies, such compounds do not stimulate RDS in cultured human hepatocytes and in in vivo studies performed in chimeric mice with humanised livers. In terms of species differences in RDS, unlike the rat and mouse, humans are similar to other species such as the Syrian hamster and guinea pig in being nonresponsive to the mitogenic effects of CAR activators. Overall, the MOA for rat and mouse liver tumour formation by PB/NaPB and other CAR activators is considered qualitatively not plausible for humans. This conclusion is supported by data from a number of epidemiological studies, which demonstrate that chronic treatment with PB does not increase the incidence of liver cancer in humans.
Collapse
Affiliation(s)
- Brian G Lake
- Centre for Toxicology , Faculty of Health and Medical Sciences , University of Surrey , Guildford , Surrey GU2 7XH , UK .
| |
Collapse
|
12
|
Minimum datasets to establish a CAR-mediated mode of action for rodent liver tumors. Regul Toxicol Pharmacol 2018; 96:106-120. [DOI: 10.1016/j.yrtph.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/20/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
|
13
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
14
|
Funderburk KM, Auerbach SS, Bushel PR. Crosstalk between Receptor and Non-receptor Mediated Chemical Modes of Action in Rat Livers Converges through a Dysregulated Gene Expression Network at Tumor Suppressor Tp53. Front Genet 2017; 8:157. [PMID: 29114260 PMCID: PMC5660693 DOI: 10.3389/fgene.2017.00157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/06/2017] [Indexed: 12/20/2022] Open
Abstract
Chemicals, toxicants, and environmental stressors mediate their biologic effect through specific modes of action (MOAs). These encompass key molecular events that lead to changes in the expression of genes within regulatory pathways. Elucidating shared biologic processes and overlapping gene networks will help to better understand the toxicologic effects on biological systems. In this study we used a weighted network analysis of gene expression data from the livers of male Sprague-Dawley rats exposed to chemicals that elicit their effects through receptor-mediated MOAs (aryl hydrocarbon receptor, orphan nuclear hormone receptor, or peroxisome proliferator-activated receptor-α) or non-receptor-mediated MOAs (cytotoxicity or DNA damage). Four gene networks were highly preserved and statistically significant in each of the two MOA classes. Three of the four networks contain genes that enrich for immunity and defense. However, many canonical pathways related to an immune response were activated from exposure to the non-receptor-mediated MOA chemicals and deactivated from exposure to the receptor-mediated MOA chemicals. The top gene network contains a module with 33 genes including tumor suppressor TP53 as the central hub which was slightly up-regulated in gene expression compared to control. Although, there is crosstalk between the two MOA classes of chemicals at the TP53 gene network, more than half of the genes are dysregulated in opposite directions. For example, Thromboxane A Synthase 1 (Tbxas1), a cytochrome P450 protein coding gene regulated by Tp53, is down-regulated by exposure to the receptor-mediated chemicals but up-regulated by the non-receptor-mediated chemicals. The regulation of gene expression by the chemicals within MOA classes was consistent despite varying alanine transaminase and aspartate aminotransferase liver enzyme measurements. These results suggest that overlap in toxicologic pathways by chemicals with different MOAs provides common mechanisms for discordant regulation of gene expression within molecular networks.
Collapse
Affiliation(s)
- Karen M. Funderburk
- Department of Biology and Department of Mathematics & Statistics, College of Arts & Sciences, University of North Carolina at Greensboro, Greensboro, NC, United States
- Microarray and Genome Informatics Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Scott S. Auerbach
- Toxicoinformatics Group, Biomolecular Screening Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Pierre R. Bushel
- Microarray and Genome Informatics Group, Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, NC, United States
| |
Collapse
|
15
|
Hepatotoxic combination effects of three azole fungicides in a broad dose range. Arch Toxicol 2017; 92:859-872. [PMID: 29038839 PMCID: PMC5818588 DOI: 10.1007/s00204-017-2087-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Single active substances of pesticides are thoroughly examined for their toxicity before approval. In this context, the liver is frequently found to be the main target organ. Since consumers are generally exposed to multiple residues of different active substances via the diet, it is important to analyse combinations of active substances for potential mixture effects. For the (tri-)azoles, a group of agricultural fungicides and antifungal drugs, combination effects on the liver are likely because of a similar mode of action. Hepatotoxic effects of mixtures of two triazoles (cyproconazole and epoxiconazole) and an imidazole (prochloraz) were investigated in a 28-day feeding study in rats at three dose levels ranging from a typical toxicological reference value to a clear effect dose. Test parameters included organ weights, clinical chemistry, histopathology and morphometry. In addition, molecular parameters were investigated by means of pathway-focused gene expression arrays, quantitative real-time PCR and enzyme activity assays. Effects were compared to those caused by the individual substances as observed at the same dose levels in a previous study. Mixture effects were substantiated by increases in relative and absolute liver weights, histopathological findings and alterations in clinical chemistry parameters at the top dose level. On the molecular level also at lower dose levels, additive effects could be observed for the induction of several cytochrome P 450 enzymes (Cyp1a1, Cyp2b1, Cyp3a2), transporters (Abcb1a, Abcc3) and of genes encoding for enzymes involved in fatty acid or phospholipid metabolism (Ppargc1a, Sc4 mol). In most cases, treatment with mixtures caused a more pronounced effect as compared to the individual substances. However, the assumption of dose additivity was in general sufficiently conservative to cover mixture effects observed under the conditions of the present study.
Collapse
|
16
|
LaRocca J, Johnson KJ, LeBaron MJ, Rasoulpour RJ. The interface of epigenetics and toxicology in product safety assessment. CURRENT OPINION IN TOXICOLOGY 2017. [DOI: 10.1016/j.cotox.2017.11.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Okuda Y, Kushida M, Sumida K, Nagahori H, Nakamura Y, Higuchi H, Kawamura S, Lake BG, Cohen SM, Yamada T. Editor’s Highlight: Mode of Action Analysis for Rat Hepatocellular Tumors Produced by the Synthetic Pyrethroid Momfluorothrin: Evidence for Activation of the Constitutive Androstane Receptor and Mitogenicity in Rat Hepatocytes. Toxicol Sci 2017; 158:412-430. [DOI: 10.1093/toxsci/kfx102] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
18
|
Lv X, Pan L, Wang J, Lu L, Yan W, Zhu Y, Xu Y, Guo M, Zhuang S. Effects of triazole fungicides on androgenic disruption and CYP3A4 enzyme activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:504-512. [PMID: 28012672 DOI: 10.1016/j.envpol.2016.11.051] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/23/2016] [Accepted: 11/16/2016] [Indexed: 05/24/2023]
Abstract
Triazole fungicides are widely used as broad-spectrum fungicides, non-steroidal antiestrogens and for various industrial applications. Their residues have been frequently detected in multiple environmental and human matrices. The increasingly reported toxicity incidents have led triazole fungicides as emerging contaminants of environmental and public health concern. However, whether triazole fungicides behave as endocrine disruptors by directly mimicking environmental androgens/antiandrogens or exerting potential androgenic disruption indirectly through the inhibition of cytochrome P450 (CYP450) enzyme activity is yet an unresolved question. We herein evaluated five commonly used triazole fungicides including bitertanol, hexaconazole, penconazole, tebuconazole and uniconazole for the androgenic and anti-androgenic activity using two-hybrid recombinant human androgen receptor (AR) yeast bioassay and comparatively evaluated their effects on enzymatic activity of CYP3A4 by P450-Glo™ CYP3A4 bioassay. All five fungicides showed moderate anti-androgenic activity toward human AR with the IC50 ranging from 9.34 μM to 79.85 μM. The anti-androgenic activity remained no significant change after the metabolism mediated by human liver microsomes. These fungicides significantly inhibited the activity of CYP3A4 at the environmental relevant concentrations and the potency ranks as tebuconazole > uniconazole > hexaconazole > penconazole > bitertanol with the corresponding IC50 of 0.81 μM, 0.93 μM, 1.27 μM, 2.22 μM, and 2.74 μM, respectively. We found that their anti-androgenic activity and the inhibition potency toward CYP3A4 inhibition was significantly correlated (R2 between 0.83 and 0.97, p < 0.001). Our results indicated that the risk assessment of triazole pesticides and structurally similar chemicals should fully consider potential androgenic disrupting effects and the influences on the activity of CYP450s.
Collapse
Affiliation(s)
- Xuan Lv
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Liumeng Pan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Liping Lu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China
| | - Weilin Yan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yanye Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yiwen Xu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ming Guo
- School of Science, Zhejiang Agriculture & Forestry University, Lin'an 311300, China
| | - Shulin Zhuang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316022, China.
| |
Collapse
|
19
|
Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Arch Toxicol 2017; 91:2895-2907. [DOI: 10.1007/s00204-016-1925-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
|
20
|
Paul Friedman K, Papineni S, Marty MS, Yi KD, Goetz AK, Rasoulpour RJ, Kwiatkowski P, Wolf DC, Blacker AM, Peffer RC. A predictive data-driven framework for endocrine prioritization: a triazole fungicide case study. Crit Rev Toxicol 2016; 46:785-833. [PMID: 27347635 PMCID: PMC5044773 DOI: 10.1080/10408444.2016.1193722] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/13/2016] [Accepted: 05/21/2016] [Indexed: 10/27/2022]
Abstract
The US Environmental Protection Agency Endocrine Disruptor Screening Program (EDSP) is a tiered screening approach to determine the potential for a chemical to interact with estrogen, androgen, or thyroid hormone systems and/or perturb steroidogenesis. Use of high-throughput screening (HTS) to predict hazard and exposure is shifting the EDSP approach to (1) prioritization of chemicals for further screening; and (2) targeted use of EDSP Tier 1 assays to inform specific data needs. In this work, toxicology data for three triazole fungicides (triadimefon, propiconazole, and myclobutanil) were evaluated, including HTS results, EDSP Tier 1 screening (and other scientifically relevant information), and EPA guideline mammalian toxicology study data. The endocrine-related bioactivity predictions from HTS and information that satisfied the EDSP Tier 1 requirements were qualitatively concordant. Current limitations in the available HTS battery for thyroid and steroidogenesis pathways were mitigated by inclusion of guideline toxicology studies in this analysis. Similar margins (3-5 orders of magnitude) were observed between HTS-predicted human bioactivity and exposure values and between in vivo mammalian bioactivity and EPA chronic human exposure estimates for these products' registered uses. Combined HTS hazard and human exposure predictions suggest low priority for higher-tiered endocrine testing of these triazoles. Comparison with the mammalian toxicology database indicated that this HTS-based prioritization would have been protective for any potential in vivo effects that form the basis of current risk assessment for these chemicals. This example demonstrates an effective, human health protective roadmap for EDSP evaluation of pesticide active ingredients via prioritization using HTS and guideline toxicology information.
Collapse
Affiliation(s)
| | - Sabitha Papineni
- Human Health Assessment, Dow AgroSciences LLC,
Indianapolis,
IN,
USA
| | - M. Sue Marty
- Toxicology & Environmental Research and Consulting, The Dow Chemical Company,
Midland,
MI,
USA
| | - Kun Don Yi
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | - Amber K. Goetz
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | | | - Pat Kwiatkowski
- Human Safety, Bayer CropScience LP, Research Triangle Park,
NC,
USA
| | - Douglas C. Wolf
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| | - Ann M. Blacker
- Human Safety, Bayer CropScience LP, Research Triangle Park,
NC,
USA
| | - Richard C. Peffer
- Toxicology and Health Sciences, Syngenta Crop Protection LLC,
Greensboro,
NC,
USA
| |
Collapse
|
21
|
Lake BG, Price RJ, Osimitz TG. Mode of action analysis for pesticide-induced rodent liver tumours involving activation of the constitutive androstane receptor: relevance to human cancer risk. PEST MANAGEMENT SCIENCE 2015; 71:829-834. [PMID: 25045103 DOI: 10.1002/ps.3854] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/30/2014] [Indexed: 06/03/2023]
Abstract
A number of non-genotoxic chemicals, including some pesticides, have been shown to increase the incidence of liver tumours in rats and/or mice. Frameworks for analysing the modes of action (MOAs) by which chemicals produce liver tumours in rodents and the relevance of such tumour data for human risk assessment have now been established. One common MOA for rodent liver tumour formation by non-genotoxic chemicals involves activation of the constitutive androstane receptor (CAR). Key and associative events for a CAR-activation MOA include receptor activation, liver hypertrophy, induction of cytochrome P450 enzyme activities, increased replicative DNA synthesis, altered hepatic foci and liver tumours. While some effects of rodent CAR activators can be observed in human liver, a major species difference is that, unlike rodents, CAR activators do not increase replicative DNA synthesis in human hepatocytes. The CAR-activation MOA for rodent liver tumour formation is thus not plausible for humans, and hence such compounds do not pose a hepatocarcinogenic hazard for humans.
Collapse
Affiliation(s)
- Brian G Lake
- Centre for Toxicology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | | | | |
Collapse
|
22
|
Cherian MT, Chai SC, Chen T. Small-molecule modulators of the constitutive androstane receptor. Expert Opin Drug Metab Toxicol 2015; 11:1099-114. [PMID: 25979168 DOI: 10.1517/17425255.2015.1043887] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
INTRODUCTION The constitutive androstane receptor (CAR) induces drug-metabolizing enzymes for xenobiotic metabolism. AREAS COVERED This review covers recent advances in elucidating the biological functions of CAR and its modulation by a growing number of agonists and inhibitors. EXPERT OPINION Extrapolation of animal CAR function to that of humans should be carefully scrutinized, particularly when rodents are used in evaluating the metabolic profile and carcinogenic properties of clinical drugs and environmental chemicals. Continuous efforts are needed to discover novel CAR inhibitors, with extensive understanding of their inhibitory mechanism, species selectivity, and discriminating power against other xenobiotic sensors.
Collapse
Affiliation(s)
- Milu T Cherian
- Postdoctoral fellow, St. Jude Children's Research Hospital, Department of Chemical Biology and Therapeutics , 262 Danny Thomas Place, Memphis, TN 38105 , USA
| | | | | |
Collapse
|
23
|
Tamura K, Inoue K, Takahashi M, Matsuo S, Irie K, Kodama Y, Gamo T, Ozawa S, Yoshida M. Involvement of constitutive androstane receptor in liver hypertrophy and liver tumor development induced by triazole fungicides. Food Chem Toxicol 2015; 78:86-95. [DOI: 10.1016/j.fct.2015.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 01/02/2015] [Accepted: 01/13/2015] [Indexed: 01/30/2023]
|
24
|
Zhuang SL, Bao LL, Wang HF, Zhang M, Yang C, Zhou XY, Wu Y, Rehman K, Naranmandura H. The Involvement of ER-stress and ROS Generation in Difenoconazole-Induced Hepatocellular Toxicity. Toxicol Res (Camb) 2015. [DOI: 10.1039/c5tx00093a] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Difenoconazole is one of the triazole compounds, and is widely used as an environmental fungicide.
Collapse
Affiliation(s)
- Shu Lin Zhuang
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
- Hangzhou 310058
| | - Ling Ling Bao
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control
- Hangzhou 310058
| | - Hai Fei Wang
- College of Environmental and Resource Sciences
- Hangzhou 310058
- China
| | - Min Zhang
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Chang Yang
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Xin Yi Zhou
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Yuan Wu
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Kanwal Rehman
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
| | - Hua Naranmandura
- Department of Toxicology and Pharmacology
- College of Pharmaceutical Sciences
- Hangzhou 310058
- China
- Department of Toxicology
| |
Collapse
|
25
|
Hepatotoxic effects of (tri)azole fungicides in a broad dose range. Arch Toxicol 2014; 89:2105-17. [DOI: 10.1007/s00204-014-1336-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/12/2014] [Indexed: 11/27/2022]
|