1
|
Hatem G, Faria AM, Pinto MB, Salamova A, Teixeira JP, Costa C, Madureira J. Exposure to per-and poly-fluoroalkyl substances and respiratory and skin effects in children and adolescents: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137978. [PMID: 40120265 DOI: 10.1016/j.jhazmat.2025.137978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/20/2025] [Accepted: 03/15/2025] [Indexed: 03/25/2025]
Abstract
Despite being previously banned due to long-term health effects, Per- and polyfluoroalkyl substances (PFAS) remain widespread in the environment, accumulating in animals and humans. This systematic review and meta-analysis explores associations between exposure to PFAS and asthma onset, wheezing, atopic dermatitis, and eczema in children and adolescents while addressing exposure timing and sex-specific differences. After comprehensive search conducted in several databases, including risk of bias, study heterogeneity, and quality of evidence evaluation, the review included 28 observational studies, most with low risk of bias in all domains. PFAS exposure was not significantly associated with asthma onset (OR:1.03, CI:0.99;1.07), but revealed significantly lower association in the prenatal period (OR:0.97, CI:0.94;0.99), higher in the postnatal period (OR:1.20, CI:1.07;1.35), and no differences among sexes. PFAS exposure (mainly prenatal) was associated with 4 % significantly lower odds of wheezing (OR:0.96, CI:0.94;0.98), higher in girls (OR:0.94, CI:0.91;0.98) than in boys (OR:0.97, CI:0.94;1.00). No significant impact was noted on atopic dermatitis (OR:1.04, CI:0.94;1.16), while PFAS exposure was associated with 8 % significantly lower eczema odds (OR:0.92, CI:0.89;0.96). Evidence was insufficient to perform sensitivity analyses on atopic dermatitis and eczema. Additional research is needed on the impact of synergistic and co-exposure to other pollutants on children and adolescents' health.
Collapse
Affiliation(s)
- Georges Hatem
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Pública (ITR), Porto 4050-600, Portugal
| | - Ana Margarida Faria
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Pública (ITR), Porto 4050-600, Portugal
| | - Mariana Bessa Pinto
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal
| | - Amina Salamova
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, United States
| | - João Paulo Teixeira
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Pública (ITR), Porto 4050-600, Portugal
| | - Carla Costa
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Pública (ITR), Porto 4050-600, Portugal.
| | - Joana Madureira
- Environmental Health Department, National Institute of Health Dr Ricardo Jorge, Porto 4000-053, Portugal; EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto 4050-600, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Pública (ITR), Porto 4050-600, Portugal
| |
Collapse
|
2
|
Cai Z, Zhou G, Yu X, Du Y, Man Q, Wang WC. Perfluorooctanoic acid disrupts thyroid hormone biosynthesis by altering glycosylation of Na +/I - symporter in larval zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118249. [PMID: 40300534 DOI: 10.1016/j.ecoenv.2025.118249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
Perfluorooctanoic acid (PFOA) is a well-known thyroid disruptor that has been found to induce hypothyroidism. However, the exact molecular mechanism by which PFOA reduces thyroid hormone levels remains unclear. In this study, we have discovered that PFOA disrupts the glycosylation process of the sodium/iodide symporter (NIS), which inhibits the translocation of NIS onto the plasma membrane of thyroid follicular cells. Our results also demonstrate that PFOA disrupts thyroid stimulating hormone (TSH)-dependent signaling pathways involved in cellular glycosylation, impairing NIS glycosylation and reducing the ability of iodine uptake. This leads to an insufficiency of iodine for thyroid hormone production inside the follicular cells of the thyroid, resulting in lower-than-normal thyroxine levels detected in zebrafish larvae. These findings are consistent with our previously published data, which showed that PFOA induces neural behavior changes during the early stages of neuronal development in zebrafish. This new discovery provides valuable insights into the molecular characteristics of endocrine-disrupting chemicals (EDCs) that are known to affect the thyroid. It may also contribute to a better understanding of how altered glycosylation could be a potential risk factor for the association between exposure to specific per- and polyfluoroalkyl substances (PFAS) and various health effects in humans.
Collapse
Affiliation(s)
- Zhenzhen Cai
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China; Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
| | - Guangdi Zhou
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Xiaogang Yu
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China
| | - Yatao Du
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| | - Qiuhong Man
- Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Weiye Charles Wang
- Ministry of Education-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200292, China.
| |
Collapse
|
3
|
Gebreab K, Lawson A, Garcia G, Fox J, Benetti D, Stieglitz JD, Quinete NS, Berry JP. Bioconcentration and toxicity of perfluoroalkyl substances (PFAS) in embryonic stages of the ecologically and commercially relevant Olive Flounder (Paralichthys olivaceus), and the zebrafish (Danio rerio) embryo model system. ECOTOXICOLOGY (LONDON, ENGLAND) 2025:10.1007/s10646-025-02891-y. [PMID: 40316772 DOI: 10.1007/s10646-025-02891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/04/2025]
Abstract
Polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic habitats, and there are emerging concerns that these chemicals may pose risks to organisms in these ecosystems. The present study investigated bioconcentration and toxicity of PFAS including the "legacy" congener, perfluorooctanoic acid (PFOA), and seven long- and short-chain perfluoroether carboxylic acids (PFECA) in embryonic stages of both zebrafish (Danio rerio), as an established laboratory model, and Olive Flounder (Paralichthys olivaceus), as a relevant marine fish species. Bioconcentration factors were determined for both species with BCF values ranging from 22 to 1741 L kg-1. At high exposure concentrations (i.e., 1 mg L-1), BCF values were significantly higher for zebrafish compared to flounder. Notably, however, PFAS were also measured in untreated media used for both species, and at these lower concentrations (0.2 to 29 ng L-1 and 0.4 to 9 ng L-1, respectively) approaching environmentally relevant levels, calculated BCF values were significantly higher for flounder (215-1741 L kg-1) compared to zebrafish (120-327 L kg-1) embryos. At low exposure concentration (i.e., 1 µg L-1), as well as in exposure to control media, BCF values were significantly correlated with chain length and octanol/water partition coefficients (i.e., log KOW), suggesting a role of relative lipophilicity in uptake in both species. Median lethal concentrations (LC50), and corresponding critical body residues (CBR), in the zebrafish embryo model, ranged from 0.05 to 50 mg L-1, and 0.005 to 25 µmol g-1, respectively, and significantly correlated with PFAS chain length. However, while acute toxicity for PFOA was similar between zebrafish and flounder (20 and 21 mg L-1, respectively), no significant acute toxicity was observed for flounder embryos, over the same concentration range, and corresponding CBR values were, thus, significantly higher, for all PFECA. These findings suggest differences in both uptake and relative toxicity of PFAS in these two species. Phylogenetic differences with respect to molecular targets, as well as physicochemical factors (i.e., freshwater versus saltwater), in relation to uptake and toxicity, are discussed.
Collapse
Affiliation(s)
- Kiflom Gebreab
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA
| | - Ariel Lawson
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA
| | - Giancarlos Garcia
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA
| | - Jessica Fox
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA
| | - Daniel Benetti
- University of Miami, Rosenstiel School of Marine, Atmospheric and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA
| | - John D Stieglitz
- University of Miami, Rosenstiel School of Marine, Atmospheric and Earth Science, Department of Marine Biology and Ecology, Miami, FL, USA
| | - Natalia Soares Quinete
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA
- Florida International University, Institute of Environment, Miami, FL, USA
| | - John P Berry
- Florida International University, Department of Chemistry and Biochemistry, Miami, FL, USA.
- Florida International University, Institute of Environment, Miami, FL, USA.
| |
Collapse
|
4
|
Paul Friedman K, Thomas RS, Wambaugh JF, Harrill JA, Judson RS, Shafer TJ, Williams AJ, Lee JYJ, Loo LH, Gagné M, Long AS, Barton-Maclaren TS, Whelan M, Bouhifd M, Rasenberg M, Simanainen U, Sobanski T. Integration of new approach methods for the assessment of data-poor chemicals. Toxicol Sci 2025; 205:74-105. [PMID: 39969258 DOI: 10.1093/toxsci/kfaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
The use of new approach methods (NAMs), including high-throughput, in vitro bioactivity data, in setting a point-of-departure (POD) will accelerate the pace of human health hazard assessments. Combining hazard and exposure predictions into a bioactivity:exposure ratio (BER) for use in risk-based prioritization and utilizing NAM-based bioactivity flags to indicate potential hazards of interest for further prediction or mechanism-based screening together comprise a prospective approach for management of substances with limited traditional toxicity testing data. In this work, we demonstrate a NAM-based assessment case study conducted via the Accelerating the Pace of Chemical Risk Assessment initiative, a consortium of international research and regulatory scientists. The primary objective was to develop a reusable and adaptable approach for addressing chemicals with limited traditional toxicity data using a NAM-based POD, BER, and bioactivity-based flags for indication of putative endocrine, developmental, neurological, and immunosuppressive effects via data generation and interpretation for 200 substances. Multiple data streams, including in silico and in vitro NAMs, were used. High-throughput transcriptomics and phenotypic profiling data, as well as targeted biochemical and cell-based assays, were combined with generic high-throughput toxicokinetic models parameterized with chemical-specific data to estimate dose for comparison to exposure predictions. This case study further enables regulatory scientists from different international purviews to utilize efficient approaches for prospective chemical management, addressing hazard and risk-based data needs, while reducing the need for animal studies. This work demonstrates the feasibility of using a battery of toxicodynamic and toxicokinetic NAMs to provide a NAM-based POD for screening-level assessment.
Collapse
Affiliation(s)
- Katie Paul Friedman
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Russell S Thomas
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Joshua A Harrill
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Richard S Judson
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Antony J Williams
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency (EPA), Research Triangle Park, NC 27711, United States
| | - Jia-Ying Joey Lee
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Lit-Hsin Loo
- Innovations in Food and Chemical Safety Programme and Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138671, Singapore
| | - Matthew Gagné
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Alexandra S Long
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Tara S Barton-Maclaren
- Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Maurice Whelan
- Joint Research Centre (JRC), European Commission, Ispra (VA) 21047, Italy
| | - Mounir Bouhifd
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Mike Rasenberg
- Directorate of Hazard Assessment, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Ulla Simanainen
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| | - Tomasz Sobanski
- Directorate of Prioritisation and Integration, European Chemicals Agency (ECHA), Helsinki 00121, Finland
| |
Collapse
|
5
|
Pattarawat P, Zhan T, Fan Y, Zhang J, Yang H, Zhang Y, Moyd S, Douglas NC, Urbanek M, Buckley B, Burdette J, Zhang Q, Kim JYJ, Xiao S. Exposure to Long- and Short-Chain Per- and Polyfluoroalkyl Substances in Mice and Ovarian-Related Outcomes: An in Vivo and in Vitro Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2025; 133:57024. [PMID: 40194260 PMCID: PMC12120842 DOI: 10.1289/ehp14876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/17/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
BACKGROUND The extensive use of per- and polyfluoroalkyl substances (PFAS) has led to environmental contamination and bioaccumulation of these substances. Previous research linked PFAS exposure to female reproductive disorders, but the mechanism remains elusive. Further, most studies focused on legacy long-chain PFOA and PFOS, yet the reproductive impacts of other long-chain PFAS and short-chain alternatives are rarely explored. OBJECTIVES We investigated the effects of long- and short-chain PFAS on the mouse ovary and further evaluated the toxic mechanisms of long-chain perfluorononanoic acid (PFNA). METHODS A 3D in vitro mouse ovarian follicle culture system and an in vivo mouse model were used, together with approaches of reverse transcription-quantitative polymerase chain reaction (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), RNA sequencing (RNA-seq), pharmacological treatments, in situ zymography, histology, in situ hybridization, analytical chemistry, and benchmark dose modeling (BMD). Using these approaches, a wide range of exposure levels (1 - 250 μ M ) of long-chain PFAS (PFOA, PFOS, PFNA) and short-chain PFAS (PFHpA, PFBS, GenX) were first tested in cultured follicles to examine their effects on follicle growth, hormone secretion, and ovulation. We identified 250 μ M as the most effective concentration for further investigation into the toxic mechanisms of PFNA, followed by an in vivo mouse exposure model to verify the accumulation of PFNA in the ovary and its ovarian-disrupting effects. RESULTS In vitro cultured ovarian follicles exposed to long- but not short-chain PFAS showed poorer gonadotropin-dependent follicle growth, ovulation, and hormone secretion in comparison with control follicles. RT-qPCR and RNA-seq analyses revealed significant alterations in the expression of genes involved in follicle-stimulating hormone (FSH)-dependent follicle growth, luteinizing hormone (LH)-stimulated ovulation, and associated regulatory pathways in the PFNA-exposed group in comparison with the control group. The PPAR agonist experiment demonstrated that a peroxisome proliferator-activated receptor gamma (PPAR γ ) antagonist could reverse both the phenotypic and genotypic effects of PFNA exposure, restoring them to levels comparable to the control group. Furthermore, in vivo experiments confirmed that PFNA could accumulate in ovarian tissues and validated the in vitro findings. The BMD, in vitro, and in vivo extrapolation analyses estimated follicular rupture as the most sensitive end point and that observed effects occurred in the range of human exposure to long-chain PFAS. DISCUSSION Our study demonstrates that long-chain PFAS, particularly PFNA, act as a PPAR γ agonist in granulosa cells to interfere with gonadotropin-dependent follicle growth, hormone secretion, and ovulation; and exposure to high levels of PFAS may cause adverse ovarian outcomes. https://doi.org/10.1289/EHP14876.
Collapse
Affiliation(s)
- Pawat Pattarawat
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Tingjie Zhan
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Yihan Fan
- Department of Environmental Health Sciences, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, California, USA
| | - Jiyang Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Hilly Yang
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Ying Zhang
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Sarahna Moyd
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Nataki C. Douglas
- Department of Obstetrics, Gynecology and Reproductive Health, New Jersey Medical School (NJMS), Rutgers University, Newark, New Jersey, USA
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences (RBHS), Newark, New Jersey, USA
| | - Margrit Urbanek
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Buckley
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| | - Joanna Burdette
- Department of Pharmaceutical Biosciences, Center for Biomolecular Science, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Qiang Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Ji-Yong Julie Kim
- Department of Obstetrics & Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Shuo Xiao
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, New Jersey, USA
- Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, New Jersey, USA
- Center for Environmental Exposures and Disease (CEED), Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
6
|
Gredelj A, Roberts J, Kearney EM, Barrett EL, Haywood N, Sheffield D, Hodges G, Miller MA. Predicting aquatic toxicity of anionic hydrocarbon and perfluorinated surfactants using membrane-water partition coefficients from coarse-grained simulations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:1131-1144. [PMID: 40146042 DOI: 10.1039/d4em00649f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Anionic surfactants are widely used in commercial and industrial applications. For assessment of their environmental fate and effects, it is highly desirable to quantify the membrane-water partition/distribution coefficient (Kmw/Dmw). Here, we further develop a computational route to Dmw for anionic surfactants based on coarse-grained molecular dynamics simulations, validating it against new and existing experimental measurements. Having parameterised molecular fragments for the coarse-grained models, the simulations are used to predict Dmw for molecules where no experimental values are available. This expanded set of simulated Dmw values is then used to derive QSARs for acute toxicity of mono-constituent anionic surfactants in daphnids and fish, allowing for extrapolation to similar compounds without experimental Dmw values. For this study, we have selected hydrocarbon-based (HC) surfactants because of their widespread use, and perfluorinated (FC) surfactants as a challenging case study. Separate daphnid and fish QSARs demonstrate good fits, robustness and predictivity, and highlight differing toxicity relationships for HC and FC surfactants in daphnids. Overall, the combined use of simulated Dmw and derived QSARs is a promising approach for ecotoxicity screening of surfactants.
Collapse
Affiliation(s)
- Andrea Gredelj
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
- Department of Environmental Engineering, Norwegian Geotechnical Institute (NGI), P.O. Box. 3930 Ullevål Stadion, N-0806 Oslo, Norway.
| | - Jayne Roberts
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Eoin M Kearney
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| | - Elin L Barrett
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Nicola Haywood
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - David Sheffield
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Geoff Hodges
- Safety, Environmental and Regulatory Science (SERS), Unilever, Colworth Park, Sharnbrook MK44 1LQ, UK.
| | - Mark A Miller
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
7
|
Hull SD, Hougaard KS, Toft G, Petersen KKU, Flachs EM, Lindh C, Ramlau-Hansen CH, Wise LA, Wilcox A, Liew Z, Bonde JP, Tøttenborg SS. Fetal exposure to a mixture of endocrine-disrupting chemicals and biomarkers of male fecundity: A population-based cohort study. Andrology 2025. [PMID: 40220336 DOI: 10.1111/andr.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Fetal exposure to endocrine-disrupting chemicals (EDCs) has been associated with reduced male fecundity, but with few studies considering chemical mixtures. OBJECTIVES We assessed the association between fetal exposure to a mixture of EDCs and biomarkers of male fecundity in young adulthood. MATERIALS AND METHODS The study population comprised 841 young adult males enrolled in the Fetal Programming of Semen Quality cohort, established as a male offspring sub-cohort within the Danish National Birth Cohort. Maternal blood samples were analyzed for concentrations of per- and polyfluoroalkyl substances (PFAS), phthalate metabolites, and triclosan. We used quantile g-computation to estimate the change in semen characteristics, testicular volume, and reproductive hormone levels with 95% confidence intervals (CI) per one-quartile increase in all chemicals within three chemical mixtures; an overall chemical mixture, a PFAS mixture, and a non-persistent chemical mixture. RESULTS Fetal exposure to a one-quartile increase in the overall chemical mixture was associated with 4.0 million/mL lower sperm concentration (95% CI: -9.1, 1.1), 16.1 million lower total sperm count (95% CI: -33.8, 1.6), 0.5 mL smaller testicular volume (95% CI: -1.2, 0.3), 5% higher proportion of non-progressive and immotile spermatozoa (95% CI: 0.99, 1.11), and 7% higher concentration of FSH (95% CI: 0.99, 1.16), but with limited precision. Effect sizes were greatest in magnitude for sperm concentration and total sperm count. We observed somewhat similar associations for the PFAS mixture and no associations for the non-persistent chemical mixture. DISCUSSION Results suggest that fetal exposure to an overall mixture of EDCs may be adversely associated with several biomarkers of male fecundity, but findings are also compatible with null associations. These associations, if true, appeared to be driven by PFAS, but misclassification due to a single measurement of the phthalate metabolites and triclosan may have attenuated the results.
Collapse
Affiliation(s)
- Sidsel Dan Hull
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Karin Sørig Hougaard
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- National Research Center for the Working Environment, Copenhagen, Denmark
| | - Gunnar Toft
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Kajsa Kirstine Ugelvig Petersen
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Esben Meulengracht Flachs
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Christian Lindh
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | | | - Lauren A Wise
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Allen Wilcox
- National Institute of Environmental Health Sciences, Durham, North Carolina, USA
| | - Zeyan Liew
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jens Peter Bonde
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Sandra Søgaard Tøttenborg
- Department of Occupational and Environmental Medicine, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
8
|
De Battistis F, Djordjevic AB, Saso L, Mantovani A. Constitutive androstane receptor, liver pathophysiology and chemical contaminants: current evidence and perspectives. Front Endocrinol (Lausanne) 2025; 16:1472563. [PMID: 40255499 PMCID: PMC12005993 DOI: 10.3389/fendo.2025.1472563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The Constitutive Androstane Receptor (CAR) (NR1I3), a pivotal member of the xenosensor family, plays a key role in the hepatic detoxification of xenobiotic and endobiotic chemicals through the induction of the expression of drug-metabolizing enzymes and transporters. CAR's involvement extends beyond detoxification, influencing gluconeogenesis, lipogenesis, bile acid regulation, and cellular processes such as proliferation, tissue regeneration, and carcinogenesis. This review explores CAR regulation by various factors, highlighting its role in mediating metabolic changes induced by environmental contaminants. Methods A literature search was conducted to identify all articles on the PubMed website in which the CAR-contaminant and CAR-hepatic steatosis relationship is analyzed in both in vitro and in vivo models. Results Numerous contaminants, such as perfluorooctanoic acid (PFOA), Zearalenone mycotoxin, PCB, triazole fungicide propiconazole can activate hepatic nuclear receptors contributing to the development of steatosis through increased de novo lipogenesis, decreased fatty acid oxidation, increased hepatic lipid uptake, and decreased gluconeogenesis. Indirect CAR activation pathways, particularly involving PFOA, are discussed in the context of PPARα-independent mechanisms leading to hepatotoxicity, including hepatocellular hypertrophy and necrosis, and their implications in nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). The prevalence of NAFLD, a significant component of metabolic syndrome, underscores the importance of understanding CAR's role in its pathogenesis. Conclusions Experimental and epidemiological data suggest that endocrine disruptors, especially pesticides, play a significant role in NAFLD's development and progression via CAR-regulated pathways. This review advocates for the inclusion of modern toxicological risk assessment tools, such as New Approach Methodologies (NAMs), Adverse Outcome Pathways (AOPs), and Integrated Approaches to Testing and Assessment (IATA), to elucidate CAR-mediated effects and enhance regulatory frameworks.
Collapse
Affiliation(s)
- Francesca De Battistis
- Department of Food Safety, Nutrition, and Veterinary Public Health, Italian National Institute of Health, Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Alberto Mantovani
- Italian National Food Safety Committee, Rome, Italy
- Study Centre KOS - Science, Art, Society, Rome, Italy
| |
Collapse
|
9
|
Flynn KM, Bush K, Cavallin J, Hazemi M, Kasparek A, Schumann P, Villeneuve DL. Transcriptomic response of an algal species (Raphidocelis subcapitata) exposed to 22 per- and polyfluoroalkyl substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:995-1006. [PMID: 39832265 DOI: 10.1093/etojnl/vgaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a large class of chemicals of concern for both human and environmental health because of their ubiquitous presence in the environment, persistence, and potential toxicological effects. Despite this, ecological hazard data are limited to a small number of PFAS although there are over 4,000 identified PFAS. Traditional toxicity testing will likely be inadequate to generate necessary hazard information for risk assessment. Therefore, this study investigated the utility of using transcriptomic points of departure (tPODs) for informing PFAS algal toxicity. Raphidocelis subcapitata, a freshwater green algal species, were exposed for 24 hr in 96-well microplates to multiple concentrations of 22 different PFAS. Following exposure, RNA was extracted, and the transcriptome was evaluated by RNA sequencing followed by concentration response modeling to determine a tPOD for each PFAS. Per- and polyfluoroalkyl substance tPODs, based on measured concentrations, ranged from 0.9 µg/L for perfluorotridecanoic acid to 1 mg/L for perfluorononanoic acid. These values derived from R. subcapitata exposures were compared with published hazard benchmarks from other taxa (larval fathead minnow and Daphnia magna) and in vitro data. Although R. subcapitata was generally more sensitive to the tested PFAS than previously tested taxa and in vitro assays, the algal tPODs were, on average, three orders magnitude greater than the maximum concentrations of PFAS detected in Great Lakes tributaries. This high throughput transcriptomics assay with algae is a promising new approach method for an ecologically relevant tiered hazard evaluation strategy.
Collapse
Affiliation(s)
- Kevin M Flynn
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| | - Kendra Bush
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| | - Jenna Cavallin
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| | - Monique Hazemi
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Research Triangle Park, NC, United States
| | - Alex Kasparek
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| | - Peter Schumann
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| | - Daniel L Villeneuve
- United States Environmental Protection Agency, Center for Computational Toxicology and Exposure, Great Lakes Toxicology and Ecology Division, Duluth, MN, United States
| |
Collapse
|
10
|
Ganesh H, Moran J, Roy S, Mathew J, Ackah-Blay J, Costello E, Shan P, Dakshanamurthy S. Impact of Persistent Endocrine-Disrupting Chemicals on Human Nuclear Receptors: Insights from In Silico and Experimental Characterization. Int J Mol Sci 2025; 26:2879. [PMID: 40243467 PMCID: PMC11988381 DOI: 10.3390/ijms26072879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 04/18/2025] Open
Abstract
Endocrine-disrupting chemicals (EDCs) are notable for their persistence, bioaccumulation, and associations with cancer. Human nuclear receptors (hNRs) are primary targets disrupted by these persistent EDCs, resulting in alterations to xenobiotic metabolism, lipid homeostasis, and endocrine function, which can lead to carcinogenic effects. Despite their hazardous effects, comprehensive studies on EDC interactions and their impacts on hNRs remain limited. Here, we profiled the interactions of persistent EDCs, including PFAS, plastic additives, bisphenols, polybrominated diphenyl ethers, and phthalates, with key hNRs such as PXR, CAR, PPARα, PPARγ, PPARδ, AR, and RORγt. Through controlled molecular docking simulations, we observed strong binding of the EDCs to these receptors. Further analysis showed that EDCs exhibit strong binding activity towards hNRs by preferentially interacting with hydrophobic amino acids, namely leucine, isoleucine, methionine, and phenylalanine. PFAS demonstrated the highest binding affinity, characterized by a combination of complementary hydrophobic interactions from their fluorinated carbon chains and polar interactions from their functional groups (e.g., carboxylate, sulfonate) across all receptors. Distinct polycyclic and hydrophobic trends, contributing to strong NR binding, were evident in non-PFAS and nonplastic EDCs. The hNR activity assay in HepG2 cells revealed agonistic effects of dicyclohexyl phthalate (DCHP) and di-2-ethylhexyl phthalate (DEHP) on most receptors, except for PPARα. The hNR transcription factor pathway assay in HepG2 cells demonstrated increased gene expression of VDRE and PXR, suggesting potential chronic effects on xenobiotic metabolism and calcium homeostasis. Overall, our findings demonstrate the need for further research into the endocrine disruption and carcinogenic effects of these persistent EDCs.
Collapse
Affiliation(s)
- Harrish Ganesh
- VCU Life Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | - James Moran
- College of Arts & Sciences, Georgetown University, Washington, DC 20057, USA
| | - Saptarshi Roy
- College of Humanities and Sciences, Virginia Commonwealth University, Richmond, VA 22043, USA
| | | | | | | | - Priya Shan
- University of Virginia, Charlottesville, VA 22903, USA
| | - Sivanesan Dakshanamurthy
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20007, USA
| |
Collapse
|
11
|
Pang X, Lu M, Yang Y, Cao H, Sun Y, Zhou Z, Wang L, Liang Y. Screening of estrogen receptor activity of per- and polyfluoroalkyl substances based on deep learning and in vivo assessment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125843. [PMID: 39947576 DOI: 10.1016/j.envpol.2025.125843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/18/2025]
Abstract
Over the past decades, exposure to per- and polyfluoroalkyl substances (PFAS), a group of synthetic chemicals notorious for their environmental persistence, has been shown to pose increased health risks. Despite that some PFAS were reported to have endocrine-disrupting toxicity in previous studies, accurate prediction models based on deep learning and the underlying structural characteristics related to the effect of molecular fluorination remain limited. To address these issues, we proposed a stacking deep learning architecture, GXDNet, that integrates molecular descriptors and molecular graphs to predict the estrogen receptor α (ERα) activities of compounds, enhancing the generalization ability compared to previous models. Subsequently, we screened the ERα activity of 10,067 PFAS molecules using the GXDNet model and identified potential ERα binders. The representative PFAS molecules with the top docking scores showed that the introduction of fluorinated alkane chains significantly increased the binding affinities of parent molecules with ERα, suggesting that the combination of phenol structural fragments and fluorinated alkane chains has a synergistic effect in improving the binding capacity of the ligands to ERα. The binding modes, SHapley Additive Explanations analysis, and attention map emphasized the importance of π-π stacking and hydrogen bonding interactions with the phenol group, while the fluorinated alkane chain enhanced the interaction with the hydrophobic amino acids of the active pocket. Experimental validation using zebrafish models further confirmed the ERα activity of the representative PFAS molecules. Overall, the current computational workflow is beneficial for the toxicological screening of emerging PFAS and accelerating the development of eco-friendly PFAS molecules, thereby mitigating the environmental and health risks associated with PFAS exposure.
Collapse
Affiliation(s)
- Xudi Pang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Miao Lu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ying Yang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Huiming Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yuzhen Sun
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Zhen Zhou
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Ling Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China.
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
12
|
Ankley GT, Jensen KM, Cavallin JE, Baettig C, Balgooyen S, Blackwell BR, Blanksma CA, Collins J, Ellman M, Hoang J, Kahl MD, Santana-Rodriguez K, Schaupp CM, Stacy E, Villeneuve DL. Effects of a novel estrogenic perfluoroalkyl substance on reproductive endocrinology and function in the fathead minnow (Pimephales promelas). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:786-801. [PMID: 39918401 DOI: 10.1093/etojnl/vgaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 02/27/2025]
Abstract
Effects data are lacking for the majority of poly- and perfluoroalkyl substances (PFAS). Recent in vitro work with around 140 data-poor PFAS showed that several could affect signaling pathways associated with estrogen receptor-α (ER). Subsequent short-term gene expression studies with adult male fathead minnows (Pimephales promelas) using a subset of the ER-active PFAS confirmed their estrogenic properties in vivo. Herein, we evaluated the effects of the most potent of these, 1H, 1H, 10H, 10H-perfluorodecane-1,10-diol (FC10-diol), in a multi-endpoint fathead minnow reproduction assay designed for endocrine-disrupting chemicals. Fish were exposed for 21 days to five water concentrations of FC10-diol, ranging from 0.68 to 68 µg/L, or 17β-estradiol as a positive control. Data confirmed FC10-diol as an ER agonist. Responses in males included changes in expression of four hepatic genes controlled by ER, induction of plasma vitellogenin (VTG; egg yolk protein precursor), decreased expression of male secondary sexual characteristics, histopathological changes in the testis and kidney, and mortality in the highest FC10-diol treatment group. Effects in females from the high treatment included altered ovarian expression of genes involved in steroid synthesis, decreased plasma steroids, elevated plasma VTG, histological changes in the ovary and kidney, and decreased egg production. In addition to generating baseline toxicological data, study results enabled evaluation and expansion of two adverse outcome pathways (AOPs) for predicting the effects of ER agonists in fish. One of the AOPs links activation of the ER to abnormal production of VTG, resulting in kidney dysfunction and death, whereas the second connects ER activation to altered gonadotropin signaling, resulting in decreased synthesis of maturation-inducing steroids and consequent effects on oocyte development and release.
Collapse
Affiliation(s)
- Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Camille Baettig
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - Sarah Balgooyen
- Great Lakes Toxicology and Ecology Division, Spec-Pro Professional Services, Duluth, MN, United States
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Chad A Blanksma
- Great Lakes Toxicology and Ecology Division, Spec-Pro Professional Services, Duluth, MN, United States
| | - Jacob Collins
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - Michael Ellman
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - John Hoang
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Kelvin Santana-Rodriguez
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - Christopher M Schaupp
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, Duluth, MN, United States
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, MN, United States
| |
Collapse
|
13
|
Bulawska N, Sosnowska A, Kowalska D, Stępnik M, Puzyn T. PFAS (per- and polyfluorinated alkyl substances) as EDCs (endocrine-disrupting chemicals) - Identification of compounds with high potential to bind to selected terpenoids NHRs (nuclear hormone receptors). CHEMOSPHERE 2025; 370:143967. [PMID: 39694292 DOI: 10.1016/j.chemosphere.2024.143967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/19/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The objective of the subsequent study was to examine the probability of PFAS (per- and polyfluorinated alkyl substances) binding to various NHRs (nuclear hormone receptors) and to identify their structural features that contribute most to the binding score (BS). We evaluated the BS for PFAS in relation to 7 selected NHRs - 4 with additional antagonist forms (Retinoid X receptor alpha - RXRα, Liver X receptor alpha - LXRα, Liver X receptor beta - LXRβ, Estrogen receptor alpha - ERα, Estrogen receptor alpha antagonist - anti-ERα, Estrogen receptor beta - ERβ, Estrogen receptor beta antagonist - anti-ERβ, Glucocorticoid receptor - GR, Glucocorticoid receptor antagonist - anti-GR, Androgen receptor - AR, Androgen receptor antagonist - anti-AR). We based our study on the results of molecular docking, which we used to develop MLR-QSAR (Multiple Linear Regression - Quantitative Structure-Activity Relationship) models. The models we developed allowed us to predict the BS for an extensive set of PFAS compounds from the NORMAN database (more than 4000) - virtual screening. The probability of PFAS binding to selected receptors was determined by structural features such as particle size, branching, and fluorine content. These variables were also identified in the literature reports of experimental studies as the most important for this group of compounds. The research focused on receptors from the terpenoid group. The RXRα, LXRα and β, GR, and anti-GR receptors were shown to be the group less likely to be affected by PFAS. Sex hormones such as AR, anti-AR, ERα and ERβ with their antagonist forms are the most affected.
Collapse
Affiliation(s)
- Natalia Bulawska
- QSAR Lab, Ul. Trzy Lipy 3, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | - Anita Sosnowska
- QSAR Lab, Ul. Trzy Lipy 3, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308, Gdansk, Poland.
| | | | | | - Tomasz Puzyn
- QSAR Lab, Ul. Trzy Lipy 3, Gdańsk, Poland; University of Gdansk, Faculty of Chemistry, Wita Stwosza 63, 80-308, Gdansk, Poland.
| |
Collapse
|
14
|
James BD, Medvedev AV, Medvedeva LA, Martsen E, Gorman KL, Lin B, Makarov SS, Aluwihare LI, de Vos A, Reddy CM, Hahn ME. Burnt Plastic (Pyroplastic) from the M/V X-Press Pearl Ship Fire and Plastic Spill Contain Compounds That Activate Endocrine and Metabolism-Related Human and Fish Transcription Factors. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2025; 3:91-101. [PMID: 39839249 PMCID: PMC11744394 DOI: 10.1021/envhealth.4c00172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 01/23/2025]
Abstract
In May 2021, the M/V X-Press Pearl ship fire disaster led to the largest maritime spill of resin pellets (nurdles) and burnt plastic (pyroplastic). Field samples collected from beaches in Sri Lanka nearest to the ship comprised nurdles and pieces of pyroplastic. Three years later, the toxicity of the spilled material remains unresolved. To begin understanding its potential toxicity, solvent extracts of the nurdles and pyroplastic were screened for their bioactivity by several Attagene FACTORIAL bioassays (TF, NR, and AquaTox), which measured the activity of a combined 70 human transcription factor response elements and nuclear receptors and 6 to 7 nuclear receptors for each of three phylogenetically distinct fish species. Extracts of the pyroplastics robustly activated end points for the human aryl hydrocarbon receptor (AhR), estrogen receptor (ER), pregnane X receptor (PXR), peroxisome proliferator-activated receptor (PPAR), retinoid X receptor (RXR), and oxidative stress (NRF2) and had the potential for activation of several others. The bioactivity profile of the pyroplastics was most similar (similarity score = 0.96) to that of probable human carcinogens benzo[b]fluoranthene and benzo[k]fluoranthene despite the extracts being a complex mixture of thousands of compounds. The activity diminished only slightly for extracts of pyroplastic collected eight months after the spill. The AquaTox FACTORIAL bioassay measured the activation of ERα, ERβ, androgen receptor (AR), PPARα, PPARγ, and RXRβ for human, zebrafish (Danio rerio), Japanese medaka (Oryzias latipes), and rainbow trout (Oncorhynchus mykiss), revealing species-specific sensitivities to the chemicals associated with the pyroplastics. These findings provide needed information to guide long-term monitoring efforts, make hazard assessments of the spilled material, and direct further research on pyroplastic, an emerging global contaminant.
Collapse
Affiliation(s)
- Bryan D. James
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
- Department
of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | | | - Lyubov A. Medvedeva
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Elena Martsen
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Kristen L. Gorman
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Benjamin Lin
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Sergei S. Makarov
- Attagene, Research Triangle Park, Morrisville, North Carolina 27709, United States
| | - Lihini I. Aluwihare
- Scripps
Institution of Oceanography, University
of California San Diego, La Jolla, California 92093, United States
| | - Asha de Vos
- Oceanswell, Colombo 00500, Sri Lanka
- The
Oceans Institute, University of Western
Australia, Perth 6009, Australia
| | - Christopher M. Reddy
- Department
of Marine Chemistry and Geochemistry, Woods
Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| | - Mark E. Hahn
- Department
of Biology, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, United States
| |
Collapse
|
15
|
Qiao W, Li J, Luo L, Peng W, Wang X, Jin R, Li J. Triglycerides mediate the relationships of per- and poly-fluoroalkyl substance (PFAS) exposure with nonalcoholic fatty liver disease (NAFLD) risk in US participants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117436. [PMID: 39637633 DOI: 10.1016/j.ecoenv.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is recognized as a significant public health problem worldwide. Several clinical studies have investigated the associations between Per- and poly-fluoroalkyl substances (PFAS) compounds with the risk of NAFLD in general adults, but the mediating effect of triglycerides (TG) was remained unexplored. In this study, 6990 individuals from the National Health and Nutrition Examination Survey (NHANES, 2003-2018) database were enrolled. Firstly, the results of generalized linear models (GLM) and restricted cubic splines (RCS) revealed positive associations of PFAS compounds with NAFLD risk score and liver function, and nearly linear E-R curves indicated no safe threshold. Meanwhile, weighted quantile sum (WQS) regression demonstrated the relationships between PFAS mixtures with NAFLD risk score and liver function, as well as perfluorooctanoic acid (PFOA) was identified as the main contributor to the increased NAFLD risk. Then, mediation analysis was conducted to explore whether serum lipids mediate the relationships. It further highlighted significant mediation effects of TG, with the mediated proportion ranging from 10.4 % to 42.9 %. Finally, sensitivity and stratified analyses were performed, confirming the reliability of these findings. Notably, significant associations were observed in individuals with a BMI ≥ 28, highlighting that these relationships were particularly evident in obese participants. In conclusion, our study suggested that PFAS mixtures exposure may influence NAFLD risk score by mediating TG in human metabolism. This result could provide more comprehensive epidemiological evidence and guide clinical applications.
Collapse
Affiliation(s)
- Wenying Qiao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing institute of infectious disease, Beijing 100015, China
| | - Jiashuo Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lijia Luo
- Capital Medical University, Beijing 100069, China
| | - Wenjuan Peng
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing institute of infectious disease, Beijing 100015, China
| | - Xi Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing institute of infectious disease, Beijing 100015, China.
| | - Ronghua Jin
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China.
| | - Junnan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China; Beijing institute of infectious disease, Beijing 100015, China.
| |
Collapse
|
16
|
Yao CR, Jiang YX, Li SY, Lu ZJ, Long XB, Xin N, Zhang JG, Ma DD, Ying GG, Shi WJ. Evaluating pulmonary toxicity of PFOS and its alternative OBS using spheroids of A549 cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176895. [PMID: 39401594 DOI: 10.1016/j.scitotenv.2024.176895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Sodium p-perfluorous nonenoxybenzene sulfonate (OBS) is a prominent alternative to perfluorooctanesulfonic acid (PFOS). Numerous studies have demonstrated hepatotoxicity and neurotoxicity of OBS and PFOS in mammals. The lungs, as a sensitive organ, are among the potential target organs for OBS and PFOS exposure. However, their toxic effects on the lungs remain unclear. In the present study, three-dimensional (3D) spheroids constructed from A549 cells were exposed to OBS and PFOS for 7 days to evaluate pulmonary toxicity through morphological examination, growth kinetics, transcriptomic profiling, and biochemical assays. Our results showed that OBS significantly reduced the diameter, volume, and growth fraction of the spheroids compared to PFOS. Transcriptomic analysis revealed a notable enrichment of the IL-17 signaling pathway after 7 days of OBS exposure. Significant differences in the transcription of genes within this pathway were observed between OBS and PFOS exposure. OBS reduced the transcription of tnfaip3, nfkbiα, map3k8, enpp2, jun, il6, cxcl1, cxcl2, cxcl3, and cxcl8 in the IL-17 signaling pathway, while PFOS enhanced the transcription of nfkbiα. Additionally, OBS decreased the level of IL-8, whereas PFOS had a minor effect. Cluster analysis confirmed significant differences in the pulmonary toxicity between OBS and PFOS. Our study demonstrated the utility of spheroids as an in vitro cell model complemented with omics technology, for comparing the pulmonary toxicity of OBS and PFOS. It provided a novel approach for evaluating the pulmonary toxicity of new pollutants like OBS.
Collapse
Affiliation(s)
- Chong-Rui Yao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Yu-Xia Jiang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Si-Ying Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Zhi-Jie Lu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Xiao-Bing Long
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Na Xin
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Jin-Ge Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Dong Ma
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Wen-Jun Shi
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| |
Collapse
|
17
|
Dou Q, Bai Y, Li Y, Zheng S, Wang M, Wang Z, Sun J, Zhang D, Yin C, Ma L, Lu Y, Zhang L, Chen R, Cheng Z. Perfluoroalkyl substances exposure and the risk of breast cancer: A nested case-control study in Jinchang Cohort. ENVIRONMENTAL RESEARCH 2024; 262:119909. [PMID: 39222733 DOI: 10.1016/j.envres.2024.119909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND As persistent organic pollutants (POPs), perfluoroalkyl substances (PFAS) may potentially impact human health. Our study aimed to investigate the prospective association between PFAS exposure and the incidence risk of breast cancer in females. METHODS By fully following the Jinchang Cohort after a decade, we conducted this nested case-control study with 135 incidence cases of breast cancer (BC) and 540 bias-paired controls. The PFAS levels were tested by baseline serum samples. Conditional logistic regression and a restricted cubic spline model were employed to investigate the BC incidence risks and the dose-response associated with single PFAS component exposure. Furthermore, the Quantile g-computation model (Qgc), random forest model (RFM), and bayesian kernel machine regression models (BKMR) were integrated to estimate the mixed effects of PFAS exposure on the incidence risk of BC. RESULTS Exposures to specific PFAS components were positively associated with an increased incidence risk of breast cancer. By grouping the study population into different baseline menopausal statuses, PFHxS, PFNA, PFBA, PFUdA, PFOS, and PFDA demonstrated a similarly positive correlation with BC incidence risks. However, the increased incidence risks of BC associated with PFOA, PFOS, PFUdA, and 9CL-PF3ONS exposure were exclusively found in the premenopausal population. Both BKMR and Qgc revealed that exposure to mixed PFAS was associated with an increased risk of breast cancer, with Qgc specifically indicating an odds ratio (OR) of 2.21 (95% CI: 1.53, 3.19). Random forests showed that PFBA, PFOS, PFHxS, and PFDA emerged as predominant factors potentially influencing breast cancer incidence. CONCLUSION Our findings suggest a strong association between PFAS exposure and the incidence of breast cancer. Premenopausal women should exercise more caution regarding PFAS exposure.
Collapse
Affiliation(s)
- Qian Dou
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China.
| | - Yana Bai
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yongjun Li
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Shan Zheng
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Minzhen Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhongge Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Jianyun Sun
- Gansu Provincial Center for Disease Control and Prevention, Lanzhou, 730000, China
| | - Desheng Zhang
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, 737100, Gansu, China
| | - Chun Yin
- Workers' Hospital of Jinchuan Group Co., Ltd., Jinchang, 737100, Gansu, China
| | - Li Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Yongbin Lu
- Center for Evidence-Based Medicine, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhen Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Ruirui Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Zhiyuan Cheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
18
|
Bali SK, Martin R, Almeida NMS, Saunders C, Wilson AK. Per- and Polyfluoroalkyl (PFAS) Disruption of Thyroid Hormone Synthesis. ACS OMEGA 2024; 9:39554-39563. [PMID: 39346893 PMCID: PMC11425649 DOI: 10.1021/acsomega.4c03578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 10/01/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a group of environmental pollutants that have been linked to a variety of health problems in humans, including the disruption of thyroid functions. Herein, for the first time, the impact of PFAS on thyroid hormone synthesis is shown. Mid- to long-chain PFAS impact thyroid hormone synthesis by changing the local hydrogen bond network as well as the required orientation of hormonogenic residues, stopping the production of thyroxine (T4). Furthermore, the toxic effects of sulfonic PFAS are more prominent than those of carboxylic PFAS, highlighting that the exposure to these specific compounds can pose greater problems for thyroid homeostasis.
Collapse
Affiliation(s)
- Semiha Kevser Bali
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Rebecca Martin
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Nuno M S Almeida
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Catherine Saunders
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry and MSU Center for PFAS Research, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
19
|
Crizer DM, Rice JR, Smeltz MG, Lavrich KS, Ravindra K, Wambaugh JF, DeVito M, Wetmore BA. In Vitro Hepatic Clearance Evaluations of Per- and Polyfluoroalkyl Substances (PFAS) across Multiple Structural Categories. TOXICS 2024; 12:672. [PMID: 39330600 PMCID: PMC11435625 DOI: 10.3390/toxics12090672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024]
Abstract
Toxicokinetic (TK) assays and in vitro-in vivo extrapolation (IVIVE) models are New Approach Methods (NAMs) used to translate in vitro points of departure to exposure estimates required to reach equivalent blood concentrations. Per- and polyfluoroalkyl substances (PFAS) are a large chemical class with wide-ranging industrial applications for which only limited toxicity data are available for human health evaluation. To address the lack of TK data, a pooled primary human hepatocyte suspension model was used with targeted liquid chromatography-mass spectrometry to investigate substrate depletion for 54 PFAS. A median value of 4.52 μL/(min x million cells) was observed across those that showed significant clearance, with 35 displaying no substrate depletion. Bayesian modeling propagated uncertainty around clearance values for use in IVIVE models. Structural evaluations showed the fluorotelomer carboxylic acids were the only PFAS carboxylates showing appreciable clearance, and per- and polyfluorosulfonamides were more readily metabolized than other PFAS sulfonates. Biotransformation product prediction, using the chemical transformation simulator, suggested hydrolysis of PFAS sulfonamides to more stable sulfonic acids, which is an important consideration for exposure modeling. This effort greatly expands the PFAS in vitro toxicokinetic dataset, enabling refined TK modeling, in silico tool development, and NAM-based human health evaluations across this important set of emerging contaminants.
Collapse
Affiliation(s)
- David M Crizer
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27711, USA
| | - Julie R Rice
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27711, USA
| | - Marci G Smeltz
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Katelyn S Lavrich
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27711, USA
| | | | - John F Wambaugh
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Michael DeVito
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Barbara A Wetmore
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
20
|
Ríos-Bonilla K, Aga DS, Lee J, König M, Qin W, Cristobal JR, Atilla-Gokcumen GE, Escher BI. Neurotoxic Effects of Mixtures of Perfluoroalkyl Substances (PFAS) at Environmental and Human Blood Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58. [PMID: 39259824 PMCID: PMC11428134 DOI: 10.1021/acs.est.4c06017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) may cause various deleterious health effects. Epidemiological studies have demonstrated associations between PFAS exposure and adverse neurodevelopmental outcomes. The cytotoxicity, neurotoxicity, and mitochondrial toxicity of up to 12 PFAS including perfluoroalkyl carboxylates, perfluoroalkyl sulfonates, 6:2 fluorotelomer sulfonic acid (6:2 FTSA), and hexafluoropropylene oxide-dimer acid (HPFO-DA) were tested at concentrations typically observed in the environment (e.g., wastewater, biosolids) and in human blood using high-throughput in vitro assays. The cytotoxicity of all individual PFAS was classified as baseline toxicity, for which prediction models based on partition constants of PFAS between biomembrane lipids and water exist. No inhibition of the mitochondrial membrane potential and activation of oxidative stress response were observed below the cytotoxic concentrations of any PFAS tested. All mixture components and the designed mixtures inhibited the neurite outgrowth in differentiated neuronal cells derived from the SH-SY5Y cell line at concentrations around or below cytotoxicity. All designed mixtures acted according to concentration addition at low effect and concentration levels for cytotoxicity and neurotoxicity. The mixture effects were predictable from the experimental single compounds' concentration-response curves. These findings have important implications for the mixture risk assessment of PFAS.
Collapse
Affiliation(s)
- Karla
M. Ríos-Bonilla
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Diana S. Aga
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Jungeun Lee
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Maria König
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Weiping Qin
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| | - Judith R. Cristobal
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Gunes Ekin Atilla-Gokcumen
- Department
of Chemistry, University at Buffalo - The
State University of New York, Buffalo, New York 14260, United States
| | - Beate I. Escher
- Department
of Cell Toxicology, Helmholtz-Centre for
Environmental Research − UFZ, Leipzig 04318, Germany
| |
Collapse
|
21
|
Ford LC, Lin HC, Zhou YH, Wright FA, Gombar VK, Sedykh A, Shah RR, Chiu WA, Rusyn I. Characterizing PFAS hazards and risks: a human population-based in vitro cardiotoxicity assessment strategy. Hum Genomics 2024; 18:92. [PMID: 39218963 PMCID: PMC11368000 DOI: 10.1186/s40246-024-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC, 27695, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, 27695, USA
| | | | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, TAMU 4466, Texas A&M University, College Station, TX, 77843-4466, USA.
| |
Collapse
|
22
|
George AJ, Birnbaum LS. Dioxins vs. PFAS: Science and Policy Challenges. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:85003. [PMID: 39133093 PMCID: PMC11318569 DOI: 10.1289/ehp14449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/05/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
BACKGROUND Dioxin-like chemicals are a group of ubiquitous environmental toxicants that received intense attention in the last two decades of the 20th century. Through extensive mechanistic research and validation, the global community has agreed upon a regulatory strategy for these chemicals that centers on their common additive activation of a single receptor. Applying these regulations has led to decreased exposure in most populations studied. As dioxin-like chemicals moved out of the limelight, research and media attention has turned to other concerning contaminants, including per- and polyfluoroalkyl substances (PFAS). During the 20th century, PFAS were also being quietly emitted into the environment, but only in the last 20 years have we realized the serious threat they pose to health. There is active debate about how to appropriately classify and regulate the thousands of known PFAS and finding a solution for these "forever chemicals" is of the utmost urgency. OBJECTIVES Here, we compare important features of dioxin-like chemicals and PFAS, including the history, mechanism of action, and effective upstream regulatory strategies, with the objective of gleaning insight from the past to improve strategies for addressing PFAS. DISCUSSION The differences between these two chemical classes means that regulatory strategies for dioxin-like chemicals will not be appropriate for PFAS. PFAS exert toxicity by both receptor-based and nonreceptor-based mechanisms, which complicates mixtures evaluation and stymies efforts to develop inexpensive assays that accurately capture toxicity. Furthermore, dioxin-like chemicals were unwanted byproducts, but PFAS are useful and valuable, which has led to intense resistance against efforts to restrict their production. Nonetheless, useful lessons can be drawn from dioxin-like chemicals and applied to PFAS, including eliminating nonessential production of new PFAS and proactive investment in environmental remediation to address their extraordinarily long environmental persistence. https://doi.org/10.1289/EHP14449.
Collapse
Affiliation(s)
- Alex J. George
- Integrated Toxicology and Environmental Health Program, Duke University, Durham, North Carolina, USA
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| | - Linda S. Birnbaum
- Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Rericha Y, St. Mary L, Truong L, McClure R, Martin JK, Leonard SW, Thunga P, Simonich MT, Waters KM, Field JA, Tanguay RL. Diverse PFAS produce unique transcriptomic changes linked to developmental toxicity in zebrafish. FRONTIERS IN TOXICOLOGY 2024; 6:1425537. [PMID: 39104825 PMCID: PMC11298493 DOI: 10.3389/ftox.2024.1425537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/21/2024] [Indexed: 08/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a widespread and persistent class of contaminants posing significant environmental and human health concerns. Comprehensive understanding of the modes of action underlying toxicity among structurally diverse PFAS is mostly lacking. To address this need, we recently reported on our application of developing zebrafish to evaluate a large library of PFAS for developmental toxicity. In the present study, we prioritized 15 bioactive PFAS that induced significant morphological effects and performed RNA-sequencing to characterize early transcriptional responses at a single timepoint (48 h post fertilization) after early developmental exposures (8 h post fertilization). Internal concentrations of 5 of the 15 PFAS were measured from pooled whole fish samples across multiple timepoints between 24-120 h post fertilization, and additional temporal transcriptomics at several timepoints (48-96 h post fertilization) were conducted for Nafion byproduct 2. A broad range of differentially expressed gene counts were identified across the PFAS exposures. Most PFAS that elicited robust transcriptomic changes affected biological processes of the brain and nervous system development. While PFAS disrupted unique processes, we also found that similarities in some functional head groups of PFAS were associated with the disruption in expression of similar gene sets. Body burdens after early developmental exposures to select sulfonic acid PFAS, including Nafion byproduct 2, increased from the 24-96 h post fertilization sampling timepoints and were greater than those of sulfonamide PFAS of similar chain lengths. In parallel, the Nafion byproduct 2-induced transcriptional responses increased between 48 and 96 h post fertilization. PFAS characteristics based on toxicity, transcriptomic effects, and modes of action will contribute to further prioritization of PFAS structures for testing and informed hazard assessment.
Collapse
Affiliation(s)
- Yvonne Rericha
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lindsey St. Mary
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Lisa Truong
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Ryan McClure
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - J. Kainalu Martin
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Scott W. Leonard
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Preethi Thunga
- Biological Sciences Department, College of Sciences, North Carolina State University, Raleigh, NC, United States
| | - Michael T. Simonich
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| | - Katrina M. Waters
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Pacific Northwest National Laboratory, Biological Sciences Division, Richland, WA, United States
| | - Jennifer A. Field
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
| | - Robyn L. Tanguay
- Environmental and Molecular Toxicology Department, College of Agricultural Sciences, Oregon State University, Corvallis, OR, United States
- Sinnhuber Aquatic Research Laboratory, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
24
|
Ooka M, Sakamuru S, Zhao J, Qu Y, Fang Y, Tao D, Huang R, Ferguson S, Reif D, Simeonov A, Xia M. Use of Tox21 screening data to profile PFAS bioactivities on nuclear receptors, cellular stress pathways, and cytochrome p450 enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134642. [PMID: 38776814 PMCID: PMC11181952 DOI: 10.1016/j.jhazmat.2024.134642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are synthetic chemicals widely used in commercial products. PFAS are a global concern due to their persistence in the environment and extensive associations with adverse health outcomes. While legacy PFAS have been extensively studied, many non-legacy PFAS lack sufficient toxicity information. In this study, we first analyzed the bioactivity of PFAS using Tox21 screening data surveying more than 75 assay endpoints (e.g., nuclear receptors, stress response, and metabolism) to understand the toxicity of non-legacy PFAS and investigate potential new targets of PFAS. From the Tox21 screening data analysis, we confirmed several known PFAS targets/pathways and identified several potential novel targets/pathways of PFAS. To confirm the effect of PFAS on these novel targets/pathways, we conducted several cell- and enzyme-based assays in the follow-up studies. We found PFAS inhibited cytochromes P450s (CYPs), especially CYP2C9 with IC50 values of < 1 µM. Considering PFAS affected other targets/pathways at > 10 µM, PFAS have a higher affinity to CYP2C9. This PFAS-CYP2C9 interaction was further investigated using molecular docking analysis. The result suggested that PFAS directly bind to the active sites of CYP2C9. These findings have important implications to understand the mechanism of PFAS action and toxicity.
Collapse
Affiliation(s)
- Masato Ooka
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Jinghua Zhao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yanyan Qu
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Yuhong Fang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Dingyin Tao
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Ruili Huang
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Ferguson
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - David Reif
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
25
|
Britton KN, Judson RS, Hill BN, Jarema KA, Olin JK, Knapp BR, Lowery M, Feshuk M, Brown J, Padilla S. Using Zebrafish to Screen Developmental Toxicity of Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:501. [PMID: 39058153 PMCID: PMC11281043 DOI: 10.3390/toxics12070501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are found in many consumer and industrial products. While some PFAS, notably perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), are developmentally toxic in mammals, the vast majority of PFAS have not been evaluated for developmental toxicity potential. A concentration-response study of 182 unique PFAS chemicals using the zebrafish medium-throughput, developmental vertebrate toxicity assay was conducted to investigate chemical structural identifiers for toxicity. Embryos were exposed to each PFAS compound (≤100 μM) beginning on the day of fertilization. At 6 days post-fertilization (dpf), two independent observers graded developmental landmarks for each larva (e.g., mortality, hatching, swim bladder inflation, edema, abnormal spine/tail, or craniofacial structure). Thirty percent of the PFAS were developmentally toxic, but there was no enrichment of any OECD structural category. PFOS was developmentally toxic (benchmark concentration [BMC] = 7.48 μM); however, other chemicals were more potent: perfluorooctanesulfonamide (PFOSA), N-methylperfluorooctane sulfonamide (N-MeFOSA), ((perfluorooctyl)ethyl)phosphonic acid, perfluoro-3,6,9-trioxatridecanoic acid, and perfluorohexane sulfonamide. The developmental toxicity profile for these more potent PFAS is largely unexplored in mammals and other species. Based on these zebrafish developmental toxicity results, additional screening may be warranted to understand the toxicity profile of these chemicals in other species.
Collapse
Affiliation(s)
- Katy N. Britton
- Oak Ridge Associated Universities Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Richard S. Judson
- Center for Computational Toxicology and Exposure, Computational Toxicology and Bioinformatics Branch, Research Triangle Park, NC 27711, USA;
| | - Bridgett N. Hill
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Kimberly A. Jarema
- Center for Public Health and Environmental Assessment, Immediate Office, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jeanene K. Olin
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Bridget R. Knapp
- Oak Ridge Institute for Science and Education Research Participation Program Hosted by EPA, Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (B.N.H.); (B.R.K.)
| | - Morgan Lowery
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| | - Madison Feshuk
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Data Extraction and Quality Evaluation Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Jason Brown
- Center for Computational Toxicology and Exposure, Scientific Computing and Data Curation Division, Application Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA;
| | - Stephanie Padilla
- Center for Computational Toxicology and Exposure, Biomolecular and Computational Toxicology Division, Rapid Assay Development Branch, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (J.K.O.); (M.L.)
| |
Collapse
|
26
|
Santana Rodriguez KJ, Villeneuve DL, Cavallin JE, Blackwell BR, Hoang J, Hofer RN, Jensen KM, Kahl MD, Kutsi RN, Stacy E, Morshead ML, Ankley GT. Examining effects of a novel estrogenic perfluoro-alcohol, 1H,1H,8H,8H-Perfluorooctane-1,8-diol (FC8-diol), using the fathead minnow EcoToxChip. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38961679 DOI: 10.1002/etc.5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/20/2024] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
In a previous in vivo study, adult male fathead minnows (Pimephales promelas) were exposed via water for 4 days to 1H,1H,8H,8H-perfluorooctane-1,8-diol (FC8-diol). The present study expands on the evaluation of molecular responses to this perfluoro-alcohol by analyzing 26 male fathead minnow liver RNA samples from that study (five from each test concentration: 0, 0.018, 0.051, 0.171, and 0.463 mg FC8-diol/L) using fathead minnow EcoToxChips Ver. 1.0. EcoToxChips are a quantitative polymerase chain reaction array that allows for simultaneous measurement of >375 species-specific genes of toxicological interest. Data were analyzed with the online tool EcoToxXplorer. Among the genes analyzed, 62 and 96 were significantly up- and downregulated, respectively, by one or more FC8-diol treatments. Gene expression results from the previous study were validated, showing an upregulation of vitellogenin mRNA (vtg) and downregulation of insulin-like growth factor 1 mRNA (igf1). Additional genes related to estrogen receptor activation including esr2a (estrogen receptor 2a) and esrrb (estrogen related receptor beta) were also affected, providing further confirmation of the estrogenic nature of FC8-diol. Furthermore, genes involved in biological pathways related to lipid and carbohydrate metabolism, innate immune response, endocrine reproduction, and endocrine thyroid were significantly affected. These results both add confidence in the use of the EcoToxChip tool for inferring chemical mode(s) of action and provide further insights into the possible biological effects of FC8-diol. Environ Toxicol Chem 2024;00:1-9. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Kelvin J Santana Rodriguez
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Jenna E Cavallin
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - John Hoang
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Rachel N Hofer
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Kathleen M Jensen
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Michael D Kahl
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Robin N Kutsi
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Mackenzie L Morshead
- Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, US Environmental Protection Agency, Duluth, Minnesota
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| |
Collapse
|
27
|
Gutsfeld S, Wehmas L, Omoyeni I, Schweiger N, Leuthold D, Michaelis P, Howey XM, Gaballah S, Herold N, Vogs C, Wood C, Bertotto L, Wu GM, Klüver N, Busch W, Scholz S, Schor J, Tal T. Investigation of Peroxisome Proliferator-Activated Receptor Genes as Requirements for Visual Startle Response Hyperactivity in Larval Zebrafish Exposed to Structurally Similar Per- and Polyfluoroalkyl Substances (PFAS). ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77007. [PMID: 39046251 PMCID: PMC11268134 DOI: 10.1289/ehp13667] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Per- and polyfluoroalkyl Substances (PFAS) are synthetic chemicals widely detected in humans and the environment. Exposure to perfluorooctanesulfonic acid (PFOS) or perfluorohexanesulfonic acid (PFHxS) was previously shown to cause dark-phase hyperactivity in larval zebrafish. OBJECTIVES The objective of this study was to elucidate the mechanism by which PFOS or PFHxS exposure caused hyperactivity in larval zebrafish. METHODS Swimming behavior was assessed in 5-d postfertilization (dpf) larvae following developmental (1-4 dpf) or acute (5 dpf) exposure to 0.43 - 7.86 μ M PFOS, 7.87 - 120 μ M PFHxS, or 0.4% dimethyl sulfoxide (DMSO). After developmental exposure and chemical washout at 4 dpf, behavior was also assessed at 5-8 dpf. RNA sequencing was used to identify differences in global gene expression to perform transcriptomic benchmark concentration-response (BMC T ) modeling, and predict upstream regulators in PFOS- or PFHxS-exposed larvae. CRISPR/Cas9-based gene editing was used to knockdown peroxisome proliferator-activated receptors (ppars) pparaa/ab, pparda/db, or pparg at day 0. Knockdown crispants were exposed to 7.86 μ M PFOS or 0.4% DMSO from 1-4 dpf and behavior was assessed at 5 dpf. Coexposure with the ppard antagonist GSK3787 and PFOS was also performed. RESULTS Transient dark-phase hyperactivity occurred following developmental or acute exposure to PFOS or PFHxS, relative to the DMSO control. In contrast, visual startle response (VSR) hyperactivity only occurred following developmental exposure and was irreversible up to 8 dpf. Similar global transcriptomic profiles, BMC T estimates, and enriched functions were observed in PFOS- and PFHxS-exposed larvae, and ppars were identified as putative upstream regulators. Knockdown of pparda/db, but not pparaa/ab or pparg, blunted PFOS-dependent VSR hyperactivity to control levels. This finding was confirmed via antagonism of ppard in PFOS-exposed larvae. DISCUSSION This work identifies a novel adverse outcome pathway for VSR hyperactivity in larval zebrafish. We demonstrate that developmental, but not acute, exposure to PFOS triggered persistent VSR hyperactivity that required ppard function. https://doi.org/10.1289/EHP13667.
Collapse
Affiliation(s)
- Sebastian Gutsfeld
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Leah Wehmas
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Ifeoluwa Omoyeni
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Nicole Schweiger
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - David Leuthold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Paul Michaelis
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Xia Meng Howey
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Shaza Gaballah
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Nadia Herold
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Carolina Vogs
- Department of Biomedical Science and Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Wood
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Luísa Bertotto
- Center for Computational Toxicology and Exposure, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Gi-Mick Wu
- Research and Development Institute for the Agri-Environment, Quebec, Quebec, Canada
| | - Nils Klüver
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Wibke Busch
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Stefan Scholz
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Jana Schor
- Department of Computational Biology and Chemistry, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
| | - Tamara Tal
- Department of Bioanalytical Ecotoxicology, Chemicals in the Environment Research Section, Helmholtz-Centre for Environmental Research–UFZ, Leipzig, Germany
- Medical Faculty, University Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Judson RS, Smith D, DeVito M, Wambaugh JF, Wetmore BA, Paul Friedman K, Patlewicz G, Thomas RS, Sayre RR, Olker JH, Degitz S, Padilla S, Harrill JA, Shafer T, Carstens KE. A Comparison of In Vitro Points of Departure with Human Blood Levels for Per- and Polyfluoroalkyl Substances (PFAS). TOXICS 2024; 12:271. [PMID: 38668494 PMCID: PMC11053643 DOI: 10.3390/toxics12040271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/29/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used, and their fluorinated state contributes to unique uses and stability but also long half-lives in the environment and humans. PFAS have been shown to be toxic, leading to immunosuppression, cancer, and other adverse health outcomes. Only a small fraction of the PFAS in commerce have been evaluated for toxicity using in vivo tests, which leads to a need to prioritize which compounds to examine further. Here, we demonstrate a prioritization approach that combines human biomonitoring data (blood concentrations) with bioactivity data (concentrations at which bioactivity is observed in vitro) for 31 PFAS. The in vitro data are taken from a battery of cell-based assays, mostly run on human cells. The result is a Bioactive Concentration to Blood Concentration Ratio (BCBCR), similar to a margin of exposure (MoE). Chemicals with low BCBCR values could then be prioritized for further risk assessment. Using this method, two of the PFAS, PFOA (Perfluorooctanoic Acid) and PFOS (Perfluorooctane Sulfonic Acid), have BCBCR values < 1 for some populations. An additional 9 PFAS have BCBCR values < 100 for some populations. This study shows a promising approach to screening level risk assessments of compounds such as PFAS that are long-lived in humans and other species.
Collapse
Affiliation(s)
- Richard S. Judson
- US Environmental Protection Agency, Research Triangle Park, NC 27711, USA; (D.S.); (M.D.); (J.F.W.); (B.A.W.); (K.P.F.); (G.P.); (R.S.T.); (R.R.S.); (J.H.O.); (S.D.); (S.P.); (J.A.H.); (T.S.); (K.E.C.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Qin W, Henneberger L, Glüge J, König M, Escher BI. Baseline Toxicity Model to Identify the Specific and Nonspecific Effects of Per- and Polyfluoroalkyl Substances in Cell-Based Bioassays. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5727-5738. [PMID: 38394616 PMCID: PMC10993398 DOI: 10.1021/acs.est.3c09950] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024]
Abstract
High-throughput screening is a strategy to identify potential adverse outcome pathways (AOP) for thousands of per- and polyfluoroalkyl substances (PFAS) if the specific effects can be distinguished from nonspecific effects. We hypothesize that baseline toxicity may serve as a reference to determine the specificity of the cell responses. Baseline toxicity is the minimum (cyto)toxicity caused by the accumulation of chemicals in cell membranes, which disturbs their structure and function. A mass balance model linking the critical membrane concentration for baseline toxicity to nominal (i.e., dosed) concentrations of PFAS in cell-based bioassays yielded separate baseline toxicity prediction models for anionic and neutral PFAS, which were based on liposome-water distribution ratios as the sole model descriptors. The specificity of cell responses to 30 PFAS on six target effects (activation of peroxisome proliferator-activated receptor (PPAR) gamma, aryl hydrocarbon receptor, oxidative stress response, and neurotoxicity in own experiments, and literature data for activation of several PPARs and the estrogen receptor) were assessed by comparing effective concentrations to predicted baseline toxic concentrations. HFPO-DA, HFPO-DA-AS, and PFMOAA showed high specificity on PPARs, which provides information on key events in AOPs relevant to PFAS. However, PFAS were of low specificity in the other experimentally evaluated assays and others from the literature. Even if PFAS are not highly specific for certain defined targets but disturb many toxicity pathways with low potency, such effects are toxicologically relevant, especially for hydrophobic PFAS and because PFAS are highly persistent and cause chronic effects. This implicates a heightened need for the risk assessment of PFAS mixtures because nonspecific effects behave concentration-additive in mixtures.
Collapse
Affiliation(s)
- Weiping Qin
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| | - Luise Henneberger
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Juliane Glüge
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich 8092, Switzerland
| | - Maria König
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
| | - Beate I. Escher
- Department
of Cell Toxicology, UFZ−Helmholtz
Centre for Environmental Research, Leipzig 04318, Germany
- Environmental
Toxicology, Department of Geosciences, Eberhard
Karls University Tübingen, Schnarrenbergstr. 94-96, Tübingen DE-72076, Germany
| |
Collapse
|
30
|
Feng C, Lin Y, Le S, Ji J, Chen Y, Wang G, Xiao P, Zhao Y, Lu D. Suspect, Nontarget Screening, and Toxicity Prediction of Per- and Polyfluoroalkyl Substances in the Landfill Leachate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4737-4750. [PMID: 38408453 DOI: 10.1021/acs.est.3c07533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Landfills are the final stage of urban wastes containing perfluoroalkyl and polyfluoroalkyl substances (PFASs). PFASs in the landfill leachate may contaminate the surrounding groundwater. As major environmental pollutants, emerging PFASs have raised global concern. Besides the widely reported legacy PFASs, the distribution and potential toxic effects of numerous emerging PFASs remain unclear, and unknown PFASs still need discovery and characterization. This study proposed a comprehensive method for PFAS screening in leachate samples using suspect and nontarget analysis. A total of 48 PFASs from 10 classes were identified; nine novel PFASs including eight chloroperfluoropolyether carboxylates (Cl-PFPECAs) and bistriflimide (HNTf2) were reported for the first time in the leachate, where Cl-PFPECA-3,1 and Cl-PFPECA-2,2 were first reported in environmental media. Optimized molecular docking models were established for prioritizing the PFASs with potential activity against peroxisome proliferator-activated receptor α and estrogen receptor α. Our results indicated that several emerging PFASs of N-methyl perfluoroalkyl sulfonamido acetic acids (N-MeFASAAs), n:3 fluorotelomer carboxylic acid (n:3 FTCA), and n:2 fluorotelomer sulfonate (n:2 FTSA) have potential health risks that cannot be ignored.
Collapse
Affiliation(s)
- Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yuanjie Lin
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Sunyang Le
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Jieyun Ji
- Shanghai Changning Center for Disease Control and Prevention, Shanghai 200051, China
| | - Yuhang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Ping Xiao
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| | - Yunfeng Zhao
- China National Center for Food Safety Risk Assessment, Beijing 100021, China
- NHC Key Laboratory of Food Safety Risk Assessment, Beijing 100021, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai 200336, China
| |
Collapse
|
31
|
Azhagiya Singam E, Durkin KA, La Merrill MA, Furlow JD, Wang JC, Smith MT. Prediction of the Interactions of a Large Number of Per- and Poly-Fluoroalkyl Substances with Ten Nuclear Receptors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4487-4499. [PMID: 38422483 PMCID: PMC10938639 DOI: 10.1021/acs.est.3c05974] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFASs) are persistent, toxic chemicals that pose significant hazards to human health and the environment. Screening large numbers of chemicals for their ability to act as endocrine disruptors by modulating the activity of nuclear receptors (NRs) is challenging because of the time and cost of in vitro and in vivo experiments. For this reason, we need computational approaches to screen these chemicals and quickly prioritize them for further testing. Here, we utilized molecular modeling and machine-learning predictions to identify potential interactions between 4545 PFASs with ten different NRs. The results show that some PFASs can bind strongly to several receptors. Further, PFASs that bind to different receptors can have very different structures spread throughout the chemical space. Biological validation of these in silico findings should be a high priority.
Collapse
Affiliation(s)
| | - Kathleen A. Durkin
- Molecular
Graphics and Computation Facility, College of Chemistry, University of California, Berkeley, California 94720, United States
| | - Michele A. La Merrill
- Department
of Environmental Toxicology, University
of California, Davis, California 95616, United States
| | - J. David Furlow
- Department
of Neurobiology, Physiology and Behavior, University of California, Davis California 95616, United States
| | - Jen-Chywan Wang
- Department
of Nutritional Sciences and Toxicology, University of California, Berkeley, California 94720, United States
| | - Martyn T. Smith
- Division
of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
32
|
Villeneuve DL, Blackwell BR, Bush K, Harrill J, Harris F, Hazemi M, Le M, Stacy E, Flynn KM. Transcriptomics-Based Points of Departure for Daphnia magna Exposed to 18 Per- and Polyfluoroalkyl Substances. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024. [PMID: 38450772 DOI: 10.1002/etc.5838] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 01/27/2024] [Indexed: 03/08/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) represent a large group of contaminants of concern based on their widespread use, environmental persistence, and potential toxicity. Many traditional models for estimating toxicity, bioaccumulation, and other toxicological properties are not well suited for PFAS. Consequently, there is a need to generate hazard information for PFAS in an efficient and cost-effective manner. In the present study, Daphnia magna were exposed to multiple concentrations of 22 different PFAS for 24 h in a 96-well plate format. Following exposure, whole-body RNA was extracted and extracts, each representing five exposed individuals, were subjected to RNA sequencing. Following analytical measurements to verify PFAS exposure concentrations and quality control on processed cDNA libraries for sequencing, concentration-response modeling was applied to the data sets for 18 of the tested compounds, and the concentration at which a concerted molecular response occurred (transcriptomic point of departure; tPOD) was calculated. The tPODs, based on measured concentrations of PFAS, generally ranged from 0.03 to 0.58 µM (9.9-350 µg/L; interquartile range). In most cases, these concentrations were two orders of magnitude lower than similarly calculated tPODs for human cell lines exposed to PFAS. They were also lower than apical effect concentrations reported for seven PFAS for which some crustacean or invertebrate toxicity data were available, although there were a few exceptions. Despite being lower than most other available hazard benchmarks, D. magna tPODs were, on average, four orders of magnitude greater than the maximum aqueous concentrations of PFAS measured in Great Lakes tributaries. Overall, this high-throughput transcriptomics assay with D. magna holds promise as a component of a tiered hazard evaluation strategy employing new approach methodologies. Environ Toxicol Chem 2024;00:1-16. © 2024 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
- Bioscience Division, Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kendra Bush
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Joshua Harrill
- Biomolecular and Computational Toxicology Division, United States Environmental Protection Agency, NC, USA
| | - Felix Harris
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Biomolecular and Computational Toxicology Division, Oak Ridge, NC, USA
| | - Monique Hazemi
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Michelle Le
- Oak Ridge Institute for Science and Education Research Participant at US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Emma Stacy
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| | - Kevin M Flynn
- Great Lakes Toxicology and Ecology Division, US Environmental Protection Agency, Duluth, MN, USA
| |
Collapse
|
33
|
Degitz SJ, Olker JH, Denny JS, Degoey PP, Hartig PC, Cardon MC, Eytcheson SA, Haselman JT, Mayasich SA, Hornung MW. In vitro screening of per- and polyfluorinated substances (PFAS) for interference with seven thyroid hormone system targets across nine assays. Toxicol In Vitro 2024; 95:105762. [PMID: 38072180 PMCID: PMC11081714 DOI: 10.1016/j.tiv.2023.105762] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/31/2023] [Accepted: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The US Environmental Protection Agency is evaluating the ecological and toxicological effects of per- and polyfluorinated chemicals. A number of perfluorinated chemicals have been shown to impact the thyroid axis in vivo suggesting that the thyroid hormone system is a target of these chemicals. The objective of this study was to evaluate the activity of 136 perfluorinated chemicals at seven key molecular initiating events (MIE) within the thyroid axis using nine in vitro assays. The potential MIE targets investigated are Human Iodothyronine Deiodinase 1 (hDIO1), Human Iodothyronine Deiodinase 2 (hDIO2), Human Iodothyronine Deiodinase 3 (hDIO3), Xenopus Iodothyronine Deiodinase (xDIO3); Human Iodotyrosine Deiodinase (hIYD), Xenopus Iodotyrosine Deiodinase (xIYD), Human Thyroid Peroxidase (hTPO); and the serum binding proteins Human Transthyretin (hTTR) and Human Thyroxine Binding Globulin (hTBG). Of the 136 PFAS chemicals tested, 85 had sufficient activity to produce a half-maximal effect concentration (EC50) in at least one of the nine assays. In general, most of these PFAS chemicals did not have strong potency towards the seven MIEs examined, apart from transthyretin binding, for which several PFAS had potency similar to the respective model inhibitor. These data sets identify potentially active PFAS chemicals to prioritize for further testing in orthogonal in vitro assays and at higher levels of biological organization to evaluate their capacity for altering the thyroid hormone system and causing potential adverse health and ecological effects.
Collapse
Affiliation(s)
- Sigmund J Degitz
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA.
| | - Jennifer H Olker
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Jeffery S Denny
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Philip P Degoey
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Phillip C Hartig
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Mary C Cardon
- US Environmental Protection Agency, Office of Research and Development Center for Public Health and Environmental Assessment, Public Health and Integrated Toxicology Division, Research Triangle Park, NC 27709, USA
| | - Stephanie A Eytcheson
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jonathan T Haselman
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| | - Sally A Mayasich
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA; Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Michael W Hornung
- US Environmental Protection Agency, Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Great Lakes Toxicology and Ecology Division (GLTED), Duluth, MN 55804, USA
| |
Collapse
|
34
|
Ford LC, Lin HC, Tsai HHD, Zhou YH, Wright FA, Sedykh A, Shah RR, Chiu WA, Rusyn I. Hazard and risk characterization of 56 structurally diverse PFAS using a targeted battery of broad coverage assays using six human cell types. Toxicology 2024; 503:153763. [PMID: 38423244 PMCID: PMC11214689 DOI: 10.1016/j.tox.2024.153763] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/13/2024] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are extensively used in commerce leading to their prevalence in the environment. Due to their chemical stability, PFAS are considered to be persistent and bioaccumulative; they are frequently detected in both the environment and humans. Because of this, PFAS as a class (composed of hundreds to thousands of chemicals) are contaminants of very high concern. Little information is available for the vast majority of PFAS, and regulatory agencies lack safety data to determine whether exposure limits or restrictions are needed. Cell-based assays are a pragmatic approach to inform decision-makers on potential health hazards; therefore, we hypothesized that a targeted battery of human in vitro assays can be used to determine whether there are structure-bioactivity relationships for PFAS, and to characterize potential risks by comparing bioactivity (points of departure) to exposure estimates. We tested 56 PFAS from 8 structure-based subclasses in concentration response (0.1-100 μM) using six human cell types selected from target organs with suggested adverse effects of PFAS - human induced pluripotent stem cell (iPSC)-derived hepatocytes, neurons, and cardiomyocytes, primary human hepatocytes, endothelial and HepG2 cells. While many compounds were without effect; certain PFAS demonstrated cell-specific activity highlighting the necessity of using a compendium of in vitro models to identify potential hazards. No class-specific groupings were evident except for some chain length- and structure-related trends. In addition, margins of exposure (MOE) were derived using empirical and predicted exposure data. Conservative MOE calculations showed that most tested PFAS had a MOE in the 1-100 range; ∼20% of PFAS had MOE<1, providing tiered priorities for further studies. Overall, we show that a compendium of human cell-based models can be used to derive bioactivity estimates for a range of PFAS, enabling comparisons with human biomonitoring data. Furthermore, we emphasize that establishing structure-bioactivity relationships may be challenging for the tested PFAS.
Collapse
Affiliation(s)
- Lucie C Ford
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Hsing-Chieh Lin
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Han-Hsuan D Tsai
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Yi-Hui Zhou
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | - Fred A Wright
- Department of Biological Sciences and Statistics, North Carolina State University, Raleigh, NC 27695, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27695, USA
| | | | | | - Weihsueh A Chiu
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA
| | - Ivan Rusyn
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, TX 77843, USA.
| |
Collapse
|
35
|
Yi S, Wang J, Wang R, Liu M, Zhong W, Zhu L, Jiang G. Structure-Related Thyroid Disrupting Effect of Perfluorooctanesulfonate-like Substances in Zebrafish Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:182-193. [PMID: 38156633 DOI: 10.1021/acs.est.3c07003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Chlorinated polyfluorooctane ether sulfonate (6:2 Cl-PFESA), hydrogenated polyfluorooctane ether sulfonate (6:2 H-PFESA), and chlorinated polyfluorooctanesulfonate (Cl-PFOS) share structural similarities with the regulated perfluorooctanesulfonate (PFOS), but their toxic potential is rarely known. Here, the thyroid disrupting potential of these four compounds in zebrafish larvae has been comparably investigated. PFOS, Cl-PFOS, and 6:2 Cl-PFESA were accumulated in the larvae at similar levels, approximately 1.3-1.6 times higher than 6:2 H-PFESA. Additionally, PFOS, Cl-PFOS, and 6:2 Cl-PFESA exhibited stronger disruption than 6:2 H-PFESA on genetic regulation, particularly concerning thyroid hormone (TH) activation and action and on TH homeostasis in both free and total forms of thyroxine (T4) and 3,5,3'-triiodothyronine (T3). These results indicate that chlorination or oxygen insertion does not substantially alter the thyrotoxicity of PFOS, but hydrogenation mitigates it. Molecular docking analysis and the luciferase reporter gene assay provided mechanistic perspectives that the PFOS-like substances could competitively replace THs to bind with TH plasma and membrane transporters, thereby disrupting TH transport and action, respectively. Moreover, they are also potent to disrupt TH synthesis and activation through Na+/K+-dependent transport of I- or competitive binding to the sites of deiodinases.
Collapse
Affiliation(s)
- Shujun Yi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jingwen Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Rouyi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Menglin Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Wenjue Zhong
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Lingyan Zhu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
36
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
37
|
Robarts DR, Dai J, Lau C, Apte U, Corton JC. Hepatic Transcriptome Comparative In Silico Analysis Reveals Similar Pathways and Targets Altered by Legacy and Alternative Per- and Polyfluoroalkyl Substances in Mice. TOXICS 2023; 11:963. [PMID: 38133364 PMCID: PMC10748317 DOI: 10.3390/toxics11120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/23/2023]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are a large class of fluorinated carbon chains that include legacy PFAS, such as perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS). These compounds induce adverse health effects, including hepatotoxicity. Potential alternatives to the legacy PFAS (HFPO-DA (GenX), HFPO4, HFPO-TA, F-53B, 6:2 FTSA, and 6:2 FTCA), as well as a byproduct of PFAS manufacturing (Nafion BP2), are increasingly being found in the environment. The potential hazards of these new alternatives are less well known. To better understand the diversity of molecular targets of the PFAS, we performed a comparative toxicogenomics analysis of the gene expression changes in the livers of mice exposed to these PFAS, and compared these to five activators of PPARα, a common target of many PFAS. Using hierarchical clustering, pathway analysis, and predictive biomarkers, we found that most of the alternative PFAS modulate molecular targets that overlap with legacy PFAS. Only three of the 11 PFAS tested did not appreciably activate PPARα (Nafion BP2, 6:2 FTSA, and 6:2 FTCA). Predictive biomarkers showed that most PFAS (PFHxS, PFOA, PFOS, PFNA, HFPO-TA, F-53B, HFPO4, Nafion BP2) activated CAR. PFNA, PFHxS, PFOA, PFOS, HFPO4, HFPO-TA, F-53B, Nafion BP2, and 6:2 FTSA suppressed STAT5b, activated NRF2, and activated SREBP. There was no apparent relationship between the length of the carbon chain, type of head group, or number of ether linkages and the transcriptomic changes. This work highlights the similarities in molecular targets between the legacy and alternative PFAS.
Collapse
Affiliation(s)
- Dakota R. Robarts
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jiayin Dai
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Sciences and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Christopher Lau
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Udayan Apte
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - J. Christopher Corton
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
38
|
Conley JM, Lambright CS, Evans N, Farraj AK, Smoot J, Grindstaff RD, Hill D, McCord J, Medlock-Kakaley E, Dixon A, Hines E, Gray LE. Dose additive maternal and offspring effects of oral maternal exposure to a mixture of three PFAS (HFPO-DA, NBP2, PFOS) during pregnancy in the Sprague-Dawley rat. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164609. [PMID: 37271399 PMCID: PMC10681034 DOI: 10.1016/j.scitotenv.2023.164609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/30/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Simultaneous exposure to multiple per- and polyfluoroalkyl substances (PFAS) is common in humans across the globe. Individual PFAS are associated with adverse health effects, yet the nature of mixture effects after exposure to two or more PFAS remains unclear. Previously we reported that oral administration of hexafluoropropylene oxide-dimer acid (HFPO-DA, or GenX), Nafion byproduct 2 (NBP2), or perfluorooctane sulfonate (PFOS) individually during pregnancy produced maternal and F1 effects. Here, we hypothesized that responses to the combined exposure to these three PFAS would be dose additive. Pregnant Sprague-Dawley rats were exposed to a fixed-ratio equipotent mixture where the top dose contained each PFAS at their ED50 for neonatal mortality (100 % dose = PFOS 3 mg/kg; NBP2 10 mg/kg; HFPO-DA 110 mg/kg), followed by a dilution series (33.3, 10, 3.3, and 1 %) and vehicle controls (0 % dose). Consistent with the single chemical studies, dams were exposed from gestation day (GD)14-18 or from GD8-postnatal day (PND2). Fetal and maternal livers on GD18 displayed multiple significantly upregulated genes associated with lipid and carbohydrate metabolism at all dose levels, while dams displayed significantly increased liver weight (≥3.3 % dose) and reduced serum thyroid hormones (≥33.3 % dose). Maternal exposure from GD8-PND2 significantly reduced pup bodyweights at birth (≥33.3 % dose) and PND2 (all doses), increased neonatal liver weights (≥3.3 % dose), increased pup mortality (≥3.3 % dose), and reduced maternal bodyweights and weight gain at the top dose. Echocardiography of adult F1 males and females identified significantly increased left ventricular anterior wall thickness (~10 % increase), whereas other cardiac morphological, functional, and transcriptomic measures were unaffected. Mixture effects in maternal and neonatal animals conformed to dose addition using a relative potency factor (RPF) analysis. Results support dose addition-based cumulative assessment approaches for estimating combined effects of PFAS co-exposure.
Collapse
Affiliation(s)
- Justin M Conley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Christy S Lambright
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Nicola Evans
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aimen K Farraj
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Jacob Smoot
- ORISE Participant, U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Rachel D Grindstaff
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Donna Hill
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - James McCord
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Environmental Measurement and Modeling, Research Triangle Park, NC, USA.
| | - Elizabeth Medlock-Kakaley
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Aaron Dixon
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - Erin Hines
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| | - L Earl Gray
- U.S. Environmental Protection Agency, Office of Research & Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA.
| |
Collapse
|
39
|
Cathey AL, Nguyen VK, Colacino JA, Woodruff TJ, Reynolds P, Aung MT. Exploratory profiles of phenols, parabens, and per- and poly-fluoroalkyl substances among NHANES study participants in association with previous cancer diagnoses. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:687-698. [PMID: 37718377 PMCID: PMC10541322 DOI: 10.1038/s41370-023-00601-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/19/2023]
Abstract
BACKGROUND Some hormonally active cancers have low survival rates, but a large proportion of their incidence remains unexplained. Endocrine disrupting chemicals may affect hormone pathways in the pathology of these cancers. OBJECTIVE To evaluate cross-sectional associations between per- and polyfluoroalkyl substances (PFAS), phenols, and parabens and self-reported previous cancer diagnoses in the National Health and Nutrition Examination Survey (NHANES). METHODS We extracted concentrations of 7 PFAS and 12 phenols/parabens and self-reported diagnoses of melanoma and cancers of the thyroid, breast, ovary, uterus, and prostate in men and women (≥20 years). Associations between previous cancer diagnoses and an interquartile range increase in exposure biomarkers were evaluated using logistic regression models adjusted for key covariates. We conceptualized race as social construct proxy of structural social factors and examined associations in non-Hispanic Black, Mexican American, and other Hispanic participants separately compared to White participants. RESULTS Previous melanoma in women was associated with higher PFDE (OR:2.07, 95% CI: 1.25, 3.43), PFNA (OR:1.72, 95% CI: 1.09, 2.73), PFUA (OR:1.76, 95% CI: 1.07, 2.89), BP3 (OR: 1.81, 95% CI: 1.10, 2.96), DCP25 (OR: 2.41, 95% CI: 1.22, 4.76), and DCP24 (OR: 1.85, 95% CI: 1.05, 3.26). Previous ovarian cancer was associated with higher DCP25 (OR: 2.80, 95% CI: 1.08, 7.27), BPA (OR: 1.93, 95% CI: 1.11, 3.35) and BP3 (OR: 1.76, 95% CI: 1.00, 3.09). Previous uterine cancer was associated with increased PFNA (OR: 1.55, 95% CI: 1.03, 2.34), while higher ethyl paraben was inversely associated (OR: 0.31, 95% CI: 0.12, 0.85). Various PFAS were associated with previous ovarian and uterine cancers in White women, while MPAH or BPF was associated with previous breast cancer among non-White women. IMPACT STATEMENT Biomarkers across all exposure categories (phenols, parabens, and per- and poly- fluoroalkyl substances) were cross-sectionally associated with increased odds of previous melanoma diagnoses in women, and increased odds of previous ovarian cancer was associated with several phenols and parabens. Some associations differed by racial group, which is particularly impactful given the established racial disparities in distributions of exposure to these chemicals. This is the first epidemiological study to investigate exposure to phenols in relation to previous cancer diagnoses, and the first NHANES study to explore racial/ethnic disparities in associations between environmental phenol, paraben, and PFAS exposures and historical cancer diagnosis.
Collapse
Affiliation(s)
- Amber L Cathey
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Vy K Nguyen
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Justin A Colacino
- Department of Environmental Health Sciences, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Peggy Reynolds
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Max T Aung
- Department of Population and Public Health Sciences, University of Southern California, Keck School of Medicine, Los Angeles, CA, USA.
| |
Collapse
|
40
|
Spyrakis F, Dragani TA. The EU's Per- and Polyfluoroalkyl Substances (PFAS) Ban: A Case of Policy over Science. TOXICS 2023; 11:721. [PMID: 37755732 PMCID: PMC10536631 DOI: 10.3390/toxics11090721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/28/2023]
Abstract
The proposal by the European Chemicals Agency (ECHA) to ban over 12,000 per- and polyfluoroalkyl substances (PFAS) has sparked a debate about potential consequences for the economy, industry, and the environment. Although some PFAS are known to be harmful, a blanket ban may lead to significant problems in attempting to replace PFAS-based materials for environmental transition, as well as in medical devices and everyday products. Alternative materials may potentially be less safe, as a rush to replace PFAS would reduce the time needed for toxicological analyses. Studies have shown that PFAS exhibit a diverse range of mechanisms of action, biopersistence, and bioaccumulation potential, and should thus not be treated as a single group. This is particularly true for the class of fluoropolymers. A targeted approach that considers the specific risks and benefits of each chemical may be more effective. Moreover, the proposed ban may also have unintended consequences for the environment as PFAS use is also associated with benefits such as reducing greenhouse-gas emissions and improving energy efficiency. Policymakers must carefully weigh up the potential consequences before making a final decision on the ban.
Collapse
Affiliation(s)
- Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy;
| | | |
Collapse
|
41
|
Gong Y, Yang D, Liu J, Barrett H, Sun J, Peng H. Disclosing Environmental Ligands of L-FABP and PPARγ: Should We Re-evaluate the Chemical Safety of Hydrocarbon Surfactants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11913-11925. [PMID: 37527448 DOI: 10.1021/acs.est.3c02898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Chemical contaminants can cause adverse effects by binding to the liver-fatty acid binding protein (L-FABP) and peroxisome proliferator-activated nuclear receptor γ (PPARγ), which are vital in lipid metabolism. However, the presence of numerous compounds in the environment has hindered the identification of their ligands, and thus only a small portion have been discovered to date. In this study, protein Affinity Purification with Nontargeted Analysis (APNA) was employed to identify the ligands of L-FABP and PPARγ in indoor dust and sewage sludge. A total of 83 nonredundant features were pulled-out by His-tagged L-FABP as putative ligands, among which 13 were assigned as fatty acids and hydrocarbon surfactants. In contrast, only six features were isolated when His-tagged PPARγ LBD was used as the protein bait. The binding of hydrocarbon surfactants to L-FABP and PPARγ was confirmed using both recombinant proteins and reporter cells. These hydrocarbon surfactants, along with >50 homologues and isomers, were detected in dust and sludge at high concentrations. Fatty acids and hydrocarbon surfactants explained the majority of L-FABP (57.7 ± 32.9%) and PPARγ (66.0 ± 27.1%) activities in the sludge. This study revealed hydrocarbon surfactants as the predominant synthetic ligands of L-FABP and PPARγ, highlighting the importance of re-evaluating their chemical safety.
Collapse
Affiliation(s)
- Yufeng Gong
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Diwen Yang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jiabao Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Holly Barrett
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
42
|
Ateia M, Sigmund G, Bentel MJ, Washington JW, Lai A, Merrill NH, Wang Z. Integrated data-driven cross-disciplinary framework to prevent chemical water pollution. ONE EARTH (CAMBRIDGE, MASS.) 2023; 6:10.1016/j.oneear.2023.07.001. [PMID: 38264630 PMCID: PMC10802893 DOI: 10.1016/j.oneear.2023.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Access to a clean and healthy environment is a human right and a prerequisite for maintaining a sustainable ecosystem. Experts across domains along the chemical life cycle have traditionally operated in isolation, leading to limited connectivity between upstream chemical innovation to downstream development of water-treatment technologies. This fragmented and historically reactive approach to managing emerging contaminants has resulted in significant externalized societal costs. Herein, we propose an integrated data-driven framework to foster proactive action across domains to effectively address chemical water pollution. By implementing this integrated framework, it will not only enhance the capabilities of experts in their respective fields but also create opportunities for novel approaches that yield co-benefits across multiple domains. To successfully operationalize the integrated framework, several concerted efforts are warranted, including adopting open and FAIR (findable, accessible, interoperable, and reusable) data practices, developing common knowledge bases/platforms, and staying vigilant against new substance "properties" of concern.
Collapse
Affiliation(s)
- Mohamed Ateia
- United States Environmental Protection Agency, Center for Environmental Solutions & Emergency Response, Cincinnati, OH 45220, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Gabriel Sigmund
- Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Josef-Holaubeck-Platz 2, 1090 Vienna, Austria
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Michael J. Bentel
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | - John W. Washington
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Athens, GA 30605, USA
| | - Adelene Lai
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 6 Avenue du Swing, 4367 Belvaux, Luxembourg
- Institute for Inorganic and Analytical Chemistry, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nathaniel H. Merrill
- United States Environmental Protection Agency, Center for Environmental Measurement and Modeling, Narragansett, RI, USA
| | - Zhanyun Wang
- Empa Swiss – Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, 9014 St. Gallen, Switzerland
| |
Collapse
|
43
|
Solan ME, Lavado R. Effects of short-chain per- and polyfluoroalkyl substances (PFAS) on human cytochrome P450 (CYP450) enzymes and human hepatocytes: An in vitro study. Curr Res Toxicol 2023; 5:100116. [PMID: 37575337 PMCID: PMC10412865 DOI: 10.1016/j.crtox.2023.100116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Short-chain per- and polyfluoroalkyl substances (PFAS) have been developed as alternatives to legacy long-chain PFAS, but they may still pose risks due to their potential to interact with biomolecules. Cytochrome P450 (CYP450) enzymes are essential for xenobiotic metabolism, and disruptions of these enzymes by PFAS can have significant human health implications. The inhibitory potential of two legacy long-chain (PFOA and PFOS) and five short-chain alternative PFAS (PFBS, PFHxA, HFPO-DA, PFHxS, and 6:2 FTOH) were assessed in recombinant CYP1A2, - 2B6, -2C19, -2E1, and -3A4 enzymes. Most of the short-chain PFAS, except for PFHxS, tested did not result in significant inhibition up to 100 μM. PFOS inhibited recombinant CYP1A2, -2B6, -2C19, and -3A4 enzymes. However, concentrations where inhibition occurred, were all higher than the averages reported in population biomonitoring studies, with IC50 values higher than 10 µM. We also evaluated the activities of CYP1A2 and CYP3A4 in HepaRG monolayers following 48 h exposures of the short-chain PFAS at two concentrations (1 nM or 1 µM) and with or without an inducer (benzo[a]pyrene, BaP, for CYP1A2 and rifampicin for CYP3A4). Our findings suggest that both 1 nM and 1 µM exposures to short-chain PFAS can modulate the CYP1A2 activity induced by BaP. Except for PFHxS, the short-chain PFAS appear to have little effect on CYP3A4 activity. Understanding the effects of PFAS exposure on biotransformation can shed light on the mechanisms of PFAS toxicity and aid in developing effective strategies for managing chemical risks, enabling regulators to make more informed decisions.
Collapse
Affiliation(s)
- Megan E. Solan
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| | - Ramon Lavado
- Department of Environmental Science, Baylor University, Waco, TX 76798, United States
| |
Collapse
|
44
|
Beccacece L, Costa F, Pascali JP, Giorgi FM. Cross-Species Transcriptomics Analysis Highlights Conserved Molecular Responses to Per- and Polyfluoroalkyl Substances. TOXICS 2023; 11:567. [PMID: 37505532 PMCID: PMC10385990 DOI: 10.3390/toxics11070567] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
In recent decades, per- and polyfluoroalkyl substances (PFASs) have garnered widespread public attention due to their persistence in the environment and detrimental effects on the health of living organisms, spurring the generation of several transcriptome-centered investigations to understand the biological basis of their mechanism. In this study, we collected 2144 publicly available samples from seven distinct animal species to examine the molecular responses to PFAS exposure and to determine if there are conserved responses. Our comparative transcriptional analysis revealed that exposure to PFAS is conserved across different tissues, molecules and species. We identified and reported several genes exhibiting consistent and evolutionarily conserved transcriptional response to PFASs, such as ESR1, HADHA and ID1, as well as several pathways including lipid metabolism, immune response and hormone pathways. This study provides the first evidence that distinct PFAS molecules induce comparable transcriptional changes and affect the same metabolic processes across inter-species borders. Our findings have significant implications for understanding the impact of PFAS exposure on living organisms and the environment. We believe that this study offers a novel perspective on the molecular responses to PFAS exposure and provides a foundation for future research into developing strategies for mitigating the detrimental effects of these substances in the ecosystem.
Collapse
Affiliation(s)
- Livia Beccacece
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Filippo Costa
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy
| | - Jennifer Paola Pascali
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padua, 35121 Padua, Italy
| | | |
Collapse
|
45
|
Chaney C, Wiley KS. The variable associations between PFASs and biological aging by sex and reproductive stage in NHANES 1999-2018. ENVIRONMENTAL RESEARCH 2023; 227:115714. [PMID: 36965790 DOI: 10.1016/j.envres.2023.115714] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 05/08/2023]
Abstract
BACKGROUND Per- and polyfluoroalkyl substances (PFASs) are endocrine disrupting chemicals that have myriad effects on human physiology. Estrogenic PFASs may influence biological aging by mimicking the activity of endogenous estrogens, which can decrease inflammation and oxidative stress and enhance telomerase activity. We hypothesized that PFAS exposure would be differentially associated with measures of biological aging based on biological sex and reproductive stage. METHODS We analyzed associations between serum PFAS levels and measures of biological aging for pre- and postmenopausal women and men (n = 3193) using data from the 2003 to 2018 waves of the National Health and Nutrition Examination Survey. Examining PFASs both individually and in mixture models, we investigated four measures of clinical aging (Homeostatic Dysregulation, the Klemera-Doubal Method, Phenotypic Age Acceleration, and Allostatic Load), oxidative stress, and telomere length. RESULTS PFOA and PFOS were negatively associated with Phenotypic Age Acceleration (e.g. decelerated aging) for men B = -0.22, 95% CI: -0.32, -0.12; B = -0.04, 95% CI: -0.06, -0.03) , premenopausal women (B = -0.58, 95% CI: -0.83, -0.32; B = -0.15, 95% CI: -0.20, -0.09), and postmenopausal women (B= -0.22, 95% CI: -0.43, -0.01; B = -0.05, 95% CI: -0.08, -0.02). In mixture models, we found net negative effects for Phenotypic Age Acceleration and Allostatic Load for men, premenopausal women, and postmenopausal women. We also found significant mixture effects for the antioxidants bilirubin and albumin among the three sample groups. We found no evidence to support effects on telomere length. DISCUSSION Our findings suggest that PFAS exposure may be inversely associated with some measures of biological aging at the relatively low levels of exposure in this sample, regardless of reproductive stage and sex, which does not support our hypothesis. This research provides insights into how PFAS exposure may variably influence aging measures depending on the physiological process investigated.
Collapse
Affiliation(s)
- C Chaney
- Department of Anthropology, Yale University, New Haven, CT, USA.
| | - K S Wiley
- Department of Anthropology, University of California, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
46
|
Xu Y, Jakobsson K, Harari F, Andersson EM, Li Y. Exposure to high levels of PFAS through drinking water is associated with increased risk of type 2 diabetes-findings from a register-based study in Ronneby, Sweden. ENVIRONMENTAL RESEARCH 2023; 225:115525. [PMID: 36813069 DOI: 10.1016/j.envres.2023.115525] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/03/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Epidemiological studies linking type 2 diabetes (T2D) and exposure to per- and polyfluoroalkyl substances (PFAS), are limited and have yielded conflicting results. This register-based study aimed to investigate the risk of T2D among Swedish adults who had been exposed to PFAS from highly contaminated drinking water for decades. METHODS The study included 55,032 adults (aged ≥18 years) from the Ronneby Register Cohort, who ever lived in Ronneby during 1985-2013. Exposure was assessed using the yearly residential address and the absence ("never-high") or presence ("ever-high") of high PFAS contamination in the municipal drinking water supply; the latter was subdivided into "early-high" and "late-high" exposure with cut-off at 2005. Incident T2D cases were retrieved from the National Patient Register and the Prescription Register. Cox proportional hazard models with time-varying exposure were used to estimate hazard ratios (HRs). Stratified analyses were performed based on age (18-45 vs > 45). RESULTS Elevated HRs for T2D were observed when comparing "ever-high" to "never-high" exposure (HR 1.18, 95% CI 1.03-1.35), as well as when comparing "early-high" (HR 1.12, 95% CI 0.98-1.50) or "late-high" (HR 1.17, 95% CI 1.00-1.37) to "never-high", after adjusting for age and sex. Individuals aged 18-45 years had even higher HRs. Adjusting for the highest-achieved education level attenuated the estimates, but the directions of associations remained. Elevated HRs were also found among those who had lived in areas with a heavily contaminated water supply for 1-5 years (HR 1.26, 95% CI 0.97-1.63) and 6-10 years (HR 1.25, 95% CI 0.80-1.94). CONCLUSION This study suggests an increased risk of T2D after long-term high PFAS exposure through drinking water. In particular, a higher risk of early onset diabetes was found, indicating increased susceptibility to PFAS-related health effects at younger ages.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Florencia Harari
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Eva M Andersson
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Occupational and Environmental Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ying Li
- School of Public Health and Community Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; SSORG-Scandinavian Surgical Outcomes Research Group, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
47
|
Wang Y, Howe C, Gallagher LG, Botelho JC, Calafat AM, Karagas MR, Romano ME. Per- and Polyfluoroalkyl Substances (PFAS) Mixture during Pregnancy and Postpartum Weight Retention in the New Hampshire Birth Cohort Study (NHBCS). TOXICS 2023; 11:450. [PMID: 37235264 PMCID: PMC10223499 DOI: 10.3390/toxics11050450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/01/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS), widely used in industrial and consumer products, are suspected metabolic disruptors. We examined the association between a PFAS mixture during pregnancy and postpartum weight retention in 482 participants from the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate, perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate, were quantified in maternal plasma collected at ~28 gestational weeks. Postpartum weight change was calculated as the difference between self-reported weight from a postpartum survey administered in 2020 and pre-pregnancy weight abstracted from medical records. Associations between PFAS and postpartum weight change were examined using Bayesian kernel machine regression and multivariable linear regression, adjusting for demographic, reproductive, dietary, and physical activity factors; gestational week of blood sample collection; and enrollment year. PFOS, PFOA, and PFNA were positively associated with postpartum weight retention, and associations were stronger among participants with a higher pre-pregnancy body mass index. A doubling of PFOS, PFOA, and PFNA concentrations was associated with a 1.76 kg (95%CI: 0.31, 3.22), 1.39 kg (-0.27, 3.04), and 1.04 kg (-0.19, 2.28) greater postpartum weight retention, respectively, among participants who had obesity/overweight prior to pregnancy. Prenatal PFAS exposure may be associated with increased postpartum weight retention.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Caitlin Howe
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Lisa G. Gallagher
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Margaret R. Karagas
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| | - Megan E. Romano
- Department of Epidemiology, The Geisel School of Medicine at Dartmouth, Lebanon, NH 03755, USA
| |
Collapse
|
48
|
Mitro SD, Sundaram R, Buck Louis GM, Peddada S, Chen Z, Kannan K, Gleason JL, Zhang C, Grantz KL. Associations of Pregnancy Per- and Polyfluoroalkyl Substance Concentrations and Uterine Fibroid Changes across Pregnancy: NICHD Fetal Growth Studies - Singletons Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:57007. [PMID: 37224071 PMCID: PMC10208432 DOI: 10.1289/ehp11606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Fibroids (hormonally responsive benign tumors) often undergo volume changes in pregnancy. Because per- and polyfluoroalkyl substances (PFAS) disrupt hormonal signaling, they might affect fibroid growth. We assessed associations between PFAS and fibroid changes in pregnancy. METHODS We analyzed seven PFAS, including perfluorohexanesulfonic acid (PFHxS), perfluorooctanesulfonic acid (PFOS), perfluorodecanoic acid (PFDA), and perfluoroundecanoic acid (PFUnDA), in plasma collected at 10-13 wk gestation from 2,621 women in the NICHD Fetal Growth Studies - Singletons cohort (2009-2013). Sonographers recorded fibroid number and volume of the three largest fibroids during up to six timed ultrasounds. Generalized linear models assessed associations of baseline log 2 - transformed PFAS and fibroid number, volume, and presence, and weighted quantile sum regression evaluated the PFAS mixture. Generalized linear mixed models with random intercepts assessed associations of PFAS and longitudinal fibroid number and total volume. Volume analyses were stratified by total volume at first visualization [equivalent to a fibroid < 1 cm (small), 1 to < 3 cm (medium), or ≥ 3 cm (large) in diameter]. RESULTS Fibroid prevalence was 9.4% (n = 245 women). PFAS were not associated with changes in fibroid number, but were associated with volume trajectory, depending on baseline volume. Among women with small volume, PFAS were associated with fibroid growth: Each doubling in PFHxS and PFOS concentrations was associated with 3.6% [95% confidence interval (CI): 0.2, 7.0 and 5.2% (95% CI: - 0.4 , 11.1)] greater weekly fibroid growth, respectively. Among women with medium volume, PFAS were associated with shrinking: Doublings in PFOS, PFDA, and PFUnDA concentrations were associated with 1.9% (95% CI: 0.4, 3.3), 1.2% (95% CI: 0.1, 2.4), and 1.6% (95% CI: 0.4, 2.8) greater weekly fibroid volume reduction, respectively. DISCUSSION Certain PFAS were associated with fibroid growth among women with small fibroids and decreases among women with medium fibroids. PFAS were not associated with fibroid prevalence or number; therefore, PFAS may influence prevalent fibroids rather than initiating fibroid development. https://doi.org/10.1289/EHP11606.
Collapse
Affiliation(s)
- Susanna D Mitro
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Rajeshwari Sundaram
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Germaine M Buck Louis
- College of Health and Human Services, George Mason University, Fairfax, Virginia, USA
| | - Shyamal Peddada
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Zhen Chen
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Jessica L Gleason
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Cuilin Zhang
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
- Department of Obstetrics and Gynecology, National University of Singapore Yong Loo Lin School of Medicine, Singapore
| | - Katherine L Grantz
- Division of Population Health Research, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| |
Collapse
|
49
|
Zhao L, Teng M, Zhao X, Li Y, Sun J, Zhao W, Ruan Y, Leung KMY, Wu F. Insight into the binding model of per- and polyfluoroalkyl substances to proteins and membranes. ENVIRONMENT INTERNATIONAL 2023; 175:107951. [PMID: 37126916 DOI: 10.1016/j.envint.2023.107951] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Legacy per- and polyfluoroalkyl substances (PFASs) have elicited much concern because of their ubiquitous distribution in the environment and the potential hazards they pose to wildlife and human health. Although an increasing number of effective PFAS alternatives are available in the market, these alternatives bring new challenges. This paper comprehensively reviews how PFASs bind to transport proteins (e.g., serum albumin, liver fatty acid transport proteins and organic acid transporters), nuclear receptors (e.g., peroxisome proliferator activated receptors, thyroid hormone receptors and reproductive hormone receptors) and membranes (e.g., cell membrane and mitochondrial membrane). Briefly, the hydrophobic fluorinated carbon chains of PFASs occupy the binding cavities of the target proteins, and the acid groups of PFASs form hydrogen bonds with amino acid residues. Various structural features of PFAS alternatives such as chlorine atom substitution, oxygen atom insertion and a branched structure, introduce variations in their chain length and hydrophobicity, which potentially change the affinity of PFAS alternatives for endogenous proteins. The toxic effects and mechanisms of action of legacy PFASs can be demonstrated and compared with their alternatives using binding models. In future studies, in vitro experiments and in silico quantitative structure-activity relationship modeling should be better integrated to allow more reliable toxicity predictions for both legacy and alternative PFASs.
Collapse
Affiliation(s)
- Lihui Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yunxia Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jiaqi Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, China
| | - Wentian Zhao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, 999077, Hong Kong Special Administrative Region
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| |
Collapse
|
50
|
Kissel JC, Titaley IA, Muensterman DJ, Field JA. Evaluating Neutral PFAS for Potential Dermal Absorption from the Gas Phase. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4951-4958. [PMID: 36917694 DOI: 10.1021/acs.est.2c08835] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Exposures to per- and polyfluoroalkyl substances (PFAS) are of increasing concern. Assessments typically focus only on ingestion and inhalation exposure due to a lack of generally accepted approaches for estimating dermal absorption. Prior work indicates limited dermal absorption of ionic PFAS, but absorption of neutral PFAS has not been examined from the liquid vehicle or from vapor. Partitioning of semivolatile organic compounds from the gas phase to the skin surface (i.e., stratum corneum) is well known, but the potential for partitioning of neutral PFAS from the gas phase to the stratum corneum has yet to be estimated. The SPARC-estimated physicochemical properties were used to calculate transdermal permeability coefficients (kp_g) and dermal-to-inhalation (D/I) exposure ratios for two groups of neutral PFAS, including those on a U.S. Environmental Protection Agency PFAS list. 11 neutral PFAS gave calculated D/I ratios >5, indicating that direct transdermal absorption may be an important exposure pathway compared to inhalation. Data on consumer products or indoor air is needed for the 11 neutral PFAS, followed by possible biomonitoring to experimentally verify dermal absorption from air. Additional PFAS should be estimated by the protocol used here as they are identified in commercial products.
Collapse
Affiliation(s)
- John C Kissel
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington 98105, United States
| | - Ivan A Titaley
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Derek J Muensterman
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jennifer A Field
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|