1
|
Mudondo J, Happy K, Okello D, Kang Y. Trichosanthis Radix: A comprehensive review on botany, ethnomedicine, phytochemistry, pharmacology, quality control and toxicology. Fitoterapia 2025; 183:106597. [PMID: 40334818 DOI: 10.1016/j.fitote.2025.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 04/16/2025] [Accepted: 05/03/2025] [Indexed: 05/09/2025]
Abstract
Trichosanthis Radix, derived from the roots of Trichosanthes kirilowii Maximowicz and Trichosanthes rosthornii Harms, is used widely in traditional Asian medicine. It has been used for centuries across China, Japan, South Korea, and other Asian countries to treat several ailments, including diabetes, cancer, inflammation, cardiovascular and respiratory conditions. The pharmacopoeias in several countries recognize its ability to clear heat, reduce swelling, expel pus, generate fluids, and regulate menstruation. This review provides a comprehensive synopsis of botanical, and ethnomedicinal uses of Trichosanthis Radix. In addition, the phytochemical constituents, including proteins (trichosanthin), terpenoids (cucurbitacins), alkaloids, lignans, coumarins, and flavonoids, which contribute to its diverse pharmacological effects including antimicrobial, antiinflammatory, anticancer, antidiabetic, abortifacient, neuroprotective, immunoregulatory, and antiviral activities are examined. Furthermore, the clinical, pharmacokinetic, quality control measures, processing methods, and toxicity associated with Trichosanthis Radix are discussed. Finally, future research opportunities and potential applications of Trichosanthis Radix in modern medicine are explored with a focus on expanding its therapeutic use and ensuring safe and effective medicinal applications.
Collapse
Affiliation(s)
- Joyce Mudondo
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Kenneth Happy
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Dennis Okello
- Department of Biological Sciences, Kabale University, P.O. Box 317, Kabale, Uganda
| | - Youngmin Kang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111, Geonjae-ro, Naju-si, Jeollanam-do 58245, Republic of Korea; Korean Convergence Medicine Science Major, University of Science and Technology (UST), Daejeon, 34113, South Korea.
| |
Collapse
|
2
|
Groiss S, Somvilla I, Daxböck C, Stückler M, Pritz E, Brislinger D. Bei Mu Gua Lou San facilitates mucus expectoration by increasing surface area and hydration levels of airway mucus in an air-liquid-interface cell culture model of the respiratory epithelium. BMC Complement Med Ther 2023; 23:414. [PMID: 37978392 PMCID: PMC10655387 DOI: 10.1186/s12906-023-04251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023] Open
Abstract
BACKGROUND Bei Mu Gua Lou San (BMGLS) is an ancient formulation known for its moisturizing and expectorant properties, but the underlying mechanisms remain unknown. We investigated concentration-dependent effects of BMGLS on its rehydrating and mucus-modulating properties using an air-liquid-interface (ALI) cell culture model of the Calu-3 human bronchial epithelial cell line and primary normal human bronchial epithelial cells (NHBE), and specifically focused on quantity and composition of the two major mucosal proteins MUC5AC and MUC5B. METHODS ALI cultures were treated with BMGLS at different concentrations over three weeks and evaluated by means of histology, immunostaining and electron microscopy. MUC5AC and MUC5B mRNA levels were assessed and quantified on protein level using an automated image-based approach. Additionally, expression levels of the major mucus-stimulating enzyme 15-lipoxygenase (ALOX15) were evaluated. RESULTS BMGLS induced concentration-dependent morphological changes in NHBE but not Calu-3 ALI cultures that resulted in increased surface area via the formation of herein termed intra-epithelial structures (IES). While cellular rates of proliferation, apoptosis or degeneration remained unaffected, BMGLS caused swelling of mucosal granules, increased the area of secreted mucus, decreased muco-glycoprotein density, and dispensed MUC5AC. Additionally, BMGLS reduced expression levels of MUC5AC, MUC5B and the mucus-stimulating enzyme 15-lipoxygenase (ALOX15). CONCLUSIONS Our studies suggest that BMGLS rehydrates airway mucus while stimulating mucus secretion by increasing surface areas and regulating goblet cell differentiation through modulating major mucus-stimulating pathways.
Collapse
Affiliation(s)
- Silvia Groiss
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Ina Somvilla
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Christine Daxböck
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Manuela Stückler
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Elisabeth Pritz
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria
| | - Dagmar Brislinger
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Centre, Medical University of Graz, Neue Stiftingtalstraße 6/II, Graz, 8010, Austria.
| |
Collapse
|
3
|
Sharma A, Gupta S, Sharma NR, Paul K. Expanding role of ribosome-inactivating proteins: From toxins to therapeutics. IUBMB Life 2023; 75:82-96. [PMID: 36121739 DOI: 10.1002/iub.2675] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 02/02/2023]
Abstract
Ribosome-inactivating proteins (RIPs) are toxic proteins with N-glycosidase activity. RIPs exert their action by removing a specific purine from 28S rRNA, thereby, irreversibly inhibiting the process of protein synthesis. RIPs can target both prokaryotic and eukaryotic cells. In bacteria, the production of RIPs aid in the process of pathogenesis whereas, in plants, the production of these toxins has been attributed to bolster defense against insects, viral, bacterial and fungal pathogens. In recent years, RIPs have been engineered to target a particular cell type, this has fueled various experiments testing the potential role of RIPs in many biomedical applications like anti-viral and anti-tumor therapies in animals as well as anti-pest agents in engineered plants. In this review, we present a comprehensive study of various RIPs, their mode of action, their significance in various fields involving plants and animals. Their potential as treatment options for plant infections and animal diseases is also discussed.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| | - Shelly Gupta
- Department of Biochemistry, School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Neeta Raj Sharma
- School of Biosciences and Bioengineering, Lovely Professional University, Phagwara, Punjab, India
| | - Karan Paul
- Department of Biochemistry, DAV University, Jalandhar, Punjab, India
| |
Collapse
|
4
|
Zhang Y, Wang K, Huang Q, Shu S. Molecular cloning and characterization of an alpha-amylase inhibitor (TkAAI) gene from Trichosanthes kirilowii Maxim. Biotechnol Lett 2022; 44:1127-1138. [PMID: 35925526 DOI: 10.1007/s10529-022-03277-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 06/21/2022] [Indexed: 12/01/2022]
Abstract
Trichosanthes kirilowii Maxim taxonomically belongs to the Cucurbitaceae family and Trichosanthes genus. Its whole fruit, fruit peel, seed and root are widely used in traditional Chinese medicines. A ribosome-inactivating protein with RNA N-glycosidase activity called Trichosanthrip was isolated and purified from the seeds of T. kirilowii in our recent previous research. To further explore the biological functions of Trichosanthrip, the cDNA of T. kirilowii alpha-amylase inhibitor (TkAAI) was cloned through rapid-amplification of cDNA ends and its sequence was analyzed. Also, the heterologous protein was expressed in Escherichia coli and its alpha-amylase activity was further measured under optimized conditions. The full-length cDNA of TkAAI was 613 bp. The speculated open reading frame sequence encoded 141 amino acids with a molecular weight of 16.14 kDa. Phylogenetic analysis demonstrated that the Alpha-Amylase Inhibitors Seed Storage domain sequence of TkAAI revealed significant evolutionary homology with the 2S albumin derived from the other plants in the Cucurbitaceae group. In addition, TkAAI was assembled into pET28a with eGFP to generate a prokaryotic expression vector and was induced to express in E. coli. The TkAAI-eGFP infusion protein was proven to exhibit alpha-amylase inhibitory activity against porcine pancreatic amylase in a suitable reaction system. Analysis of gene expression patterns proved that the relative expression level of TkAAI in seeds is highest. The results presented here forecasted that the TkAAI might play a crucial role during the development of T. kirilowii seeds and provided fundamental insights into the possibility of T. kirilowii derived medicine to treat diabetes related diseases.
Collapse
Affiliation(s)
- Yipeng Zhang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China.
| | - Keyue Wang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Qiyuan Huang
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| | - Shaohua Shu
- College of Plant Science and Technology, HUAZHONG Agricultural University, Shizishan Street 1#, Hongshan District, Wuhan, Hubei, People's Republic of China
| |
Collapse
|
5
|
Genetically-engineered "all-in-one" vaccine platform for cancer immunotherapy. Acta Pharm Sin B 2021; 11:3622-3635. [PMID: 34900541 PMCID: PMC8642616 DOI: 10.1016/j.apsb.2021.06.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 01/08/2023] Open
Abstract
An essential step for cancer vaccination is to break the immunosuppression and elicit a tumor-specific immunity. A major hurdle against cancer therapeutic vaccination is the insufficient immune stimulation of the cancer vaccines and lack of a safe and efficient adjuvant for human use. We discovered a novel cancer immunostimulant, trichosanthin (TCS), that is a clinically used protein drug in China, and developed a well-adaptable protein-engineering method for making recombinant protein vaccines by fusion of an antigenic peptide, TCS, and a cell-penetrating peptide (CPP), termed an “all-in-one” vaccine, for transcutaneous cancer immunization. The TCS adjuvant effect on antigen presentation was investigated and the antitumor immunity of the vaccines was investigated using the different tumor models. The vaccines were prepared via a facile recombinant method. The vaccines induced the maturation of DCs that subsequently primed CD8+ T cells. The TCS-based immunostimulation was associated with the STING pathway. The general applicability of this genetic engineering strategy was demonstrated with various tumor antigens (i.e., legumain and TRP2 antigenic peptides) and tumor models (i.e., colon tumor and melanoma). These findings represent a useful protocol for developing cancer vaccines at low cost and time-saving, and demonstrates the adjuvant application of TCS—an old drug for a new application.
Collapse
|
6
|
Lu JQ, Shi WW, Xiao MJ, Tang YS, Zheng YT, Shaw PC. Lyophyllin, a Mushroom Protein from the Peptidase M35 Superfamily Is an RNA N-Glycosidase. Int J Mol Sci 2021; 22:ijms222111598. [PMID: 34769028 PMCID: PMC8584072 DOI: 10.3390/ijms222111598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) hydrolyze the N-glycosidic bond and depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. In this study, we have purified and characterized lyophyllin, an unconventional RIP from Lyophyllum shimeji, an edible mushroom. The protein resembles peptidase M35 domain of peptidyl-Lys metalloendopeptidases. Nevertheless, protein either from the mushroom or in recombinant form possessed N-glycosidase and protein synthesis inhibitory activities. A homology model of lyophyllin was constructed. It was found that the zinc binding pocket of this protein resembles the catalytic cleft of a classical RIP, with key amino acids that interact with the adenine substrate in the appropriate positions. Mutational studies showed that E122 may play a role in stabilizing the positively charged oxocarbenium ion and H121 for protonating N-3 of adenine. The tyrosine residues Y137 and Y104 may be used for stacking the target adenine ring. This work first shows a protein in the peptidase M35 superfamily based on conserved domain search possessing N-glycosidase activity.
Collapse
Affiliation(s)
- Jia-Qi Lu
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei-Wei Shi
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518107, China;
| | - Meng-Jie Xiao
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yun-Sang Tang
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong-Tang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms, National Kunming High Level Biosafety Research Center for Non-Human Primates, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China;
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (J.-Q.L.); (M.-J.X.); (Y.-S.T.)
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
- Correspondence:
| |
Collapse
|
7
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
8
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
9
|
Fan X, Wang Y, Guo F, Zhang Y, Jin T. Atomic-resolution structures of type I ribosome inactivating protein alpha-momorcharin with different substrate analogs. Int J Biol Macromol 2020; 164:265-276. [PMID: 32653369 DOI: 10.1016/j.ijbiomac.2020.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/26/2020] [Accepted: 07/03/2020] [Indexed: 10/23/2022]
Abstract
Alpha-momorcharin (Alpha-MMC) from the seed of bitter melon is a type I ribosome inactivating protein (RIP) that removes a specific adenine from 28S rRNA and inhibits protein biosynthesis. Here, we report seven crystal complex structures of alpha-MMC with different substrate analogs (adenine, AMP, cAMP, dAMP, ADP, GMP, and xanthosine) at 1.08 Å to 1.52 Å resolution. These structures reveal that not only adenine, but also guanine and their analogs can effectively bind to alpha-MMC. The side chain of Tyr93 adopts two conformations, serving as a switch to open and close the substrate binding pocket of alpha-MMC. Although adenine, AMP, GMP, and guanine are located in a similar active site in different RIPs, residues involved in the interaction between RIPs and substrate analogs are slightly different. Complex structures of alpha-MMC with different substrate analogs solved in this study provide useful information on its enzymatic mechanisms and may enable the development of new inhibitors to treat the poisoning of alpha-MMC.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Wang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Feng Guo
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA
| | - Yuzhu Zhang
- Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA; Processed Foods Research Unit, USDA-ARS, Western Regional Research Center, 800 Buchanan Street, Albany, CA 94710, USA.
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China; Laboratory of Structural Immunology, CAS Key Laboratory of Innate Immunity and Chronic Disease, CAS Center for Excellence in Molecular Cell Science, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui, China; Department of Biology, Illinois Institute of Technology, 3101 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
10
|
Zhang WJ, Wang S, Kang CZ, Lv CG, Zhou L, Huang LQ, Guo LP. Pharmacodynamic material basis of traditional Chinese medicine based on biomacromolecules: a review. PLANT METHODS 2020; 16:26. [PMID: 32140174 PMCID: PMC7049221 DOI: 10.1186/s13007-020-00571-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/19/2020] [Indexed: 05/06/2023]
Abstract
Biomacromolecules, the first components of bioactive substances in traditional Chinese medicines (TCM) have wide bioactivity-related efficacy but have not yet been fully appreciated compared to small molecule components. The present review brings a novel and systemic point of view to deepen the understanding of the pharmacodynamic material basis of TCM based on biomacromolecules (polysaccharides, proteins and nucleic acids). Biomacromolecules have been, are and will have considerable roles in the efficacy of Chinese medicine, as evidenced by the number of biological activities related to traditional clinical efficacy. The direct and indirect mechanisms of biomacromolecules are further accounted for in a variety of neurotransmitters, hormones, and immune substances to maintain immune function in both sensitive and stable equilibrium. The biological functions of biomacromolecules have been elaborated on in regard to their roles in the process of plant growth and development to the relationship between primary metabolism and secondary metabolism and to the indispensable role of polysaccharides, proteins, and nucleic acids in the quality formation of TCM. Understanding the functional properties and mechanisms of biological macromolecules will help to demystify the drug properties and health benefits of TCM.
Collapse
Affiliation(s)
- Wen-Jin Zhang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
- College of Pharmacy, Ningxia Medical University, Yinchuan, 750004 China
| | - Sheng Wang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Chuan-zhi Kang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Chao-geng Lv
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Li Zhou
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lu-Qi Huang
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Lan-Ping Guo
- State Key Laboratory of Dao-di Herbs Breeding Base, Joint Laboratory of Infinitus (China) Herbs Quality Research, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| |
Collapse
|
11
|
Sun X, Xu X, Song L. TKP, a serine protease extracted from Trichosanthes kirilowii, inhibits the migration and invasion of colorectal adenocarcinoma cells by targeting Wnt/β-catenin and Hedgehog/Gli1 signalings. Phytother Res 2019; 34:867-878. [PMID: 31854039 DOI: 10.1002/ptr.6569] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 01/13/2023]
Abstract
Trichosanthes kirilowii, which is a type of Liana from cucurbitaceous family, possesses many bioactive constituents and therefore has multifarious pharmacological functions. TKP, which is a serine protease extracted from the fruit of Trichosanthes kirilowii, has been reported to possess potential anticancer activity. However, the effects of TKP on cancer cell migration and invasion are still unknown. Here, we reported that TKP could inhibit the migration and invasion abilities of colorectal cancer cells. In addition, the mRNA, protein expression levels, and activities of migration and invasion-related proteins MMP2 and MMP9 were decreased in TKP-treated cells. Mechanistically, TKP treatment repressed Wnt/β-catenin and Hedgehog/Gli1 signaling cascades. However, the addition of lithium chloride or the transfection of plasmid pcDNA3.1-V5-HisA-Gli1 reversed the impacts of TKP on MMP2, MMP9, cell migration, and invasion. These results indicated that TKP suppressed the migration and invasion of colorectal cancer cells through blocking Wnt/β-catenin and Hedgehog/Gli1 pathways-mediated MMP2 and MMP9.
Collapse
Affiliation(s)
- Xiaomei Sun
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaobo Xu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| | - Li Song
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
12
|
Ling C, Zhang Y, Li J, Chen W, Ling C. Clinical Use of Toxic Proteins and Peptides from Tian Hua Fen and Scorpion Venom. Curr Protein Pept Sci 2019; 20:285-295. [PMID: 29932034 DOI: 10.2174/1389203719666180622100641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 04/10/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022]
Abstract
Traditional Chinese Medicine (TCM) has been practiced in China for thousands of years. As a complementary and alternative treatment, herbal medicines that are frequently used in the TCM are the most accepted in the Western world. However, animal materials, which are equally important in the TCM practice, are not well-known in other countries. On the other hand, the Chinese doctors had documented the toxic profiles of hundreds of animals and plants thousand years ago. Furthermore, they saw the potential benefits of these materials and used their toxic properties to treat a wide variety of diseases, such as heavy pain and cancer. Since the 50s of the last century, efforts of the Chinese government and societies to modernize TCM have achieved tremendous scientific results in both laboratory and clinic. A number of toxic proteins have been isolated and their functions identified. Although most of the literature was written in Chinese, this review provide a summary, in English, regarding our knowledge of the clinical use of the toxic proteins isolated from a plant, Tian Hua Fen, and an animal, scorpion, both of which are famous toxic prescriptions in TCM.
Collapse
Affiliation(s)
- Chen Ling
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States
| | - Yuanhui Zhang
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Jun Li
- Division of Cellular and Molecular Therapy, Department of Pediatrics, College of Medicine, University of Florida, Gainesville 32611, Florida, FL, United States.,Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China
| | - Wenli Chen
- Department of Oncology, Baoshan Hospital of Integrated Traditional Chinese Medicine and Western Medicine, Shanghai 201999, China
| | - Changquan Ling
- Department of Traditional Chinese Medicine, Changhai Hospital, Second Military Medical University, Shanghai 200433, China.,E-institute of Internal Medicine of Traditional Chinese Medicine, Shanghai Municipal Education Commission, Shanghai 201203, China
| |
Collapse
|
13
|
Shi WW, Wong KB, Shaw PC. Structural and Functional Investigation and Pharmacological Mechanism of Trichosanthin, a Type 1 Ribosome-Inactivating Protein. Toxins (Basel) 2018; 10:toxins10080335. [PMID: 30127254 PMCID: PMC6115768 DOI: 10.3390/toxins10080335] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 01/11/2023] Open
Abstract
Trichosanthin (TCS) is an RNA N-glycosidase that depurinates adenine-4324 in the conserved α-sarcin/ricin loop (α-SRL) of rat 28 S ribosomal RNA (rRNA). TCS has only one chain, and is classified as type 1 ribosome-inactivating protein (RIP). Our structural studies revealed that TCS consists of two domains, with five conserved catalytic residues Tyr70, Tyr111, Glu160, Arg163 and Phe192 at the active cleft formed between them. We also found that the structural requirements of TCS to interact with the ribosomal stalk protein P2 C-terminal tail. The structural analyses suggest TCS attacks ribosomes by first binding to the C-terminal domain of ribosomal P protein. TCS exhibits a broad spectrum of biological and pharmacological activities including anti-tumor, anti-virus, and immune regulatory activities. This review summarizes an updated knowledge in the structural and functional studies and the mechanism of its multiple pharmacological effects.
Collapse
Affiliation(s)
- Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Kam-Bo Wong
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Sha Tin New Town, Hong Kong, China.
| |
Collapse
|
14
|
Kebebe D, Liu Y, Wu Y, Vilakhamxay M, Liu Z, Li J. Tumor-targeting delivery of herb-based drugs with cell-penetrating/tumor-targeting peptide-modified nanocarriers. Int J Nanomedicine 2018; 13:1425-1442. [PMID: 29563797 PMCID: PMC5849936 DOI: 10.2147/ijn.s156616] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer has become one of the leading causes of mortality globally. The major challenges of conventional cancer therapy are the failure of most chemotherapeutic agents to accumulate selectively in tumor cells and their severe systemic side effects. In the past three decades, a number of drug delivery approaches have been discovered to overwhelm the obstacles. Among these, nanocarriers have gained much attention for their excellent and efficient drug delivery systems to improve specific tissue/organ/cell targeting. In order to enhance targeting efficiency further and reduce limitations of nanocarriers, nanoparticle surfaces are functionalized with different ligands. Several kinds of ligand-modified nanomedicines have been reported. Cell-penetrating peptides (CPPs) are promising ligands, attracting the attention of researchers due to their efficiency to transport bioactive molecules intracellularly. However, their lack of specificity and in vivo degradation led to the development of newer types of CPP. Currently, activable CPP and tumor-targeting peptide (TTP)-modified nanocarriers have shown dramatically superior cellular specific uptake, cytotoxicity, and tumor growth inhibition. In this review, we discuss recent advances in tumor-targeting strategies using CPPs and their limitations in tumor delivery systems. Special emphasis is given to activable CPPs and TTPs. Finally, we address the application of CPPs and/or TTPs in the delivery of plant-derived chemotherapeutic agents.
Collapse
Affiliation(s)
- Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,School of Pharmacy, Institute of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Yuanyuan Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumei Wu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Maikhone Vilakhamxay
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiawei Li
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Engineering Research Center of Modern Chinese Medicine Discovery and Preparation Technique, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
15
|
Li C, Zeng M, Chi H, Shen J, Ng TB, Jin G, Lu D, Fan X, Xiong B, Xiao Z, Sha O. Trichosanthin increases Granzyme B penetration into tumor cells by upregulation of CI-MPR on the cell surface. Oncotarget 2018; 8:26460-26470. [PMID: 28460437 PMCID: PMC5432272 DOI: 10.18632/oncotarget.15518] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/08/2017] [Indexed: 12/21/2022] Open
Abstract
Trichosanthin is a plant toxin belonging to the family of ribosome-inactivating proteins. It has various biological and pharmacological activities, including anti-tumor and immunoregulatory effects. In this study, we explored the potential medicinal applications of trichosanthin in cancer immunotherapy. We found that trichosanthin and cation-independent mannose-6-phosphate receptor competitively bind to the Golgi-localized, γ-ear containing and Arf-binding proteins. It in turn promotes the translocation of cation-independent mannose-6-phosphate receptor from the cytosol to the plasma membrane, which is a receptor of Granzyme B. The upregulation of this receptor on the tumor cell surface increased the cell permeability to Granzyme B, and the latter is one of the major factors of cytotoxic T lymphocyte-mediated tumor cell apoptosis. These results suggest a novel potential application of trichosanthin and shed light on its anti-tumor immunotherapy.
Collapse
Affiliation(s)
- Chunman Li
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Meiqi Zeng
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Huju Chi
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Tzi-Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Guangyi Jin
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Desheng Lu
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Xinmin Fan
- School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Bilian Xiong
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ou Sha
- Department of Anatomy, Histology and Developmental Biology, School of Basic Medical Sciences, Shenzhen University Health Science Centre, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Cao XW, Yang XZ, Du X, Fu LY, Zhang TZ, Shan HW, Zhao J, Wang FJ. Structure optimisation to improve the delivery efficiency and cell selectivity of a tumour-targeting cell-penetrating peptide. J Drug Target 2018; 26:777-792. [PMID: 29303375 DOI: 10.1080/1061186x.2018.1424858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell-penetrating peptide (CPP) is used for the delivery of biomacromolecules across the cell membrane and is limited in cancer therapy due to the lack of cell selectivity. Epidermal growth factor receptor (EGFR) has been widely used in clinical targeted therapy for tumours. Here, we reported a novel tumour targeting cell-penetrating peptide (TCPP), EHB (ELBD-C6H) with 20-fold and 3000-fold greater transmembrane ability and tumour cell selectivity than our previously reported S3-HBD and classic CPP TAT, respectively. In this new TCPP, a specific alpha helix structure was inserted into a repeated amino acid (AA) sequence formed by tandem multiple selected key AA residues of vaccinia growth factor (VGF), and this sequence was then fused to a tailored heparin binding domain sequence (C6H) derived from heparin-binding epidermal growth factor-like growth factor to intensify its targeting delivery ability. EHB could carry anticancer proteins such as MAP30 (Momordica Antiviral Protein 30 kDa) into EGFR-overexpressing cancer cell and inhibit cell growth, but it had a greatly reduced interaction with normal cells. These results indicated that EHB, as a novel efficient TCPP for the selective delivery of drug molecules into cancer cells, would help to improve the efficacy and safety of anti-tumour drugs.
Collapse
Affiliation(s)
- Xue-Wei Cao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Xu-Zhong Yang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Xuan Du
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Long-Yun Fu
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Tao-Zhu Zhang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Han-Wen Shan
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China
| | - Jian Zhao
- a State Key Laboratory of Bioreactor Engineering , East China University of Science and Technology , Shanghai , PR China
| | - Fu-Jun Wang
- b Zhejiang Reachall Pharmaceutical Co. Ltd , Zhejiang , PR China.,c Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine , Shanghai , PR China
| |
Collapse
|
17
|
Song L, Xu X, Li Z. A serine protease extracted from Trichosanthes kirilowii inhibits epithelial-mesenchymal transition via antagonizing PKM2-mediated STAT3/Snail1 pathway in human colorectal adenocarcinoma cells. J Funct Foods 2018. [DOI: 10.1016/j.jff.2017.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
18
|
Bolognesi A, Bortolotti M, Maiello S, Battelli MG, Polito L. Ribosome-Inactivating Proteins from Plants: A Historical Overview. Molecules 2016; 21:molecules21121627. [PMID: 27898041 PMCID: PMC6273060 DOI: 10.3390/molecules21121627] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 11/22/2016] [Accepted: 11/23/2016] [Indexed: 12/12/2022] Open
Abstract
This review provides a historical overview of the research on plant ribosome-inactivating proteins (RIPs), starting from the first studies at the end of eighteenth century involving the purification of abrin and ricin, as well as the immunological experiments of Paul Erlich. Interest in these plant toxins was revived in 1970 by the observation of their anticancer activity, which has given rise to a large amount of research contributing to the development of various scientific fields. Biochemistry analyses succeeded in identifying the enzymatic activity of RIPs and allowed for a better understanding of the ribosomal machinery. Studies on RIP/cell interactions were able to detail the endocytosis and intracellular routing of ricin, thus increasing our knowledge of how cells handle exogenous proteins. The identification of new RIPs and the finding that most RIPs are single-chain polypeptides, together with their genetic sequencing, has aided in the development of new phylogenetic theories. Overall, the biological properties of these proteins, including their abortifacient, anticancer, antiviral and neurotoxic activities, suggest that RIPs could be utilized in agriculture and in many biomedical fields, including clinical drug development.
Collapse
Affiliation(s)
- Andrea Bolognesi
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Massimo Bortolotti
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Stefania Maiello
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Maria Giulia Battelli
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| | - Letizia Polito
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum, University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy.
| |
Collapse
|
19
|
Structures and Ribosomal Interaction of Ribosome-Inactivating Proteins. Molecules 2016; 21:molecules21111588. [PMID: 27879643 PMCID: PMC6273143 DOI: 10.3390/molecules21111588] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022] Open
Abstract
Ribosome-inactivating proteins (RIPs) including ricin, Shiga toxin, and trichosanthin, are RNA N-glycosidases that depurinate a specific adenine residue (A-4324 in rat 28S ribosomal RNA, rRNA) in the conserved α-sarcin/ricin loop (α-SRL) of rRNA. RIPs are grouped into three types according to the number of subunits and the organization of the precursor sequences. RIPs are two-domain proteins, with the active site located in the cleft between the N- and C-terminal domains. It has been found that the basic surface residues of the RIPs promote rapid and specific targeting to the ribosome and a number of RIPs have been shown to interact with the C-terminal regions of the P proteins of the ribosome. At present, the structural basis for the interaction of trichosanthin and ricin-A chain toward P2 peptide is known. This review surveys the structural features of the representative RIPs and discusses how they approach and interact with the ribosome.
Collapse
|
20
|
Au KY, Shi WW, Qian S, Zuo Z, Shaw PC. Improvement of the Pharmacological Properties of Maize RIP by Cysteine-Specific PEGylation. Toxins (Basel) 2016; 8:toxins8100298. [PMID: 27763506 PMCID: PMC5086658 DOI: 10.3390/toxins8100298] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 11/16/2022] Open
Abstract
To improve the pharmacological properties of maize ribosome-inactivating protein (maize RIP) for targeting HIV-infected cells, the previously engineered TAT-fused active form of maize RIP (MOD) was further engineered for cysteine-directed PEGylation. In this work, two potential antigenic sites, namely Lys-78 and Lys-264, were identified. They were mutated to cysteine residue and conjugated with PEG5k or PEG20k. The resultant PEG derivatives of MOD variants were examined for ribosome-inactivating activity, circulating half-life and immunogenicity. Our results showed that MOD-PEG conjugates had two- to five-fold lower biological activity compared to the wild-type. Mutation of the two sites respectively did not decrease the anti-MOD IgG and IgE level in mice, but the conjugation of PEG did dramatically reduce the antigenicity. Furthermore, pharmacokinetics studies demonstrated that attachment of PEG20k prolonged the plasma half-life by five-fold for MOD-K78C and 17-fold for MOD-K264C, respectively. The site-specific mutation together with PEGylation therefore generated MOD derivatives with improved pharmacological properties.
Collapse
Affiliation(s)
- Ka-Yee Au
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Wei-Wei Shi
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Shuai Qian
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Zhong Zuo
- School of Pharmacy, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| | - Pang-Chui Shaw
- Centre for Protein Science and Crystallography, School of Life Sciences, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
21
|
Lu YZ, Li PF, Li YZ, Luo F, Guo C, Lin B, Cao XW, Zhao J, Wang FJ. Enhanced anti-tumor activity of trichosanthin after combination with a human-derived cell-penetrating peptide, and a possible mechanism of activity. Fitoterapia 2016; 112:183-90. [DOI: 10.1016/j.fitote.2016.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/27/2016] [Accepted: 03/28/2016] [Indexed: 12/13/2022]
|
22
|
Song L, Chang J, Li Z. A serine protease extracted from Trichosanthes kirilowii induces apoptosis via the PI3K/AKT-mediated mitochondrial pathway in human colorectal adenocarcinoma cells. Food Funct 2016; 7:843-54. [DOI: 10.1039/c5fo00760g] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A novel protein TKP extracted from T. kirilowii fruit exerted potential anti-colorectal cancer activity by inducing apoptosis, which was regulated by the PI3K/AKT-mediated mitochondria-dependent pathway.
Collapse
Affiliation(s)
- Li Song
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Jiao Chang
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| | - Zhuoyu Li
- Institute of Biotechnology
- Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education
- Shanxi University
- Taiyuan 030006
- China
| |
Collapse
|
23
|
ZHU YINGJIE, SUN YUELI, CAI YUCHEN, SHA OU, JIANG WENQI. Trichosanthin reduces the viability of SU-DHL-2 cells via the activation of the extrinsic and intrinsic apoptotic pathways. Mol Med Rep 2015; 13:403-11. [DOI: 10.3892/mmr.2015.4531] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 10/06/2015] [Indexed: 11/06/2022] Open
|
24
|
Structures of eukaryotic ribosomal stalk proteins and its complex with trichosanthin, and their implications in recruiting ribosome-inactivating proteins to the ribosomes. Toxins (Basel) 2015; 7:638-47. [PMID: 25723321 PMCID: PMC4379515 DOI: 10.3390/toxins7030638] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Revised: 01/30/2015] [Accepted: 02/15/2015] [Indexed: 11/17/2022] Open
Abstract
Ribosome-inactivating proteins (RIP) are RNA N-glycosidases that inactivate ribosomes by specifically depurinating a conserved adenine residue at the α-sarcin/ricin loop of 28S rRNA. Recent studies have pointed to the involvement of the C-terminal domain of the eukaryotic stalk proteins in facilitating the toxic action of RIPs. This review highlights how structural studies of eukaryotic stalk proteins provide insights into the recruitment of RIPs to the ribosomes. Since the C-terminal domain of eukaryotic stalk proteins is involved in specific recognition of elongation factors and some eukaryote-specific RIPs (e.g., trichosanthin and ricin), we postulate that these RIPs may have evolved to hijack the translation-factor-recruiting function of ribosomal stalk in reaching their target site of rRNA.
Collapse
|
25
|
Caizhen G, Yan G, Ronron C, Lirong Y, Panpan C, Xuemei H, Yuanbiao Q, Qingshan L. Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP30, a momordica anti-HIV protein. Int J Pharm 2015; 483:188-99. [PMID: 25681721 DOI: 10.1016/j.ijpharm.2015.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Accepted: 02/10/2015] [Indexed: 01/24/2023]
Abstract
An essential in vivo drug delivery system of a momordica anti-HIV protein, MAP30, was developed through encapsulating in chemically synthesized matrices of zirconium egg- and soy-phosphatidylcholines, abbreviated to Zr/EPC and Zr/SPC, respectively. Matrices were characterized by transmission electron microscopy and powder X-ray diffractometry studies. Zr/EPC granule at an approximate diameter of 69.43±7.78 nm was a less efficient encapsulator than the granule of Zr/SPC. Interlayer spacing of the matrices encapsulating MAP30 increased from 8.8 and 9.7 Å to 7.4 and 7.9 nm, respectively. In vivo kinetics on degradation and protein release was performed by analyzing the serum sampling of intravenously injected SPF chickens. The first order and biphasic variations were obtained for in vivo kinetics using equilibrium dialysis. Antimicrobial and anti-HIV assays yielded greatly decreased MIC50 and EC50 values of nanoformulated MAP30. An acute toxicity of MAP30 encapsulated in Zr/EPC occurred at a single intravenous dose above 14.24 mg/kg bw in NIH/KM/ICR mice. The folding of MAP30 from Zr/EPC sustained in vivo chickens for more than 8 days in high performance liquid chromatography assays. These matrices could protect MAP30 efficiently with strong structure retention, lowered toxicity and prolonged in vivo life.
Collapse
Affiliation(s)
- Guo Caizhen
- Department of Bioscience, Luliang University, Shanxi 033001, PR China
| | - Gao Yan
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China
| | - Chang Ronron
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China
| | - Yang Lirong
- Department of Chemical and Biological Engineering, Zhejiang University, Zhejiang 310027, PR China
| | - Chu Panpan
- Department of Bioscience, Luliang University, Shanxi 033001, PR China
| | - Hu Xuemei
- Department of Chemistry and Chemical Engineering, Luliang University, Shanxi 033001, PR China
| | - Qiao Yuanbiao
- Graduate Institute of Pharmaceutical Chemistry, Luliang University, Shanxi 033001, PR China.
| | - Li Qingshan
- School of Pharmaceutical Sciences, Shanxi Medical University, Shanxi 030001, PR China.
| |
Collapse
|
26
|
Zhao C, Zhang N, Chen B, Song Y, Zhu N, Zhao L, Liu C, Meng X. A rapid and sensitive LC-MS/MS method for quantification of 3,29-dibenzoyl rarounitriol in rat plasma: application to a pharmacokinetic study. Biomed Chromatogr 2015; 29:1229-34. [PMID: 25611485 DOI: 10.1002/bmc.3412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/10/2014] [Accepted: 11/23/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Chengliang Zhao
- Gastrointestinal Medicine; the First Hospital of Jilin University; Changchun 130021 China
- Department of Orthopedics; the Affiliated Hospital of Chengde Medical College; Chengde 067000 China
| | - Nan Zhang
- Emergency Department; the First Hospital of Jilin University; Changchun 130021 China
| | - Bin Chen
- Department of Orthopedics; the Affiliated Hospital of Chengde Medical College; Chengde 067000 China
| | - Youxin Song
- Department of Orthopedics; the Affiliated Hospital of Chengde Medical College; Chengde 067000 China
| | - Naiqiang Zhu
- Department of Orthopedics; the Affiliated Hospital of Chengde Medical College; Chengde 067000 China
| | - Long Zhao
- Department of Orthopedics; the Affiliated Hospital of Chengde Medical College; Chengde 067000 China
| | - Changjian Liu
- Department of Orthopedics; the First Affiliated Hospital of Dalian Medical University; Dalian 116011 China
| | - Xiangwei Meng
- Gastrointestinal Medicine; the First Hospital of Jilin University; Changchun 130021 China
| |
Collapse
|
27
|
Wong KL, Wong RNS, Zhang L, Liu WK, Ng TB, Shaw PC, Kwok PCL, Lai YM, Zhang ZJ, Zhang Y, Tong Y, Cheung HP, Lu J, Sze SCW. Bioactive proteins and peptides isolated from Chinese medicines with pharmaceutical potential. Chin Med 2014; 9:19. [PMID: 25067942 PMCID: PMC4110622 DOI: 10.1186/1749-8546-9-19] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 07/04/2014] [Indexed: 02/07/2023] Open
Abstract
Some protein pharmaceuticals from Chinese medicine have been developed to treat cardiovascular diseases, genetic diseases, and cancer. Bioactive proteins with various pharmacological properties have been successfully isolated from animals such as Hirudo medicinalis (medicinal leech), Eisenia fetida (earthworm), and Mesobuthus martensii (Chinese scorpion), and from herbal medicines derived from species such as Cordyceps militaris, Ganoderma, Momordica cochinchinensis, Viscum album, Poria cocos, Senna obtusifolia, Panax notoginseng, Smilax glabra, Ginkgo biloba, Dioscorea batatas, and Trichosanthes kirilowii. This article reviews the isolation methods, molecular characteristics, bioactivities, pharmacological properties, and potential uses of bioactive proteins originating from these Chinese medicines.
Collapse
Affiliation(s)
- Kam Lok Wong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ricky Ngok Shun Wong
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong Special Administrative Region, China
| | - Liang Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wing Keung Liu
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Pang Chui Shaw
- School of Life Sciences and Centre for Protein Science and Crystallography, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong Special Administrative Region, China
| | - Philip Chi Lip Kwok
- Department of Pharmacology & Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yau Ming Lai
- Department of Health Technology and Informatics, Hong Kong Polytechnic University, Hung Hom, Hong Kong Special Administrative Region, China
| | - Zhang Jin Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yanbo Zhang
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Yao Tong
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Ho-Pan Cheung
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Jia Lu
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Stephen Cho Wing Sze
- School of Chinese Medicine, LKS Faculty of Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
28
|
Mo H, Ouyang D, Xu L, Gao Q, He X. Human endogenous retroviral syncytin exerts inhibitory effect on invasive phenotype of B16F10 melanoma cells. Chin J Cancer Res 2013; 25:556-564. [PMID: 24255580 PMCID: PMC3828447 DOI: 10.3978/j.issn.1000-9604.2013.10.06] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2012] [Accepted: 10/31/2012] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE Fusogenic endogenous retroviral syncytin plays an important role in the formation of syncytiotrophoblasts in human placenta. Apart from its expression in placenta, brain and testis, syncytin has also been found in many cancers. Although syncytin has been proposed to serve as a positive prognostic marker in some cancers, the underlying mechanism is unclear. The aim of this study is to evaluate the effects of syncytin expression on the invasive phenotype of melanoma cells. METHODS The eukaryotic expression plasmid for syncytin-EGFP was constructed and transfected into B16F10 melanoma cells. The effect of syncytin on the invasion potential of tumor cells was evaluated in B16F10 subline cells that stably expressed syncytin-EGFP fusion protein or EGFP alone. RESULTS The B16F10 sublines that stably expressed syncytin-EGFP or EGFP alone were established respectively and confirmed by immunofluorescent and immunoblotting assay. Syncytin expression in B16F10 cells was associated with decreased cell proliferation, migration and invasion. Multinucleated giant cells that contained as many as five nuclei were induced in syncytin-expressing cells. In addition, syncytin expression did not alter the sensitivity of B16F10 cells to trichosanthin, a toxin that damages syncytiotrophoblasts more efficiently than other tissues. CONCLUSIONS These results suggest that syncytin expression in some cancers may confine their invasion potential and thus serve as a positive prognostic factor.
Collapse
Affiliation(s)
- Hongbo Mo
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | | | | | | | | |
Collapse
|
29
|
Sha O, Niu J, Ng TB, Cho EYP, Fu X, Jiang W. Anti-tumor action of trichosanthin, a type 1 ribosome-inactivating protein, employed in traditional Chinese medicine: a mini review. Cancer Chemother Pharmacol 2013; 71:1387-93. [PMID: 23377374 PMCID: PMC3668121 DOI: 10.1007/s00280-013-2096-y] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
Trichosanthin (TCS) as a midterm abortifacient medicine has been used clinically in traditional Chinese medicine for centuries. Additionally, TCS manifests a host of pharmacological properties, for instance, anti-HIV and anti-tumor activities. TCS has been reported to inhibit cell growth of a diversity of cancers, including cervical cancer, choriocarcinoma, and leukemia/lymphoma, etc. This article purported to review the various anti-tumor activities of TCS and the mechanism of apoptosis it induced in these tumor cells. These research progresses provide an insight into cancer research and treatment as well as disclose new pharmacological properties of the ancient but popular Chinese medicine.
Collapse
Affiliation(s)
- Ou Sha
- School of Medicine, Shenzhen University, Shenzhen, China.
| | | | | | | | | | | |
Collapse
|
30
|
He D, Jin J, Zheng Y, Bruce IC, Tam S, Ma X. Anti-angiogenesis effect of trichosanthin and the underlying mechanism. Biochem Biophys Res Commun 2012. [PMID: 23206700 DOI: 10.1016/j.bbrc.2012.11.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The growth and metastasis of tumors depend on angiogenesis. Tumor angiogenesis is initiated by the secretion of growth factors from tumor cells; downstream signals are then triggered in pre-existing blood vessels to sprout a new vascular network. Trichosanthin (TCS) is a type I ribosome-inactivating protein that has anti-tumor activity, but the underlying mechanism remains unclear. In this study, we found that a non-toxic dose of TCS decreased the wound-healing and the migration of H5V mouse heart capillary endothelial cells (ECs) induced by human choriocarcinoma (JAR) cells, as well as the JAR-induced angiogenesis of rat third-order mesenteric arteries. TCS was effective on both tumor cells and ECs/arteries. First, TCS decreased vascular endothelial growth factor transcription and secretion by JAR cells. Second, TCS consequently inhibited the tumor cell-induced, extracellular signal-regulated kinase-mediated angiogenic signal in ECs and blood vessels. In conclusion, the ability of TCS to inhibit tumor angiogenesis contributes to its anti-tumor activity.
Collapse
Affiliation(s)
- Dongxu He
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
| | | | | | | | | | | |
Collapse
|
31
|
Trichosanthin inhibits breast cancer cell proliferation in both cell lines and nude mice by promotion of apoptosis. PLoS One 2012; 7:e41592. [PMID: 22957017 PMCID: PMC3434199 DOI: 10.1371/journal.pone.0041592] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 06/28/2012] [Indexed: 12/21/2022] Open
Abstract
Breast cancer ranks as a common and severe neoplasia in women with increasing incidence as well as high risk of metastasis and relapse. Translational and laboratory-based clinical investigations of new/novel drugs are in progress. Medicinal plants are rich sources of biologically active natural products for drug development. The 27-kDa trichosanthin (TCS) is a ribosome inactivating protein purified from tubers of the Chinese herbal plant Trichosanthes kirilowii Maximowicz (common name Tian Hua Fen). In this study, we extended the potential medicinal applications of TCS from HIV, ferticide, hydatidiform moles, invasive moles, to breast cancer. We found that TCS manifested anti-proliferative and apoptosis-inducing activities in both estrogen-dependent human MCF-7 cells and estrogen-independent MDA-MB-231 cells. Flow cytometric analysis disclosed that TCS induced cell cycle arrest. Further studies revealed that TCS-induced tumor cell apoptosis was attributed to activation of both caspase-8 and caspase-9 regulated pathways. The subsequent events including caspase-3 activation, and increased PARP cleavage. With regard to cell morphology, stereotypical apoptotic features were observed. Moreover, in comparison with control, TCS- treated nude mice bearing MDA-MB-231 xenograft tumors exhibited significantly reduced tumor volume and tumor weight, due to the potent effect of TCS on tumor cell apoptosis as determined by the increase of caspase-3 activation, PARP cleavage, and DNA fragmentation using immunohistochemistry. Considering the clinical efficacy and relative safety of TCS on other human diseases, this work opens up new therapeutic avenues for patients with estrogen-dependent and/or estrogen-independent breast cancers.
Collapse
|
32
|
Zhou YP, Duan J, Fujibe T, Yamamoto KT, Tian CE. AtIQM1, a novel calmodulin-binding protein, is involved in stomatal movement in Arabidopsis. PLANT MOLECULAR BIOLOGY 2012; 79:333-46. [PMID: 22572939 DOI: 10.1007/s11103-012-9915-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Accepted: 04/12/2012] [Indexed: 05/24/2023]
Abstract
We recently identified a novel IQ motif-containing protein family, IQM, which shares sequence homology with a pea heavy metal-induced protein 6 and a ribosome inactivating protein, trichosanthin. Distinct expression patterns for each gene suggest that each IQM family member may play a different role in plant development and response to environmental cues. However functions of the IQM family members remain to be analyzed. IQM1 bound with calmodulin 5 (CaM5) in yeast two-hybrid assay via its IQ-motif. The CaM binding was Ca(2+)-independent in vitro, and was also observed in bimolecular fluorescence complementation analyses in onion epidermal cells. IQM1 was found to express strongly in guard cells and the cortex of roots. The T-DNA insertion mutants of IQM1 displayed a smaller stomatal aperture, a decreased water loss rate and a shorter primary root. Moreover, iqm1 did not change its stomatal aperture when treated with light, dark, ABA and chitin obviously. Microarray analyses showed that 243 and 28 genes were up- and down-regulated by more than twofold in iqm1-1, respectively. Interesting, 34 of 117 and 7 of 30 chitin-responsive transcriptional factor and ubiquitin ligase genes were up-regulated, respectively. Stomatal guard cells of iqm1-1 also showed enhanced expression of genes involved in production and signaling of reactive oxygen species (ROS). Consistently, increased ROS level was observed in the iqm1 guard cells.
Collapse
Affiliation(s)
- Yu-Ping Zhou
- Guangzhou Key Laboratory for Functional Study on Plant Stress-Resistant Genes, Guangzhou University, Guangzhou, 510006, China
| | | | | | | | | |
Collapse
|
33
|
Liu F, Wang B, Wang Z, Yu S. Trichosanthin down-regulates Notch signaling and inhibits proliferation of the nasopharyngeal carcinoma cell line CNE2 in vitro. Fitoterapia 2012; 83:838-42. [DOI: 10.1016/j.fitote.2012.02.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
34
|
Tamburino R, Pizzo E, Sarcinelli C, Poerio E, Tedeschi F, Ficca AG, Parente A, Di Maro A. Enhanced cytotoxic activity of a bifunctional chimeric protein containing a type 1 ribosome-inactivating protein and a serine protease inhibitor. Biochimie 2012; 94:1990-6. [PMID: 22659569 DOI: 10.1016/j.biochi.2012.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/22/2012] [Indexed: 11/29/2022]
Abstract
Both ribosome-inactivating proteins (RIPs) and plant proteinase inhibitors, belong to protein families known to regulate cellular homeostasis and likely involved in plant defense. Nevertheless the interest in these protein classes is due to their potential use for the treatment of several important human diseases such as cancer. Thus, in the present study, type 1 ribosome-inactivating protein and wheat subtilisin/chymotrypsin inhibitor, were engineered into a chimeric protein with cytotoxic action selective for murine tumor cells, while lacking any appreciable toxicity on murine normal cells. This chimeric protein selectively sensitizes to apoptotic death cells derived from Simian-virus-40-transformed mouse fibroblasts (SVT2 cells). The cytotoxicity of this new recombinant product has been detected also on three different human malignant cells. Therefore action on tumor cells of this protein could represent a potentially very attractive novel tool for anticancer drug design.
Collapse
Affiliation(s)
- Rachele Tamburino
- Dipartimento di Scienze della Vita, Seconda Università di Napoli, Via Vivaldi 43, I-81100 Caserta, Italy
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Synthesis and purification of a toxin-linked conjugate targeting epidermal growth factor receptor in Escherichia coli. Protein Expr Purif 2012; 83:1-7. [DOI: 10.1016/j.pep.2012.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 01/01/2023]
|
36
|
Meng Y, Liu B, Lei N, Zheng J, He Q, Li D, Zhao X, Shen F. Alpha-momorcharin possessing high immunogenicity, immunotoxicity and hepatotoxicity in SD rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 139:590-598. [PMID: 22172326 DOI: 10.1016/j.jep.2011.11.057] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 11/27/2011] [Accepted: 11/29/2011] [Indexed: 05/31/2023]
Abstract
UNLABELLED Momordica charantia L., a genus of Momordica Linn. of the family Cucurbitaceae, commonly known as bitter melon, has been widely planted in China, Southeast Asia, Turkey and other areas, and has been used as a medicine for a long time. Alpha-momorcharin (α-MMC) extracted and purified from bitter melon seeds has significant anti-tumor and anti-virus effects, and has potential toxicity as well, especially when taken overdose. However, up to date studies on its safety evaluation are still insufficient. AIMS OF THE STUDY The immunogenicity, immunotoxicity and general toxicity of α-MMC were investigated in rats and guinea-pigs, and the potential toxic effects of the agent on the body were also examined. MATERIALS AND METHODS The major ribosome-inactivating protein was isolated by column chromatographies from the protein extracted from bitter melon seeds, and was verified as α-MMC. After rats were immunized by α-MMC, titers of specific antibody to α-MMC in immunized rats serum were detected by indirect ELISA. Guinea-pigs and rats immunized with α-MMC were used to evaluate the active systemic anaphylaxis and passive cutaneous anaphylaxis induced by α-MMC relatively. α-MMC of 6.25 mg/kg, 2.08 mg/kg and 0.70 mg/kg was administered to rats every 2 days. Five weeks later, animals were sacrificed, and then, biochemical examination, analysis of bone marrow and peripheral blood cells, and histopathologic examination were performed. RESULTS The ribosome-inactivating protein isolated and purified from bitter melon seeds was identified as α-MMC. It induced high titer (1:46.4) of specific IgG and high positive results of the active systemic anaphylaxis and passive cutaneous anaphylaxis tests in animals. With the time of the α-MMC administration increasing, the body weights of the animals administered with α-MMC of 6.25 mg/kg decreased significantly, and point necrosis was also observed in liver cells, along with abnormal findings in serum chemistry, hematology and bone marrow histopathology test. The toxic effect lessened with the decrease of the dose of α-MMC and further reduced after the convalescence stage. CONCLUSIONS The results of the study show that α-MMC has high immunogenicity and immunotoxicity, and can cause obvious organic liver lesion.
Collapse
Affiliation(s)
- Yao Meng
- West China Hospital Laboratory of Nanomedicine, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Xiang DJ, Chen LM, Gu JS, Stone P, Chen Q. Trichosanthin, a Chinese medicine for the medical treatment of ectopic pregnancy with high levels of β-hCG. Reprod Sci 2012; 19:534-8. [PMID: 22267541 DOI: 10.1177/1933719111426605] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This was a retrospective study of the effectiveness of trichosanthin (TCS), an active component isolated from the Chinese herb root tuber of Trichosanthes kirilowii on 140 cases of ectopic pregnancy with higher levels of β-human chorionic gonadotropin (β-hCG) managed with a single dose of TCS treatment. Trichosanthin has been used for medical treatment of ectopic pregnancy in China since the 1980s. This study was performed in a major teaching hospitals in China. The mean pretreatment level of β-hCG in the TCS treatment group was 3387.57 IU/L. The success rate of TCS treatment was 85% (119 of 140) which was similar to methotrexate (MTX) treatment. In 86 women with a high level of β-hCG (over 2000 IU/L), the success rate was 80.08% when treated with TCS. Of this group, 26 women who had a high level of β-hCG (over 5000 IU/L) showed a success rate of 73%. The level of β-hCG on days 4, 7, and 10 in TCS group was significantly decreased. This study has shown that TCS may be an option for the medical treatment of unruptured ectopic pregnancy or an option for the treatment of ectopic pregnancy with higher levels of β-hCG than currently recommended for medical management with MTX.
Collapse
Affiliation(s)
- D J Xiang
- Wuxi Maternity and Child Health Hospital Affiliated Nanjing Medical University, China
| | | | | | | | | |
Collapse
|
38
|
Effects of Geographical Origin on the Conjugated Linolenic Acid of Trichosanthes kirilowii Maxim Seed Oil. J AM OIL CHEM SOC 2011. [DOI: 10.1007/s11746-011-1928-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
He D, Yau K, He X, Shi H, Zheng Y, Tam S. Conversion of trichosanthin-induced CD95 (Fas) type I into type II apoptotic signaling during Herpes simplex virus infection. Mol Immunol 2011; 48:2000-8. [PMID: 21723610 DOI: 10.1016/j.molimm.2011.06.217] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 06/05/2011] [Accepted: 06/05/2011] [Indexed: 02/08/2023]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein with wide spectrum of pharmacological activities. It inhibits human immunodeficiency virus type 1 (HIV-1) and Herpes simplex virus type 1 (HSV-1) replication but the mechanism is not clear. From a previous study, TCS was found to be more cytotoxic to HIV-1 infected cells than uninfected cells. Similar finding was confirmed with HSV-1 in the present study. TCS induced cell death in HEp-2 cells and the EC(50) was 24.64μg/mL. When the same experiment was performed in HSV-1 infected HEp-2 cells, the EC(50) decreased to 3.01μg/mL. TCS appeared to cause more death and apoptosis in viral infected cells. This study explored plausible mechanism with respect to the apoptosis signal pathways. In uninfected cells, TCS induced CD95 (Fas)-mediated and caspase-8-dependent type I apoptosis. When cells were infected with HSV-1, apoptosis induced by TCS clearly switched to a more potent type II pathway. This involved mitochondrial depolarization and caspase-9 activation. The major evidences arose from studying the individual signals of the two apoptosis pathways in infected and uninfected cells. In addition, over expression of Bcl-2, which mainly affected the type II pathway reduced TCS induced apoptosis mostly in infected cells. This further demonstrated that the type II pathway was operating in infected cells. The reason for the switching is not entirely clear but it is well known that viral infection affects signal pathways especially those related to apoptosis. In conclusion, TCS selectively induces more apoptosis in HSV-1 infected cells than uninfected cells. The consequence of infection switches the TCS-induced apoptosis pathway from a CD95 (Fas) dependent type I to a more potent type II pathway mediated by mitochondrial depolarization and caspase-9 activation.
Collapse
Affiliation(s)
- Dongxu He
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
40
|
Katiyar SP, Bakkiyaraj D, Karutha Pandian S. Role of aromatic stack pairing at the catalytic site of gelonin protein. Biochem Biophys Res Commun 2011; 410:75-80. [PMID: 21640706 DOI: 10.1016/j.bbrc.2011.05.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 05/18/2011] [Indexed: 01/09/2023]
Abstract
Aromatic-aromatic interactions play an important role in the enzyme-substrate recognition mechanism and in stabilization of proteins. Gelonin--a ribosome inactivating protein (RIP) from the plant Gelonium multiflorum--belongs to type-I RIPs and shows N-glycosylation activity which has been used as a model to explain the role of aromatic-aromatic stack pairing in RIPs. RIPs have a different substrate binding site and catalytic site. Role of tyrosine residues at the binding site has already been known but the role of tyrosine residues at catalytic site is still unclear. In this study, the role of tyrosine-adenine-tyrosine aromatic stack pairing at the catalytic site was studied by in silico mutation studies using molecular dynamic simulations. Through this study we report that, despite the fact that aromatic stack pairing aids in recognition of adenine at binding site, both the tyrosine residues of stack pairing play a crucial role in the stabilization of adenine at catalytic site. In the absence of both the tyrosine residues, adenine was unstable at catalytic site that results in the inhibition of N-glycosylation activity of gelonin protein. Hence, this study highlights the importance of π-π stack pairing in the N-glycosidic activity of gelonin by determining its role in stabilizing adenine at catalytic site.
Collapse
|
41
|
Cai Y, Xiong S, Zheng Y, Luo F, Jiang P, Chu Y. Trichosanthin enhances anti-tumor immune response in a murine Lewis lung cancer model by boosting the interaction between TSLC1 and CRTAM. Cell Mol Immunol 2011; 8:359-67. [PMID: 21572449 DOI: 10.1038/cmi.2011.12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Trichosanthin (TCS), extracted from the Chinese medicinal herb Trichosanthes kirilowi, has shown promise for the inhibition of tumor growth. However, its immunomodulatory effect on tumor-host interaction remains unknown. In this study, we focused on the effect of TCS on murine anti-tumor immune response in the 3LL Lewis lung carcinoma tumor model and explored the possible molecular pathways involved. In addition to inhibiting cell proliferation and inducing apoptosis in the 3LL tumor, TCS retarded tumor growth and prolonged mouse survival more significantly in C57BL/6 immunocompetent mice than in nude mice. This reflected the fact that the host immune system was involved in tumor eradication. Using FACS analysis, we found that TCS increased the percentage of effector T cells, particularly Interferon-gamma (IFN-γ) producing CD4(+) and CD8(+) T cells from tumor-bearing mice. TCS also promoted the vigorous proliferation of antigen-specific effector T cells, markedly increased Th1 cytokine secretion and elicited more memory T cells in tumor-bearing mice, consequently enhancing the anti-tumor response and inducing immune protection. Furthermore, we found that TCS upregulated the expression of tumor suppressor in lung cancer 1 (TSLC1) in 3LL tumor cells and the expression of its ligand, class I-restricted T cell-associated molecule (CRTAM), in effector T cells. Blocking TSLC1 expression with small interfering RNA (siRNA) significantly eliminated the effects of TCS on the proliferation and cytokine secretion of effector T cells, suggesting that TCS enhances anti-tumor immune response at least partially by boosting the interaction between TSLC1 and CRTAM. Collectively, our data demonstrate that TCS not only affects tumor cells directly, but also enhances anti-tumor immunity via the interaction between TSLC1 and CRTAM. These findings may lead to the development of a novel approach for tumor regression.
Collapse
Affiliation(s)
- Yuchan Cai
- Department of Immunology, Shanghai Medical College, Key Laboratory of Molecular Medicine of Ministry of Education, Fudan University, China
| | | | | | | | | | | |
Collapse
|
42
|
Ng YM, Yang Y, Sze KH, Zhang X, Zheng YT, Shaw PC. Structural characterization and anti-HIV-1 activities of arginine/glutamate-rich polypeptide Luffin P1 from the seeds of sponge gourd (Luffa cylindrica). J Struct Biol 2011; 174:164-72. [DOI: 10.1016/j.jsb.2010.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 12/21/2010] [Accepted: 12/22/2010] [Indexed: 01/29/2023]
|
43
|
Li M, Li X, Li JC. Possible mechanisms of trichosanthin-induced apoptosis of tumor cells. Anat Rec (Hoboken) 2010; 293:986-92. [PMID: 20225201 DOI: 10.1002/ar.21142] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein that is isolated from the root tubers of the Chinese medicinal herb Trichosanthes kirilowii Maximowicz. TCS has been used as an abortifacient for 1,500 years in China because of its high toxicity on trophoblasts. Over the past 20 years, TCS has been the subject of much research because of its potential antitumor activities. Many reports have revealed that TCS is cytotoxic in a variety of tumor cell lines in vitro and in vivo. Monoclonal antibody-conjugated TCS could enhance its antitumor efficacy; thus, TCS is considered to be a potential biological agent for cancer treatment. TCS is able to inhibit protein synthesis and consequently induce necrosis. Recent studies have demonstrated that TCS does indeed induce apoptosis in several tumor cell lines. Although TCS-induced apoptosis of tumor cell lines is now well known, the underlying mechanisms remain to be elucidated. The purpose of this review was to investigate the effects of TCS and its possible mechanisms of action, based on published literature and the results of our own studies.
Collapse
Affiliation(s)
- Meng Li
- Institute of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
44
|
Huang C, Zhao J, Li Z, Li D, Xia D, Wang Q, Jin H. Multi-chaperone-peptide-rich mixture from colo-carcinoma cells elicits potent anticancer immunity. Cancer Epidemiol 2010; 34:494-500. [DOI: 10.1016/j.canep.2010.03.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2008] [Revised: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 10/19/2022]
|
45
|
Dat NT, Jin X, Hong YS, Lee JJ. An isoaurone and other constituents from Trichosanthes kirilowii seeds inhibit hypoxia-inducible factor-1 and nuclear factor-kappaB. JOURNAL OF NATURAL PRODUCTS 2010; 73:1167-1169. [PMID: 20469887 DOI: 10.1021/np900820p] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Hypoxia-inducible factor-1 and nuclear factor-kappaB have become important targets in cancer treatment due to their critical role in the regulation of genes involved in tumorigenesis. Bioassay-guided fractionation of the methanol extract of Trichosanthes kirilowii seeds led to the isolation of a naturally rare isoaurone, 4',6-dihydroxy-4-methoxyisoaurone (1), together with three known compounds, cucurbitacin B (2), 6-(3-hydroxy-4-methoxystyryl)-4-methoxy-2H-pyran-2-one (3), and blumenol A (4). All compounds inhibited HIF-1 and NF-kappaB activities in reporter assays. Compounds 1-3 potently inhibited HIF-1alpha accumulation and VEGF secretion under hypoxic condition. These results suggest that the tumor cell growth inhibitory activity of T. kirilowii is likely associated with the inhibition of HIF-1 and NF-kappaB activities.
Collapse
Affiliation(s)
- Nguyen Tien Dat
- Center for Molecular Cancer Research, Korean Research Institute of Biosciences and Biotechnology, 685-1 Ochang, Chungbuk 363-883, Korea
| | | | | | | |
Collapse
|
46
|
Law SKY, Wang RR, Mak ANS, Wong KB, Zheng YT, Shaw PC. A switch-on mechanism to activate maize ribosome-inactivating protein for targeting HIV-infected cells. Nucleic Acids Res 2010; 38:6803-12. [PMID: 20558598 PMCID: PMC2965250 DOI: 10.1093/nar/gkq551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Maize ribosome-inactivating protein (RIP) is a plant toxin that inactivates eukaryotic ribosomes by depurinating a specific adenine residue at the α-sarcin/ricin loop of 28S rRNA. Maize RIP is first produced as a proenzyme with a 25-amino acid internal inactivation region on the protein surface. During germination, proteolytic removal of this internal inactivation region generates the active heterodimeric maize RIP with full N-glycosidase activity. This naturally occurring switch-on mechanism provides an opportunity for targeting the cytotoxin to pathogen-infected cells. Here, we report the addition of HIV-1 protease recognition sequences to the internal inactivation region and the activation of the maize RIP variants by HIV-1 protease in vitro and in HIV-infected cells. Among the variants generated, two were cleaved efficiently by HIV-1 protease. The HIV-1 protease-activated variants showed enhanced N-glycosidase activity in vivo as compared to their un-activated counterparts. They also possessed potent inhibitory effect on p24 antigen production in human T cells infected by two HIV-1 strains. This switch-on strategy for activating the enzymatic activity of maize RIP in target cells provides a platform for combating pathogens with a specific protease.
Collapse
Affiliation(s)
- Sue Ka-Yee Law
- Department of Biochemistry and Centre for Protein Science and Crystallography, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | | | | | | | | | | |
Collapse
|
47
|
Different in vitro toxicities of structurally similar type I ribosome-inactivating proteins (RIPs). Toxicol In Vitro 2010; 24:1176-82. [DOI: 10.1016/j.tiv.2010.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Revised: 02/08/2010] [Accepted: 02/15/2010] [Indexed: 11/21/2022]
|
48
|
Wang B, Jiao Z, Shao X, Lu L, Yang N, Zhou X, Xin L, Zhou Y, Chou KY. Phenotypic Alterations of Dendritic Cells Are Involved in Suppressive Activity of Trichosanthin-Induced CD8+CD28− Regulatory T Cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:79-88. [DOI: 10.4049/jimmunol.0901488] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
49
|
Zhao W, Feng D, Sun S, Han T, Sui S. The anti-viral protein of trichosanthin penetrates into human immunodeficiency virus type 1. Acta Biochim Biophys Sin (Shanghai) 2010; 42:91-7. [PMID: 20119629 DOI: 10.1093/abbs/gmp111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Trichosanthin (TCS) is a type I ribosome-inactivating protein with potent inhibitory activity against human immunodeficiency virus type 1, and has been clinically applied in acquired immunodeficiency syndrome (AIDS) therapy. Previous studies revealed that TCS recognized human immunodeficiency virus type 1 (HIV-1) particles. Here, we investigated the physical relationship between TCS and HIV-1 particles, and demonstrated that TCS penetrates into viral particles, where it is protected from various protease digestion. The penetration of TCS exerts no obvious effect on viral integrity. FYY140-142, D176, and K177 were identified as key amino acid residues for the membranetranslocation process. Moreover, TCS penetrated into HIV-1 virions showed potent anti-viral activity. Overall, the observations suggest that the penetration of TCS into HIV-1 particles may be important for eliminating the virus.
Collapse
|
50
|
Jiao Y, Liu W. Low-density lipoprotein receptor-related protein 1 is an essential receptor for trichosanthin in 2 choriocarcinoma cell lines. Biochem Biophys Res Commun 2009; 391:1579-84. [PMID: 19968964 DOI: 10.1016/j.bbrc.2009.12.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2009] [Accepted: 12/01/2009] [Indexed: 01/27/2023]
Abstract
Type-I ribosome-inactivating protein-trichosanthin (TCS) exhibits selective cytotoxicity toward different types of cells. It is believed that the cytotoxicity results from the inhibition of ribosomes to decrease protein synthesis, thereby indicating that there are specific mechanisms for TCS entry into target cells to reach the ribosomes. Low-density lipoprotein (LDL) receptor-related protein 1 (LRP1) is a large scavenger receptor that is responsible for the binding and endocytosis of diverse biological ligands on the cell surface. In this study, we demonstrated that 2 choriocarcinoma cell lines can significantly bind and internalize TCS. In contrast, Hela cell line displayed no obvious TCS binding and endocytosis. Furthermore LRP1 gene silencing in JAR and BeWo cell lines blocked TCS binding; TCS could also interact with LRP1.The results of our study established that LRP1 was a major receptor for phagocytosis of TCS in JAR and BeWo cell lines and might be the molecular basis of TCS abortificient and anti-choriocarcinoma activity.
Collapse
Affiliation(s)
- Yizu Jiao
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, The Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai 200031, China
| | | |
Collapse
|