1
|
Vandekerkhove C, Bchini R, Dhalleine T, Kohler A, Deveau A, Pandharikar G, Besserer A, Sormani R, Darnet S, Morel-Rouhier M. Dissecting the mechanisms of copper-azole wood preservatives detoxification by ligninolytic fungi. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:136934. [PMID: 39724714 DOI: 10.1016/j.jhazmat.2024.136934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024]
Abstract
Copper-azole based formulations have been widely used to protect wood timbers against fungal decay. While these treatments are efficient for wood protection, leaching of both copper and azoles into the environment has deleterious impact on soils and surface waters. No bioremediation process is currently available for disposable of these wood wastes. Exploiting the natural ability of certain fungi to tolerate these active compounds, we propose that some ligninolytic fungi could serve as effective biocatalysts for detoxifying copper-azole formulations. Using the white-rot fungus Phanerochaete chrysosporium as a model, we demonstrated that these fungi engage multiple strategies to counteract the antifungal effect of azoles present in the preservatives. These include the modulation of the lipids and sterols content, the maintenance of DNA integrity, detoxification of azoles by extracellular degradation likely through the Fenton chemistry, biosorption at the cell wall, efflux, and intracellular detoxification by the three-step detoxification pathway. By using comparative transcriptomics between a copper-azole formulation and a copper-quaternary ammonium formulation, we identified genes specifically involved in azole resistance and detoxification within this complex system. This opens new perspectives for managing azoles residues through mycoremediation processes.
Collapse
Affiliation(s)
| | - Raphael Bchini
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | | | | - Aurélie Deveau
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | | - Arnaud Besserer
- Université de Lorraine, INRAE, LERMAB, Nancy F-54000, France
| | - Rodnay Sormani
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | - Sylvain Darnet
- Université de Lorraine, INRAE, IAM, Nancy F-54000, France
| | | |
Collapse
|
2
|
Ray A, Dutta D, Ghosh B, Bahadur M. Azoxystrobin induced genotoxicity in Pethia conchonius, a freshwater fish of river Teesta, India. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107135. [PMID: 39488151 DOI: 10.1016/j.aquatox.2024.107135] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Azoxystrobin, a widely used fungicide, can contaminate water bodies through surface run-off, posing a risk to aquatic organisms. This study aimed to assess the genotoxic effects of azoxystrobin on the fish Pethia conchonius. The 96 h lethal concentration (LC50) of azoxystrobin was determined to be 0.514 mg/L. Based on LC50, three sub-lethal concentrations (SLCs) of 0.025 mg/L, 0.0514 mg/L, and 0.103 mg/L were used to expose fish for 96 h. The blood and gill samples were collected at 24 h intervals for analysis. The Micronucleus (MN) and Comet assays were used to evaluate nuclear abnormalities and DNA damage, respectively. The results showed that the frequency of nuclear abnormalities and DNA damage in the exposed groups was significantly higher than the control, with increasing concentrations and duration of exposure. The highest levels of micronuclei, notched and blebbed nuclei, and DNA damage parameters were observed in the group exposed to SLC III for 96 h. These findings indicate that azoxystrobin is highly genotoxic to fish causing severe DNA damage.
Collapse
Affiliation(s)
- Arpita Ray
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Debojit Dutta
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Bappaditya Ghosh
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India
| | - Min Bahadur
- Genetics and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, P.O. NBU. Dist. Darjeeling, 734013, West Bengal, India.
| |
Collapse
|
3
|
de Bruijn VMP, Rietjens IMCM. From hazard to risk prioritization: a case study to predict drug-induced cholestasis using physiologically based kinetic modeling. Arch Toxicol 2024; 98:3077-3095. [PMID: 38755481 PMCID: PMC11324677 DOI: 10.1007/s00204-024-03775-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/25/2024] [Indexed: 05/18/2024]
Abstract
Cholestasis is characterized by hepatic accumulation of bile acids. Clinical manifestation of cholestasis only occurs in a small proportion of exposed individuals. The present study aims to develop a new approach methodology (NAM) to predict drug-induced cholestasis as a result of drug-induced hepatic bile acid efflux inhibition and the resulting bile acid accumulation. To this end, hepatic concentrations of a panel of drugs were predicted by a generic physiologically based kinetic (PBK) drug model. Their effects on hepatic bile acid efflux were incorporated in a PBK model for bile acids. The predicted bile acid accumulation was used as a measure for a drug's cholestatic potency. The selected drugs were known to inhibit hepatic bile acid efflux in an assay with primary suspension-cultured hepatocytes and classified as common, rare, or no for cholestasis incidence. Common cholestasis drugs included were atorvastatin, chlorpromazine, cyclosporine, glimepiride, ketoconazole, and ritonavir. The cholestasis incidence of the drugs appeared not to be adequately predicted by their Ki for inhibition of hepatic bile acid efflux, but rather by the AUC of the PBK model predicted internal hepatic drug concentration at therapeutic dose level above this Ki. People with slower drug clearance, a larger bile acid pool, reduced bile salt export pump (BSEP) abundance, or given higher than therapeutic dose levels were predicted to be at higher risk to develop drug-induced cholestasis. The results provide a proof-of-principle of using a PBK-based NAM for cholestasis risk prioritization as a result of transporter inhibition and identification of individual risk factors.
Collapse
Affiliation(s)
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
4
|
Kadic A, Oles P, Fischer BC, Reetz AE, Sylla BS, Feiertag K, Ritz V, Heise T, Marx-Stoelting P, Tralau T, Renko K, Solano MDLM. In vitro and in vivo investigation of a thyroid hormone system-specific interaction with triazoles. Sci Rep 2024; 14:6503. [PMID: 38499550 PMCID: PMC10948911 DOI: 10.1038/s41598-024-55019-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
Alterations in thyroid hormones (TH) and thyroid-stimulating hormone levels are frequently found following exposure to chemicals of concern. Dysregulation of TH levels can severely perturb physiological growth, metabolism, differentiation, homeostasis in the adult and developmental processes in utero. A frequently identified mode of action for this interaction is the induction of hepatic detoxification mechanisms (e.g. SULTs and UGTs), which lead to TH conjugation and elimination and therefore interfere with hormonal homeostasis, fulfilling the endocrine disruptors (EDs) definition. A short-term study in rats with dietary exposure to cyproconazole, epoxiconazole and prochloraz was conducted and hepatocyte hypertrophy, hepatic UGT activity and Phase 1/2 gene expression inductions were observed together with changes in TH levels and thyroid follicular hypertrophy and hyperplasia. To test for specific interaction with the thyroid hormone system, in vitro assays were conducted covering thyroidal I-uptake (NIS), TH transmembranal transport via MCT8 and thyroid peroxidase (TPO) function. Assays for iodothyronine deiodinases (DIO1-DIO3) and iodotyrosine deiodinase (DEHAL1) were included, and from the animal experiment, Dio1 and Dehal1 activities were measured in kidney and liver as relevant local indicators and endpoints. The fungicides did not affect any TH-specific KEs, in vitro and in vivo, thereby suggesting hepatic conjugation as the dominant MoA.
Collapse
Affiliation(s)
- Asya Kadic
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Patricia Oles
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277, Berlin, Germany
| | - Benjamin Christian Fischer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Anne Elisabeth Reetz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
- Institute of Veterinary Pathology (WE12), Freie University Berlin, Berlin, Germany
| | - Boubacar Sidiki Sylla
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Katreece Feiertag
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Vera Ritz
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Heise
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Diedersdorfer Weg 1, 12277, Berlin, Germany.
| | - Marize de Lourdes Marzo Solano
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
5
|
Zhang H, Wang J, Qian M, Jin Y. Mefentrifluconazole exposure disrupted hepatic lipid metabolism disorder tightly associated with gut barrier function abnormal in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167317. [PMID: 37742980 DOI: 10.1016/j.scitotenv.2023.167317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Mefentrifluconazole (MFZ) is an azole fungicide that is placed in agriculture for the control of fungal hazards. However, due to their non-biodegradability, azole fungicides can accumulate in plants, animals, and the environment, thus becoming a major health concern worldwide. In this study, we exposed 7-week-old C57BL/6 mice to 10, 30, and 100 mg/kg of MFZ for 28 d to assess the toxic effects of MFZ on the liver and gut tissues of the mice. Histopathological, biochemical indexes, and transcriptomic analyses revealed that MFZ exposure disrupted the liver structure and hepatic lipid metabolism as well as damaged gut barrier function and promoted inflammation in mice. Moreover, 16S rRNA sequencing demonstrated that MFZ exposure significantly increased the abundance of patescibacteria at the generic level. Also, MFZ exposure increased the abundance of bacterial genera associated with inhibition of glycolipid metabolism. These results suggested that the disruption of liver lipid metabolism caused by MFZ exposure may be caused by changes in gut microbiota function. This study provided a new disease occurrence study for risk assessment of MFZ and strengthened the focus on some novel fungicides.
Collapse
Affiliation(s)
- Hu Zhang
- Zhejiang Province Key Laboratory for Food Safety, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
6
|
Bloch D, Diel P, Epe B, Hellwig M, Lampen A, Mally A, Marko D, Villar Fernández MA, Guth S, Roth A, Marchan R, Ghallab A, Cadenas C, Nell P, Vartak N, van Thriel C, Luch A, Schmeisser S, Herzler M, Landsiedel R, Leist M, Marx-Stoelting P, Tralau T, Hengstler JG. Basic concepts of mixture toxicity and relevance for risk evaluation and regulation. Arch Toxicol 2023; 97:3005-3017. [PMID: 37615677 PMCID: PMC10504116 DOI: 10.1007/s00204-023-03565-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Exposure to multiple substances is a challenge for risk evaluation. Currently, there is an ongoing debate if generic "mixture assessment/allocation factors" (MAF) should be introduced to increase public health protection. Here, we explore concepts of mixture toxicity and the potential influence of mixture regulation concepts for human health protection. Based on this analysis, we provide recommendations for research and risk assessment. One of the concepts of mixture toxicity is additivity. Substances may act additively by affecting the same molecular mechanism within a common target cell, for example, dioxin-like substances. In a second concept, an "enhancer substance" may act by increasing the target site concentration and aggravating the adverse effect of a "driver substance". For both concepts, adequate risk management of individual substances can reliably prevent adverse effects to humans. Furthermore, we discuss the hypothesis that the large number of substances to which humans are exposed at very low and individually safe doses may interact to cause adverse effects. This commentary identifies knowledge gaps, such as the lack of a comprehensive overview of substances regulated under different silos, including food, environmentally and occupationally relevant substances, the absence of reliable human exposure data and the missing accessibility of ratios of current human exposure to threshold values, which are considered safe for individual substances. Moreover, a comprehensive overview of the molecular mechanisms and most susceptible target cells is required. We conclude that, currently, there is no scientific evidence supporting the need for a generic MAF. Rather, we recommend taking more specific measures, which focus on compounds with relatively small ratios between human exposure and doses, at which adverse effects can be expected.
Collapse
Affiliation(s)
- Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany.
| | - Patrick Diel
- Department of Molecular and Cellular Sports Medicine, Institute of Cardiovascular Research and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | - Bernd Epe
- Institute of Pharmaceutical and Biomedical Sciences, University of Mainz, Mainz, Germany
| | - Michael Hellwig
- Chair of Special Food Chemistry, Technical University Dresden, Dresden, Germany
| | - Alfonso Lampen
- Risk Assessment Strategies, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Angela Mally
- Department of Toxicology, University of Würzburg, Würzburg, Germany
| | - Doris Marko
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - María A Villar Fernández
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Sabine Guth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Angelika Roth
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Rosemarie Marchan
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Ahmed Ghallab
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Cristina Cadenas
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Patrick Nell
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Nachiket Vartak
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Christoph van Thriel
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Matthias Herzler
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Robert Landsiedel
- Department of Experimental Toxicology and Ecology, BASF SE, Ludwigshafen, Germany
- Pharmacy, Pharmacology and Toxicology, Free University of Berlin, Berlin, Germany
| | - Marcel Leist
- Department of In Vitro Toxicology and Biomedicine, Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Constance, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jan G Hengstler
- Department of Toxicology, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| |
Collapse
|
7
|
Jaklová Dytrtová J, Bělonožníková K, Jakl M, Chmelík J, Kovač I, Ryšlavá H. Non-target biotransformation enzymes as a target for triazole-zinc mixtures. Chem Biol Interact 2023; 382:110625. [PMID: 37422065 DOI: 10.1016/j.cbi.2023.110625] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Triazoles inhibit lanosterol 14α-demethylase and block ergosterol biosynthesis in fungal pathogens. However, they also interact with other cytochrome P450 enzymes and influence non-target metabolic pathways. Disturbingly, triazoles may interact with essential elements. The interaction of penconazole (Pen), cyproconazole (Cyp) and tebuconazole (Teb) with Zn2+ results in the formation of deprotonated ligands in their complexes or in the creation of complexes with Cl- as a counterion or doubly charged complexes. Triazoles, as well as their equimolar cocktails with Zn2+ (10-6 mol/L), decreased the activities of the non-target enzymes CYP19A1 and CYP3A4. Pen most decreased CYP19A1 activity and was best bound to its active centre to block the catalytic cycle in computational analysis. For CYP3A4, Teb was found to be the most effective inhibitor by both, activity assay and interaction with the active centre. Teb/Cyp/Zn2+ and Teb/Pen/Cyp/Zn2+ cocktails also decreased the CYP19A1 activity, which was in correlation with the formation of numerous triazole-Zn2+ complexes.
Collapse
Affiliation(s)
- Jana Jaklová Dytrtová
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, José Martího 269/31, 162 52, Prague 6, Czech Republic.
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroenvironmental Chemistry and Plant Nutrition, Kamýcká 129, 165 00, Prague, Suchdol, Czech Republic
| | - Josef Chmelík
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic; Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Ishak Kovač
- Charles University, Faculty of Physical Education and Sport, Sport Sciences-Biomedical Department, José Martího 269/31, 162 52, Prague 6, Czech Republic; Charles University, Faculty of Science, Department of Analytical Chemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030/8, 128 43, Prague 2, Czech Republic
| |
Collapse
|
8
|
Hýsková V, Jakl M, Jaklová Dytrtová J, Ćavar Zeljković S, Vrobel O, Bělonožníková K, Kavan D, Křížek T, Šimonová A, Vašková M, Kovač I, Račko Žufić A, Ryšlavá H. Triazoles as a Potential Threat to the Nutritional Quality of Tomato Fruits. Metabolites 2023; 13:988. [PMID: 37755268 PMCID: PMC10536328 DOI: 10.3390/metabo13090988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Triazole fungicides can threaten plants as abiotic stressors but can also positively affect plant defense by inducing priming. Thus, plant yield is also both protected and endangered by triazoles that may influence several metabolic pathways during maturation processes, such as the biosynthesis of saccharides or secondary metabolites. Here, Solanum lycopersicum L. plants were exposed to foliar and soil applications of penconazole, tebuconazole, or their combination, and their resulting effect on tomato fruits was followed. The exposure to the equimolar mixture of both triazoles influenced the representation of free proteinogenic amino acids, especially Gln, Glu, Gly, Ile, Lys, Ser and Pro, saccharide content, and led to a significant increase in the contents of total phenolics and flavonoids as well as positive stimulation of the non-enzymatic antioxidant system. Among the identified secondary metabolites, the most abundant was naringenin, followed by chlorogenic acid in tomato peel. In turn, all triazole-treated groups showed a significantly lower content of rosmarinic acid in comparison with the control. Foliar application of penconazole affected the fruit more than other single triazole applications, showing a significant decrease in antioxidant capacity, the total content of secondary metabolites, and the activities of total membrane-bound peroxidases and ascorbate peroxidase.
Collapse
Affiliation(s)
- Veronika Hýsková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Michal Jakl
- Department of Agroenvironmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Prague, Czech Republic;
| | - Jana Jaklová Dytrtová
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Sanja Ćavar Zeljković
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Ondřej Vrobel
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 241/27, 783 71 Olomouc, Czech Republic; (S.Ć.Z.); (O.V.)
- Czech Advanced Technology and Research Institute, Palacký University, Křížkovského 511/8, 779 00 Olomouc, Czech Republic
| | - Kateřina Bělonožníková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Daniel Kavan
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Tomáš Křížek
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Alice Šimonová
- Department of Analytical Chemistry, Faculty of Science, Charles University Albertov 6, 128 00 Prague, Czech Republic; (T.K.); (A.Š.)
| | - Marie Vašková
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Ishak Kovač
- Sport Sciences—Biomedical Department, Faculty of Physical Education and Sport, Charles University, José Martího 269, 162 52 Prague, Czech Republic; (J.J.D.); (I.K.)
| | - Antoniana Račko Žufić
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| | - Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University, Albertov 6, 128 00 Prague, Czech Republic; (V.H.); (K.B.); (D.K.); (M.V.); (A.R.Ž.)
| |
Collapse
|
9
|
Karaca M, Willenbockel CT, Tralau T, Bloch D, Marx-Stoelting P. Toxicokinetic and toxicodynamic mixture effects of plant protection products: A case study. Regul Toxicol Pharmacol 2023; 141:105400. [PMID: 37116736 DOI: 10.1016/j.yrtph.2023.105400] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 04/30/2023]
Abstract
Authorisation of ready to use plant protection products (PPPs) usually relies on the testing of acute and local toxicity only. This is in stark contrast to the situation for active substances where the mandatory data set comprises a most comprehensive set of studies. While the combination of certain active ingredients and co-formulants may nevertheless result in increased toxicity of the final product such combinations have never been evaluated systematically for complex and long-term toxicological endpoints. We therefore investigated the effect of three frequently used co-formulants on the toxicokinetic and toxicodynamic of the representative active substance combination of tebuconazol (Teb) and prothioconazol (Pro) or of cypermethrin (Cpm) and piperonyl butoxide (Pip), respectively. With all four active substances being potential liver steatogens, cytotoxicity and triglyceride accumulation in HepaRG were used as primary endpoints. Concomitantly transcriptomics and biochemical studies were applied to interrogate for effects on gene expression or inhibition of CYP3A4 as key enzyme for functionalization. Some of the tested combinations clearly showed more than additive effects, partly due to CYP3A4 enzyme inhibition. Other effects comprised the modulation of the expression and activity of steatosis-related nuclear key receptors. Altogether, the findings highlight the need for a more systematic consideration of toxicodynamic and toxicokinetic mixture effects during assessment of PPPs.
Collapse
Affiliation(s)
- Mawien Karaca
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany
| | - Christian Tobias Willenbockel
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Denise Bloch
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department of Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany; Technical University of Berlin, Institute for Chemistry, Straße des 17. Juni 115, 10623, Berlin, Germany.
| |
Collapse
|
10
|
Kubickova B, Jacobs MN. Development of a reference and proficiency chemical list for human steatosis endpoints in vitro. Front Endocrinol (Lausanne) 2023; 14:1126880. [PMID: 37168981 PMCID: PMC10166001 DOI: 10.3389/fendo.2023.1126880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 03/17/2023] [Indexed: 05/13/2023] Open
Abstract
The most prevalent liver disease in humans is non-alcoholic fatty liver disease, characterised by excessive hepatic fat accumulation, or steatosis. The western diet and a sedentary lifestyle are considered to be major influences, but chemical exposure may also play a role. Suspected environmental chemicals of concern include pesticides, plasticizers, metals, and perfluorinated compounds. Here we present a detailed literature analysis of chemicals that may (or may not) be implicated in lipid accumulation in the liver, to provide a basis for developing and optimizing human steatosis-relevant in vitro test methods. Independently collated and reviewed reference and proficiency chemicals are needed to assist in the test method development where an assay is intended to ultimately be taken forward for OECD Test Guideline development purposes. The selection criteria and considerations required for acceptance of proficiency chemical selection for OECD Test Guideline development. (i.e., structural diversity, range of activity including negatives, relevant chemical sectors, global restrictions, etc.) is described herein. Of 160 chemicals initially screened for inclusion, 36 were prioritized for detailed review. Based on the selection criteria and a weight-of-evidence basis, 18 chemicals (9 steatosis inducers, 9 negatives), including some environmental chemicals of concern, were ranked as high priority chemicals to assist in vitro human steatosis test method optimisation and proficiency testing, and inform potential subsequent test method (pre-)validation.
Collapse
Affiliation(s)
| | - Miriam N. Jacobs
- Radiation, Chemical and Environmental Hazards (RCE), Department of Toxicology, UK Health Security Agency (UKHSA), Harwell Science and Innovation Campus, Chilton, United Kingdom
| |
Collapse
|
11
|
Knebel C, Süssmuth RD, Hammer HS, Braeuning A, Marx-Stoelting P. New Approach Methods for Hazard Identification: A Case Study with Azole Fungicides Affecting Molecular Targets Associated with the Adverse Outcome Pathway for Cholestasis. Cells 2022; 11:cells11203293. [PMID: 36291160 PMCID: PMC9600068 DOI: 10.3390/cells11203293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 12/03/2022] Open
Abstract
Triazole fungicides such as propiconazole (Pi) or tebuconazole (Te) show hepatotoxicity in vivo, e.g., hypertrophy and vacuolization of liver cells following interaction with nuclear receptors such as PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor). Accordingly, azoles affect gene expression associated with these adverse outcomes in vivo but also in human liver cells in vitro. Additionally, genes indicative of liver cholestasis are affected in vivo and in vitro. We therefore analyzed the capability of Pi and Te to cause cholestasis in an adverse outcome pathway (AOP)-driven approach in hepatic cells of human origin in vitro, considering also previous in vivo studies. Bile salt export pump (BSEP) activity assays confirmed that both azoles are weak inhibitors of BSEP. They alternate the expression of various cholestasis-associated target genes and proteins as well as the mitochondrial membrane function. Published in vivo data, however, demonstrate that neither Pi nor Te cause cholestasis in rodent bioassays. This discrepancy can be explained by the in vivo concentrations of both azoles being well below their EC50 for BSEP inhibition. From a regulatory perspective, this illustrates that toxicogenomics and human in vitro models are valuable tools to detect the potential of a substance to cause a specific type of toxicity. To come to a sound regulatory conclusion on the in vivo relevance of such a finding, results will have to be considered in a broader context also including toxicokinetics in a weight-of-evidence approach.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
| | - Roderich D. Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany
| | - Helen S. Hammer
- Signatope GmbH, Markwiesenstrasse 55, 72770 Reutlingen, Germany
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Street 8-10, 10589 Berlin, Germany
- Correspondence: (A.B.); (P.M.-S.); Tel.: +49-(0)30-18412-25100 (A.B.); Fax: +49-(0)30-18412-63758 (A.B.)
| |
Collapse
|
12
|
Elcombe CS, Evans NP, Bellingham M. Critical review and analysis of literature on low dose exposure to chemical mixtures in mammalian in vivo systems. Crit Rev Toxicol 2022; 52:221-238. [PMID: 35894754 PMCID: PMC9530410 DOI: 10.1080/10408444.2022.2091423] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Anthropogenic chemicals are ubiquitous throughout the environment. Consequentially, humans are exposed to hundreds of anthropogenic chemicals daily. Current chemical risk assessments are primarily based on testing individual chemicals in rodents at doses that are orders of magnitude higher than that of human exposure. The potential risk from exposure to mixtures of chemicals is calculated using mathematical models of mixture toxicity based on these analyses. These calculations, however, do not account for synergistic or antagonistic interactions between co-exposed chemicals. While proven examples of chemical synergy in mixtures at low doses are rare, there is increasing evidence that, through non-conformance to current mixture toxicity models, suggests synergy. This review examined the published studies that have investigated exposure to mixtures of chemicals at low doses in mammalian in vivo systems. Only seven identified studies were sufficient in design to directly examine the appropriateness of current mixture toxicity models, of which three showed responses significantly greater than additivity model predictions. While the remaining identified studies were unable to provide evidence of synergistic toxicity, it became apparent that many results of such studies were not always explicable by current mixture toxicity models. Additionally, two data gaps were identified. Firstly, there is a lack of studies where individual chemical components of a complex mixture (>10 components) are tested in parallel to the chemical mixture. Secondly, there is a lack of dose-response data for mixtures of chemicals at low doses. Such data is essential to address the appropriateness and validity of future chemical mixture toxicity models.
Collapse
Affiliation(s)
- Chris S Elcombe
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Neil P Evans
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michelle Bellingham
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Jeong JY, Kim M, Park SH, Kim B, Oh SI, Kim E, Jung H. Residual Level, Histology, and Blood Biochemistry of Tebuconazole: A Repeated Dose 28-Day Oral Toxicity Study in Pigs. Food Sci Anim Resour 2022; 42:712-722. [PMID: 35855269 PMCID: PMC9289805 DOI: 10.5851/kosfa.2022.e31] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Jin Young Jeong
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
- Corresponding author: Jin Young Jeong, Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea, Tel: +82-63-238-7487, Fax: +82-63-238-7497, E-mail:
| | - Minji Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Seol Hwa Park
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Byeonghyeon Kim
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Sang-Ik Oh
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Eunju Kim
- Division of Animal Disease & Health, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| | - Hyunjung Jung
- Animal Nutrition & Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Korea
| |
Collapse
|
14
|
Braeuning A, Bloch D, Karaca M, Kneuer C, Rotter S, Tralau T, Marx-Stoelting P. An approach for mixture testing and prioritization based on common kinetic groups. Arch Toxicol 2022; 96:1661-1671. [PMID: 35306572 PMCID: PMC9095521 DOI: 10.1007/s00204-022-03264-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/22/2022] [Indexed: 12/24/2022]
Abstract
In light of an ever-increasing exposure to chemicals, the topic of potential mixture toxicity has gained increased attention, particularly as the toxicological toolbox to address such questions has vastly improved. Routinely toxicological risk assessments will rely on the analysis of individual compounds with mixture effects being considered only in those specific cases where co-exposure is foreseeable, for example for pesticides or food contact materials. In the field of pesticides, active substances are summarized in so-called cumulative assessment groups (CAG) which are primarily based on their toxicodynamic properties, that is, respective target organs and mode of action (MoA). In this context, compounds causing toxicity by a similar MoA are assumed to follow a model of dose/concentration addition (DACA). However, the respective approach inherently falls short of addressing cases where there are dissimilar or independent MoAs resulting in wider toxicokinetic effects. Yet, the latter are often the underlying cause when effects deviate from the DACA model. In the present manuscript, we therefore suggest additionally to consider toxicokinetic effects (especially related to xenobiotic metabolism and transporter interaction) for the grouping of substances to predict mixture toxicity. In line with the concept of MoA-based CAGs, we propose common kinetics groups (CKGs) as an additional tool for grouping of chemicals and mixture prioritization. Fundamentals of the CKG concept are discussed, along with challenges for its implementation, and methodological approaches and examples are explored.
Collapse
Affiliation(s)
- Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Denise Bloch
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Mawien Karaca
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Rotter
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
15
|
Jiang J, Chen L, Liu X, Wang L, Wu S, Zhao X. Histology and multi-omic profiling reveal the mixture toxicity of tebuconazole and difenoconazole in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 795:148777. [PMID: 34229239 DOI: 10.1016/j.scitotenv.2021.148777] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/26/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The combination effects of triazole fungicides on aquatic organisms remain largely unknown. In current study, an integrated histological, transcriptome, metabonomics and microbiology was applied to investigate the mixture effects and risk of tebuconazole (TEB) and difenoconazole (DIF) co-exposure on zebrafish liver and gonad at aquatic life benchmark. TEB and DIF mixture showed additive effect on the acute toxicity to adult zebrafish, the combined toxicity on liver was less than the additive effect of individual TEB and DIF, and TEB and DIF mixture also reduced the toxic effects on gonad and intestinal microflora. Transcriptomics and metabolomics further showed TEB and DIF mixture could induce more differentially expressed genes (DEGs) to regulate the metabolic pathways involved in energy metabolism, steroid hormone biosynthesis, retinol metabolism and microbial metabolism, to balance the energy metabolism and supplies, and maintain the steroid hormone and RA level, further reduced the toxic effect on liver and gonad caused by TEB and DIF. Our results showed the different responses and patterns on transcriptional and metabolic profiles mediated in the diverse toxicity and combination effects of TEB and DIF. The present results provided a deep mechanistic understanding of the combined effects and mode of action of DIF and TEB mixture on aquatic organisms, suggesting the concept of additive effects might sufficiently protective when evaluated the combination effects and ecological risk of TEB and DIF at aquatic life benchmarks.
Collapse
Affiliation(s)
- Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Luyan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Shengan Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China.
| |
Collapse
|
16
|
Habenschus MD, Carrão DB, de Albuquerque NCP, Perovani IS, Moreira da Silva R, Nardini V, Lopes NP, Dias LG, Moraes de Oliveira AR. In vitro enantioselective inhibition of the main human CYP450 enzymes involved in drug metabolism by the chiral pesticide tebuconazole. Toxicol Lett 2021; 351:1-9. [PMID: 34407455 DOI: 10.1016/j.toxlet.2021.08.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/23/2021] [Accepted: 08/13/2021] [Indexed: 11/29/2022]
Abstract
Tebuconazole (TEB) is a chiral triazole fungicide worldwide employed to control plant pathogens and preserve wood. People can be exposed to TEB either through diet and occupational contamination. This work investigates the in vitro inhibitory potential of rac-TEB, S-(+)-TEB, and R-(-)-TEB over the main cytochrome P450 enzymes (CYP450) using human liver microsomes to predict TEB in vivo inhibition potential. The IC50 values showed that in vitro inhibition was enantioselective for CYP2C9, CYP2C19, and CYP2D6, but not for CYP3A4/5. Despite enantioselectivity, rac-TEB and its single enantiomers were always classified in the same category. The inhibition mechanisms and constants were determined for rac-TEB and it has shown to be a mixed inhibitor of CYP3A4/5 (Ki = 1.3 ± 0.3 μM, αKi = 3.2 ± 0.5 μM; Ki = 0.6 ± 0.3 μM, αKi = 1.3 ± 0.3 μM) and CYP2C9 (Ki = 0.7 ± 0.1 μM, αKi = 2.7 ± 0.5 μM), and a competitive inhibitor of CYP2D6 (Ki = 11.9 ± 0.7 μM) and CYP2C19 (Ki = 0.23 ± 0.02 μM), respectively, suggesting that in some cases, rac-TEB has a higher or comparable inhibitory potential than well-known strong inhibitors of CYP450 enzymes, especially for CYP2C9 and CYP2C19. In vitro-in vivo extrapolations (IVIVE) were conducted based on the results and data available in the literature about TEB absorption and metabolism. R1 values were estimated based on the Food and Drug Administration guideline and suggested that in a chronic oral exposure scenario considering the acceptable daily intake dose proposed by the European Food and Safety Authority, the hypothesis of rac-TEB to inhibit the activities of CYP3A4/5, CYP2C9, and CYP2C19 in vivo and cause pesticide-drug interactions cannot be disregarded.
Collapse
Affiliation(s)
- Maísa Daniela Habenschus
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Daniel Blascke Carrão
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Nayara Cristina Perez de Albuquerque
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Icaro Salgado Perovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Rodrigo Moreira da Silva
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Viviani Nardini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, 14090-903, Ribeirão Preto, SP, Brazil
| | - Luís Gustavo Dias
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil
| | - Anderson Rodrigo Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040-901, Ribeirão Preto, SP, Brazil; National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Unesp, Institute of Chemistry, P.O. Box 355, 14800-900, Araraquara, SP, Brazil.
| |
Collapse
|
17
|
Brucker N, Menezes C, Charão MF, da Silva LC, Sant'anna Oliveira TS, Menezes JM, Muller I, Gioda A, de Carvalho BRF, de Castro Paz Calheiros O, Rizzetti TM, Zanella R, Garcia SC. Bioassays to screen the toxicity in drinking water samples collected in Brazilian rural area. Toxicol Res (Camb) 2021; 10:856-867. [PMID: 34484677 DOI: 10.1093/toxres/tfab072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/26/2021] [Accepted: 07/08/2021] [Indexed: 11/12/2022] Open
Abstract
Agriculture activities have increased the concentration of pesticides and metals in the environment. The excessive use of pesticides can generate an environmental impact and contribute to the development of human diseases. This study aimed to determine the presence of pesticides and metals in water samples collected in the Brazilian rural area in two different periods (before and after pesticide application) and to evaluate the alternative bioassays Lactuca sativa, Allium cepa, and Caenorhabditis elegans to monitoring toxicity in human drinking water samples. Eight sites in the rural area were selected and water samples were collected in two different periods of the year (before and after pesticide application). The presence of the pesticides was determinated by ultra-high performance liquid chromatography-tandem mass spectrometry and metals by inductively coupled plasma mass spectrometry. The potential toxicity of the water samples was performed with three different alternatives in vivo models (L. sativa, A. cepa, and C. elegans). Fifty-seven pesticides were analyzed and, according to the results, the most found ones were clomazone, atrazine, tebuconazole, metconazole, pyrimethanil, and carbofuran-3-hydroxide, which is a metabolic degradation product of insecticide carbofuran. The most detected metals were Cu, Cr, Mg, Fe, and Mn. The assays with L. sativa and A. cepa showed alterations in the period after pesticide application, while C. elegans presented changes in both periods compared to the same collection sites. These results indicate that bioassays, especially C. elegans, could be complementary and useful tools for monitoring the toxicity in drinking water samples.
Collapse
Affiliation(s)
- Natália Brucker
- Graduate Program in Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Charlene Menezes
- Department of Industrial Pharmacy, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Mariele Feiffer Charão
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Rio Grande do Sul 93525-075, Brazil
| | - Laura Cé da Silva
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Rio Grande do Sul 93525-075, Brazil
| | | | - Júlia M Menezes
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Rio Grande do Sul 93525-075, Brazil
| | - Isadora Muller
- Graduate Program on Toxicology and Analytical Toxicology, University Feevale, Novo Hamburgo, Rio Grande do Sul 93525-075, Brazil
| | - Adriana Gioda
- Department of Chemistry, Pontifícia Universidade Católica do Rio de Janeiro, PUC-Rio, Rio de Janeiro 22451-900, Brazil
| | | | - Octávio de Castro Paz Calheiros
- Department of Physiology and Pharmacology, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Tiele Medianeira Rizzetti
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Renato Zanella
- Laboratory of Pesticide Residue Analysis (LARP), Chemistry Department, Federal University of Santa Maria, Santa Maria, Rio Grande do Sul 97105-900, Brazil
| | - Solange Cristina Garcia
- Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
18
|
Zheng F, Aschner M, Li H. Evaluations of Environmental Pollutant-Induced Mitochondrial Toxicity Using Caenorhabditis elegans as a Model System. Methods Mol Biol 2021; 2326:33-46. [PMID: 34097259 DOI: 10.1007/978-1-0716-1514-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Environmental pollutants inevitably exert adverse effects on humans and other species. Quick identification and in-depth characterization of the pollutants are requisite objectives for clinicians and environmental health scientists. The nematode Caenorhabditis elegans has been utilized as a model organism for toxicity evaluation of environmental pollutants, due to its transparency, short lifespan, entire genome sequencing, and economical characteristics. However, few researchers have systematically addressed mitochondrial toxicity in response to toxicants, despite the critical role mitochondria play in energy production and respiration, as well as the generation of reactive oxygen species. Mitochondria are vulnerable to environmental pollutants, and their dysfunction contributes to cellular damage and toxicity in plethora of diseases. Here, we describe methods in step-by-step for mitochondrial toxicity evaluation in response to pollutants, including exposure of C. elegans to toxicants, mitochondrial ROS detection, mitochondrial morphology analysis, mitochondrial function analysis, such as ATP production and oxygen consumption, and gene expression studies, with the application of corresponding genetically modified strains.
Collapse
Affiliation(s)
- Fuli Zheng
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China.,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Huangyuan Li
- The Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou, China. .,Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
19
|
Lichtenstein D, Mentz A, Sprenger H, Schmidt FF, Albaum SP, Kalinowski J, Planatscher H, Joos TO, Poetz O, Braeuning A. A targeted transcriptomics approach for the determination of mixture effects of pesticides. Toxicology 2021; 460:152892. [PMID: 34371104 DOI: 10.1016/j.tox.2021.152892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 10/20/2022]
Abstract
While real-life exposure occurs to complex chemical mixtures, toxicological risk assessment mostly focuses on individual compounds. There is an increasing demand for in vitro tools and strategies for mixture toxicity analysis. Based on a previously established set of hepatotoxicity marker genes, we analyzed mixture effects of non-cytotoxic concentrations of different pesticides in exposure-relevant binary mixtures in human HepaRG hepatocarcinoma cells using targeted transcriptomics. An approach for mixture analysis at the level of a complex endpoint such as a transcript pattern is presented, including mixture design based on relative transcriptomic potencies and similarities. From a mechanistic point of view, goal of the study was to evaluate combinations of chemicals with varying degrees of similarity in order to determine whether differences in mechanisms of action lead to different mixtures effects. Using a model deviation ratio-based approach for assessing mixture effects, it was revealed that most data points are consistent with the assumption of dose addition. A tendency for synergistic effects was only observed at high concentrations of some combinations of the test compounds azoxystrobin, cyproconazole, difenoconazole, propiconazole and thiacloprid, which may not be representative of human real-life exposure. In summary, the findings of our study suggest that, for the pesticide mixtures investigated, risk assessment based on the general assumption of dose addition can be considered sufficiently protective for consumers. The way of data analysis presented in this paper can pave the way for a more comprehensive use of multi-gene expression data in experimental studies related to mixture toxicity.
Collapse
Affiliation(s)
- Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Almut Mentz
- University of Bielefeld, CeBiTec, Bielefeld, Germany
| | - Heike Sprenger
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany
| | - Felix F Schmidt
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | | | | | | | - Thomas O Joos
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Oliver Poetz
- NMI Natural and Medical Sciences Institute at the University of Tuebingen/Reutlingen, Germany; Signatope GmbH, 72770, Reutlingen, Germany
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Dept. Food Safety, Berlin, Germany.
| |
Collapse
|
20
|
Kwon HC, Sohn H, Kim DH, Shin DM, Jeong CH, Chang YH, Yune JH, Kim YJ, Kim DW, Kim SH, Han SG. In Vitro and In Vivo Study on the Toxic Effects of Propiconazole Fungicide in the Pathogenesis of Liver Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:7399-7408. [PMID: 34170130 DOI: 10.1021/acs.jafc.1c01086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Propiconazole (PCZ) is a hepatotoxic triazole fungicide. There are insufficient data on how PCZ induces liver fibrosis in humans. This study aimed to investigate the effect of PCZ on liver fibrosis and its underlying mechanisms. HepG2 cells and Sprague-Dawley rats were exposed to PCZ at doses of 0-160 μM (3-72 h) and 0.5-50 mg/kg body weight/day (28 days), respectively. PCZ-treated cells activated intracellular oxidative stress via cytochrome P450 and had higher mRNA levels of interleukin-1β, tumor necrosis factor-α, matrix metalloproteinase (MMP)-2, MMP-9, and transforming growth factor-β (TGF-β) than the control. PCZ treatment in cells induced a morphological transition with E-cadherin decrease and vimentin and Snail increase via the oxidative stress and TGF-β/Smad pathways. PCZ administration in rats induced liver fibrosis through pathological changes, epithelial-mesenchymal transition, and collagen deposition. Thus, our data suggest that exposure of PCZ to humans may be a risk factor for the functional integrity of the liver.
Collapse
Affiliation(s)
- Hyuk Cheol Kwon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyejin Sohn
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Do Hyun Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong Min Shin
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Chang Hee Jeong
- Microbiology and Functionality Research Group, World Institute of Kimchi, Gwangju 61755, Republic of Korea
| | - You Hyun Chang
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Jong Hyeok Yune
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Yea Ji Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Dong-Wook Kim
- Department of Poultry Science, Korea National College of Agriculture and Fisheries, Jeonju 54874, Republic of Korea
| | - Sang Ho Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung Gu Han
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
21
|
Hammer H, Schmidt F, Marx-Stoelting P, Pötz O, Braeuning A. Cross-species analysis of hepatic cytochrome P450 and transport protein expression. Arch Toxicol 2021; 95:117-133. [PMID: 33150952 PMCID: PMC7811513 DOI: 10.1007/s00204-020-02939-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
Most drugs and xenobiotics are metabolized in the liver. Amongst others, different cytochrome P450 (CYP) enzymes catalyze the metabolic conversion of foreign compounds, and various transport proteins are engaged in the excretion of metabolites from the hepatocytes. Inter-species and inter-individual differences in the hepatic levels and activities of drug-metabolizing enzymes and transporters result from genetic as well as from environmental factors, and play a decisive role in determining the pharmacokinetic properties of a compound in a given test system. To allow for a meaningful comparison of results from metabolism studies, it is, therefore, of utmost importance to know about the specific metabolic properties of the test systems, especially about the levels of metabolic enzymes such as the CYPs. Using a targeted proteomics approach, we, therefore, compared the hepatic levels of important CYP enzymes and transporters in different experimental systems in vivo and in vitro, namely Wistar rats, C57/Bl6 mice, mice humanized for the two xeno-sensing receptors PXR (pregnane-X-receptor) and CAR (constitutive androstane receptor), mice with human hepatocyte-repopulated livers, human HepaRG hepatocarcinoma cells, primary human hepatocytes, and human liver biopsies. In addition, the effects of xenobiotic inducers of drug metabolism on CYP enzymes and transporters were analyzed in selected systems. This study for the first time presents a comprehensive overview of similarities and differences in important drug metabolism-related proteins among the different experimental models.
Collapse
Affiliation(s)
- Helen Hammer
- Signatope, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Felix Schmidt
- Signatope, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Philip Marx-Stoelting
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Oliver Pötz
- Signatope, Markwiesenstraße 55, 72770, Reutlingen, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| |
Collapse
|
22
|
Maximino SC, Dutra JAP, Rodrigues RP, Gonçalves RCR, Morais PAB, Ventura JA, Schuenck RP, Júnior VL, Kitagawa RR, S Borges W. Synthesis of Eugenol Derivatives and Evaluation of their Antifungal Activity Against Fusarium solani f. sp. piperis. Curr Pharm Des 2020; 26:1532-1542. [PMID: 32242782 DOI: 10.2174/1381612826666200403120448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/13/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Fusarium solani f. sp. piperis is a phytopathogen that causes one of the most destructive diseases in black pepper crops, resulting in significant economic and crop production losses. Consequently, the control of this fungal disease is a matter of current and relevant interest in agriculture. OBJECTIVE The objective was to synthesize eugenol derivatives with antifungal activity. METHODS In this study, using bimolecular nucleophilic substitution and click chemistry approaches, four new and three known eugenol derivatives were obtained. The eugenol derivatives were characterized and their antifungal and cytotoxic effects were evaluated. RESULTS Eugenol derivative 4 (2-(4-allyl-2-methoxyphenoxy)-3-chloronaphthalene-1,4-dione) was the most active against F. solani f. sp. piperis and showed acceptable cytotoxicity. Compound 4 was two-fold more effective than tebuconazole in an antifungal assay and presented similar cytotoxicity in macrophages. The in silico study of β-glucosidase suggests a potential interaction of 4 with amino acid residues by a cation-π interaction with residue Arg177 followed by a hydrogen bond with Glu596, indicating an important role in the interactions with 4, justifying the antifungal action of this compound. In addition, the cytotoxicity after metabolism was evaluated as a mimic assay with the S9 fraction in HepG2 cells. Compound 4 demonstrated maintenance of cytotoxicity, showing IC50 values of 11.18 ± 0.5 and 9.04 ± 0.2 μg mL-1 without and with the S9 fraction, respectively. In contrast, eugenol (257.9 ± 0.4 and 133.5 ± 0.8 μg mL-1), tebuconazole (34.94 ± 0.2 and 26.76 ± 0.17 μg mL-1) and especially carbendazim (251.0 ± 0.30 and 34.7 ± 0.10 μg mL-1) showed greater cytotoxicity after hepatic biotransformation. CONCLUSION The results suggest that 4 is a potential candidate for use in the design of new and effective compounds that could control this pathogen.
Collapse
Affiliation(s)
- Sarah C Maximino
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Jessyca A P Dutra
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Ricardo P Rodrigues
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Rita C R Gonçalves
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Pedro A B Morais
- Department of Chemistry and Physics, Exact, Natural and Health Sciences Center, Federal University of Espírito Santo, Alto Universitário, s/n, Guararema, Alegre, ES, Brazil
| | - José A Ventura
- Capixaba Institute for Research, Technical Assistance and Rural Extension, Rua Afonso Sarlo 160, Bento Ferreira, 29052-010, Vitória, ES, Brazil
| | - Ricardo P Schuenck
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Valdemar Lacerda Júnior
- Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| | - Rodrigo R Kitagawa
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil
| | - Warley S Borges
- Graduate Program of Pharmaceutical Sciences, Health Sciences Center, Federal University of Espírito Santo, Avenida Marechal Campos 1468, Maruípe, 29047-105,Vitória, ES, Brazil.,Department of Chemistry, Exact Sciences Center, Federal University of Espírito Santo, Avenida Fernando Ferrari 514, Goiabeiras, 29075-910, Vitória, ES, Brazil
| |
Collapse
|
23
|
Jaklová Dytrtová J, Bělonožníková K, Jakl M, Ryšlavá H. Triazoles and aromatase: The impact of copper cocktails. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115201. [PMID: 32693302 DOI: 10.1016/j.envpol.2020.115201] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/30/2020] [Accepted: 07/05/2020] [Indexed: 06/11/2023]
Abstract
Triazoles are used as antifungal agents, they mostly inhibit two enzymes: 14α-demethylase and aromatase. These enzymes are utilised also in other species and therefore the affection in non-target species in the environment is expected as well. Besides, triazoles are often being applied in a mixture and they can also interact with other substances present. This study clarifies how three selected representative triazoles (tebuconazole, penconazole and cyproconazole) interact with each other (group effect) and in mixtures (cocktail effect) with copper, essential/toxic for all organisms. Within the experiments on electrospray and collision-induced dissociations (both ESI-MS), it has been found that the fragments correspond to typical triazole metabolites. For their formation, the presence of copper ions is crucial. The inhibitory effect of Cu cocktails on aromatase enzymatic activity has been studied. The presence of Cu ions together with triazole(s) significantly increases the inhibitory effect on aromatase activity. The highest inhibitory effect (more than 60%) on aromatase activity is produced by cocktails containing penconazole and Cu ions, namely by penconazole/Cu and penconazole/tebuconazole/Cu. The reactivity of triazoles in groups is not significantly affected by the interactions among them. Additionally, the role of triazoles in copper Fenton reaction regulation has been observed and described. These changes may be attributed to the formation and stabilization of the complexes with the central Cu ion, with usually one, two or three triazolic ligands, depending on the mixture. The study demonstrates that the interaction of triazoles and Cu ions is a complex process; their impact on metabolism seems to be rather extensive and must be evaluated in the context of biochemical reactions.
Collapse
Affiliation(s)
- Jana Jaklová Dytrtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 542/2, 166 10, Prague 6, Czech Republic; Charles University, Faculty of Physical Education and Sport, Department of Physiology and Biochemistry, José Martího 269/31, 162 52, Prague 6, Czech Republic.
| | - Kateřina Bělonožníková
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030, 128 43, Prague 2, Czech Republic
| | - Michal Jakl
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agro-Environmental Chemistry and Plant Nutrition, Kamýcká 129, 165 00, Prague - Suchdol, Czech Republic
| | - Helena Ryšlavá
- Charles University, Faculty of Science, Department of Biochemistry, Hlavova 2030, 128 43, Prague 2, Czech Republic
| |
Collapse
|
24
|
Hammer H, Schmidt F, Heise T, Knebel C, Dabrowski A, Planatscher H, Kneuer C, Marx-Stoelting P, Pötz O. Induction and repression effects on CYP and transporter protein abundance by azole mixture uptake in rat liver. EXCLI JOURNAL 2020; 19:904-916. [PMID: 33343269 PMCID: PMC7744963 DOI: 10.17179/excli2020-2311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/19/2020] [Indexed: 12/20/2022]
Abstract
Detection of mixture effects is a major challenge in current experimental and regulatory toxicology. Robust markers are needed that are easy to quantify and responsive to chemical stressors in a broad dose range. Several hepatic enzymes and proteins related to drug metabolism like cytochrome-P-450 (CYP) enzymes and transporters have been shown to be responsive to pesticide active substances in a broad dose range and are therefore good candidates to be used as markers for mixture toxicity. Even though they can be well quantified at the mRNA level, quantification on the protein level is challenging because most of these proteins are membrane bound. Here we report the development of mass spectrometry-based assays using triple-x-proteomics (TXP) antibodies in combination with targeted selected ion monitoring (tSIM) to quantify changes of protein levels due to exposure to mixtures of pesticide active substances. Our results indicate that changes on the protein level of CYP1A1, ABCB2, ABCC3 are in line with observations on the mRNA and enzyme activity level and are indicative of mixture effects. Therefore, the tests are promising to reveal effects by chemical mixture effects in toxicological studies in rats.
Collapse
Affiliation(s)
- Helen Hammer
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- SIGNATOPE GmbH, Reutlingen, Germany
| | - Flavia Schmidt
- BfR, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Tanja Heise
- BfR, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Constanze Knebel
- BfR, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Alexander Dabrowski
- BfR, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Hannes Planatscher
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- SIGNATOPE GmbH, Reutlingen, Germany
| | - Carsten Kneuer
- BfR, Department of Pesticides Safety, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | | | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
- SIGNATOPE GmbH, Reutlingen, Germany
| |
Collapse
|
25
|
Kovač I, Jakl M, Fanfrlík J, Andrushchenko V, Jaklová Dytrtová J. Complexation and stability of the fungicide penconazole in the presence of zinc and copper ions. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2020; 34:e8714. [PMID: 31880851 DOI: 10.1002/rcm.8714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
RATIONALE For the risk assessment of penconazole in the environment and the evaluation of the possible consequences of its use, it is important to determine how its reactivity and degradation are influenced by metals commonly found in nature, such as copper and zinc. METHODS Changes in the reactivity of penconazole in the presence of zinc/copper ions were studied using electrospray ionisation mass spectrometry and density functional theory calculations. RESULTS Many penconazole complexes with copper and zinc ions were created; a comparison of the elements showed that a few complexes were formed analogously (doubly charged complexes with four penconazole molecules, singly charged complexes with chlorine as a counterion and singly charged complexes with deprotonated penconazole as a counterion). The metal complexes with different structures indicated different reactivity of penconazole with copper and zinc. CONCLUSIONS The experimental and computational approaches have revealed different changes in the structure of penconazole. In the Zn(II) complex, penconazole deprotonated to stabilise the bond to Zn(II). In the Cu(II) complex, it loses one chlorine atom, creates an additional ring between the triazole ring and the phenyl ring, and/or creates a double bond in the short aliphatic chain.
Collapse
Affiliation(s)
- Ishak Kovač
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- UNESCO Laboratory of Environmental Electrochemistry, Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Jakl
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague - Suchdol, Czech Republic
| | - Jindřich Fanfrlík
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Valery Andrushchenko
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Jaklová Dytrtová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
- Department of Physiology and Biochemistry, Faculty of Physical Education and Sport, Charles University, Prague, Czech Republic
| |
Collapse
|
26
|
The Connection of Azole Fungicides with Xeno-Sensing Nuclear Receptors, Drug Metabolism and Hepatotoxicity. Cells 2020; 9:cells9051192. [PMID: 32403288 PMCID: PMC7290820 DOI: 10.3390/cells9051192] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 05/07/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Azole fungicides, especially triazole compounds, are widely used in agriculture and as pharmaceuticals. For a considerable number of agricultural azole fungicides, the liver has been identified as the main target organ of toxicity. A number of previous studies points towards an important role of nuclear receptors such as the constitutive androstane receptor (CAR), the pregnane-X-receptor (PXR), or the aryl hydrocarbon receptor (AHR), within the molecular pathways leading to hepatotoxicity of these compounds. Nuclear receptor-mediated hepatic effects may comprise rather adaptive changes such as the induction of drug-metabolizing enzymes, to hepatocellular hypertrophy, histopathologically detectable fatty acid changes, proliferation of hepatocytes, and the promotion of liver tumors. Here, we present a comprehensive review of the current knowledge of the interaction of major agricultural azole-class fungicides with the three nuclear receptors CAR, PXR, and AHR in vivo and in vitro. Nuclear receptor activation profiles of the azoles are presented and related to histopathological findings from classic toxicity studies. Important issues such as species differences and multi-receptor agonism and the consequences for data interpretation and risk assessment are discussed.
Collapse
|
27
|
Lasch A, Lichtenstein D, Marx-Stoelting P, Braeuning A, Alarcan J. Mixture effects of chemicals: The difficulty to choose appropriate mathematical models for appropriate conclusions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113953. [PMID: 31962267 DOI: 10.1016/j.envpol.2020.113953] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/16/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Many different approaches have been proposed to evaluate and predict mixture effects. From a regulatory perspective, several guidance documents have been recently published and provide a strategy for mixture risk assessment based on valuable frameworks to investigate potential synergistic effects. However, some methodological aspects, e.g. for considering mathematical models, are not sufficiently defined. Therefore, the aim of this study was to examine the usefulness of five main mathematical models for mixture effect interpretation: theoretical additivity (TA), concentration addition (CA), independent action (IA), Chou-Talalay (CT), and a benchmark dose approach (BMD) were tested using a fictional data set depicting scenarios of additivity, synergism and antagonism. The synergism and antagonism scenarios were split in x-axis and y-axis synergism/antagonism, meaning a shift of the curve on x-axis or y-axis. The BMD approach was the only model which showed a perfect correspondence for dose addition. Regarding synergism and antagonism, all approaches correspond well for the x-axis synergism and antagonism with only few exceptions. In contrast, some limitations were observed in the particular scenarios of y-axis synergism and antagonism. Therefore our results show that each model has advantages and disadvantages, and that therefore no single model appears the best one for all kinds of application. We would recommend instead the parallel use of different models to increase confidence in the result of mixture effect evaluation.
Collapse
Affiliation(s)
- Alexandra Lasch
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Dajana Lichtenstein
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Department Pesticides Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Albert Braeuning
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| | - Jimmy Alarcan
- German Federal Institute for Risk Assessment, Department of Food Safety, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany.
| |
Collapse
|
28
|
Hepatotoxicity of the pesticides imazalil, thiacloprid and clothianidin - Individual and mixture effects in a 28-day study in female Wistar rats. Food Chem Toxicol 2020; 140:111306. [PMID: 32229153 DOI: 10.1016/j.fct.2020.111306] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023]
Abstract
Humans are exposed to pesticide residues through various food products. As these residues can occur in mixtures, there is a need to investigate possible mixture effects on human health. Recent exposure studies revealed the preponderance of imazalil, thiacloprid, and clothianidin in food diets. In this study, we assessed their toxicity alone and in binary mixtures in a 28-day gavage study in female Wistar rats. Five dose levels (up to 350 mg/kg bw/day) ranging from a typical toxicological reference value to a clear effect dose were applied. Data show that the liver was a target organ of all pesticides and their mixtures. Increases in liver weight were observed and histopathological examination revealed centrilobular hepatocellular hypertrophy and cytoplasm degeneration for all treatment conditions. No accumulation of hepatic triglycerides was reported. Tissue residue analysis showed altered pesticide residues in the liver and the kidney when being in mixture as compared to the levels of pesticide residues for the single compound treatment, indicating possible toxicokinetic interactions. Overall, all mixtures appeared to follow the additivity concept, even though quantitative analysis was limited for some endpoints due to the semi-quantitative nature of the data, raising no specific concern for the risk assessment of the examined pesticides.
Collapse
|
29
|
Li S, Jiang Y, Sun Q, Coffin S, Chen L, Qiao K, Gui W, Zhu G. Tebuconazole induced oxidative stress related hepatotoxicity in adult and larval zebrafish (Danio rerio). CHEMOSPHERE 2020; 241:125129. [PMID: 31683439 DOI: 10.1016/j.chemosphere.2019.125129] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 06/10/2023]
Abstract
Tebuconazole is widely used as fungicide and has frequently been detected at elevated concentrations in environmental media. To characterize the potential toxicity of tebuconazole on vertebrate and humans. Using zebrafish as a vertebrate model, the toxic effects in liver that produced by low-toxic concentrations of tebuconazole were assessed in adult zebrafish. We further focused on tebuconazole-induced toxicity and its possible mechanism in larval zebrafish using a hepatotoxicity assay. The induction of oxidative stress in adult fish was evaluated by superoxide dismutase (T-SOD), catalase (CAT), peroxidase (POD), glutathione S-transferase (GST) activity, and the increased aspartate aminotransferase (AST)/alanine aminotransferase (ALT) ratio. Significantly increased enzyme activity was observed in the liver of male and female fish at both exposure and depuration stage. Exposure to maximum non-lethal (MNLC) concentration of tebuconazole from 72 to 120 h post-fertilization (hpf) affected the liver size and yolk retention in larval zebrafish. Decreased fluorescence intensity was observed in larval Tg(Apo14:GFP) zebrafish, indicating liver degeneration after tebuconazole treated. Histopathological examination confirmed the alterations in liver histoarchitecture in exposed zebrafish. Significant 1.28-fold and 1.65-fold increases in reactive oxygen species levels were observed in juveniles exposed to MNLC and lethal concentration 10 (LC10) group, respectively. The acridine orange staining assay showed that apoptotic cells occurred in the liver regions. These results indicated that tebuconazole exposure resulted in impacts on the ecological risk in fish and vertebrate. Overall, the present study suggested further research in needed to better understand the tebuconazole-induced toxicity mechanism that associated with oxidative stress.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Yao Jiang
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Qianqian Sun
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Scott Coffin
- Department of Environmental Sciences, University of California, Riverside, CA, 92521, United States
| | - Lili Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| |
Collapse
|
30
|
Wittkowski P, Marx-Stoelting P, Violet N, Fetz V, Schwarz F, Oelgeschläger M, Schönfelder G, Vogl S. Caenorhabditis elegans As a Promising Alternative Model for Environmental Chemical Mixture Effect Assessment-A Comparative Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12725-12733. [PMID: 31536708 DOI: 10.1021/acs.est.9b03266] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
A key challenge of mixture toxicity testing is that a multitude of substances with even more combinations need to be tested in a broad dose range. Consequently testing in rodent bioassays, the current gold standard of toxicity testing, is hardly feasible. High-throughput compatible cell culture systems, however, suffer from limitations with respect to toxicokinetics, tissue interactions, and compensatory mechanisms. Therefore, simple organisms like the nematode Caenorhabditis elegans, combining relevant advantages of complex in vivo and fast in vitro assays might prove highly valuable within a testing strategy for mixtures. To investigate the comparability between results obtained with C. elegans and traditional rodent assays, we used five azole fungicides as well investigated model substances. Our findings suggest that azoles act additively in C. elegans which is in line with previous results in rats. Additionally, we show that toxicokinetics are one important factor for the differences in the relative toxicity of the azoles in both species. Importantly, we also demonstrate that in contrast to most rodent in vivo studies, C. elegans assays provide well-defined concentration-response relationships which are a very good basis for the prediction of mixture effects. We conclude that C. elegans may be an appropriate model for mixture toxicity testing at least within a first step to identify and prioritize relevant mixtures for further testing.
Collapse
Affiliation(s)
- Paul Wittkowski
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Norman Violet
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Verena Fetz
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Franziska Schwarz
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin , Humboldt-Universität zu Berlin, and Berlin Institute of Health , 10117 Berlin , Germany
| | - Silvia Vogl
- German Federal Institute for Risk Assessment , German Centre for the Protection of Laboratory Animals (Bf3R) , 10589 Berlin , Germany
| |
Collapse
|
31
|
Albrecht W. Highlight report: hepatotoxicity of triazole fungicides. Arch Toxicol 2019; 93:3037-3038. [DOI: 10.1007/s00204-019-02555-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022]
|
32
|
Wang Y, Xu J, Qiu Y, Li P, Liu B, Yang L, Barnych B, Hammock BD, Zhang C. Highly Specific Monoclonal Antibody and Sensitive Quantum Dot Beads-Based Fluorescence Immunochromatographic Test Strip for Tebuconazole Assay in Agricultural Products. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:9096-9103. [PMID: 31356079 PMCID: PMC7069222 DOI: 10.1021/acs.jafc.9b02832] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A monoclonal antibody (mAb) was raised against tebuconazole (TEB) using a hapten where the p-chloro substituent of the TEB molecule was replaced with a long-chain carboxylic acid. The resulting mAb showed high sensitivity and specificity against TEB characterized by ELISA with a half-maximal inhibitory concentration (IC50) of 0.19 ng mL-1 and with cross-reactivity (CR) values below 0.01% to several analogues of triazole fungicides. On the basis of the mAb produced, a quantum dot beads-based fluorescence immunochromatographic test strip assay (QBs-FITSA) was developed for rapid and sensitive detection of TEB in agricultural product samples. The QBs-FITSA exhibited a linear detection range from 0.02 to 1.25 ng mL-1 with a limit of detection (LOD) of 0.02 ng mL-1. Furthermore, using produced mAb, multiple high-throughput rapid immunoassay formats could be achieved as a convenient monitoring tool for evaluation of human and environmental exposure to TEB.
Collapse
Affiliation(s)
- Yulong Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Junli Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yulou Qiu
- Zhejiang Proceincial Key Laboratory of Biometrology and Inspection and Quarantine, China Jiliang University, Hangzhou 310018, China
| | - Pan Li
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Beibei Liu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lifei Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bogdan Barnych
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Bruce D. Hammock
- Department of Entomology and Nematology and UCD Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Cunzheng Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
33
|
Seeger B, Mentz A, Knebel C, Schmidt F, Bednarz H, Niehaus K, Albaum S, Kalinowski J, Noll T, Steinberg P, Marx-Stoelting P, Heise T. Assessment of mixture toxicity of (tri)azoles and their hepatotoxic effects in vitro by means of omics technologies. Arch Toxicol 2019; 93:2321-2333. [PMID: 31254001 DOI: 10.1007/s00204-019-02502-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/17/2019] [Indexed: 01/08/2023]
Abstract
Consumers are constantly exposed to chemical mixtures such as multiple residues of different pesticides via the diet. This raises questions concerning potential combination effects, especially because these substances are tested for regulatory purposes on an individual basis. With approximately 500 active substances approved as pesticides, there are too many possible combinations to be tested in standard animal experiments generally requested for regulatory purposes. Therefore, the development of in vitro tools and alternative testing strategies for the assessment of mixture effects is extremely important. As a first step in the development of such in vitro tools, we used (tri)azoles as model substances in a set of different cell lines derived from the primary target organ of these substances, the liver (human: HepaRG, rat: H4IIE). Concentrations were reconciled with measured tissue concentrations obtained from in vivo experiments to ensure comparable effect levels. The effects of the substances were subsequently analyzed by transcriptomics and metabolomics techniques and compared to data from corresponding in vivo studies. The results show that similar toxicity pathways are affected by substances and combinations, thus indicating a similar mode of action and additive effects. Two biomarkers obtained by the approach, CAR and Cyp1A1, were used for mixture toxicity modeling and confirmed the concentration-additive effects, thus supporting the selected testing strategy and raising hope for the development of in vitro methods suitable to detect combination effects and prioritize mixtures of concern for further testing.
Collapse
Affiliation(s)
- Bettina Seeger
- Institute for Food Toxicology and Center for Alternatives and Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Almut Mentz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Constanze Knebel
- Department for Pesticide Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Flavia Schmidt
- Department for Pesticide Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hanna Bednarz
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Karsten Niehaus
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Stephan Albaum
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Thomas Noll
- Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Pablo Steinberg
- Institute for Food Toxicology and Center for Alternatives and Complementary Methods to Animal Experiments, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Max Rubner-Institute, Federal Research Institute of Nutrition and Food, Karlsruhe, Germany
| | - Philip Marx-Stoelting
- Department for Pesticide Safety, German Federal Institute for Risk Assessment, Berlin, Germany.
| | - Tanja Heise
- Department for Pesticide Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
34
|
Li S, Wu Q, Sun Q, Coffin S, Gui W, Zhu G. Parental exposure to tebuconazole causes thyroid endocrine disruption in zebrafish and developmental toxicity in offspring. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 211:116-123. [PMID: 30965179 DOI: 10.1016/j.aquatox.2019.04.002] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/26/2019] [Accepted: 04/02/2019] [Indexed: 06/09/2023]
Abstract
Azole fungicides are one class of the most extensively applied current-use pesticides. Tebuconazole is a common azole fungicide that has been frequently detected in aquatic ecosystems, thus raising concerns about its ecological safety. However, adverse effects of tebuconazole remain largely unknown, especially with regard to endocrine function in aquatic organisms. In the present study, sexually immature zebrafish were exposed to different concentrations of tebuconazole (0.05, 0.20 and 0.50 mg/L) for 60 days in order to test for transgenerational toxicity on the thyroid endocrine system. Thyroid hormone homeostasis, neuronal, and cardiovascular development were investigated in the F1 generation, which were reared in tebuconazole-free water. In the F0 generation, exposure to 0.20 and 0.50 mg/L tebuconazole reduced both thyroxine (T4) and 3,5,3'-triiodothyronine (T3) levels in females, while the T3 levels were unchanged in males. Decreased heart rate was found in F1 larvae, as well as diminished T4 levels in F1 eggs/larvae. We also observed significantly increased expression of ugt1ab mRNA in two generations of zebrafish. Moreover, expression of mRNA associated with neuronal development (e.g. α1-tubulin, mbp, gap43) and cardiovascular development (e.g. cacna1ab, tnncal) were significantly downregulated in F1 larvae at 5 and 10 dpf. In addition, tebuconazole was detected in F1 eggs following parental exposure, indicating maternal transfer. This study demonstrated that tebuconazole can be transferred to offspring from exposed parents, causing thyroid endocrine disruption and developmental toxicity.
Collapse
Affiliation(s)
- Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qiong Wu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Qianqian Sun
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| | - Scott Coffin
- Environmental Sciences, College of Natural and Agricultural Sciences, University of California at Riverside, 900 University Avenue, Riverside, CA 92521, United States
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China.
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
35
|
Knebel C, Buhrke T, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Pregnane X receptor mediates steatotic effects of propiconazole and tebuconazole in human liver cell lines. Arch Toxicol 2019; 93:1311-1322. [PMID: 30989312 DOI: 10.1007/s00204-019-02445-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 04/09/2019] [Indexed: 12/26/2022]
Abstract
Triazoles are commonly used fungicides which show liver toxicity in rodent studies. While hepatocellular hypertrophy is the most prominent finding, some triazoles have also been reported to cause hepatocellular steatosis. The aim of our study was to elucidate molecular mechanisms of triazole-mediated steatosis. Therefore, we used the two triazoles propiconazole (Pi) and tebuconazole (Te) as test compounds in in vitro assays using the human hepatocarcinoma cell lines HepG2 and HepaRG. Triglyceride accumulation was measured using the Adipored assay and by a gas-chromatographic method. Reporter gene analyses were used to assess the ability of Pi and Te to activate nuclear receptors, which are described as the molecular initiators in the adverse outcome pathway (AOP) for liver steatosis. The expression of steatosis-associated genes was investigated by RT-PCR. Mechanistic analyses of triazole-mediated steatosis were performed using HepaRG subclones that are deficient in different nuclear receptors. Pi and Te both interacted with the constitutive androstane receptor (CAR), the peroxisome proliferator-activated receptor alpha (PPARα), and the pregnane X receptor (PXR). Both compounds induced expression of steatosis-related genes and cellular triglyceride accumulation. The knockout of PXR in HepaRG cells, but not the CAR knockout, abolished triazole-induced triglyceride accumulation, thus underlining the crucial role of PXR in hepatic steatosis resulting from exposure to these fungicides. In conclusion, our findings provide new insight into the molecular mechanisms of steatosis induction by triazole fungicides and identify PXR as a critical mediator of this process.
Collapse
Affiliation(s)
- Constanze Knebel
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Thorsten Buhrke
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, Straße des 17.Juni 124, 10623, Berlin, Germany
| | - Alfonso Lampen
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Philip Marx-Stoelting
- Department Pesticides Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Albert Braeuning
- Department Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
36
|
Comparative cytotoxicity of plant protection products and their active ingredients. Toxicol In Vitro 2019; 54:354-366. [DOI: 10.1016/j.tiv.2018.10.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/29/2018] [Accepted: 10/29/2018] [Indexed: 11/15/2022]
|
37
|
Elhady MA, Khalaf AAA, Kamel MM, Noshy PA. Carvacrol ameliorates behavioral disturbances and DNA damage in the brain of rats exposed to propiconazole. Neurotoxicology 2019; 70:19-25. [DOI: 10.1016/j.neuro.2018.10.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 10/06/2018] [Accepted: 10/19/2018] [Indexed: 12/18/2022]
|
38
|
The azole fungicide tebuconazole affects human CYP1A1 and CYP1A2 expression by an aryl hydrocarbon receptor-dependent pathway. Food Chem Toxicol 2018; 123:481-491. [PMID: 30458266 DOI: 10.1016/j.fct.2018.11.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022]
Abstract
Tebuconazole, a member of the triazole group of fungicides, exerts hepatotoxicity in rodent studies. Knowledge on the molecular mechanisms underlying tebuconazole toxicity is limited. Previous studies suggest that activation of xenobiotic-sensing nuclear receptors plays a role in triazole fungicide-mediated hepatotoxicity. This study aimed to characterize the ability of tebuconazole to activate gene expression via the aryl hydrocarbon receptor (AHR). Results demonstrate a statistically significant induction of the AHR target genes CYP1A1 and CYP1A2 in HepG2 and HepaRG human liver cells in vitro at concentrations corresponding to tebuconazole tissue levels reached under subtoxic conditions in vivo. CYP1A1 and CYP1A2 induction was abolished in the presence of an AHR antagonist or in AHR-knockout HepaRG cells, substantiating the importance of the AHR for the observed effects. Although the results indicate that tebuconazole is a weak inducer of AHR-dependent genes, combined exposure of HepaRG cells to tebuconazole and the previously identified AHR agonist propiconazole showed additive effects on CYP1A1 and CYP1A2 expression. In summary, we demonstrate that AHR-downstream gene expression is affected by tebuconazole in an AHR-dependent manner. Data indicate that dose addition may be assumed for the assessment of AHR-related effects of triazole fungicide mixtures.
Collapse
|
39
|
Propiconazole is an activator of AHR and causes concentration additive effects with an established AHR ligand. Arch Toxicol 2018; 92:3471-3486. [DOI: 10.1007/s00204-018-2321-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
|
40
|
Yang JD, Liu SH, Liao MH, Chen RM, Liu PY, Ueng TH. Effects of tebuconazole on cytochrome P450 enzymes, oxidative stress, and endocrine disruption in male rats. ENVIRONMENTAL TOXICOLOGY 2018; 33:899-907. [PMID: 29923317 DOI: 10.1002/tox.22575] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 05/01/2018] [Accepted: 05/06/2018] [Indexed: 05/19/2023]
Abstract
The major objective of the present study was to determine the ability of a triazole fungicide tebuconazole to induce cytochrome P450-dependent monooxygenases, oxidative stress, and endocrine-disrupting activity using male rats treated with tebuconazole at 10, 25, and 50 mg/kg p.o. once daily for 28 days. In liver, tebuconazole dose-dependently increased microsomal contents of cytochrome P450 and cytochrome b5 and the activities of NADPH-cytochrome P450 reductase, 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, pentoxyresorufin O-dealkylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase. In kidney, tebuconazole increased 7-ethoxycoumarin O-deethylase activity without affecting other monooxygenase activities. In marked contrast to liver and kidney, tebuconazole decreased testicular 7-ethoxyresorufin O-deethylase, methoxyresorufin O-demethylase, 7-ethoxycoumarin O-deethylase, aniline hydroxylase, and erythromycin N-demethylase activities. The results of immunoblot analysis of liver microsomes of controls and tebuconazole-treated rats revealed that tebuconazole induced CYP1A1/2, CYP2B1/2, CYP2E1, and CYP3A proteins in liver. Additions of tebuconazole to liver microsomes inhibited microsomal 7-ethoxycoumarin O-deethylase activity in vitro (IC50 = 1.50-1.69 µM). Treatment of rats with tebuconazole decreased glutathione content and increased glutathione S-transferase, superoxide dismutase, catalase, and glutathione peroxidase activities in liver; increased superoxide dismutase activities in kidney and testis; but decreased glutathione S-transferase activity in testis. Treatments with tebuconazole decreased serum testosterone concentration and cauda epididymal sperm count. The present study demonstrates that tebuconazole induces a multiplicity of CYPs and oxidative stress in liver; inhibits testicular P450 and glutathione S-transferase activities; and produces anti-androgenic effects in male rats.
Collapse
Affiliation(s)
- Jr-Di Yang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Mei-Hsiu Liao
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Ruei-Ming Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan, ROC
| | - Pei-Yu Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Tzuu-Huei Ueng
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| |
Collapse
|
41
|
Knebel C, Neeb J, Zahn E, Schmidt F, Carazo A, Holas O, Pavek P, Püschel GP, Zanger UM, Süssmuth R, Lampen A, Marx-Stoelting P, Braeuning A. Unexpected Effects of Propiconazole, Tebuconazole, and Their Mixture on the Receptors CAR and PXR in Human Liver Cells. Toxicol Sci 2018; 163:170-181. [DOI: 10.1093/toxsci/kfy026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
| | | | - Elisabeth Zahn
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | - Flavia Schmidt
- Department of Pesticides Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany
| | | | - Ondej Holas
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Hradec Kralove 500 05, Czech Republic
| | - Petr Pavek
- Department of Pharmacology and Toxicology
| | - Gerhard P Püschel
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Ulrich M Zanger
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, 70376 Stuttgart, and Eberhard-Karls-University, Tuebingen, Germany
| | - Roderich Süssmuth
- Institute of Chemistry, Technical University Berlin, 10623 Berlin, Germany
| | | | - Philip Marx-Stoelting
- Department of Experimental Toxicology and ZEBET, German Federal Institute for Risk Assessment, 12277 Berlin, Germany
| | | |
Collapse
|
42
|
Evaluation of the Genotoxic Effect of the Commercial Fungicide Tango ® Super on Bovine Lymphocytes. FOLIA VETERINARIA 2017. [DOI: 10.1515/fv-2017-0035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
This study investigated the potential genotoxic effects of the fungicide Tango® Super using methods of conventional cytogenetic analysis, fluorescence in situ hybridization (FISH) and detection of DNA fragmentation in bovine lymphocytes. After exposure of two donor cell cultures to several concentrations of fungicide (0.5, 3.0 and 15.0 mg.ml-1 for conventional cytogenetic analysis; 0.5 and 3.0 mg.ml-1 for FISH) we detected the insignificant occurrence of chromosome and chromatid breakages. In both donors we observed a significant decrease in mitotic index (MI) percentage with increasing concentrations of fungicide (P < 0.01; P < 0.001), which indicated a cytotoxic effect of the preparation. Electrophoretic analysis of DNA fragmentation in lymphocytes exposed to increasing concentrations (0.5; 1.5; 3.0; 6.0 and 15.0 mg.ml-1) of this preparation showed its ability to induce formation of fragments, which is a characteristic manifestation of the last stage of apoptosis.
Collapse
|
43
|
Hepatotoxic combination effects of three azole fungicides in a broad dose range. Arch Toxicol 2017; 92:859-872. [PMID: 29038839 PMCID: PMC5818588 DOI: 10.1007/s00204-017-2087-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Single active substances of pesticides are thoroughly examined for their toxicity before approval. In this context, the liver is frequently found to be the main target organ. Since consumers are generally exposed to multiple residues of different active substances via the diet, it is important to analyse combinations of active substances for potential mixture effects. For the (tri-)azoles, a group of agricultural fungicides and antifungal drugs, combination effects on the liver are likely because of a similar mode of action. Hepatotoxic effects of mixtures of two triazoles (cyproconazole and epoxiconazole) and an imidazole (prochloraz) were investigated in a 28-day feeding study in rats at three dose levels ranging from a typical toxicological reference value to a clear effect dose. Test parameters included organ weights, clinical chemistry, histopathology and morphometry. In addition, molecular parameters were investigated by means of pathway-focused gene expression arrays, quantitative real-time PCR and enzyme activity assays. Effects were compared to those caused by the individual substances as observed at the same dose levels in a previous study. Mixture effects were substantiated by increases in relative and absolute liver weights, histopathological findings and alterations in clinical chemistry parameters at the top dose level. On the molecular level also at lower dose levels, additive effects could be observed for the induction of several cytochrome P 450 enzymes (Cyp1a1, Cyp2b1, Cyp3a2), transporters (Abcb1a, Abcc3) and of genes encoding for enzymes involved in fatty acid or phospholipid metabolism (Ppargc1a, Sc4 mol). In most cases, treatment with mixtures caused a more pronounced effect as compared to the individual substances. However, the assumption of dose additivity was in general sufficiently conservative to cover mixture effects observed under the conditions of the present study.
Collapse
|
44
|
Schneider S, Fussell KC, Melching-Kollmuss S, Buesen R, Gröters S, Strauss V, Jiang X, van Ravenzwaay B. Investigations on the dose-response relationship of combined exposure to low doses of three anti-androgens in Wistar rats. Arch Toxicol 2017; 91:3961-3989. [PMID: 28879601 PMCID: PMC5719133 DOI: 10.1007/s00204-017-2053-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/28/2017] [Indexed: 02/08/2023]
Abstract
The current investigation examines whether combined exposure to three anti-androgens (flutamide, prochloraz, vinclozolin) result in interference with endocrine homeostasis when applied at very low dose levels, and whether the results of combined exposure are more pronounced than to the individual compounds. A pre-post-natal in vivo study design was chosen with more parameters than regulatory testing protocols require (additional endpoints addressing hormone levels, morphology and histopathological examinations). Dose levels were chosen to represent the lowest observed adverse effect level (LOAEL), the no observed adverse effect level (NOAEL), and the acceptable daily intake for each individual substance. Anti-androgenic changes were observable at the effect level (LOAEL) but not at lower exposures. Nipple/areola counts appeared to be a sensitive measure of effect, in addition to male sex organ weights at sexual maturation, and finally gross findings. The results indicate the absence of evidence for effects at low or very low dose levels. No (adverse) effects were seen at the NOAEL dose. A non-monotonic dose-response relationship was not evident. Combined exposure at LOAEL level resulted in enhanced responses for anogenital index, number of areolas/nipples, delayed preputial separation and reduced ventral prostate weight in comparison to the individual compounds.
Collapse
Affiliation(s)
- Steffen Schneider
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | | | | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Sibylle Gröters
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Volker Strauss
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Xiaoqi Jiang
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | | |
Collapse
|
45
|
Hernández AF, Gil F, Lacasaña M. Toxicological interactions of pesticide mixtures: an update. Arch Toxicol 2017; 91:3211-3223. [PMID: 28845507 DOI: 10.1007/s00204-017-2043-5] [Citation(s) in RCA: 188] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 08/10/2017] [Indexed: 02/07/2023]
Abstract
Pesticides can interact with each other in various ways according to the compound itself and its chemical family, the dose and the targeted organs, leading to various effects. The term interaction means situations where some or all individual components of a mixture influence each other's toxicity and the joint effects may deviate from the additive predictions. The various mixture effects can be greatly determined by toxicokinetic and toxicodynamic factors involving metabolic pathways and cellular or molecular targets of individual pesticides, respectively. However, the complexity of toxicological interactions can lead to unpredictable effects of pesticide mixtures. Interactions on metabolic processes affecting the biotransformation of pesticides seem to be by far the most common mechanism of synergism. Moreover, the identification of pesticides responsible for synergistic interactions is an important issue for cumulative risk assessment. Cholinesterase inhibiting insecticides (organophosphates and N-methylcarbamates), triazole fungicides, triazine herbicides, and pyrethroid insecticides are overrepresented in the synergistic mixtures identified so far. Since the limited available empirical evidence suggests that synergisms at dietary exposure levels are rather rare, and experimentally occurred at unrealistic high concentrations, synergism cannot be predicted quantitatively on the basis of the toxicity of mixture components. The prediction of biological responses elicited by interaction of pesticides with each other (or with other chemicals) will benefit from using a systems toxicology approach. The identification of core features of pesticide mixtures at molecular level, such as gene expression profiles, could be helpful to assess or predict the occurrence of interactive effects giving rise to unpredicted responses.
Collapse
Affiliation(s)
- Antonio F Hernández
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain.
| | - Fernando Gil
- Department of Legal Medicine and Toxicology, School of Medicine, University of Granada, Avenida de la Investigación 11, 18016, Granada, Spain
| | - Marina Lacasaña
- Andalulsian School of Public Health, Granada, Spain.,CIBERESP, Madrid, Spain.,ibs.GRANADA, Granada, Spain
| |
Collapse
|
46
|
Mixture effects of azole fungicides on the adrenal gland in a broad dose range. Toxicology 2017; 385:28-37. [DOI: 10.1016/j.tox.2017.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/07/2017] [Accepted: 04/24/2017] [Indexed: 02/04/2023]
|
47
|
Hepatotoxic effects of cyproconazole and prochloraz in wild-type and hCAR/hPXR mice. Arch Toxicol 2017; 91:2895-2907. [DOI: 10.1007/s00204-016-1925-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/20/2016] [Indexed: 12/22/2022]
|