1
|
Alhazmi A, Nahdi S, Alwasel S, Harrath AH. Acephate Exposure Induces Transgenerational Ovarian Developmental Toxicity by Altering the Expression of Follicular Growth Markers in Female Rats. BIOLOGY 2024; 13:1075. [PMID: 39765742 PMCID: PMC11673910 DOI: 10.3390/biology13121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025]
Abstract
Acephate is an organophosphate foliar and soil insecticide that is used worldwide. In this study, the transgenerational ovarian developmental toxicity caused by acephate, along with its in utero reprogramming mechanisms, were explored. Thirty female virgin Wistar albino rats were randomly assigned to three groups: one control group and two acephate treatment groups. The treatment groups received daily low or high doses of acephate (34.2 mg/kg or 68.5 mg/kg body weight, respectively) from gestational day 6 until spontaneous labor, resulting in F1 offspring. At 28 days, a subgroup of F1 females were euthanized. The ovaries were extracted, thoroughly cleaned, and weighed before being fixed for further analysis. The remaining F1 females were mated with normal males to produce the F2 generation. The F1 female offspring presented reduced fertility and body weight, whereas the ovarian weight index and sex ratio increased in a dose-dependent manner. Structural analysis revealed altered follicular abnormalities with ovarian cells displaying pyknotic nuclei. Additionally, the gene and protein expression of Cyp19 decreased, whereas that of Gdf-9 increased in the high-dose treatment group (68.5 mg/kg). We also observed significantly increased expression levels of ovarian estrogen receptor 1 (Esr1) and insulin-like growth factor 1 (Igf1), whereas Insl3 expression was significantly decreased. The F2 female offspring presented reproductive phenotype alterations similar to those of F1 females including decreased fertility, reduced Cyp19 gene and protein expression, and structural ovarian abnormalities similar to those of polycystic ovary syndrome (PCOS). In conclusion, acephate induced ovarian developmental toxicity across two generations of rats, which may be linked to changes in the ovarian Cyp19, Gdf9, Insl3, and Igf1 levels.
Collapse
Affiliation(s)
| | | | | | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh P.O. Box 145111, Saudi Arabia
| |
Collapse
|
2
|
Mufti A, Feriani A, Contreras MDM, Nehdi S, Hfaeidh N, Tlili N, Harrath AH. Ephedra alata Seeds Confer Kidney Protection against Early Life Exposure to Acephate by Regulating Oxidative Insult and Activating Autophagy. Life (Basel) 2023; 13:2254. [PMID: 38137855 PMCID: PMC10745092 DOI: 10.3390/life13122254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of the current work was to examine for the first time the nephropreventive capacity of Ephedra alata seed extract (E) against maternal exposure to acephate in rat offspring. The in vivo results revealed that E. alata supplementation for 28 days (40 mg/kg b.w.) significantly attenuated the nephrotoxicity in adult offspring induced by acephate. In fact, it decreased the levels of creatinine and uric acid and increased the albumin content compared to the intoxicated group. The in utero studies showed that E. alata inhibited the renal oxidative stress generated by acephate exposure by reducing lipid peroxidation and enhancing antioxidant biomarker activities (GSH, CAT, and SOD). The inhibition of DNA fragmentation and the improvement of the ultrastructural changes highlighted the prophylactic effect of E. alata in renal tissue. Additionally, the immunofluorescence study showed the upregulation of LC3 gene expression, suggesting the capacity of E. alata extract to stimulate autophagic processes as a protective mechanism. Molecular docking analysis indicated that hexadecasphinganine, the major compound in E. alata, has a higher affinity toward the Na+/K+-ATPase, epithelial sodium channel (ENaC), and sodium hydrogen exchanger 3 (NHE3) genes than acephate. Hexadecasphinganine could be considered a potential inhibitor of the activity of these genes and therefore exerted its preventive capacity. The obtained findings confirmed that E. alata seed extract exerted nephropreventive capacities, which could be related to its bioactive compounds, which possess antioxidant activities.
Collapse
Affiliation(s)
- Afoua Mufti
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Anouar Feriani
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - María del Mar Contreras
- Department of Chemical, Environmental and Materials Engineering and Centre for Advanced Studies in Earth Sciences, Energy and Environment (CEACTEMA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain;
| | - Saber Nehdi
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Najla Hfaeidh
- Laboratory of Biotechnology and Biomonitoring of the Environment and Oasis Ecosystems, Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia; (A.M.); (A.F.); (N.H.)
| | - Nizar Tlili
- Institut Supérieur des Sciences et Technologies de l’Environnement Borj Cédria, Université de Carthage, Hammam chat 2050, Ben Arous, Tunis 1073, Tunisia;
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
3
|
Wei Y, Wang L, Liu J. The diabetogenic effects of pesticides: Evidence based on epidemiological and toxicological studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121927. [PMID: 37268216 DOI: 10.1016/j.envpol.2023.121927] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/04/2023]
Abstract
While the use of pesticides has improved grain productivity and controlled vector-borne diseases, the widespread use of pesticides has resulted in ubiquitous environmental residues that pose health risks to humans. A number of studies have linked pesticide exposure to diabetes and glucose dyshomeostasis. This article reviews the occurrence of pesticides in the environment and human exposure, the associations between pesticide exposures and diabetes based on epidemiological investigations, as well as the diabetogenic effects of pesticides based on the data from in vivo and in vitro studies. The potential mechanisms by which pesticides disrupt glucose homeostasis include induction of lipotoxicity, oxidative stress, inflammation, acetylcholine accumulation, and gut microbiota dysbiosis. The gaps between laboratory toxicology research and epidemiological studies lead to an urgent research need on the diabetogenic effects of herbicides and current-use insecticides, low-dose pesticide exposure research, the diabetogenic effects of pesticides in children, and assessment of toxicity and risks of combined exposure to multiple pesticides with other chemicals.
Collapse
Affiliation(s)
- Yile Wei
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Linping Wang
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jing Liu
- MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
de Andrade JC, Galvan D, Kato LS, Conte-Junior CA. Consumption of fruits and vegetables contaminated with pesticide residues in Brazil: A systematic review with health risk assessment. CHEMOSPHERE 2023; 322:138244. [PMID: 36841459 DOI: 10.1016/j.chemosphere.2023.138244] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Brazil is the third largest exporter of fruits and vegetables in the world and, consequently, uses large amounts of pesticides. Food contamination with pesticide residues (PRs) is a serious concern, especially in developing countries. Several research reports revealed that some Brazilian farmers spray pesticides on fruits and vegetables in large quantities, generating PRs after harvest. Thus, ingestion of food contaminated with PRs can cause adverse health effects. Based on information obtained through a systematic review of essential information from 33 articles, we studied the assessment of potential health risks associated with fruit and vegetable consumption in children and adults from Brazilian states. This study identified 111 PRs belonging to different chemical groups, mainly organophosphates and organochlorines, in 26 fruit and vegetable samples consumed and exported by Brazil. Sixteen of these PRs were above the Maximum Residue Limit (MRL) established by local and international legislation. We did not identify severe acute and chronic dietary risks, but the highest risk values were observed in São Paulo and Santa Catarina, associated with the consumption of tomatoes and sweet peppers due to the high concentrations of organophosphates. A high long-term health risk is associated with the consumption of oranges in São Paulo and grapes in Bahia due to chlorothalonil and procymidone. We also identified that 26 PRs are considered carcinogenic by the United States Environmental Protection Agency (US EPA), and the carcinogenic risk analysis revealed no severe risk in any Brazilian state investigated due to the cumulative hazard index (HI) < 1. However, the highest HI values were in São Paulo due to acephate and carbaryl in sweet pepper and in Bahia due to dichlorvos. This information can help regulatory authorities define new guidelines for pesticide residue limits in fruits and vegetables commonly consumed and exported from Brazil and monitor the quality of commercial formulations.
Collapse
Affiliation(s)
- Jelmir Craveiro de Andrade
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| | - Diego Galvan
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil.
| | - Lilian Seiko Kato
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil
| | - Carlos Adam Conte-Junior
- Center for Food Analysis (NAL), Technological Development Support Laboratory (LADETEC), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-598, Brazil; Laboratory of Advanced Analysis in Biochemistry and Molecular Biology (LAABBM), Department of Biochemistry, Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil; Nanotechnology Network, Carlos Chagas Filho Research Support Foundation of the State of Rio de Janeiro (FAPERJ), Rio de Janeiro, RJ, 20020-000, Brazil; Graduate Program in Chemistry (PGQu), Institute of Chemistry (IQ), Federal University of Rio de Janeiro (UFRJ), Cidade Universitária, Rio de Janeiro, RJ, 21941-909, Brazil
| |
Collapse
|
5
|
Wu X, Chen WJ, Lin Z, Huang Y, El Sebai TNM, Alansary N, El-Hefny DE, Mishra S, Bhatt P, Lü H, Chen S. Rapid Biodegradation of the Organophosphorus Insecticide Acephate by a Novel Strain Burkholderia sp. A11 and Its Impact on the Structure of the Indigenous Microbial Community. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5261-5274. [PMID: 36962004 DOI: 10.1021/acs.jafc.2c07861] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The acephate-degrading microbes that are currently available are not optimal. In this study, Burkholderia sp. A11, an efficient degrader of acephate, presented an acephate-removal efficiency of 83.36% within 56 h (100 mg·L-1). The A11 strain has a broad substrate tolerance and presents a good removal effect in the concentration range 10-1600 mg·L-1. Six metabolites from the degradation of acephate were identified, among which the main products were methamidophos, acetamide, acetic acid, methanethiol, and dimethyl disulfide. The main degradation pathways involved include amide bond breaking and phosphate bond hydrolysis. Moreover, strain A11 successfully colonized and substantially accelerated acephate degradation in different soils, degrading over 90% of acephate (50-200 mg·kg-1) within 120 h. 16S rDNA sequencing results further confirmed that the strain A11 gradually occupied a dominant position in the soil microbial communities, causing slight changes in the diversity and composition of the indigenous soil microbial community structure.
Collapse
Affiliation(s)
- Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Wen-Juan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| | - Talaat N-M El Sebai
- Department of Agricultural Microbiology, Agricultural and Biology Research Institute, National Research Centre, El-Buhouth Street, 12622 Dokki, Cairo, Egypt
| | - Nasser Alansary
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Plant Protection Department, Division of Pesticides, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Dalia E El-Hefny
- Pesticide Residues and Environmental Pollution Department, Central of Agricultural Pesticide Laboratory, Agricultural Research Center, 12618 Dokki, Giza, Egypt
| | - Sandhya Mishra
- Environmental Technologies Division, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow 226001, India
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, Indiana 47906, United States
| | - Huixiong Lü
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Miranda RA, Silva BS, de Moura EG, Lisboa PC. Pesticides as endocrine disruptors: programming for obesity and diabetes. Endocrine 2023; 79:437-447. [PMID: 36301509 DOI: 10.1007/s12020-022-03229-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 07/28/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE Exposure to pesticides has been associated with obesity and diabetes in humans and experimental models mainly due to endocrine disruptor effects. First contact with environmental pesticides occurs during critical phases of life, such as gestation and lactation, which can lead to damage in central and peripheral tissues and subsequently programming disorders early and later in life. METHODS We reviewed epidemiological and experimental studies that associated pesticide exposure during gestation and lactation with programming obesity and diabetes in progeny. RESULTS Maternal exposure to organochlorine, organophosphate and neonicotinoids, which represent important pesticide groups, is related to reproductive and behavioral dysfunctions in offspring; however, few studies have focused on glucose metabolism and obesity as outcomes. CONCLUSION We provide an update regarding the use and metabolic impact of early pesticide exposure. Considering their bioaccumulation in soil, water, and food and through the food chain, pesticides should be considered a great risk factor for several diseases. Thus, it is urgent to reformulate regulatory actions to reduce the impact of pesticides on the health of future generations.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Beatriz Souza Silva
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Cristina Lisboa
- Laboratory of Endocrine Physiology, Biology Institute, Rio de Janeiro State University, Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Maternal Exposure to Acephate Caused Nephrotoxicity in Adult Offspring Rats Mediated by Excessive Autophagy Activation, Oxidative Stress Induction, and Altered Epithelial Sodium Channel and Na +/K +-ATPase Gene Expression. BIOLOGY 2023; 12:biology12020162. [PMID: 36829441 PMCID: PMC9952565 DOI: 10.3390/biology12020162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
This study examined how maternal exposure to acephate-an organophosphate-based insecticide-affected the renal development in rat offspring during adulthood. Virgin female Wistar rats were randomly allocated to three groups: group 1 (control) received sterile water; groups 2 and 3 were intragastrically exposed to low (14 mg/kg) and high (28 mg/kg) doses of acephate from day 6 of pregnancy until delivery, respectively. Further, the offspring of the adult female rats were euthanized in postnatal week 8. Compared with the controls, the adult rat offspring with exposure to low and high doses of acephate exhibited elevated plasma creatinine and blood urea nitrogen levels. Additionally, immunofluorescence analysis revealed the upregulation of autophagic marker genes (Beclin-1 and LC-3) in the acephate-treated rat offspring, thereby suggesting the induction of an autophagic mechanism. Notably, the increased malondialdehyde level, decreased glutathione level, and decreased superoxide dismutase and catalase activities confirmed the ability of acephate to induce oxidative stress and apoptosis in the kidneys of the rat offspring. This may explain the renal histopathological injury detected using hematoxylin and eosin staining. Furthermore, a reverse transcription polymerase chain reaction revealed that the mRNA expression levels of the Na+/K+-ATPase and the epithelial sodium channel (ENaC) genes were significantly higher in the kidney of female offspring than that of controls owing to acephate toxicity. However, there was no significant effect of acephate on the expression of NHE3 in the treatment group compared with the control group. Overall, the present findings suggest that oxidative stress caused by prenatal exposure to acephate causes nephrotoxicity and histopathological alterations in adult rat offspring, likely by actions on renal ENaC and Na+/K+-ATPase genes as well as the autophagic markers Beclin-1 and LC-3.
Collapse
|
8
|
Liu L, Lu Y, Liao L, Xiao X, Nie C. Theoretical Unravelling the Complexation and Separation of Uranyl‐ligand Complexes towards Chiral R/S‐Profenofos. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Linfeng Liu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Yao Lu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Lifu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Xilin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| | - Changming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes Hengyang China
| |
Collapse
|
9
|
Lin Z, Pang S, Zhou Z, Wu X, Li J, Huang Y, Zhang W, Lei Q, Bhatt P, Mishra S, Chen S. Novel pathway of acephate degradation by the microbial consortium ZQ01 and its potential for environmental bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:127841. [PMID: 34844804 DOI: 10.1016/j.jhazmat.2021.127841] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
The microbial degradation of acephate in pure cultures has been thoroughly explored, but synergistic metabolism at the community level has rarely been investigated. Here, we report a novel microbial consortium, ZQ01, capable of effectively degrading acephate and its toxic product methamidophos, which can use acephate as a source of carbon, phosphorus and nitrogen. The degradation conditions with consortium ZQ01 were optimized using response surface methodology at a temperature of 34.1 °C, a pH of 8.9, and an inoculum size of 2.4 × 108 CFU·mL-1, with 89.5% of 200 mg L-1 acephate degradation observed within 32 h. According to the main products methamidophos, acetamide and acetic acid, a novel degradation pathway for acephate was proposed to include hydrolysis and oxidation as the main pathways of acephate degradation. Moreover, the bioaugmentation of acephate-contaminated soils with consortium ZQ01 significantly enhanced the removal rate of acephate. The results of the present work demonstrate the potential of microbial consortium ZQ01 to degrade acephate in water and soil environments, with a different and complementary acephate degradation pathway.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China
| | - Zhe Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiaozhen Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jiayi Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qiqi Lei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
10
|
CHEN GY, ZHANG H, ZHAO CP, ZHANG CY, WANG Y, CHEN H, YANG FQ. On-line immobilized acetylcholinesterase microreactor based on capillary electrophoresis for the determination of organophosphorus pesticide residues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2021; 49:11-17. [DOI: 10.1016/j.cjac.2021.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Yang R, Xiao Y, Tao X, Ma M, Wu Z, Liao L, Xiao X, Nie C. Insights into complexation and enantioselectivity of uranyl‐2‐(2‐hydroxy‐3‐methoxyphenyl)‐9‐(2‐hydroxyphenyl)thiopyrano[3,2‐
h
]thiochromene‐4,7‐dione with
R
/
S
‐organophosphorus pesticides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Rong Yang
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Yang Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xue‐bing Tao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Ming‐jie Ma
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Zhi‐lin Wu
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Li‐fu Liao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Xi‐lin Xiao
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| | - Chang‐ming Nie
- School of Chemistry and Chemical Engineering University of South China Hengyang China
- Key Laboratory of Hunan Province for Design and Application of Natural Actinide Complexes University of South China Hengyang China
| |
Collapse
|
12
|
Djekkoun N, Lalau JD, Bach V, Depeint F, Khorsi-Cauet H. Chronic oral exposure to pesticides and their consequences on metabolic regulation: role of the microbiota. Eur J Nutr 2021; 60:4131-4149. [PMID: 33837455 DOI: 10.1007/s00394-021-02548-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 03/22/2021] [Indexed: 12/17/2022]
Abstract
Pesticides have long been used in agriculture and household treatments. Pesticide residues can be found in biological samples for both the agriculture workers through direct exposure but also to the general population by indirect exposure. There is also evidence of pesticide contamination in utero and trans-generational impacts. Whilst acute exposure to pesticides has long been associated with endocrine perturbations, chronic exposure with low doses also increases the prevalence of metabolic disorders such as obesity or type 2 diabetes. Dysmetabolism is a low-grade inflammation disorder and as such the microbiota plays a role in its etiology. It is therefore important to fully understand the role of microbiota on the genesis of subsequent health effects. The digestive tract and mostly microbiota are the first organs of contact after oral exposure. The objective of this review is thus to better understand mechanisms that link pesticide exposure, dysmetabolism and microbiota. One of the key outcomes on the microbiota is the reduced Bacteroidetes and increased Firmicutes phyla, reflecting both pesticide exposure and risk factors of dysmetabolism. Other bacterial genders and metabolic activities are also involved. As for most pathologies impacting microbiota (including inflammatory disorders), the role of prebiotics can be suggested as a prevention strategy and some preliminary evidence reinforces this axis.
Collapse
Affiliation(s)
- Narimane Djekkoun
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Jean-Daniel Lalau
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.,Service Endocrinologie, Diabétologie, Nutrition, CHU Amiens Picardie, Site Nord, 80054, Amiens cedex 1, France
| | - Véronique Bach
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France
| | - Flore Depeint
- Unité Transformations & Agroressources ULR7519, Institut Polytechnique UniLaSalle-Université d'Artois, 60026, Beauvais, France
| | - Hafida Khorsi-Cauet
- PeriTox UMR_I 01 Laboratory, University Center for Health Research, CURS-UPJV, Picardy Jules Verne University, 80054, Amiens cedex 1, France.
| |
Collapse
|
13
|
Aranha MLG, Garcia MS, de Carvalho Cavalcante DN, Silva APG, Fontes MK, Gusso-Choueri PK, Choueri RB, Perobelli JE. Biochemical and histopathological responses in peripubertal male rats exposed to agrochemicals isolated or in combination: A multivariate data analysis study. Toxicology 2020; 447:152636. [PMID: 33217513 DOI: 10.1016/j.tox.2020.152636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/03/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The widespread use of agrochemicals results in the exposure of the general human population, including children, to several of these chemicals simultaneously. In the present preclinical study, it was investigated the hepatic damages caused by exposure to acephate, carbendazim and mancozeb when administered alone or in different combinations (binary and ternary). Juvenile male Wistar rats were exposed to agrochemicals from post-natal day 53, by gavage. The doses of agrochemicals applied here were determined from previous studies whose results showed no signs of systemic toxicity. All exposures provoked a significant increase in DNA damage (except for acephate alone) and activation of the xenobiotic biotransformation system (except for the ternary mixture). Interestingly, the ternary mixture did not exhibit an exacerbation in adverse effects caused by agrochemicals isolated or in binary combination, even though they are sharing genotoxicity damage induction as a common toxicity pathway. Conversely, some effects observed for isolated or binary combinations of agrochemicals were not observed for ternary combination, suggesting a chemical interaction that could imply antagonism character. Using a multivariate data analysis approach, exposure to isolated agrochemicals were related to a group of adverse effects characterized by hepatic lesion and the attempt of the tissue to mobilize defense cells and increase mitotic rates to minimize damages. Binary mixtures also share similarities in relation to the effects they exhibited, mainly a moderate to high increase in the GST activity and in histopathological alterations suggesting that binary combinations trigger an increased response of the mechanism of xenobiotics biotransformation. Together, obtained results bring important insights regarding adverse effects and possible interaction of the three agrochemicals whose residues are commonly detected in agro-food products.
Collapse
Affiliation(s)
- Maria Luiza Garcia Aranha
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mariana Simões Garcia
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | | | - Ana Priscila Gomes Silva
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| | - Mayana Karoline Fontes
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Paloma Kachel Gusso-Choueri
- Núcleo de Estudos em Poluição e Ecotoxicologia Aquática, Campus do Litoral Paulista, Universidade Estadual Paulista - UNESP, São Vicente, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil.
| | - Juliana Elaine Perobelli
- Experimental Toxicology Laboratory, Departamento de Ciências do Mar, Universidade Federal de São Paulo - UNIFESP, Santos, SP, Brazil
| |
Collapse
|
14
|
Smith L, Klément W, Dopavogui L, de Bock F, Lasserre F, Barretto S, Lukowicz C, Fougerat A, Polizzi A, Schaal B, Patris B, Denis C, Feuillet G, Canlet C, Jamin EL, Debrauwer L, Mselli-Lakhal L, Loiseau N, Guillou H, Marchi N, Ellero-Simatos S, Gamet-Payrastre L. Perinatal exposure to a dietary pesticide cocktail does not increase susceptibility to high-fat diet-induced metabolic perturbations at adulthood but modifies urinary and fecal metabolic fingerprints in C57Bl6/J mice. ENVIRONMENT INTERNATIONAL 2020; 144:106010. [PMID: 32745781 DOI: 10.1016/j.envint.2020.106010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/21/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.
Collapse
Affiliation(s)
- Lorraine Smith
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Wendy Klément
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Léonie Dopavogui
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Frédéric de Bock
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Frédéric Lasserre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Sharon Barretto
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Céline Lukowicz
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Anne Fougerat
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Arnaud Polizzi
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Benoist Schaal
- Developmental Ethology Laboratory, Centre for Taste, Smell and Feeding Behavior Science, CNRS-UBFC-INRAE-ASD, 21000 Dijon, France
| | - Bruno Patris
- Developmental Ethology Laboratory, Centre for Taste, Smell and Feeding Behavior Science, CNRS-UBFC-INRAE-ASD, 21000 Dijon, France
| | - Colette Denis
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Guylène Feuillet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1048, Institut of Cardiovascular and Metabolic Disease, Toulouse, France, Université Toulouse III Paul-Sabatier, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Emilien L Jamin
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurent Debrauwer
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laila Mselli-Lakhal
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Nicola Marchi
- IGF Cerebrovascular and Glia Research, Dept. Neuroscience, Institute of Functional Genomics, University of Montpellier, UMR 5203 CNRS, U1191 INSERM, France
| | - Sandrine Ellero-Simatos
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France
| | - Laurence Gamet-Payrastre
- Toxalim (Research Center in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, 31300 Toulouse, France.
| |
Collapse
|
15
|
Lin Z, Pang S, Zhang W, Mishra S, Bhatt P, Chen S. Degradation of Acephate and Its Intermediate Methamidophos: Mechanisms and Biochemical Pathways. Front Microbiol 2020; 11:2045. [PMID: 33013750 PMCID: PMC7461891 DOI: 10.3389/fmicb.2020.02045] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 08/03/2020] [Indexed: 11/28/2022] Open
Abstract
Acephate is an organophosphate pesticide that has been widely used to control insect pests in agricultural fields for decades. However, its use has been partially restricted in many countries due to its toxic intermediate product methamidophos. Long term exposure to acephate and methamidophos in non-target organisms results in severe poisonous effects, which has raised public concern and demand for the removal of these pollutants from the environment. In this paper, the toxicological effects of acephate and/or methamidophos on aquatic and land animals, including humans are reviewed, as these effects promote the necessity of removing acephate from the environment. Physicochemical degradation mechanisms of acephate and/or methamidophos are explored and explained, such as photo-Fenton, ultraviolet/titanium dioxide (UV/TiO2) photocatalysis, and ultrasonic ozonation. Compared with physicochemical methods, the microbial degradation of acephate and methamidophos is emerging as an eco-friendly method that can be used for large-scale treatment. In recent years, microorganisms capable of degrading methamidophos or acephate have been isolated, including Hyphomicrobium sp., Penicillium oxalicum, Luteibacter jiangsuensis, Pseudomonas aeruginosa, and Bacillus subtilis. Enzymes related to acephate and/or methamidophos biodegradation include phosphotriesterase, paraoxonase 1, and carboxylesterase. Furthermore, several genes encoding organophosphorus degrading enzymes have been identified, such as opd, mpd, and ophc2. However, few reviews have focused on the biochemical pathways and molecular mechanisms of acephate and methamidophos. In this review, the mechanisms and degradation pathways of acephate and methamidophos are summarized in order to provide a new way of thinking for the study of the degradation of acephate and methamidophos.
Collapse
Affiliation(s)
- Ziqiu Lin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shimei Pang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Wenping Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
16
|
Sarron E, Pérot M, Barbezier N, Delayre-Orthez C, Gay-Quéheillard J, Anton PM. Early exposure to food contaminants reshapes maturation of the human brain-gut-microbiota axis. World J Gastroenterol 2020; 26:3145-3169. [PMID: 32684732 PMCID: PMC7336325 DOI: 10.3748/wjg.v26.i23.3145] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/12/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Early childhood growth and development is conditioned by the consecutive events belonging to perinatal programming. This critical window of life will be very sensitive to any event altering programming of the main body functions. Programming of gut function, which is starting right after conception, relates to a very well-established series of cellular and molecular events associating all types of cells present in this organ, including neurons, endocrine and immune cells. At birth, this machinery continues to settle with the establishment of extra connection between enteric and other systemic systems and is partially under the control of gut microbiota activity, itself being under the densification and the diversification of microorganisms' population. As thus, any environmental factor interfering on this pre-established program may have a strong incidence on body functions. For all these reasons, pregnant women, fetuses and infants will be particularly susceptible to environmental factors and especially food contaminants. In this review, we will summarize the actual understanding of the consequences of repeated low-level exposure to major food contaminants on gut homeostasis settlement and on brain/gut axis communication considering the pivotal role played by the gut microbiota during the fetal and postnatal stages and the presumed consequences of these food toxicants on the individuals especially in relation with the risks of developing later in life non-communicable chronic diseases.
Collapse
Affiliation(s)
- Elodie Sarron
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Maxime Pérot
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Nicolas Barbezier
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Carine Delayre-Orthez
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| | - Jérôme Gay-Quéheillard
- Périnatalité et risques Toxiques, UMR-I-01, Université de Picardie Jules Verne, Amiens 80000, France
| | - Pauline M Anton
- Transformations and Agroressources (EA 7519), Institut Polytechnique UniLaSalle, Université d'Artois, Beauvais 60026, France
| |
Collapse
|
17
|
Wang Y, Dong Y, Wu S, Zhu Q, Li X, Liu S, Huang T, Li H, Ge RS. Acephate interferes with androgen synthesis in rat immature Leydig cells. CHEMOSPHERE 2020; 245:125597. [PMID: 31864041 DOI: 10.1016/j.chemosphere.2019.125597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/29/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Acephate is an organophosphate pesticide. It is widely used. However, whether it inhibits androgen synthesis and metabolism remains unclear. In the current study, we investigated the effect of acephate on the inhibition of androgen synthetic and metabolic pathways in rat immature Leydig cells after 3-h culture. Acephate inhibited basal androgen output in a dose-dependent manner with the inhibition starting at 0.5 μM. It significantly inhibited luteinizing hormone and 8-Br-cAMP stimulated androgen output at 50 μM. It significantly inhibited progesterone-mediated androgen output at 50 μM. Further study demonstrated that acephate down-regulated the expression of Hsd3b1 and its protein at ≥ 0.5 μM, Lhcgr at 5 μM and Star at 50 μM. Acephate directly blocked rat testicular HSD3B1 activity at 50 μM. Acephate did not affect other androgen synthetic and metabolic enzyme activities as well as ROS production, proliferation, and apoptosis of immature Leydig cells. In conclusion, acephate targets LHCGR, STAR, and HSD3B1, thus blocking androgen synthesis in rat immature Leydig cells and HSD3B1 is being the most sensitive target of acephate.
Collapse
Affiliation(s)
- Yiyan Wang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Yaoyao Dong
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Siwen Wu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Qiqi Zhu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Xiaoheng Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Shiwen Liu
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Tongliang Huang
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Huitao Li
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China
| | - Ren-Shan Ge
- Department of Anesthesiology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325003, China.
| |
Collapse
|
18
|
Czajka M, Matysiak-Kucharek M, Jodłowska-Jędrych B, Sawicki K, Fal B, Drop B, Kruszewski M, Kapka-Skrzypczak L. Organophosphorus pesticides can influence the development of obesity and type 2 diabetes with concomitant metabolic changes. ENVIRONMENTAL RESEARCH 2019; 178:108685. [PMID: 31479978 DOI: 10.1016/j.envres.2019.108685] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/09/2019] [Accepted: 08/21/2019] [Indexed: 06/10/2023]
Abstract
Widespread use and the bioaccumulation of pesticides in the environment lead to the contamination of air, water, soil and agricultural resources. A huge body of evidence points to the association between the pesticide exposure and increase in the incidence of chronic diseases, e.g. cancer, birth defects, reproductive disorders, neurodegenerative, cardiovascular and respiratory diseases, developmental disorders, metabolic disorders, chronic renal disorders or autoimmune diseases. Organophosphorus compounds are among the most widely used pesticides. A growing body of evidence is suggesting the potential interdependence between the organophosphorus pesticides (OPs) exposure and risk of obesity and type 2 diabetes mellitus (T2DM). This article reviews the current literature to highlight the latest in vitro and in vivo evidences on the possible influence of OPs on obesity and T2DM development, as well as epidemiological evidence for the metabolic toxicity of OPs in humans. The article also draws attention to the influence of maternal OPs exposure on offspring. Summarized studies suggest that OPs exposure is associated with metabolic changes linked with obesity and T2DM indicated that such exposures may increase risk or vulnerability to other contributory components.
Collapse
Affiliation(s)
- Magdalena Czajka
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| | - Magdalena Matysiak-Kucharek
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Barbara Jodłowska-Jędrych
- Department of Histology and Embryology with Experimental Cytology Unit, Medical University of Lublin, 20-080, Lublin, Poland
| | - Krzysztof Sawicki
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Berta Fal
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland
| | - Bartłomiej Drop
- Department of Medical Informatics and Statistics with E-learning Lab, Medical University of Lublin, 20-090, Lublin, Poland
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland; Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195, Warsaw, Poland
| | - Lucyna Kapka-Skrzypczak
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20-090, Lublin, Poland.
| |
Collapse
|
19
|
Valério Prates K, Ribeiro TA, Pavanello A, Jacinto Saavedra LP, Moreira VM, da Silva Silveira S, Martins IP, Francisco FA, Ferreira Junior MD, Alves VS, Tófolo LP, Previate C, da Silva Franco CC, Gomes RM, Palma-Rigo K, Malta A, de Freitas Mathias PC. Potential attenuation of early-life overfeeding-induced metabolic dysfunction by chronic maternal acetylcholinesterase inhibitor exposure. Toxicology 2019; 425:152250. [PMID: 31326399 DOI: 10.1016/j.tox.2019.152250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 07/10/2019] [Accepted: 07/18/2019] [Indexed: 12/12/2022]
Abstract
Evidence suggests that low concentration perinatal exposure to environmental contaminants, such as organophosphate (OP) is associated with later life insulin resistance and type 2 diabetes. The aim of this work was to investigate whether chronic maternal OP exposure exacerbates metabolic dysfunctions in early-overfed rats. During pregnancy and lactational periods, dams received OP by gavage. To induce neonatal overnutrition at postnatal day 3, pups were standardized to 9 or 3 per nest. At 90-days-old, glucose-insulin homeostasis and insulin release from pancreatic islets were analyzed. While both OP exposure and overfeeding alone did induce diabetogenic phenotypes in adulthood, there was no exacerbation in rats that experienced both. Unexpectedly, the group that experienced both had improved adiposity, metabolic parameters, attenuated insulin release from isolated islets in the presence of glucose and low function of muscarinic acetylcholine receptor M3, as well as an attenuation of beta cell mass hyperplasia. High levels of butyrylcholinesterase and low levels of insulin in milk may contribute to the OP-induced developmental programming. Our study showed that maternal OP exposure may program insulin release as well as endocrine pancreas structure, thus affecting metabolism in adulthood. Our data suggest that while perinatal OP exposure alone increases the risk for later life T2D, it actually reverses many of the programmed metabolic dysfunction that is induced by postnatal overfeeding. These surprising results may suggest that low-dose administration of acetylcholinesterase inhibitors could be of utility in preventing detrimental developmental programming that is caused by early-life overnutrition.
Collapse
Affiliation(s)
- Kelly Valério Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil.
| | - Tatiane Aparecida Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Audrei Pavanello
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Lucas Paulo Jacinto Saavedra
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Veridiana Mota Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Sandra da Silva Silveira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Isabela Peixoto Martins
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Flávio Andrade Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | | | - Vander Silva Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Laize Peron Tófolo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Carina Previate
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Claudinéia Conationi da Silva Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Rodrigo Mello Gomes
- Department of Physiological Sciences, Federal University of Goias, Goiania, GO, Brazil
| | - Kesia Palma-Rigo
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringa, Maringa, Parana, Brazil
| |
Collapse
|
20
|
Joshi AKR, Sukumaran BO. Metabolic dyshomeostasis by organophosphate insecticides: insights from experimental and human studies. EXCLI JOURNAL 2019; 18:479-484. [PMID: 31423127 PMCID: PMC6694704 DOI: 10.17179/excli2019-1492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/02/2019] [Indexed: 01/08/2023]
Affiliation(s)
| | - Bindhu Omana Sukumaran
- Department of Biochemistry, School of Sciences, Jain University, Bangalore, Karnataka, India 560041
| |
Collapse
|
21
|
Abstract
Early-life chronic exposure to environmental contaminants, such as bisphenol-A, particulate matter air pollution, organophosphorus pesticides, and pharmaceutical drugs, among others, may affect central tissues, such as the hypothalamus, and peripheral tissues, such as the endocrine pancreas, causing inflammation and apoptosis with severe implications to the metabolism. The Developmental Origins of Health and Disease (DOHaD) concept articulates events in developmental phases of life, such as intrauterine, lactation, and adolescence, to later-life metabolism and health. These developmental phases are more susceptible to environmental changes, such as those caused by environmental contaminants, which may predispose individuals to obesity, metabolic syndrome, and chronic noncommunicable diseases later in life. Alterations in the epigenome are explored as an underlying mechanism to the programming effects on metabolism, as the expression of key genes related with central and peripheral metabolic functions may be altered in response to environmental disturbances. Studies show that environmental contaminants may affect gene expressions in mammals, especially when exposed to during the developmental phases of life, leading to metabolic disorders in adulthood. In this review, we discuss the current obesity epidemics, the DOHaD concept, pollutants' toxicology, environmental control, and the role of environmental contaminants in the central and peripheral programming of obesity and metabolic syndrome. Improving environmental monitoring may directly affect the quality of life of the population and help protect the future generations from metabolic diseases.
Collapse
|
22
|
Nascimento S, Göethel G, Gauer B, Sauer E, Nardi J, Cestonaro L, Correia D, Peruzzi C, Mota L, Machry RV, Furlanetto TW, Saint' Pierre T, Gioda A, Arbo MD, Garcia SC. Exposure to environment chemicals and its possible role in endocrine disruption of children from a rural area. ENVIRONMENTAL RESEARCH 2018; 167:488-498. [PMID: 30142624 DOI: 10.1016/j.envres.2018.07.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/25/2018] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Endocrine disrupting chemicals (EDCs), including pesticides and metals, are present in rural areas, endangering the health of exposed populations. This work aimed to investigate the possible association between the exposure to these xenobiotics and thyroid dysfunction in children living in a rural community of Southern Brazil. Fifty-four children aged 5-16 years participated in this study. Peripheral biomarker evaluations were performed in periods of low and high exposure to pesticides. Thyroid ultrasonography was evaluated in the high exposure period. Blood levels of chromium (Cr), manganese (Mn), mercury (Hg), and lead (Pb), as well as hair Pb levels were positively correlated with thyroid stimulating hormone (TSH) concentrations and negatively associated with free thyroxine (fT4) levels in the low exposure period. Prolactin was positively associated with hair Mn in both periods. In the ultrasound tests, the majority of children presented a normal echogenicity of thyroid. Glucose was inversely associated with the biomarker of exposure to cholinesterase inhibitor insecticides, butyrylcholinesterase (BuChE). Lipid profile was above the recommended levels in both periods. In summary, our results show that children environmentally exposed to a mixture of xenobiotics in an agricultural community may have health impairments, especially on thyroid function, dyslipidemia, and glucose homeostasis disruption.
Collapse
Affiliation(s)
- Sabrina Nascimento
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Gabriela Göethel
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Bruna Gauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Elisa Sauer
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Jessica Nardi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Larissa Cestonaro
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Douglas Correia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Caroline Peruzzi
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Luciano Mota
- Hospital Universitário de Santa Maria (HUSM), Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, Brazil
| | - Rafael V Machry
- Departamento de Medicina Clínica, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, Brazil
| | - Tania W Furlanetto
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul (UFRGS), Ramiro Barcelos 2350, Porto Alegre, RS, Brazil
| | - Tatiana Saint' Pierre
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Marquês de São Vicente 225, Rio de Janeiro, RJ, Brazil
| | - Adriana Gioda
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Marquês de São Vicente 225, Rio de Janeiro, RJ, Brazil
| | - Marcelo D Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil
| | - Solange C Garcia
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil; Programa de Pós-graduação em Ciências Farmacêuticas (PPGCF), Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Ipiranga 2752, Porto Alegre, RS, Brazil.
| |
Collapse
|
23
|
Prates KV, de Oliveira JC, Malta A, Matiusso CCI, Miranda RA, Ribeiro TA, Francisco FA, Franco CCS, Moreira VM, Alves VS, Torrezan R, Mathias PCF, Barella LF. Sympathetic innervation is essential for metabolic homeostasis and pancreatic beta cell function in adult rats. Mol Cell Endocrinol 2018; 462:119-126. [PMID: 28962894 DOI: 10.1016/j.mce.2017.09.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/24/2017] [Accepted: 09/26/2017] [Indexed: 11/16/2022]
Abstract
Obesity is associated with an imbalance in the activity of the autonomic nervous system (ANS), specifically in the organs involved in energy metabolism. The pancreatic islets are richly innervated by the ANS, which tunes the insulin release due to changes in energy demand. Therefore, changes in the sympathetic input that reach the pancreas can lead to metabolic dysfunctions. To evaluate the role of the sympathetic ends that innervate the pancreas, 60-day-old male Wistar rats were subjected to sympathectomy (SYM) or were sham-operated (SO). At 120 day-old SYM rats exhibited an increase in body weight, fat pads and metabolic dysfunctions. Decreases in the HOMA-IR and reductions in insulin release were observed both in vivo and in vitro. Furthermore, the SYM rats exhibited altered pancreatic islet function in both muscarinic and adrenergic assays and exhibited high protein expression of the alpha-2 adrenergic receptor (α2AR). Because α2AR has been linked to type 2 diabetes, these findings demonstrate the clinical implications of this study.
Collapse
Affiliation(s)
- Kelly V Prates
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil.
| | - Júlio C de Oliveira
- Institute of Health Sciences, Federal University of Mato Grosso, Sinop, MT, Brazil
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Camila C I Matiusso
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Rosiane A Miranda
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Tatiane A Ribeiro
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Flávio A Francisco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Claudinéia C S Franco
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Veridiana M Moreira
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Vander S Alves
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Rosana Torrezan
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Paulo C F Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| | - Luiz F Barella
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
24
|
Maternal low intensity physical exercise prevents obesity in offspring rats exposed to early overnutrition. Sci Rep 2017; 7:7634. [PMID: 28794439 PMCID: PMC5550501 DOI: 10.1038/s41598-017-07395-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 06/27/2017] [Indexed: 01/02/2023] Open
Abstract
Low intensity exercise during pregnancy and lactation may create a protective effect against the development of obesity in offspring exposed to overnutrition in early life. To test these hypotheses, pregnant rats were randomly assigned into 2 groups: Sedentary and Exercised, low intensity, on a rodent treadmill at 30% VO2Max /30-minute/session/3x/week throughout pregnancy and the lactation. Male offspring were raised in small litters (SL, 3 pups/dam) and normal litters (NL, 9 pups/dam) as models of early overnutrition and normal feed, respectively. Exercised mothers showed low mesenteric fat pad stores and fasting glucose and improved glucose-insulin tolerance, VO2max during lactation and sympathetic activity. Moreover, the breast milk contained elevated levels of insulin. In addition, SL of sedentary mothers presented metabolic dysfunction and glucose and insulin intolerance and were hyperglycemic and hyperinsulinemic in adulthood. SL of exercised mothers showed lower fat tissue accretion and improvements in glucose tolerance, insulin sensitivity, insulinemia and glycemia. The results suggest that maternal exercise during the perinatal period can have a possible reprogramming effect to prevent metabolic dysfunction in adult rat offspring exposed to early overnutrition, which may be associated with the improvement in maternal health caused by exercise.
Collapse
|
25
|
Nicolas S, Blasco-Baque V, Fournel A, Gilleron J, Klopp P, Waget A, Ceppo F, Marlin A, Padmanabhan R, Iacovoni JS, Tercé F, Cani PD, Tanti JF, Burcelin R, Knauf C, Cormont M, Serino M. Transfer of dysbiotic gut microbiota has beneficial effects on host liver metabolism. Mol Syst Biol 2017; 13:921. [PMID: 28302863 PMCID: PMC5371731 DOI: 10.15252/msb.20167356] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.
Collapse
Affiliation(s)
- Simon Nicolas
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Vincent Blasco-Baque
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France.,Faculté de Chirurgie Dentaire de Toulouse, Université Paul Sabatier, Toulouse Cedex, France
| | - Audren Fournel
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Jerome Gilleron
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Pascale Klopp
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Aurelie Waget
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Franck Ceppo
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Alysson Marlin
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Roshan Padmanabhan
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Jason S Iacovoni
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - François Tercé
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Patrice D Cani
- Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-François Tanti
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France.,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| | - Claude Knauf
- Toulouse III, Institut de Recherche en Santé Digestive (IRSD) Team 3, "Intestinal Neuroimmune Interactions" INSERM U1220, Université Paul Sabatier, Toulouse Cedex 3, France.,European Associated Laboratory NeuroMicrobiota (INSERM/UCL), Bâtiment B - Pavillon Lefebvre, Toulouse Cedex 3, France
| | - Mireille Cormont
- INSERM Unité 1065/Centre Méditerranéen de Médecine Moléculaire (C3M), Université Côte d'Azur, Nice, France
| | - Matteo Serino
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France .,Unité Mixte de Recherche (UMR) 1048, Institut de Maladies Métaboliques et Cardiovasculaires (I2MC), Université Paul Sabatier (UPS), Toulouse Cedex 4, France
| |
Collapse
|