1
|
Deng Q, Yang Y, Liu Y, Zou M, Huang G, Yang S, Li L, Qu Y, Luo Y, Zhang X. Assessing immune hepatotoxicity of troglitazone with a versatile liver-immune-microphysiological-system. Front Pharmacol 2024; 15:1335836. [PMID: 38873410 PMCID: PMC11169855 DOI: 10.3389/fphar.2024.1335836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Drug-induced liver injury is a prevalent adverse event associated with pharmaceutical agents. More significantly, there are certain drugs that present severe hepatotoxicity only during the clinical phase, consequently leading to the termination of drug development during clinical trials or the withdrawal from the market after approval. The establishment of an evaluation model that can sensitively manifest such hepatotoxicity has always been a challenging aspect in drug development. In this study, we build a liver-immune-microphysiological-system (LIMPS) to fully demonstrate the liver injury triggered by troglitazone (TGZ), a drug that was withdrawn from the market due to hepatotoxicity. Leveraging the capabilities of organ-on-chip technology allows for the dynamic modulation of cellular immune milieu, as well as the synergistic effects between drugs, hepatocytes and multiple immune cells. Through the LIMPS, we discovered that 1) TGZ can promote neutrophils to adhered hepatocytes, 2) the presence of TGZ enhances the crosstalk between macrophages and neutrophils, 3) the induction of damage in hepatocytes by TGZ at clinically relevant blood concentrations not observed in other in vitro experiments, 4) no hepatotoxicity was observed in LIMPS when exposed to rosiglitazone and pioglitazone, structurally similar analogs of TGZ, even at the higher multiples of blood drug concentration levels. As an immune-mediated liver toxicity assessment method, LIMPS is simple to operate and can be used to test multiple drug candidates to detect whether they will cause severe liver toxicity in clinical settings as early as possible.
Collapse
Affiliation(s)
- Quanfeng Deng
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Youlong Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yuangui Liu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Mengting Zou
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Guiyuan Huang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Shiqi Yang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lingyu Li
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yueyang Qu
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning Province, China
| | - Xiuli Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Disease and College of Pharmaceutical Science, Soochow University, Suzhou, Jiangsu Province, China
- Hunan Key Laboratory for Bioanalysis of Complex Matrix Samples, Changsha, Hunan Province, China
| |
Collapse
|
2
|
Carpentier N, Urbani L, Dubruel P, Van Vlierberghe S. The native liver as inspiration to create superior in vitro hepatic models. Biomater Sci 2023; 11:1091-1115. [PMID: 36594602 DOI: 10.1039/d2bm01646j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Drug induced liver injury (DILI) is one of the major reasons of drug withdrawal during the different phases of drug development. The later in the drug development a drug is discovered to be toxic, the higher the economical as well as the ethical impact will be. In vitro models for early detection of drug liver toxicity are under constant development, however to date a superior model of the liver is still lacking. Ideally, a highly reliable model should be established to maintain the different hepatic cell functionalities to the greatest extent possible, during a period of time long enough to allow for tracking of the toxicity of compounds. In the case of DILI, toxicity can appear even after months of exposure. To reach this goal, an in vitro model should be developed that mimics the in vivo liver environment, function and response to external stimuli. The different approaches for the development of liver models currently used in the field of tissue engineering will be described in this review. Combining different technologies, leading to optimal materials, cells and 3D-constructs will ultimately lead to an ideal superior model that fully recapitulates the liver.
Collapse
Affiliation(s)
- Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Luca Urbani
- The Roger Williams Institute of Hepatology, Foundation for Liver Research, London SE5 9NT, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Ghent University, Ghent, Belgium.
| |
Collapse
|
3
|
In Vitro Models for Studying Chronic Drug-Induced Liver Injury. Int J Mol Sci 2022; 23:ijms231911428. [PMID: 36232728 PMCID: PMC9569683 DOI: 10.3390/ijms231911428] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/08/2022] [Accepted: 09/22/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-induced liver injury (DILI) is a major clinical problem in terms of patient morbidity and mortality, cost to healthcare systems and failure of the development of new drugs. The need for consistent safety strategies capable of identifying a potential toxicity risk early in the drug discovery pipeline is key. Human DILI is poorly predicted in animals, probably due to the well-known interspecies differences in drug metabolism, pharmacokinetics, and toxicity targets. For this reason, distinct cellular models from primary human hepatocytes or hepatoma cell lines cultured as 2D monolayers to emerging 3D culture systems or the use of multi-cellular systems have been proposed for hepatotoxicity studies. In order to mimic long-term hepatotoxicity in vitro, cell models, which maintain hepatic phenotype for a suitably long period, should be used. On the other hand, repeated-dose administration is a more relevant scenario for therapeutics, providing information not only about toxicity, but also about cumulative effects and/or delayed responses. In this review, we evaluate the existing cell models for DILI prediction focusing on chronic hepatotoxicity, highlighting how better characterization and mechanistic studies could lead to advance DILI prediction.
Collapse
|
4
|
Yousuf S, Shabir S, Singh MP. Protection Against Drug-Induced Liver Injuries Through Nutraceuticals via Amelioration of Nrf-2 Signaling. JOURNAL OF THE AMERICAN NUTRITION ASSOCIATION 2022; 42:495-515. [PMID: 35771985 DOI: 10.1080/27697061.2022.2089403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatotoxicity caused by the overdose of various medications is a leading cause of drug-induced liver injury. Overdose of drugs causes hepatocellular necrosis. Nutraceuticals are reported to prevent drug-induced liver failure. The present article aims to review the protection provided by various medicinal plants against hepatotoxic drugs. Ayurveda is considered a conventional restorative arrangement in India. It is consistently used for ages and is still used today to cure drug-induced hepatotoxicity by focusing on antioxidant stress response pathways such as the nuclear factor erythroid-2 (Nrf-2) antioxidant response element signaling pathway. Nrf-2 is a key transcription factor that entangles Kelch-like ECH-associating protein 1, a protein found in the cell cytoplasm. Some antioxidant enzymes, such as gamma glycine cysteine ligase (γ-GCL) and heme oxygenase-1 (HO-1), are expressed in Nrf-2 targeted genes. Their expression, in turn, decreases the stimulation of hepatic macrophages and induces the messenger RNA (mRNA) articulation of proinflammatory factors including tumor necrosis factor α. This review will cover various medicinal plants from a mechanistic view and how they stimulate and interact with Nrf-2, the master regulator of the antioxidant response to counterbalance oxidative stress. Interestingly, therapeutic plants have become popular in the medical sector due to safer yet effective supplementation for the prevention and treatment of new human diseases. The contemporary study is expected to collect information on a variety of therapeutic traditional herbs that have been studied in the context of drug-induced liver toxicity, as nutraceuticals are the most effective treatments for oxidative stress-induced hepatotoxicity. They are less genotoxic, have a lower cost, and are readily available. Together, nutraceuticals exert protective effects against drug-induced hepatotoxicity through the inhibition of oxidative stress, inflammation, and apoptosis. Its mechanism(s) are considered to be associated with the γ-GCL/HO-1 and Nrf-2 signaling pathways. KEY TEACHING POINTSThe liver is the most significant vital organ that carries out metabolic activities of the body such as the synthesis of glycogen, the formation of triglycerides and cholesterol, as well as the formation of bile.Acute liver failure is caused by the consumption of certain drugs; drug-induced liver injury is the major condition.The chemopreventive activity of nutraceuticals may be related to oxidative stress reduction and attenuation of biosynthetic processes involved in hepatic injury via amelioration of the nuclear factor erythroid-2 (Nrf-2) signaling pathway.Nrf-2 is a key transcription factor that is found in the cell cytoplasm resulting in the expression of various genes such as gamma glycine cysteine ligase and heme oxygenase-1.Nutraceutical-rich phytochemicals possess high antioxidant activity, which helps in the prevention of hepatic injury.
Collapse
Affiliation(s)
- Sumaira Yousuf
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Shabnam Shabir
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Mahendra P Singh
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
5
|
Liu J, Li T, Li R, Wang J, Li P, Niu M, Zhang L, Li C, Wang T, Xiao X, Wang JB, Wang Y. Hepatic Organoid-Based High-Content Imaging Boosts Evaluation of Stereoisomerism-Dependent Hepatotoxicity of Stilbenes in Herbal Medicines. Front Pharmacol 2022; 13:862830. [PMID: 35656304 PMCID: PMC9152290 DOI: 10.3389/fphar.2022.862830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
The complexity of chemical components of herbal medicines often causes great barriers to toxicity research. In our previous study, we have found the critical divergent hepatotoxic potential of a pair of stilbene isomers in a famous traditional Chinese herb, Polygonum multiflorum (Heshouwu in Chinese). However, the high-throughput in vitro evaluation for such stereoisomerism-dependent hepatotoxicity is a critical challenge. In this study, we used a hepatic organoids–based in vitro hepatotoxic evaluation system in conjunction with using high content imaging to differentiate in vivo organ hepatotoxicity of the 2,3,5,4′-tetrahydroxy-trans-stilbene-2-O-β-glucoside (trans-SG) and its cis-isomer (cis-SG). By using such an organoid platform, we successfully differentiated the two stereoisomers’ hepatotoxic potentials, which were in accordance with their differences in rodents and humans. The lesion mechanism of the toxic isomer (cis-SG) was further found as the mitochondrial injury by high-content imaging, and its hepatotoxicity could be dose-dependently inhibited by the mitochondrial protective agent. These results demonstrated the utility of the organoids-based high-content imaging approach in evaluating and predicting organ toxicity of natural products in a low-cost and high-throughput way. It also suggested the rationale to use long-term cultured organoids as an alternative toxicology platform to identify early and cautiously the hepatotoxic new drug candidates in the preclinical phase.
Collapse
Affiliation(s)
- Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Tingting Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ruihong Li
- Stem Cells and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Jie Wang
- Stem Cells and Tissue Engineering Lab, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Pengyan Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Ming Niu
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Le Zhang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Chunyu Li
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tao Wang
- Nephrology Combined with Traditional Chinese and Western Medicine, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaohe Xiao
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Jia-Bo Wang
- Integrative Medical Center, The Fifth Medical Centre, Chinese PLA General Hospital, Beijing, China.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
6
|
Kim D, Kim M, Kim TW, Choe YH, Noh HS, Jeon HM, Kim H, Lee Y, Hur G, Lee KM, Shin K, Lee SI, Lee SH. Lymph node fibroblastic reticular cells regulate differentiation and function of CD4 T cells via CD25. J Exp Med 2022; 219:e20200795. [PMID: 35315876 PMCID: PMC8943836 DOI: 10.1084/jem.20200795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 03/31/2021] [Accepted: 01/05/2022] [Indexed: 11/16/2022] Open
Abstract
Lymph node fibroblastic reticular cells (LN-FRCs) provide functional structure to LNs and play important roles in interactions between T cells and antigen-presenting cells. However, the direct impact of LN-FRCs on naive CD4+ T cell differentiation has not been explored. Here, we show that T cell zone FRCs of LNs (LN-TRCs) express CD25, the α chain of the IL-2 receptor heterotrimer. Moreover, LN-TRCs trans-present IL-2 to naive CD4+ T cells through CD25, thereby facilitating early IL-2-mediated signaling. CD25-deficient LN-TRCs exhibit attenuated STAT5 phosphorylation in naive CD4+ T cells during T cell differentiation, promoting T helper 17 (Th17) cell differentiation and Th17 response-related gene expression. In experimental autoimmune disease models, disease severity was elevated in mice lacking CD25 in LN-TRCs. Therefore, our results suggest that CD25 expression on LN-TRCs regulates CD4+ T cell differentiation by modulating early IL-2 signaling of neighboring, naive CD4+ T cells, influencing the overall properties of immune responses.
Collapse
Affiliation(s)
- Dongeon Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- VA Palo Alto Health Care System, Stanford University School of Medicine, Stanford, CA
| | - Mingyo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Tae Woo Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yong-ho Choe
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hae Sook Noh
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Hyun Min Jeon
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - HyunSeok Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Youngeun Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gayeong Hur
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- R&D Division, GenoFocus Inc., Daejeon, South Korea
| | - Kyung-Mi Lee
- Department of Biochemistry and Molecular Biology, Korea University College of Medicine, Seoul, South Korea
| | - Kihyuk Shin
- Department of Dermatology, Pusan National University Yangsan Hospital, Yangsan, South Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Sang-il Lee
- Division of Rheumatology, Department of Internal Medicine and Institute of Health Science, Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Jinju, South Korea
| | - Seung-Hyo Lee
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- Biomedical Science and Engineering Interdisciplinary Program, Biomedical Research Center, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
- KAIST Institute for the BioCentury, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
7
|
Wei H, Li AP. Permeabilized Cryopreserved Human Hepatocytes as an Exogenous Metabolic System in a Novel Metabolism-Dependent Cytotoxicity Assay for the Evaluation of Metabolic Activation and Detoxification of Drugs Associated with Drug-Induced Liver Injuries: Results with Acetaminophen, Amiodarone, Cyclophosphamide, Ketoconazole, Nefazodone, and Troglitazone. Drug Metab Dispos 2022; 50:140-149. [PMID: 34750194 DOI: 10.1124/dmd.121.000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/05/2021] [Indexed: 11/22/2022] Open
Abstract
We report here a novel in vitro experimental system, the metabolism-dependent cytotoxicity assay (MDCA), for the definition of the roles of hepatic drug metabolism in toxicity. MDCA employs permeabilized cofactor-supplemented cryopreserved human hepatocytes (MetMax Human Hepatocytes, MMHH), as an exogenous metabolic activating system, and human embryonic kidney 293 (HEK293) cells, a cell line devoid of drug-metabolizing enzyme activity, as target cells for the quantification of drug toxicity. The assay was performed in the presence and absence of cofactors for key drug metabolism pathways known to play key roles in drug toxicity: NADPH/NAD+ for phase 1 oxidation, uridine 5'-diphosphoglucuronic acid (UDPGA) for uridine 5'-diphospho-glucuronosyltransferase (UGT) mediated glucuronidation, 3'-phosphoadenosine-5'-phosphosulfate (PAPS) for cytosolic sulfotransferase (SULT) mediated sulfation, and glutathione (GSH) for glutathione S-transferase (GST) mediated GSH conjugation. Six drugs with clinically significant hepatoxicity, resulting in liver failure or a need for liver transplantation: acetaminophen, amiodarone, cyclophosphamide, ketoconazole, nefazodone, and troglitazone were evaluated. All six drugs exhibited cytotoxicity enhancement by NADPH/NAD+, suggesting metabolic activation via phase 1 oxidation. Attenuation of cytotoxicity by UDPGA was observed for acetaminophen, ketoconazole, and troglitazone, by PAPS for acetaminophen, ketoconazole, and troglitazone, and by GSH for all six drugs. Our results suggest that MDCA can be applied toward the elucidation of metabolic activation and detoxification pathways, providing information that can be applied in drug development to guide structure optimization to reduce toxicity and to aid the assessment of metabolism-based risk factors for drug toxicity. GSH detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites, a key property of drugs with idiosyncratic hepatotoxicity. SIGNIFICANCE STATEMENT: Application of the metabolism-dependent cytotoxicity assay (MDCA) for the elucidation of the roles of metabolic activation and detoxification pathways in drug toxicity may provide information to guide structure optimization in drug development to reduce hepatotoxic potential and to aid the assessment of metabolism-based risk factors. Glutathione (GSH) detoxification represents an endpoint for the identification of drugs forming cytotoxic reactive metabolites that may be applied toward the evaluation of idiosyncratic hepatotoxicity.
Collapse
Affiliation(s)
- Hong Wei
- In Vitro ADMET Laboratories, Inc., Columbia, MD
| | - Albert P Li
- In Vitro ADMET Laboratories, Inc., Columbia, MD
| |
Collapse
|
8
|
Segovia-Zafra A, Di Zeo-Sánchez DE, López-Gómez C, Pérez-Valdés Z, García-Fuentes E, Andrade RJ, Lucena MI, Villanueva-Paz M. Preclinical models of idiosyncratic drug-induced liver injury (iDILI): Moving towards prediction. Acta Pharm Sin B 2021; 11:3685-3726. [PMID: 35024301 PMCID: PMC8727925 DOI: 10.1016/j.apsb.2021.11.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 02/08/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (iDILI) encompasses the unexpected harms that prescription and non-prescription drugs, herbal and dietary supplements can cause to the liver. iDILI remains a major public health problem and a major cause of drug attrition. Given the lack of biomarkers for iDILI prediction, diagnosis and prognosis, searching new models to predict and study mechanisms of iDILI is necessary. One of the major limitations of iDILI preclinical assessment has been the lack of correlation between the markers of hepatotoxicity in animal toxicological studies and clinically significant iDILI. Thus, major advances in the understanding of iDILI susceptibility and pathogenesis have come from the study of well-phenotyped iDILI patients. However, there are many gaps for explaining all the complexity of iDILI susceptibility and mechanisms. Therefore, there is a need to optimize preclinical human in vitro models to reduce the risk of iDILI during drug development. Here, the current experimental models and the future directions in iDILI modelling are thoroughly discussed, focusing on the human cellular models available to study the pathophysiological mechanisms of the disease and the most used in vivo animal iDILI models. We also comment about in silico approaches and the increasing relevance of patient-derived cellular models.
Collapse
Affiliation(s)
- Antonio Segovia-Zafra
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - Daniel E. Di Zeo-Sánchez
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Carlos López-Gómez
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Zeus Pérez-Valdés
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| | - Eduardo García-Fuentes
- Unidad de Gestión Clínica de Aparato Digestivo, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga 29010, Spain
| | - Raúl J. Andrade
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
| | - M. Isabel Lucena
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
- Centro de Investigación Biomédica en Red en el Área Temática de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid 28029, Spain
- Platform ISCIII de Ensayos Clínicos, UICEC-IBIMA, Málaga 29071, Spain
| | - Marina Villanueva-Paz
- Unidad de Gestión Clínica de Gastroenterología, Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, Málaga 29071, Spain
| |
Collapse
|
9
|
de Hoyos-Vega JM, Hong HJ, Stybayeva G, Revzin A. Hepatocyte cultures: From collagen gel sandwiches to microfluidic devices with integrated biosensors. APL Bioeng 2021; 5:041504. [PMID: 34703968 PMCID: PMC8519630 DOI: 10.1063/5.0058798] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocytes are parenchymal cells of the liver responsible for drug detoxification, urea and bile production, serum protein synthesis, and glucose homeostasis. Hepatocytes are widely used for drug toxicity studies in bioartificial liver devices and for cell-based liver therapies. Because hepatocytes are highly differentiated cells residing in a complex microenvironment in vivo, they tend to lose hepatic phenotype and function in vitro. This paper first reviews traditional culture approaches used to rescue hepatic function in vitro and then discusses the benefits of emerging microfluidic-based culture approaches. We conclude by reviewing integration of hepatocyte cultures with bioanalytical or sensing approaches.
Collapse
Affiliation(s)
- Jose M. de Hoyos-Vega
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Hye Jin Hong
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Gulnaz Stybayeva
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| | - Alexander Revzin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55902, USA
| |
Collapse
|
10
|
Serras AS, Rodrigues JS, Cipriano M, Rodrigues AV, Oliveira NG, Miranda JP. A Critical Perspective on 3D Liver Models for Drug Metabolism and Toxicology Studies. Front Cell Dev Biol 2021; 9:626805. [PMID: 33732695 PMCID: PMC7957963 DOI: 10.3389/fcell.2021.626805] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
The poor predictability of human liver toxicity is still causing high attrition rates of drug candidates in the pharmaceutical industry at the non-clinical, clinical, and post-marketing authorization stages. This is in part caused by animal models that fail to predict various human adverse drug reactions (ADRs), resulting in undetected hepatotoxicity at the non-clinical phase of drug development. In an effort to increase the prediction of human hepatotoxicity, different approaches to enhance the physiological relevance of hepatic in vitro systems are being pursued. Three-dimensional (3D) or microfluidic technologies allow to better recapitulate hepatocyte organization and cell-matrix contacts, to include additional cell types, to incorporate fluid flow and to create gradients of oxygen and nutrients, which have led to improved differentiated cell phenotype and functionality. This comprehensive review addresses the drug-induced hepatotoxicity mechanisms and the currently available 3D liver in vitro models, their characteristics, as well as their advantages and limitations for human hepatotoxicity assessment. In addition, since toxic responses are greatly dependent on the culture model, a comparative analysis of the toxicity studies performed using two-dimensional (2D) and 3D in vitro strategies with recognized hepatotoxic compounds, such as paracetamol, diclofenac, and troglitazone is performed, further highlighting the need for harmonization of the respective characterization methods. Finally, taking a step forward, we propose a roadmap for the assessment of drugs hepatotoxicity based on fully characterized fit-for-purpose in vitro models, taking advantage of the best of each model, which will ultimately contribute to more informed decision-making in the drug development and risk assessment fields.
Collapse
Affiliation(s)
- Ana S. Serras
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana S. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Madalena Cipriano
- Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Stuttgart, Germany
| | - Armanda V. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno G. Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana P. Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
11
|
Jin M, Yi X, Liao W, Chen Q, Yang W, Li Y, Li S, Gao Y, Peng Q, Zhou S. Advancements in stem cell-derived hepatocyte-like cell models for hepatotoxicity testing. Stem Cell Res Ther 2021; 12:84. [PMID: 33494782 PMCID: PMC7836452 DOI: 10.1186/s13287-021-02152-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/07/2021] [Indexed: 12/14/2022] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of clinical trial failures and high drug attrition rates. Currently, the commonly used hepatocyte models include primary human hepatocytes (PHHs), animal models, and hepatic cell lines. However, these models have disadvantages that include species-specific differences or inconvenient cell extraction methods. Therefore, a novel, inexpensive, efficient, and accurate model that can be applied to drug screening is urgently needed. Owing to their self-renewable ability, source abundance, and multipotent competence, stem cells are stable sources of drug hepatotoxicity screening models. Because 3D culture can mimic the in vivo microenvironment more accurately than can 2D culture, the former is commonly used for hepatocyte culture and drug screening. In this review, we introduce the different sources of stem cells used to generate hepatocyte-like cells and the models for hepatotoxicity testing that use stem cell-derived hepatocyte-like cells.
Collapse
Affiliation(s)
- Meixian Jin
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Xiao Yi
- Department of Gynecology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wei Liao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qi Chen
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Wanren Yang
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yang Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shao Li
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yi Gao
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Qing Peng
- General Surgery Center, Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Shuqin Zhou
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Abstract
Drug-induced liver injury (DILI) is a leading cause of attrition during the early and late stages of drug development and after a drug is marketed. DILI is generally classified as either intrinsic or idiosyncratic. Intrinsic DILI is dose dependent and predictable (e.g., acetaminophen toxicity). However, predicting the occurrence of idiosyncratic DILI, which has a very low incidence and is associated with severe liver damage, is difficult because of its complex nature and the poor understanding of its mechanism. Considering drug metabolism and pharmacokinetics, we established experimental animal models of DILI for 14 clinical drugs that cause idiosyncratic DILI in humans, which is characterized by the formation of reactive metabolites and the involvement of both innate and adaptive immunity. On the basis of the biomarker data obtained from the animal models, we developed a cell-based assay system that predicts the potential risks of drugs for inducing DILI. These findings increase our understanding of the mechanisms of DILI and may help predict and prevent idiosyncratic DILI due to certain drugs.
Collapse
Affiliation(s)
- Tsuyoshi Yokoi
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| | - Shingo Oda
- Department of Drug Safety Sciences, Division of Clinical Pharmacology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan;
| |
Collapse
|
13
|
Inoue T, Iwazaki N, Araki T, Hitotsumachi H. Human-Induced Pluripotent Stem Cell-Derived Hepatocytes and their Culturing Methods to Maintain Liver Functions for Pharmacokinetics and Safety Evaluation of Pharmaceuticals. Curr Pharm Biotechnol 2020; 21:773-779. [PMID: 32003687 DOI: 10.2174/1389201021666200131123524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/23/2019] [Accepted: 12/31/2019] [Indexed: 12/12/2022]
Abstract
Human hepatocytes are essential cell types for pharmacokinetics and the safety evaluation of pharmaceuticals. However, widely used primary hepatocytes with individual variations in liver function lose those functions rapidly in culture. Hepatic cell lines are convenient to use but have low liver functions. Human-Induced Pluripotent Stem (hiPS) cells can be expanded and potentially differentiated into any cell or tissue, including the liver. HiPS cell-derived Hepatocyte-Like Cells (hiPSHeps) are expected to be extensively used as consistent functional human hepatocytes. Many laboratories are investigating methods of using hiPS cells to differentiate hepatocytes, but the derived cells still have immature liver functions. In this paper, we describe the current uses and limitations of conventional hepatic cells, evaluating the suitability of hiPS-Heps to pharmacokinetics and the safety evaluation of pharmaceuticals, and discuss the potential future use of non-conventional non-monolayer culture methods to derive fully functional hiPS-Heps.
Collapse
Affiliation(s)
- Tomoaki Inoue
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Norihiko Iwazaki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | - Tetsuro Araki
- Consortium for Safety Assessment using Human iPS Cells (CSAHi), Japan
| | | |
Collapse
|
14
|
Oda S, Uchida Y, Aleo MD, Koza-Taylor PH, Matsui Y, Hizue M, Marroquin LD, Whritenour J, Uchida E, Yokoi T. An in vitro coculture system of human peripheral blood mononuclear cells with hepatocellular carcinoma-derived cells for predicting drug-induced liver injury. Arch Toxicol 2020; 95:149-168. [PMID: 32816093 DOI: 10.1007/s00204-020-02882-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022]
Abstract
Preventing clinical drug-induced liver injury (DILI) remains a major challenge, because DILI develops via multifactorial mechanisms. Immune and inflammatory reactions are considered important mechanisms of DILI; however, biomarkers from in vitro systems using immune cells have not been comprehensively studied. The aims of this study were (1) to identify promising biomarker genes for predicting DILI in an in vitro coculture model of peripheral blood mononuclear cells (PBMCs) with a human liver cell line, and (2) to evaluate these genes as predictors of DILI using a panel of drugs with different clinical DILI risk. Transcriptome-wide analysis of PBMCs cocultured with HepG2 or differentiated HepaRG cells that were treated with several drugs revealed an appropriate separation of DILI-positive and DILI-negative drugs, from which 12 putative biomarker genes were selected. To evaluate the predictive performance of these genes, PBMCs cocultured with HepG2 cells were exposed to 77 different drugs, and gene expression levels in PBMCs were determined. The MET proto-oncogene receptor tyrosine kinase (MET) showed the highest area under the receiver-operating characteristic curve (AUC) value of 0.81 among the 12 genes with a high sensitivity/specificity (85/66%). However, a stepwise logistic regression model using the 12 identified genes showed the highest AUC value of 0.94 with a high sensitivity/specificity (93/86%). Taken together, we established a coculture system using PBMCs and HepG2 cells and selected biomarkers that can predict DILI risk. The established model would be useful in detecting the DILI potential of compounds, in particular those that involve an immune mechanism.
Collapse
Affiliation(s)
- Shingo Oda
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Yuka Uchida
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Michael D Aleo
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
- TOXinsights LLC, East Lyme, CT, USA
| | | | - Yusuke Matsui
- Laboratory of Intelligence Healthcare, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masanori Hizue
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Lisa D Marroquin
- Drug Safety Research and Development, Pfizer Inc, Groton, CT, USA
| | | | - Eri Uchida
- Drug Safety Research and Development, Pfizer Inc, Tokyo, Japan
| | - Tsuyoshi Yokoi
- Division of Clinical Pharmacology, Department of Drug Safety Sciences, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
15
|
Long X, Song J, Zhao X, Zhang Y, Wang H, Liu X, Suo H. Silkworm pupa oil attenuates acetaminophen-induced acute liver injury by inhibiting oxidative stress-mediated NF-κB signaling. Food Sci Nutr 2020; 8:237-245. [PMID: 31993149 PMCID: PMC6977511 DOI: 10.1002/fsn3.1296] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/05/2019] [Indexed: 12/14/2022] Open
Abstract
Acetaminophen (APAP) overdose causes severe hepatotoxicity and acute liver failure. The current study aims to investigate the protection effects of silkworm pupa oil (SPO) against acute hepatic injury in APAP-exposed Kunming mice. Our results showed that the liver index and the levels of serum alanine transaminase (ALT) and aspartate transaminase (AST) in mice subjected to APAP treatment were decreased by SPO. Supplement of SPO also restored hepatic histopathological alterations induced by APAP. The APAP-induced increase in proinflammatory cytokines, including TNF-α, IL-6, and IL-12, was reversed by SPO, which was mediated by the reduction of nuclear factor (NF)-κB p65 expression and the increase in the expression of IκB-α in liver tissue. Moreover, SPO inhibited APAP-triggered oxidative stress by decreasing MDA level and increasing the activities of SOD and GSH-Px. Collectively, SPO attenuated hepatic injury induced by APAP, which attributed to the suppression of oxidative stress-mediated NF-κB signaling. Our findings suggest that SPO supplementation may be potential strategy against acute hepatic injury.
Collapse
Affiliation(s)
- Xingyao Long
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Jiajia Song
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
| | - Yu Zhang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Hongwei Wang
- College of Food ScienceSouthwest UniversityChongqingChina
| | - Xinqi Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthBeijing Technology and Business UniversityBeijingChina
| | - Huayi Suo
- College of Food ScienceSouthwest UniversityChongqingChina
| |
Collapse
|
16
|
Feng C, Chen H, Yuan X, Sun M, Chu K, Liu H, Rui M. Gene Expression Data Based Deep Learning Model for Accurate Prediction of Drug-Induced Liver Injury in Advance. J Chem Inf Model 2019; 59:3240-3250. [PMID: 31188585 DOI: 10.1021/acs.jcim.9b00143] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Drug-induced liver injury (DILI), one of the most common adverse effects, leads to drug development failure or withdrawal from the market in most cases, showing an emerging challenge that is to accurately predict DILI in the early stage. Recently, the vast amount of gene expression data provides us valuable information for distinguishing DILI on a genomic scale. Moreover, the deep learning algorithm is a powerful strategy to automatically learn important features from raw and noisy data and shows great success in the field of medical diagnosis. In this study, a gene expression data based deep learning model was developed to predict DILI in advance by using gene expression data associated with DILI collected from ArrayExpress and then optimized by feature gene selection and parameters optimization. In addition, the previous machine learning algorithm support vector machine (SVM) was also used to construct another prediction model based on the same data sets, comparing the model performance with the optimal DL model. Finally, the evaluation test using 198 randomly selected samples showed that the optimal DL model achieved 97.1% accuracy, 97.4% sensitivity, 96.8% specificity, 0.942 matthews correlation coefficient, and 0.989 area under the ROC curve, while the performance of SVM model only reached 88.9% accuracy, 78.8% sensitivity, 99.0% specificity, 0.794 matthews correlation coefficient, and 0.901 area under the ROC curve. Furthermore, external data sets verification and animal experiments were conducted to assess the optimal DL model performance. Finally, the predicted results of the optimal DL model were almost consistent with experiment results. These results indicated that our gene expression data based deep learning model could systematically and accurately predict DILI in advance. It could be a useful tool to provide safety information for drug discovery and clinical rational drug use in early stage and become an important part of drug safety assessment.
Collapse
Affiliation(s)
- Chunlai Feng
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Hengwei Chen
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Xianqin Yuan
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Mengqiu Sun
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Kexin Chu
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Hanqin Liu
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| | - Mengjie Rui
- Department of Pharmaceutics, School of Pharmacy , Jiangsu University , Zhenjiang 212013 , PR China
| |
Collapse
|
17
|
Donato MT, Tolosa L. Stem-cell derived hepatocyte-like cells for the assessment of drug-induced liver injury. Differentiation 2019; 106:15-22. [PMID: 30844688 DOI: 10.1016/j.diff.2019.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 01/30/2019] [Accepted: 02/14/2019] [Indexed: 12/26/2022]
Abstract
Drug-induced liver injury is a major cause of drug discovery failure in clinical trials and a leading cause of liver disease. Current preclinical drug testing does not predict hepatotoxicity which highlights the importance of developing highly predictive cell-based models. The use of stem cell technology and differentiation into hepatocyte-like cells (HLCs) could provide a stable source of hepatocytes for multiple applications, including drug screening. HLCs derived from both embryonic and induced pluripotent stem cells have been used to accurately predict hepatotoxicity as well as to test individual-specific toxicity. Although there are still many limitations, mainly related to the lack of fully maturity of the HLCs derived from pluripotent stem cells, they could provide a relative unlimited and consistent supply of cells with stable phenotype, that could be obtained from different donors, enabling the generation of a library of HLCs representative of the variability of human population.
Collapse
Affiliation(s)
- M Teresa Donato
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Odontología, Universidad de Valencia, Valencia, 46010, Spain.
| | - Laia Tolosa
- Unidad de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe, Valencia, 46026, Spain
| |
Collapse
|
18
|
Murad W, Abbass T, Seddek AL. Hepatic zonation of toxic metabolite formation: perspectives of matrix-assisted laser desorption mass spectrometry imaging. Arch Toxicol 2018; 92:3435-3437. [PMID: 30284600 DOI: 10.1007/s00204-018-2310-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 09/13/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Walaa Murad
- Histology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Tahany Abbass
- Histology Department, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Abdel-Latif Seddek
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt.
| |
Collapse
|
19
|
Parafati M, Kirby RJ, Khorasanizadeh S, Rastinejad F, Malany S. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis. Dis Model Mech 2018; 11:11/9/dmm033530. [PMID: 30254132 PMCID: PMC6176998 DOI: 10.1242/dmm.033530] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Hepatic steatosis, a reversible state of metabolic dysregulation, can promote the onset of nonalcoholic steatohepatitis (NASH), and its transition is thought to be critical in disease evolution. The association between endoplasmic reticulum (ER) stress response and hepatocyte metabolism disorders prompted us to characterize ER stress-induced hepatic metabolic dysfunction in human induced pluripotent stem cell-derived hepatocytes (hiPSC-Hep), to explore regulatory pathways and validate a phenotypic in vitro model for progression of liver steatosis. We treated hiPSC-Hep with a ratio of unsaturated and saturated fatty acids in the presence of an inducer of ER stress to synergistically promote triglyceride accumulation and dysregulate lipid metabolism. We monitored lipid accumulation by high-content imaging and measured gene regulation by RNA sequencing and reverse transcription quantitative PCR analyses. Our results show that ER stress potentiated intracellular lipid accumulation by 5-fold in hiPSC-Hep in the absence of apoptosis. Transcriptome pathway analysis identified ER stress pathways as the most significantly dysregulated of all pathways affected. Obeticholic acid dose dependently inhibited lipid accumulation and modulated gene expression downstream of the farnesoid X receptor. We were able to identify modulation of hepatic markers and gene pathways known to be involved in steatosis and nonalcoholic fatty liver disease (NAFLD), in support of a hiPSC-Hep disease model that is relevant to clinical data for human NASH. Our results show that the model can serve as a translational discovery platform for the understanding of molecular pathways involved in NAFLD, and can facilitate the identification of novel therapeutic molecules based on high-throughput screening strategies. Summary: Our study demonstrates expanded use of human induced pluripotent stem cell-derived hepatocytes for molecular studies and drug screening, to evaluate new therapeutics with an antisteatotic mechanism of action for nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Maddalena Parafati
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| | - R Jason Kirby
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| | - Sepideh Khorasanizadeh
- Center for Metabolic Origins of Disease, Sanford Burham Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Center for Metabolic Origins of Disease, Sanford Burham Prebys Medical Discovery Institute, 6400 Sanger Rd, Orlando, FL 32827, USA
| | - Siobhan Malany
- Translational Biology, Conrad Prebys Center for Chemical Genomics, Orlando, FL 32827, USA
| |
Collapse
|
20
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
21
|
Meseguer-Ripolles J, Lucendo-Villarin B, Wang Y, Hay DC. Semi-automated Production of Hepatocyte Like Cells from Pluripotent Stem Cells. J Vis Exp 2018:57995. [PMID: 30102283 PMCID: PMC6126566 DOI: 10.3791/57995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Human pluripotent stem cells represent a renewable source of human tissue. Our research is focused on generating human liver tissue from human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). Current differentiation procedures generate human hepatocyte-like cells (HLCs) displaying a mixture of fetal and adult traits. To improve cell phenotype, we have fully defined our differentiation procedure and the cell niche, resulting in the generation of cell populations which display improved gene expression and function. While these studies mark progress, the ability to generate large quantities of multi well plates for screening has been limited by labour intensive procedures and batch to batch variation. To tackle this issue, we have developed a semi-automated platform to differentiate pluripotent stem cells into HLCs. Stem cell seeding and differentiation were performed using liquid handling and automatic pipetting systems in 96-well plate format. Following the differentiation, cell phenotype was analyzed using automated microscopy and a multi well luminometer.
Collapse
Affiliation(s)
| | | | - Yu Wang
- MRC Centre for Regenerative Medicine, University of Edinburgh
| | - David C Hay
- MRC Centre for Regenerative Medicine, University of Edinburgh;
| |
Collapse
|
22
|
Meseguer-Ripolles J, Khetani SR, Blanco JG, Iredale M, Hay DC. Pluripotent Stem Cell-Derived Human Tissue: Platforms to Evaluate Drug Metabolism and Safety. AAPS J 2017; 20:20. [PMID: 29270863 PMCID: PMC5804345 DOI: 10.1208/s12248-017-0171-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/15/2022] Open
Abstract
Despite the improvements in drug screening, high levels of drug attrition persist. Although high-throughput screening platforms permit the testing of compound libraries, poor compound efficacy or unexpected organ toxicity are major causes of attrition. Part of the reason for drug failure resides in the models employed, most of which are not representative of normal organ biology. This same problem affects all the major organs during drug development. Hepatotoxicity and cardiotoxicity are two interesting examples of organ disease and can present in the late stages of drug development, resulting in major cost and increased risk to the patient. Currently, cell-based systems used within industry rely on immortalized or primary cell lines from donated tissue. These models possess significant advantages and disadvantages, but in general display limited relevance to the organ of interest. Recently, stem cell technology has shown promise in drug development and has been proposed as an alternative to current industrial systems. These offerings will provide the field with exciting new models to study human organ biology at scale and in detail. We believe that the recent advances in production of stem cell-derived hepatocytes and cardiomyocytes combined with cutting-edge engineering technologies make them an attractive alternative to current screening models for drug discovery. This will lead to fast failing of poor drugs earlier in the process, delivering safer and more efficacious medicines for the patient.
Collapse
Affiliation(s)
| | - Salman R Khetani
- University of Illinois at Chicago, Bioengineering (MC 063) 851 S Morgan St, 218 SEO, Chicago, Illinois, 60607, USA
| | - Javier G Blanco
- School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Mairi Iredale
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - David C Hay
- MRC Centre for Regenerative Medicine, 5 Little France Drive, Edinburgh, EH16 4UU, UK.
| |
Collapse
|