1
|
McColl ER, Kwok J, Benowitz NL, Patten CA, Hughes CA, Koller KR, Flanagan CA, Thomas TK, Hiratsuka VY, Tyndale RF, Piquette-Miller M. The Effect of Tobacco Use on the Expression of Placental Transporters in Alaska Native Women. Clin Pharmacol Ther 2023; 113:634-642. [PMID: 36053152 PMCID: PMC10234256 DOI: 10.1002/cpt.2737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022]
Abstract
Prenatal tobacco use among Alaska Native (AN) women has decreased substantially over the past two decades. Previous research suggests that providing AN women with feedback regarding fetal exposure to tobacco may further promote cessation. Transporters in the placenta regulate fetal exposure to nutrients and xenobiotics, including compounds associated with tobacco use. We examined whether prenatal tobacco use impacts transporter expression in the placenta, and whether this is influenced by fetal sex, degree of tobacco exposure, or transporter genotype. At delivery, we obtained placental samples from AN research participants who smoked cigarettes, used commercial chew or iqmik (oral tobacco), or did not use tobacco during pregnancy. Transporter expression was evaluated using qRT-PCR and Western blotting and tested for correlations between transcript levels and urinary biomarkers of tobacco use. The impact of BCRP/ABCG2 and OATP2B1/SLCO2B1 genotypes on protein expression was also examined. Oral tobacco use was associated with decreased P-gp and increased MRP1, MRP3, LAT1, and PMAT mRNA expression. Transcript levels of multiple transporters significantly correlated with tobacco biomarkers in maternal and fetal urine. In women carrying male fetuses, both smoking and oral tobacco were associated with decreased P-gp. Oral tobacco was also associated with decreased LAT1 in women carrying female fetuses. BCRP and OATP2B1 genotypes did not appear to impact protein expression. In conclusion, prenatal tobacco use is associated with altered expression of multiple placental transporters which differs by fetal sex. As transcript levels of multiple transporters were significantly correlated with tobacco use biomarkers, eliminating prenatal tobacco use should alleviate these changes.
Collapse
Affiliation(s)
- Eliza R. McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Jacinda Kwok
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Neal L. Benowitz
- Department of Medicine, Division of Cardiology and Center for Tobacco Control Research and Education, University of California, San Francisco, San Francisco, CA, USA
| | - Christi A. Patten
- Department of Psychiatry and Psychology and Behavioral Health Research Program, Mayo Clinic, Rochester, MN, USA
| | - Christine A. Hughes
- Department of Psychiatry and Psychology and Behavioral Health Research Program, Mayo Clinic, Rochester, MN, USA
| | - Kathryn R. Koller
- Clinical and Research Services, Division of Community Health Services, Alaska Native Tribal Health Consortium (ANTHC), Anchorage, AK, USA
| | - Christie A. Flanagan
- Clinical and Research Services, Division of Community Health Services, Alaska Native Tribal Health Consortium (ANTHC), Anchorage, AK, USA
| | - Timothy K Thomas
- Clinical and Research Services, Division of Community Health Services, Alaska Native Tribal Health Consortium (ANTHC), Anchorage, AK, USA
| | | | - Rachel F. Tyndale
- Departments of Pharmacology and Toxicology, and Psychiatry, Temerty Faculty of Medicine, University of Toronto, and Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Association of ABCB1, ABCG2 drug transporter polymorphisms and smoking with disease risk and cytogenetic response to imatinib in chronic myeloid leukemia patients. Leuk Res 2023; 126:107021. [PMID: 36696828 DOI: 10.1016/j.leukres.2023.107021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
BACKGROUND Despite acceptable results of imatinib in the treatment of chronic myeloid leukemia (CML), some patients fail to acquire a complete cytogenetic response (CCyR), which may be caused by polymorphisms in the pharmacogenetic genes. The study aimed to evaluate the association of two polymorphisms in the ABCB1 and ABCG2 genes with cytogenetic response to imatinib and the risk of CML development. METHODS We genotyped ABCB1 (c .2677G/T/A) and ABCG2 (c .421C/A) polymorphisms by PCR-RFLP, T-ARMS-PCR methods in 111 patients with CML and 102 sex- and age-matched healthy subjects. CCyR was determined by standard chromosome banding analysis (CBA). RESULTS Analysis of polymorphisms showed significant association of ABCG2 c.421CA genotype (p < 0.0001; OR = 0. 17), and ABCG2c.421A allele (p < 0.0001; OR = 0.31) with decreased risk of CML. Moreover, ABCB1c.2677GT- ABCG2c.421CC combined genotype (p = 0.017; OR = 4.20) was associated with increased risk of CML. Analysis of the joint effect of SNP-smoking combination showed that smoker subjects with the ABCB1c.2677GG/GT (p = 0.001; OR = 15.96, p = 0.001; OR = 8.13, respectively) or ABCG2c.421CC genotypes (p = 0.001; OR = 5.82) had the increased risk of CML, while the risk of the CML in non-smokers carrying the ABCG2c.421CA (p < 0.0001; OR = 0. 18) genotype was strongly decreased compared with reference group. Regarding drug response, ABCG2c.421 CC/CA genotypes in the smoker patients were associated with an increased risk of resistance to imatinib (p < 0.0001; OR = 7.02, p = 0.018; OR = 4.67, respectively). CONCLUSION Our results suggest the impact of ABCG2c .421C/A polymorphism on CML development, and smoking may have a synergistic role in the risk of CML and resistance to imatinib.
Collapse
|
3
|
Acute cytotoxicity, genotoxicity, and apoptosis induced by petroleum VOC emissions in A549 cell line. Toxicol In Vitro 2022; 83:105409. [DOI: 10.1016/j.tiv.2022.105409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 04/28/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
|
4
|
Wang Z, Fang X, Zhang S, Song J. Pulmonary inflammation caused by cigarette smoke combined with lipopolysaccharide up-regulated OATP2B1 in rat lung tissue and pulmonary epithelial cells. Exp Lung Res 2022; 48:114-125. [PMID: 35441577 DOI: 10.1080/01902148.2022.2066223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/09/2022] [Accepted: 04/11/2022] [Indexed: 11/04/2022]
Abstract
Organic anion transport polypeptide 2B1 (OATP2B1), as an uptake transporter, is involved in the transport of many related substrate drugs and endogenous substances in the lungs. A large amount of data shows that cigarette smoke plays an important role in the occurrence and development of lung diseases such as chronic obstructive pulmonary disease (COPD), asthma and bronchitis. However, the effect of cigarette smoke combined with lipopolysaccharide-induced pulmonary inflammation on the expression of OATP2B1 is not clear. In this study, we used cigarette smoke combined with lipopolysaccharide to establish a lung inflammation model in vivo and in vitro to explore the effect of inflammation on the expression of OATP2B1. Our study found that cigarette smoke combined with lipopolysaccharide-induced pulmonary inflammation upregulated the mRNA and protein expression of OATP2B1 and related inflammatory factors, and the expression level of related proteins was higher with the aggravation of inflammation. The experimental results of animals in vivo were consistent with those of cells in vitro. In summary, these findings provide a model and basis for a follow-up study of the mechanism of OATP2B1 in pulmonary inflammation.
Collapse
Affiliation(s)
- Zihao Wang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Xin Fang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Shuyi Zhang
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| | - Jue Song
- Institute for Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- Institute for the Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Hefei, China
| |
Collapse
|
5
|
Kukal S, Guin D, Rawat C, Bora S, Mishra MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, Saso L, Kukreti R. Multidrug efflux transporter ABCG2: expression and regulation. Cell Mol Life Sci 2021; 78:6887-6939. [PMID: 34586444 PMCID: PMC11072723 DOI: 10.1007/s00018-021-03901-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 12/15/2022]
Abstract
The adenosine triphosphate (ATP)-binding cassette efflux transporter G2 (ABCG2) was originally discovered in a multidrug-resistant breast cancer cell line. Studies in the past have expanded the understanding of its role in physiology, disease pathology and drug resistance. With a widely distributed expression across different cell types, ABCG2 plays a central role in ATP-dependent efflux of a vast range of endogenous and exogenous molecules, thereby maintaining cellular homeostasis and providing tissue protection against xenobiotic insults. However, ABCG2 expression is subjected to alterations under various pathophysiological conditions such as inflammation, infection, tissue injury, disease pathology and in response to xenobiotics and endobiotics. These changes may interfere with the bioavailability of therapeutic substrate drugs conferring drug resistance and in certain cases worsen the pathophysiological state aggravating its severity. Considering the crucial role of ABCG2 in normal physiology, therapeutic interventions directly targeting the transporter function may produce serious side effects. Therefore, modulation of transporter regulation instead of inhibiting the transporter itself will allow subtle changes in ABCG2 activity. This requires a thorough comprehension of diverse factors and complex signaling pathways (Kinases, Wnt/β-catenin, Sonic hedgehog) operating at multiple regulatory levels dictating ABCG2 expression and activity. This review features a background on the physiological role of transporter, factors that modulate ABCG2 levels and highlights various signaling pathways, molecular mechanisms and genetic polymorphisms in ABCG2 regulation. This understanding will aid in identifying potential molecular targets for therapeutic interventions to overcome ABCG2-mediated multidrug resistance (MDR) and to manage ABCG2-related pathophysiology.
Collapse
Affiliation(s)
- Samiksha Kukal
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debleena Guin
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Chitra Rawat
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Shivangi Bora
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Manish Kumar Mishra
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi, 110042, India
| | - Priya Sharma
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
| | - Priyanka Rani Paul
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Neha Kanojia
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gurpreet Kaur Grewal
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, 144004, India
| | - Shrikant Kukreti
- Nucleic Acids Research Lab, Department of Chemistry, University of Delhi (North Campus), Delhi, 110007, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185, Rome, Italy
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Institute of Genomics and Integrative Biology (IGIB), Council of Scientific and Industrial Research (CSIR), Mall Road, Delhi, 110007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Yang Q, Li AP. Messenger RNA Expression of Albumin, Transferrin, Transthyretin, Asialoglycoprotein Receptor, Cytochrome P450 Isoform, Uptake Transporter, and Efflux Transporter Genes as a Function of Culture Duration in Prolonged Cultured Cryopreserved Human Hepatocytes as Collagen-Matrigel Sandwich Cultures: Evidence for Redifferentiation upon Prolonged Culturing. Drug Metab Dispos 2021; 49:790-802. [PMID: 34135090 DOI: 10.1124/dmd.121.000424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 01/04/2023] Open
Abstract
Hepatic gene expression as a function of culture duration was evaluated in prolonged cultured human hepatocytes. Human hepatocytes from seven donors were maintained as near-confluent collagen-Matrigelsandwich cultures, with messenger RNA expression for genes responsible for key hepatic functions quantified by real-time polymerase chain reaction at culture durations of 0 (day of plating), 2, 7, 9, 16, 23, 26, 29, 36, and 43 days. Key hepatocyte genes were evaluated, including the differentiation markers albumin, transferrin, and transthyretin; the hepatocyte-specific asialoglycoprotein receptor 1 cytochrome P450 isoforms CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A7; uptake transporter isoforms SLC10A1, SLC22A1, SLC22A7, SLCO1B1, SLCO1B3, and SLCO2B1; efflux transporter isoforms ATP binding cassette (ABC)B1, ABCB11, ABCC2, ABCC3, ABCC4, and ABCG2; and the nonspecific housekeeping gene hypoxanthine ribosyl transferase 1 (HPRT1). The well established dedifferentiation phenomenon was observed on day 2, with substantial (>80%) decreases in gene expression in day 2 cultures observed for all genes evaluated except HPRT1 and efflux transporters ABCB1, ABCC2, ABCC3 (<50% decrease in expression), ABCC4 (>400% increase in expression), and ABCG2 (no decrease in expression). All genes with a >80% decrease in expression were found to have increased levels of expression on day 7, with peak expression observed on either day 7 or day 9, followed by a gradual decrease in expression up to the longest duration evaluated of 43 days. Our results provide evidence that cultured human hepatocytes undergo redifferentiation upon prolonged culturing. SIGNIFICANCE STATEMENT: This study reports that although human hepatocytes underwent dedifferentiation upon 2 days of culture, prolonged culturing resulted in redifferentiation based on gene expression of differentiation markers, uptake and efflux transporters, and cytochrome P450 isoforms. The observed redifferentiation suggests that prolonged (>7 days) culturing of human hepatocyte cultures may represent an experimental approach to overcome the initial dedifferentiation process, resulting in "stabilized" hepatocytes that can be applied toward the evaluation of drug properties requiring an extended period of treatment and evaluation.
Collapse
Affiliation(s)
- Qian Yang
- In Vitro ADMET Laboratories Inc., Columbia, Maryland
| | - Albert P Li
- In Vitro ADMET Laboratories Inc., Columbia, Maryland
| |
Collapse
|
7
|
Kim SY, Kim KW, Lee SM, Park S, Kim BG, Choi EK, Son BS, Park MK. Effects of intranasal instillation of nanoparticulate matter in the olfactory bulb. Sci Rep 2021; 11:16997. [PMID: 34417533 PMCID: PMC8379193 DOI: 10.1038/s41598-021-96593-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 08/09/2021] [Indexed: 12/16/2022] Open
Abstract
Nanoparticulate matter activates the aryl hydrocarbon receptor (AhR) pathway in the respiratory system in a process involving the AhR nuclear translocator (ARNT) and cytochrome P450 family 1, member A1 (CYP1A1). We examined changes in AhR-related pathways following intranasal instillation of nanoparticulate matter in the olfactory bulb and cerebral cortex. Twice a day for 5 days per week for 1 week or 2 weeks, 8-week-old Sprague-Dawley rats were intranasally instilled with 10 µL nanoparticulate matter (nano group; n = 36). An equal volume of saline was intranasally instilled in control rats (n = 36). One week after intranasal instillation, olfactory function and Y-maze tests were performed. The expression levels of AhR in the olfactory bulb and temporal cortex were analyzed using western blotting and immunofluorescence assays. The expression levels of AhR, CYP1A1, inducible nitric oxide synthase (iNOS), and five genes encoding cation transporters (ARNT, ATP7B, ATPB1, OCT1, and OCT2) in the olfactory bulb were analyzed using quantitative reverse transcription. The olfactory discrimination capability was reduced in the nano group compared with the control group. Proportional changes in the Y-maze test were not significantly different between the nano and control groups. AhR mRNA and protein expression in the olfactory bulb increased 1.71-fold (P < 0.001) and 1.60-fold (P = 0.008), respectively. However, no significant changes were observed in the temporal cortex. In the olfactory bulb, the expression of ARNT, ATP7B, ATPB1, and OCT2 was downregulated. CYP1A1 and iNOS expression in the olfactory bulb was upregulated compared with that in the temporal cortex. The intranasal instillation of nanoparticulate matter decreased the olfactory discrimination ability, which was accompanied by upregulation of AhR expression and downregulation of cation transporters in the olfactory bulb.
Collapse
Affiliation(s)
- So Young Kim
- Department of Otorhinolaryngology, College of Medicine, CHA University, Seongnam, South Korea
| | - Kyung Woon Kim
- Department of Otorhinolaryngology, College of Medicine, CHA University, Seongnam, South Korea
| | - So Min Lee
- Department of Otorhinolaryngology, College of Medicine, CHA University, Seongnam, South Korea
| | - Sohyeon Park
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea
| | - Byeong-Gon Kim
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea
| | - Eun-Kyung Choi
- Electron Microscope Lab, Seoul National University Hospital, Seoul, Republic of Korea
| | - Bu Soon Son
- Department of Medical Biotechnology, SoonChunHyang University, Asan, Chungnam, Republic of Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology, Seoul National University College of Medicine, Seoul, South Korea.
- Sensory Organ Research Institute, Medical Research Center, Seoul National University, Seoul, South Korea.
| |
Collapse
|
8
|
Mohammadi F, Rostami G, Assad D, Shafiei M, Hamid M, Jalaeikhoo H. Association of SLC22A1,SLCO1B3 Drug Transporter Polymorphisms and Smoking with Disease Risk and Cytogenetic Response to Imatinib in Patients with Chronic Myeloid Leukemia. Lab Med 2021; 52:584-596. [PMID: 34128532 DOI: 10.1093/labmed/lmab023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To determine whether polymorphisms of SLC22A1 and SLCO1B3 genes could predict imatinib (IM) response and chronic myeloid leukemia (CML) risk. METHODS We genotyped SLC22A1 (c.480G > C, c.1222A > G) and SLCO1B3 (c.334T > G, c.699G > A) polymorphisms in 132 patients with CML and 109 sex- and age-matched healthy subjects. The patients were evaluated for cytogenetic response by standard chromosome banding analysis (CBA). RESULTS Polymorphism analysis showed significant increased risk of IM resistance for SLC22A1c.1222AG (P = .03; OR = 2.2), SLCO1B3c.334TT/TG genotypes (P = .007; OR = 4.37) and 334T allele (P = .03; OR = 2.86). The double combinations of SLC22A1c.480CC and c.1222AG polymorphisms with SLCO1B3c.334TT/TG were significantly associated with complete cytogenetic response (CCyR) (P <.05; OR> 7). The interaction between all polymorphisms and smoking were associated with CML development and IM resistance (P ≤.04; OR> 3). CONCLUSIONS Our study results suggest the influence of SLC22A1 and SLCO1B3 polymorphisms and the interaction of smoking on CML development and IM response.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Golale Rostami
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Dlnya Assad
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Mohammad Shafiei
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Hasan Jalaeikhoo
- AJA Cancer Epidemiology Research and Treatment Center (AJA-CERTC), AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Ciarimboli G. Regulation Mechanisms of Expression and Function of Organic Cation Transporter 1. Front Pharmacol 2021; 11:607613. [PMID: 33732143 PMCID: PMC7959823 DOI: 10.3389/fphar.2020.607613] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
The organic cation transporter 1 (OCT1) belongs together with OCT2 and OCT3 to the solute carrier family 22 (SLC22). OCTs are involved in the movement of organic cations through the plasma membrane. In humans, OCT1 is mainly expressed in the sinusoidal membrane of hepatocytes, while in rodents, OCT1 is strongly represented also in the basolateral membrane of renal proximal tubule cells. Considering that organic cations of endogenous origin are important neurotransmitters and that those of exogenous origin are important drugs, these transporters have significant physiological and pharmacological implications. Because of the high expression of OCTs in excretory organs, their activity has the potential to significantly impact not only local but also systemic concentration of their substrates. Even though many aspects governing OCT function, interaction with substrates, and pharmacological role have been extensively investigated, less is known about regulation of OCTs. Possible mechanisms of regulation include genetic and epigenetic modifications, rapid regulation processes induced by kinases, regulation caused by protein–protein interaction, and long-term regulation induced by specific metabolic and pathological situations. In this mini-review, the known regulatory processes of OCT1 expression and function obtained from in vitro and in vivo studies are summarized. Further research should be addressed to integrate this knowledge to known aspects of OCT1 physiology and pharmacology.
Collapse
Affiliation(s)
- Giuliano Ciarimboli
- Experimental Nephrology, Medicine Clinic D, Münster University Hospital, Münster, Germany
| |
Collapse
|
10
|
Mohammadi F, Shafiei M, Assad D, Rostami G, Hamid M, Foroughmand AM. Impact of ABCB1 Gene Polymorphisms and Smoking on the Susceptibility Risk of Chronic Myeloid Leukemia and Cytogenetic Response. IRANIAN BIOMEDICAL JOURNAL 2020; 25:54-61. [PMID: 33129240 PMCID: PMC7748114 DOI: 10.29252/ibj.25.1.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Background: IM, a strong and selective TKI, has been approved as the front line of treatment in CML patients. In spite of satisfactory results of imatinib in the treatment of patients with CML, patients with treatment failure or suboptimal response developed resistance that might be because of pharmacogenetic variants. This study attempted to evaluate the influence of ABCB1 gene polymorphisms and smoking on CML risk and resistance to imatinib. Methods: ABCB1 (c.1236C>T, c.3435C>T) polymorphisms were genotyped in 98 CML patients and 100 sex- and age-matched healthy subjects by PCR-RFLP method, followed by sequencing. The patients were evaluated for cytogenetic response by the standard chromosome banding analysis in regular intervals. Results: Our results showed that c.1236CC genotype was significantly associated with imatinib resistance (OR = 3.94; p = 0.038). Analysis of the joint of SNP-smoking combination showed that smokers with c.1236TT/CT and c.1236CC genotypes had the increased risk of CML (OR = 6.04; p = 0.00 and OR = 4.95, p = 0.005) and treatment failure (OR = 5.36, p = 0.001 and OR = 15.7, p = 0.002), respectively. Smokers with c.3435TT/CT and c.3435CC genotypes also displayed the elevated risk of CML development (OR = 6.01, p = 0 and OR = 4.36, p = 0.011) and IM resistance (OR = 5.61, p = 0.001 and OR = 13.58, p = 0.002), respectively. Conclusion: Our findings suggest that c.1236CC genotype has clinical importance in the prediction of treatment outcome with IM, and smoking could have a synergistic role in CML risk and IM resistance.
Collapse
Affiliation(s)
| | - Mohammad Shafiei
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Dlnya Assad
- Department of Biology, School of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Biotechnology and Biological Science Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Golale Rostami
- Department of Biology, College of Science, Sulaimani University, Sulaymanyah, Iraq
| | - Mohammad Hamid
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
11
|
Gorczyca L, Aleksunes LM. Transcription factor-mediated regulation of the BCRP/ ABCG2 efflux transporter: a review across tissues and species. Expert Opin Drug Metab Toxicol 2020; 16:239-253. [PMID: 32077332 DOI: 10.1080/17425255.2020.1732348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction: The breast cancer resistance protein (BCRP/ABCG2) is a member of the ATP-binding cassette superfamily of transporters. Using the energy garnered from the hydrolysis of ATP, BCRP actively removes drugs and endogenous molecules from the cell. With broad expression across the liver, kidney, brain, placenta, testes, and small intestines, BCRP can impact the pharmacokinetics and pharmacodynamics of xenobiotics.Areas covered: The purpose of this review is to summarize the transcriptional signaling pathways that regulate BCRP expression across various tissues and mammalian species. We will cover the endobiotic- and xenobiotic-activated transcription factors that regulate the expression and activity of BCRP. These include the estrogen receptor, progesterone receptor, peroxisome proliferator-activated receptor, constitutive androstane receptor, pregnane X receptor, nuclear factor e2-related factor 2, and aryl hydrocarbon receptor.Expert opinion: Key transcription factors regulate BCRP expression and function in response to hormones and xenobiotics. Understanding this regulation provides an opportunity to improve pharmacotherapeutic outcomes by enhancing the efficacy and reducing the toxicity of drugs that are substrates of this efflux transporter.
Collapse
Affiliation(s)
- Ludwik Gorczyca
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA
| | - Lauren M Aleksunes
- Department of Pharmacology and Toxicology, Rutgers University Ernest Mario School of Pharmacy, Piscataway, NJ, USA.,Division of Toxicology, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| |
Collapse
|
12
|
Sayyed K, Aljebeai AK, Al-Nachar M, Chamieh H, Taha S, Abdel-Razzak Z. Interaction of cigarette smoke condensate and some of its components with chlorpromazine toxicity on Saccharomyces cerevisiae. Drug Chem Toxicol 2019; 45:77-87. [PMID: 31514548 DOI: 10.1080/01480545.2019.1659809] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chlorpromazine (CPZ) is an antipsychotic phenothiazine which is still commonly prescribed though it causes idiosyncratic toxicity such as cholestasis. CPZ toxicity mechanisms involve oxidative stress among others. Cigarette smoke (CS) causes deleterious effects through diverse mechanisms such as oxidative stress. CS alters drug metabolizing enzymes expression and drug transporters expression and activity in animal cell models as well as in Saccharomyces cerevisiae. CS therefore alters pharmacokinetic and pharmacodynamics of many drugs including CPZ and caffeine whose toxicity is promoted by CS condensate (CSC). CSC interaction with CPZ toxicity deserves investigation. In this study, CSC exerted mild toxicity on Saccharomyces cerevisiae which resisted to this chemical stress after several hours. CPZ toxicity on yeast was dose-dependent and the cells resisted to CPZ up to 40 µM after 24 h of treatment. Yeast cells treated simultaneously with CPZ and a nontoxic CSC dose were less sensitive to CPZ. CSC probably triggers cross-resistance to CPZ. Using Sod1 mutant strain, we showed that this gene is potentially involved in the potential cross-resistance. Other genes encoding stress-related transcription factors could be involved in this process. Nicotine and cadmium chloride, which caused a dose-dependent toxicity individually, acted with CPZ in an additive or synergistic manner in terms of toxicity. Although our results cannot be extrapolated to humans, they clearly show that CSC and its components interact with CPZ toxicity.
Collapse
Affiliation(s)
- Katia Sayyed
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Abdel-Karim Aljebeai
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Mariam Al-Nachar
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Hala Chamieh
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Samir Taha
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| | - Ziad Abdel-Razzak
- EDST-AZM-center-LBA3B - Tripoli and Faculty of Sciences, Lebanese University , Beirut , Lebanon
| |
Collapse
|
13
|
Le Vée M, Bacle A, Jouan E, Lecureur V, Potin S, Fardel O. Induction of multidrug resistance-associated protein 3 expression by diesel exhaust particle extract in human bronchial epithelial BEAS-2B cells. Toxicol In Vitro 2019; 58:60-68. [PMID: 30898553 DOI: 10.1016/j.tiv.2019.03.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/08/2019] [Accepted: 03/17/2019] [Indexed: 01/09/2023]
Abstract
Diesel exhaust particles (DEPs) are common environmental air pollutants known to impair expression and activity of drug detoxifying proteins, including hepatic ATP-binding cassette (ABC) drug transporters. The present study was designed to determine whether organic DEP extract (DEPe) may also target ABC drug transporters in bronchial cells. DEPe (10 μg/mL) was demonstrated to induce mRNA and protein expression of the multidrug resistance-associated protein (MRP) 3 in cultured bronchial epithelial BEAS-2B cells, whereas mRNA levels of other MRPs, multidrug resistance gene 1 or breast cancer resistance protein were unchanged, reduced or not detected. DEPe also increased MRP3 mRNA expression in normal human bronchial epithelial cells. Inhibition of the aryl hydrocarbon receptor (AhR) pathway by AhR antagonist or AhR silencing, as well as the silencing of nuclear-factor-E2-related factor 2 (Nrf2) repressed DEPe-mediated MRP3 induction. This underlines the implication of the AhR and Nrf2 signaling cascades in DEPe-mediated MRP3 regulation. DEPe was additionally demonstrated to directly inhibit MRP activity in BEAS-2B cells, in a concentration-dependent manner. Taken together, these data indicate that DEPs may impair expression and activity of MRPs, notably MRP3, in human bronchial cells, which may have consequences in terms of lung barrier and toxicity for humans exposed to diesel pollution.
Collapse
Affiliation(s)
- Marc Le Vée
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Astrid Bacle
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Elodie Jouan
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Valérie Lecureur
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France
| | - Sophie Potin
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Pharmacie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France
| | - Olivier Fardel
- Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 2 Avenue du Pr Léon Bernard, 35043 Rennes, France; Pôle Biologie, Centre Hospitalier Universitaire, 2 rue Henri Le Guilloux, 35033 Rennes, France.
| |
Collapse
|
14
|
Fujita D, Arai T, Komori H, Shirasaki Y, Wakayama T, Nakanishi T, Tamai I. Apple-Derived Nanoparticles Modulate Expression of Organic-Anion-Transporting Polypeptide (OATP) 2B1 in Caco-2 Cells. Mol Pharm 2018; 15:5772-5780. [PMID: 30359033 DOI: 10.1021/acs.molpharmaceut.8b00921] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Interaction of foods with intestinal transporters has generally been ascribed to small molecules, but recently, edible-plant-derived nanoparticles (NPs) have been suggested to affect intestinal function. Here, we examined the effects of NPs contained in edible fruits on intestinal transporters. Apple-derived NPs (APNPs) were isolated by ultracentrifugation and characterized by measurement of particle size distribution and electron microscopy. Human epithelial colorectal adenocarcinoma (Caco-2) cells internalized fluorescently labeled APNPs, suggesting that fruit-derived NPs would be internalized into intestinal epithelial cells in vivo. We found that the mRNA expression levels of several transporters, including organic-anion-transporting polypeptide (OATP) 2B1, were changed in APNP-treated Caco-2 cells. The protein expression and activity of OATP2B1 were also decreased by APNP exposure, as determined by Western blotting and measurements of [3H]estrone-3-sulfate uptake by Caco-2 cells, respectively. These actions required intact APNPs, because sonication or boiling abrogated the effects. Since the content of apple-derived small molecules in APNPs was negligible, the observed decrease of OATP2B1 expression appears to be mediated by large molecules in the APNPs. We further found that the 3'-untranslated region of the OATP2B1 gene was required for the response to APNPs, suggesting that microRNA in the APNPs might be involved. These results propose a novel mechanism, in which large molecules such as microRNA in food could affect intestinal transporters through food-derived NPs, which also demonstrates that food-derived NPs should be useful for delivery of biologically active large molecules to intestinal tissues.
Collapse
Affiliation(s)
- Daichi Fujita
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Toshiki Arai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Hisakazu Komori
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Yuma Shirasaki
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Tomohiko Wakayama
- Faculty of Life Science , Kumamoto University , Kumamoto 860-8555 , Japan
| | - Takeo Nakanishi
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| | - Ikumi Tamai
- Faculty of Pharmaceutical Sciences, Institute of Medical, Pharmaceutical and Health Sciences , Kanazawa University , Kakuma-machi, Kanazawa 920-1192 , Japan
| |
Collapse
|
15
|
Sayyed K, Le Vée M, Chamieh H, Fardel O, Abdel-Razzak Z. Cigarette smoke condensate alters Saccharomyces cerevisiae efflux transporter mRNA and activity and increases caffeine toxicity. Toxicology 2018; 409:129-136. [DOI: 10.1016/j.tox.2018.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/07/2018] [Accepted: 08/12/2018] [Indexed: 01/06/2023]
|
16
|
Dubaisi S, Barrett KG, Fang H, Guzman-Lepe J, Soto-Gutierrez A, Kocarek TA, Runge-Morris M. Regulation of Cytosolic Sulfotransferases in Models of Human Hepatocyte Development. Drug Metab Dispos 2018; 46:1146-1156. [PMID: 29858374 PMCID: PMC6038032 DOI: 10.1124/dmd.118.081398] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/17/2018] [Indexed: 12/21/2022] Open
Abstract
Cytosolic sulfotransferases (SULTs) are expressed during early life and therefore metabolize endogenous and xenobiotic chemicals during development. Little is currently known about the regulation of individual SULTs in the developing human liver. We characterized SULT expression in primary cultures of human fetal hepatocytes and the HepaRG model of liver cell differentiation. SULT1A1 (transcript variants 1-4), SULT1C2, SULT1C4, SULT1E1, and SULT2A1 were the most abundant transcripts in human fetal hepatocytes. In HepaRG cells, SULT1B1, SULT1C2/3/4, and SULT1E1 mRNA levels increased during the transition from proliferation to confluency and then decreased as the cells underwent further differentiation. By contrast, SULT2A1 mRNA levels increased during differentiation, whereas SULT1A1 and SULT2B1 mRNA levels remained relatively constant. The temporal patterns of SULT1C2, SULT1E1, and SULT2A1 protein content were consistent with those observed at the mRNA level. To identify regulators of SULT expression, cultured fetal hepatocytes and HepaRG cells were treated with a panel of lipid- and xenobiotic-sensing receptor activators. The following effects were observed in both fetal hepatocytes and HepaRG cells: 1) liver X receptor activator treatment increased SULT1A1 transcript variant 5 levels; 2) vitamin D receptor activator treatment increased SULT1C2 and SULT2B1 mRNA levels; and 3) farnesoid X receptor activator treatment decreased SULT2A1 expression. Activators of aryl hydrocarbon receptor, constitutive androstane receptor, pregnane X receptor, and peroxisome proliferator-activated receptors produced additional gene-dependent effects on SULT expression in HepaRG cells. These findings suggest that SULT-regulating chemicals have the potential to modulate physiologic processes and susceptibility to xenobiotic stressors in the developing human liver.
Collapse
Affiliation(s)
- Sarah Dubaisi
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Kathleen G Barrett
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Hailin Fang
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Jorge Guzman-Lepe
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Alejandro Soto-Gutierrez
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Thomas A Kocarek
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| | - Melissa Runge-Morris
- Department of Pharmacology (S.D.) and Institute of Environmental Health Sciences (K.G.B., H.F., T.A.K., M.R.-M.), Wayne State University, Detroit, Michigan; and Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania (J.G.-L., A.S.-G.)
| |
Collapse
|
17
|
Syam Das S, Nair SS, Indira M. Atorvastatin modulates drug transporters and ameliorates nicotine-induced testicular toxicity. Andrologia 2018; 50:e13029. [PMID: 29740849 DOI: 10.1111/and.13029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/21/2018] [Indexed: 12/24/2022] Open
Abstract
We studied the changes in mRNA expressions of influx and efflux transporters, blood-testis-barrier proteins (BTB) and key apoptotic genes in the testis of rats coadministered with nicotine and atorvastatin. Rats were divided into four groups: (i) control, (ii) atorvastatin (10 mg/kg b.wt), (iii) nicotine (0.6 mg/kg b.wt) and (iv) atorvastatin (10 mg/kg b.wt) + nicotine (0.6 mg/kg b.wt). Atorvastatin was given by oral intubation and nicotine by intraperitoneal injection. After 60 days of treatment, expressions of key apoptotic genes involved in both intrinsic and extrinsic pathways; solute carrier influx transporters SLCOB1, SLC22A1 and efflux transporter ABCB1 associated with transport of atorvastatin and nicotine, and proteins of BTB were assayed. Nicotine administration activated apoptosis and downregulated SLCOB1, which transport atorvastatin. Atorvastatin administration suppressed apoptotic pathway and downregulated SLC22A1, transporter of nicotine. Coadministration of atorvastatin with nicotine downregulated expressions of apoptotic genes. The combined administration of atorvastatin and nicotine reduced the influx of both atorvastatin and nicotine and enhanced the efflux of these drugs thereby altering the microenvironment of testis and improving testicular function. We conclude that atorvastatin-mediated alterations of BTB and drug transporters might have played a significant role in ameliorating nicotine-induced testicular toxicity.
Collapse
Affiliation(s)
- S Syam Das
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - S S Nair
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| | - M Indira
- Department of Biochemistry, University of Kerala, Thiruvananthapuram, Kerala, India
| |
Collapse
|
18
|
Berg T, Hegelund-Myrbäck T, Öckinger J, Zhou XH, Brännström M, Hagemann-Jensen M, Werkström V, Seidegård J, Grunewald J, Nord M, Gustavsson L. Expression of MATE1, P-gp, OCTN1 and OCTN2, in epithelial and immune cells in the lung of COPD and healthy individuals. Respir Res 2018; 19:68. [PMID: 29678179 PMCID: PMC5910606 DOI: 10.1186/s12931-018-0760-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 03/27/2018] [Indexed: 02/03/2023] Open
Abstract
Background Several inhaled drugs are dependent on organic cation transporters to cross cell membranes. To further evaluate their potential to impact on inhaled drug disposition, the localization of MATE1, P-gp, OCTN1 and OCTN2 were investigated in human lung. Methods Transporter proteins were analysed by immunohistochemistry in lung tissue from healthy subjects and COPD patients. Transporter mRNA was analysed by qPCR in lung tissue and in bronchoalveolar lavage (BAL) cells from smokers and non-smokers. Results We demonstrate for the first time MATE1 protein expression in the lung with localization to the apical side of bronchial and bronchiolar epithelial cells. Interestingly, MATE1 was strongly expressed in alveolar macrophages as demonstrated both in lung tissue and in BAL cells, and in inflammatory cells including CD3 positive T cells. P-gp, OCTN1 and OCTN2 were also expressed in the alveolar epithelial cells and in inflammatory cells including alveolar macrophages. In BAL cells from smokers, MATE1 and P-gp mRNA expression was significantly lower compared to cells from non-smokers whereas no difference was observed between COPD patients and healthy subjects. THP-1 cells were evaluated as a model for alveolar macrophages but did not reflect the transporter expression observed in BAL cells. Conclusions We conclude that MATE1, P-gp, OCTN1 and OCTN2 are expressed in pulmonary lung epithelium, in alveolar macrophages and in other inflammatory cells. This is important to consider in the development of drugs treating pulmonary disease as the transporters may impact drug disposition in the lung and consequently affect pharmacological efficacy and toxicity. Electronic supplementary material The online version of this article (10.1186/s12931-018-0760-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tove Berg
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Tove Hegelund-Myrbäck
- Quantitative Clinical Pharmacology, Early Clinical Development, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden.
| | - Johan Öckinger
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiao-Hong Zhou
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Marie Brännström
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Michael Hagemann-Jensen
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Werkström
- Respiratory GMed, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Janeric Seidegård
- Respiratory, Inflammation and Autoimmunity, IMED Biotech Unit, AstraZeneca R&D, Gothenburg, Sweden
| | - Johan Grunewald
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Nord
- Respiratory Medicine Unit, Department of Medicine Solna and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.,Global Patient Safety, Global Medicines Development, AstraZeneca R&D, Gothenburg, Sweden
| | - Lena Gustavsson
- Department of Drug Metabolism, H. Lundbeck A/S, Ottiliavej 9, 2500, Valby, Denmark
| |
Collapse
|
19
|
Sayyed K, Le Vee M, Abdel-Razzak Z, Fardel O. Inhibition of organic anion transporter (OAT) activity by cigarette smoke condensate. Toxicol In Vitro 2017. [DOI: 10.1016/j.tiv.2017.06.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Inhibition of SLC drug transporter activities by environmental bisphenols. Toxicol In Vitro 2017; 40:34-44. [DOI: 10.1016/j.tiv.2016.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Accepted: 12/13/2016] [Indexed: 11/22/2022]
|