1
|
Pilon GD, Farias-de-França AP, Cantuária NM, Silva MG, Leão-Torres AG, Floriano RS, dos Santos MG, da Silva NJ, Gerlach OMS, Cechinel-Filho V, Oshima-Franco Y. The Protective Action of Coutarea hexandra (Rubiaceae) on the Neuromuscular Blockade Induced by Lachesis muta muta (Viperidae: Crotalinae) Venom. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4714510. [PMID: 39584046 PMCID: PMC11584258 DOI: 10.1155/2024/4714510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/26/2024]
Abstract
Envenomations by snakes represent a neglected health problem in tropical and subtropical countries. In South America, Lachesis muta occasionally causes severe human envenomation, with treatment being conditioned to an unspecific antivenom. In this work, we examined the neutralizing ability of Coutarea hexandra stem bark hydroalcoholic extract (Ch-E), including the commercial phytochemicals coumarin and quinine, on the neuromuscular blockade induced by L. m. muta venom in mouse phrenic nerve-diaphragm preparation. Biological assays were performed following conventional myographic technique ex vivo. Ch-E was phytochemically characterized to detect the presence of coumarin and quinine using analytical methods. Ch-E and commercial phytochemicals were tested separately or combined under pre- and post-venom incubation protocols. Ch-E attenuated the venom-induced neuromuscular blockade only under the pre-venom incubation protocol. Quinine was not detected in Ch-E. Commercial coumarin and quinine exhibited a concentration-dependent counteracting effect on the venom-induced neuromuscular blockade. The pre-venom incubation protocol showed to be efficient in attenuating the L. m. muta venom-induced neuromuscular blockade, most likely due to the presence of coumarin derivatives and unknown alkaloids in this extract.
Collapse
Affiliation(s)
- Grazielle D. Pilon
- Biomedicine Course, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | | | | | - Magali G. Silva
- Pharmacy Course, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| | - Aline G. Leão-Torres
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Rafael S. Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Presidente Prudente, São Paulo, Brazil
| | - Marcio G. dos Santos
- Graduate Program in Environmental Sciences, Tocantins Federal University (UFT), Palmas, Tocantins, Brazil
| | - Nelson Jorge da Silva
- Graduate Program in Environmental Sciences and Health, School of Medical and Life Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Goiânia, Goias, Brazil
| | - Otto M. S. Gerlach
- Graduate Program in Pharmaceutical Sciences and Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Valdir Cechinel-Filho
- Graduate Program in Pharmaceutical Sciences and Núcleo de Investigações Químico-Farmacêuticas, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Santa Catarina, Brazil
| | - Yoko Oshima-Franco
- Graduate Program in Pharmaceutical Sciences, University of Sorocaba (UNISO), Sorocaba, São Paulo, Brazil
| |
Collapse
|
2
|
Galizio NC, Moraes-Santos LS, Yabunaka AC, Demico PJ, Torres-Bonilla KA, Varón JCG, Silva NJD, Tanaka-Azevedo AM, Rocha MMTD, Hyslop S, Floriano RS, Morais-Zani KD. Biochemical and toxicological profiles of venoms from an adult female South American bushmaster (Lachesis muta rhombeata) and her offspring. Toxicon 2024; 241:107680. [PMID: 38452976 DOI: 10.1016/j.toxicon.2024.107680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/23/2024] [Accepted: 03/03/2024] [Indexed: 03/09/2024]
Abstract
In this work, we compared the biochemical and toxicological profiles of venoms from an adult female specimen of Lachesis muta rhombeata (South American bushmaster) and her seven offspring born in captivity, based on SDS-PAGE, RP-HPLC, enzymatic, coagulant, and hemorrhagic assays. Although adult and juvenile venoms showed comparable SDS-PAGE profiles, juveniles lacked some chromatographic peaks compared with adult venom. Adult venom had higher proteolytic (caseinolytic) activity than juvenile venoms (p < 0.05), but there were no significant inter-venom variations in the esterase, PLA2, phosphodiesterase and L-amino acid oxidase (LAAO) activities, although the latter activity was highly variable among the venoms. Juveniles displayed higher coagulant activity on human plasma, with a minimum coagulant dose ∼42% lower than the adult venom (p < 0.05), but there were no age-related differences in thrombin-like activity. Adult venom was more fibrinogenolytic (based on the rate of fibrinogen chain degradation) and hemorrhagic than juvenile venoms (p < 0.05). The effective dose of Bothrops/Lachesis antivenom (produced by the Instituto Butantan) needed to neutralize the coagulant activity was ∼57% greater for juvenile venoms (p < 0.05), whereas antivenom did not attenuate the thrombin-like activity of juvenile and adult venoms. Antivenom significantly reduced the hemorrhagic activity of adult venom (400 μg/kg, i. d.), but not that of juvenile venoms. Overall, these data indicate a compositional and functional ontogenetic shift in L. m. rhombeata venom.
Collapse
Affiliation(s)
- Nathália C Galizio
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Laura S Moraes-Santos
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Ana C Yabunaka
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Poliana J Demico
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Kristian A Torres-Bonilla
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Julian C G Varón
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nelson J da Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC-GO), Goiânia, GO, Brazil
| | - Anita M Tanaka-Azevedo
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil
| | - Marisa M Teixeira da Rocha
- Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil
| | - Stephen Hyslop
- Section of Pharmacology, Department of Translational Medicine, Faculty of Medical Sciences, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo (UNOESTE), Presidente Prudente, SP, Brazil
| | - Karen de Morais-Zani
- Laboratory of Pathophysiology, Butantan Institute, São Paulo, SP, Brazil; Interunits Graduate Program in Biotechnology, University of São Paulo, Butantan Institute and Technological Research Institute of the State of São Paulo, São Paulo, SP, Brazil; Laboratory of Herpetology, Butantan Institute, São Paulo, SP, Brazil.
| |
Collapse
|
3
|
Cañas CA, Castaño-Valencia S, Castro-Herrera F. The Colombian bushmasters Lachesis acrochorda (García, 1896) and Lachesis muta (Linnaeus, 1766): Snake species, venoms, envenomation, and its management. Toxicon 2023; 230:107152. [PMID: 37178796 DOI: 10.1016/j.toxicon.2023.107152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
In Colombia, there are two species of bushmaster snakes, Lachesis acrochorda, which is distributed mainly in the west of the country (in the Choco region), and Lachesis muta in the southeast (in the Amazon and Orinoquia region), whose presence has been reduced due to the destruction of their habitats. Captive maintenance is challenging, making it difficult to obtain their venom for study and antivenom manufacturing. They are the largest vipers in the world. The occurrence of human envenomation is quite rare, but when it occurs, it is associated with high mortality. Bushmaster venom is necrotizing, hemorrhagic, myotoxic, hemolytic, and cardiovascular depressant. Due to the presence of bradycardia, hypotension, emesis, and diarrhea in some patients (Lachesis syndrome), the possibility of a vagal or cholinergic effect is raised. The treatment of envenomation is hindered by the scarcity of antivenom and the need to use high doses. A review of the most relevant biological and medical aspects of bushmaster snakes is presented, mainly for those occurring in Colombia, to facilitate their recognition and raise awareness about the need for special attention to improve their conservation and advance scientific knowledge, in particular, about their venom.
Collapse
Affiliation(s)
- Carlos A Cañas
- Universidad Icesi, CIRAT: Centro de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional, Cali, 760031, Colombia; Fundación Valle del Lili, Departamento de Reumatología, Cali, 760026, Colombia.
| | - Santiago Castaño-Valencia
- Department of Physiological Sciences, Department of Health Sciences, Universidad del Valle. Cali 760042, Colombia; Laboratorio de Herpetología y Toxinología, Universidad del Valle. Cali 760042, Colombia
| | | |
Collapse
|
4
|
Gutierres PG, Pereira DR, Vieira NL, Arantes LF, Silva NJ, Torres-Bonilla KA, Hyslop S, Morais-Zani K, Nogueira RMB, Rowan EG, Floriano RS. Action of Varespladib (LY-315920), a Phospholipase A 2 Inhibitor, on the Enzymatic, Coagulant and Haemorrhagic Activities of Lachesis muta rhombeata (South-American Bushmaster) Venom. Front Pharmacol 2022; 12:812295. [PMID: 35095526 PMCID: PMC8790531 DOI: 10.3389/fphar.2021.812295] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Varespladib (VPL) was primarily developed to treat inflammatory disturbances associated with high levels of serum phospholipase A2 (PLA2). VPL has also demonstrated to be a potential antivenom support agent to prevent PLA2-dependent effects produced by snake venoms. In this study, we examined the action of VPL on the coagulant, haemorrhagic and enzymatic activities of Lachesis muta rhombeata (South-American bushmaster) venom. Conventional colorimetric enzymatic assays were performed for PLA2, caseinolytic and esterasic activities; in vitro coagulant activities for prothrombin time (PT) and activated partial thromboplastin time (aPTT) were performed in rat citrated plasma through a quick timer coagulometer, whereas the dimensions of haemorrhagic haloes obtained after i.d. injections of venom in Wistar rats were determined using ImageJ software. Venom (1 mg/ml) exhibited accentuated enzymatic activities for proteases and PLA2in vitro, with VPL abolishing the PLA2 activity from 0.01 mM; VPL did not affect caseinolytic and esterasic activities at any tested concentrations (0.001–1 mM). In rat citrated plasma in vitro, VPL (1 mM) alone efficiently prevented the venom (1 mg/ml)-induced procoagulant disorder associated to extrinsic (PT) pathway, whereas its association with a commercial antivenom successfully prevented changes in both intrinsic (aPTT) and extrinsic (PT) pathways; commercial antivenom by itself failed to avoid the procoagulant disorders by this venom. Venom (0.5 mg/kg)-induced hemorrhagic activity was slightly reduced by VPL (1 mM) alone or combined with antivenom (antivenom:venom ratio 1:3 ‘v/w’) in rats, with antivenom alone producing no protective action on this parameter. In conclusion, VPL does not inhibit other major enzymatic groups of L. m. rhombeata venom, with its high PLA2 antagonize activity efficaciously preventing the venom-induced coagulation disturbances.
Collapse
Affiliation(s)
- Pamella G Gutierres
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Diego R Pereira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Nataly L Vieira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Lilian F Arantes
- Graduate Program in Zootechnics, Rural Federal University of Pernambuco, Recife, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás, Goiânia, Brazil
| | - Kristian A Torres-Bonilla
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Stephen Hyslop
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Rosa M B Nogueira
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, University of Western São Paulo, Presidente Prudente, Brazil
| |
Collapse
|
5
|
Rodrigues CR, Molina Molina DA, de Souza DLN, Cardenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon 2021; 207:31-42. [PMID: 34968566 DOI: 10.1016/j.toxicon.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis A Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Repurposing homeopathic drug Lachesis 200C as an anticancer activity: In vitro and in ovo study. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Leão-Torres AG, Pires CV, Ribelato AC, Zerbinatti MC, Santarém CL, Nogueira RMB, Giometti IC, Giuffrida R, Silva EO, Gerez JR, Silva NJ, Rowan EG, Floriano RS. Protective action of N-acetyl-L-cysteine associated with a polyvalent antivenom on the envenomation induced by Lachesis muta muta (South American bushmaster) in rats. Toxicon 2021; 198:36-47. [PMID: 33915137 DOI: 10.1016/j.toxicon.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 02/05/2023]
Abstract
In this study, we examined the potential use of N-acetyl-L-cysteine (NAC) in association with a polyvalent antivenom and as stand-alone therapy to reduce the acute local and systemic effects induced by Lachesis muta muta venom in rats. Male Wistar rats (300-350 g) were exposed to L. m. muta venom (1.5 mg/kg - i.m.) and subsequently treated with anti-Bothrops/Lachesis serum (antivenom:venom ratio 1:3 'v/w' - i.p.) and NAC (150 mg/kg - i.p.) separately or in association; the animals were monitored for 120 min to assess changes in temperature, locomotor activity, local oedema formation and the prevalence of haemorrhaging. After this time, animals were anesthetized in order to collect blood samples through intracardiac puncture and then euthanized for collecting tissue samples; the hematological-biochemical and histopathological analyses were performed through conventional methods. L. m. muta venom produced pronounced local oedema, subcutaneous haemorrhage and myonecrosis, with both antivenom and NAC successfully reducing the extent of the myonecrotic lesion when individually administered; their association also prevented the occurrence of subcutaneous haemorrhage. Venom-induced creatine kinase (CK) release was significantly prevented by NAC alone or in combination with antivenom; NAC alone failed to reduce the release of hepatotoxic (alanine aminotransferase) and nephrotoxic (creatinine) serum biomarkers induced by L. m. muta venom. Venom induced significant increase of leucocytes which was also associated with an increase of neutrophils, eosinophils and monocytes; antivenom and NAC partially reduced these alterations, with NAC alone significantly preventing the increase of eosinophils whereas neither NAC or antivenom prevented the increase in monocytes. Venom did not induce changes in the erythrogram parameters. In the absence of a suitable antivenom, NAC has the potential to reduce a number of local and systemic effects caused by L. m. muta venom.
Collapse
Affiliation(s)
- Aline G Leão-Torres
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Carina V Pires
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Amanda C Ribelato
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Maria C Zerbinatti
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Cecília L Santarém
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rosa M B Nogueira
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Inês C Giometti
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Rogério Giuffrida
- Graduate Program in Animal Science, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil
| | - Elisangela O Silva
- Laboratory of Pathological Anatomy, Veterinary Hospital, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, 19067-175, Presidente Prudente, SP, Brazil
| | - Juliana R Gerez
- Department of Histology, State University of Londrina, Rodovia Celso Garcia Cid Km 380, 86057-970, Londrina, PR, Brazil
| | - Nelson J Silva
- Graduate Program in Environmental Sciences and Health, School of Medical, Pharmaceutical and Biomedical Sciences, Pontifical Catholic University of Goiás (PUC Goiás), Rua 232, 128, 74605-140, Goiânia, GO, Brazil
| | - Edward G Rowan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE, Glasgow, UK
| | - Rafael S Floriano
- Laboratory of Toxinology and Cardiovascular Research, Graduate Program in Health Sciences, University of Western São Paulo (UNOESTE), Rodovia Raposo Tavares Km 572, B2-205, 19067-175, Presidente Prudente, SP, Brazil.
| |
Collapse
|
8
|
Micrurus surinamensis Peruvian snake venom: Cytotoxic activity and purification of a C-type lectin protein (Ms-CTL) highly toxic to cardiomyoblast-derived H9c2 cells. Int J Biol Macromol 2020; 164:1908-1915. [PMID: 32781119 DOI: 10.1016/j.ijbiomac.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 11/20/2022]
Abstract
Micrurus surinamensis (Cuvier, 1817), popularly known as aquatic coral snake, has a broad geographic distribution in the Rainforest of South America. The purpose of this study was to investigate the cytotoxic effect caused by M. surinamensis venom in H9c2 cardiomyoblast cells and to identify protein components involved in cardiotoxic processes. Venom cardiotoxic potential is evidenced by cell viability reduction in a concentration-dependent manner. We have purified one of venom components responsible for this effect after three chromatographic steps: a cytotoxic 23.461 kDa protein, as determined by mass spectrometry. A 19-residue sequence (DCPSGWSSYEGSCYNFFQR) of the purified protein was deduced by MS/MS and exhibited high homology with N-terminal region of C-type lectin from snake venoms. This protein was named Ms-CTL. Morphologically, H9c2 incubation with Ms-CTL led to a significant cellular retraction and formation of cellular aggregates, as observed by microscopy phase-contrast images. Our results indicate that M. surinamensis venom is highly toxic to H9c2 cardiomyoblast cell and less or not cytotoxic to other cell lines, such as HaCat, VERO and U373. Results presented herein will help understanding the mechanisms that underlie cellular damage and tissue destruction, being useful in the development of alternative therapies against these coral snake bites.
Collapse
|
9
|
Acidic Phospholipase A2-Peptide Derivative Modulates Oxidative Status and Microstructural Reorganization of Scar Tissue after Cutaneous Injury. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8273986. [PMID: 32733589 PMCID: PMC7369679 DOI: 10.1155/2020/8273986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022]
Abstract
From in vitro and in vivo models, the proliferative and healing potential of an acidic phospholipase A2 (LAPLA2) from Lachesis muta venom was investigated. The LAPLA2 proliferative activity was evaluated on fibroblasts and keratinocytes cultured, and the antioxidant and regenerative potential of LAPLA2 was analyzed in a murine model. The animal study consisted of four groups: C (negative control): 0.9% NaCl; SS (positive control): 1% silver sulfadiazine; L1 group: 0.5% LAPLA2; and L2 group: 0.25% LAPLA2. Wounds were topically treated daily for 12 days, and scar tissue samples were collected every 4 days. In vitro, LAPLA2 stimulated marked time-dependent cell proliferation. In vivo, it increased the antioxidant activity of superoxide dismutase (SOD) and catalase (CAT) and decreased malondialdehyde (MDA) and carbonyl protein (CP) levels in scar tissue treated with LAPLA2 at 0.5%. This peptide was effective in stimulating cellular proliferation, neoangiogenesis, type I and III collagen deposition, and maturation in a time-dependent-way, reducing the time required for wound closure. Our results indicated that LAPLA2 presented a remarkable potential in improving the oxidative status and microstructural reorganization of the scar tissue by stimulation of cellularity, angiogenesis, colagenogenesis, and wound contraction, suggesting that the peptide could be a potential candidate for a new healing drug.
Collapse
|
10
|
Rodrigues CR, Molina DAM, Silva de Assis TC, Liberato C, Melo-Braga MN, Ferreyra CB, Cárdenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili ("jergón shushupe"), venom. Toxicon 2020; 184:19-27. [PMID: 32479836 DOI: 10.1016/j.toxicon.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C Silva de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Snake Venoms in Drug Discovery: Valuable Therapeutic Tools for Life Saving. Toxins (Basel) 2019; 11:toxins11100564. [PMID: 31557973 PMCID: PMC6832721 DOI: 10.3390/toxins11100564] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/20/2019] [Accepted: 09/22/2019] [Indexed: 12/16/2022] Open
Abstract
Animal venoms are used as defense mechanisms or to immobilize and digest prey. In fact, venoms are complex mixtures of enzymatic and non-enzymatic components with specific pathophysiological functions. Peptide toxins isolated from animal venoms target mainly ion channels, membrane receptors and components of the hemostatic system with high selectivity and affinity. The present review shows an up-to-date survey on the pharmacology of snake-venom bioactive components and evaluates their therapeutic perspectives against a wide range of pathophysiological conditions. Snake venoms have also been used as medical tools for thousands of years especially in tradition Chinese medicine. Consequently, snake venoms can be considered as mini-drug libraries in which each drug is pharmacologically active. However, less than 0.01% of these toxins have been identified and characterized. For instance, Captopril® (Enalapril), Integrilin® (Eptifibatide) and Aggrastat® (Tirofiban) are drugs based on snake venoms, which have been approved by the FDA. In addition to these approved drugs, many other snake venom components are now involved in preclinical or clinical trials for a variety of therapeutic applications. These examples show that snake venoms can be a valuable source of new principle components in drug discovery.
Collapse
|
12
|
Lopes-de-Souza L, Costal-Oliveira F, Stransky S, Fonseca de Freitas C, Guerra-Duarte C, Braga VMM, Chávez-Olórtegui C. Development of a cell-based in vitro assay as a possible alternative for determining bothropic antivenom potency. Toxicon 2019; 170:68-76. [PMID: 31494208 DOI: 10.1016/j.toxicon.2019.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/22/2019] [Accepted: 09/03/2019] [Indexed: 12/21/2022]
Abstract
Accidents with venomous snakes are a major health hazard in tropical countries. Bothrops genus is responsible for almost 80% of snakebites in Brazil. Immunotherapy is the only approved specific treatment against snake toxins and the production of therapeutic antivenoms requires quality control tests to determine their neutralizing potency. Currently, these controls are performed by in vivo lethality neutralization, however, the inhibition of particular events produced by bothropic venoms such as coagulopathy, hemorrhage, edema or cytotoxic effects are also required. The aim of this work is to develop an in vitro alternative assay for antivenom pre-clinical evaluation. In this sense, we designed a cell viability assay using different amounts (0.2-10 μL/well) of low and high potency anti-bothropic sera, previously classified by the traditional in vivo test, for assessing the antivenom capacity to protect the cells against B. jararaca venom cytotoxicity (5xEC50 = 58.95 μg/mL). We found that high potency sera are more effective in neutralizing B. jararaca venom cytotoxicity when compared to low potency sera, which is in accordance to their pre-determined in vivo potency. Considering sera in vitro inhibitory concentration able to prevent 50% cell death (IC50) and their known in vivo potency, a cut-off point was determined to discriminate low and high potency sera. Our data provide insights for the development of an in vitro method which can determine the anti-bothropic antivenom potency during its production.
Collapse
Affiliation(s)
- Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil
| | | | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Vania M M Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ, London, UK
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais (UFMG), 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
13
|
Costal-Oliveira F, Stransky S, Guerra-Duarte C, Naves de Souza DL, Vivas-Ruiz DE, Yarlequé A, Sanchez EF, Chávez-Olórtegui C, Braga VMM. L-amino acid oxidase from Bothrops atrox snake venom triggers autophagy, apoptosis and necrosis in normal human keratinocytes. Sci Rep 2019; 9:781. [PMID: 30692577 PMCID: PMC6349910 DOI: 10.1038/s41598-018-37435-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Snake venom L-amino acid oxidases (LAAOs) are flavoproteins, which perform diverse biological activities in the victim such as edema, myotoxicity and cytotoxicity, contributing to the development of clinical symptoms of envenomation. LAAO cytotoxicity has been described, but the temporal cascade of events leading to cell death has not been explored so far. This study evaluates the involvement of LAAO in dermonecrosis in mice and its cytotoxic effects in normal human keratinocytes, the major cell type in the epidermis, a tissue that undergoes extensive necrosis at the snakebite site. Pharmacological inhibition by the antioxidant NAC (N-acetyl cysteine) prevented B. atrox venom-induced necrosis. Consistent with the potential role of oxidative stress in wounding, treatment with purified LAAO decreased keratinocyte viability with an Effective Concentration (EC50) of 5.1 μg/mL. Cytotoxicity caused by LAAO was mediated by H2O2 and treated cells underwent autophagy, followed by apoptosis and necrosis. LAAO induced morphological alterations that precede cell death. Our results show the chronological events leading to cell death and the temporal resolution from autophagy, apoptosis and necrosis as distinct mechanisms triggered by LAAO. Fluorescently-labelled LAAO was efficiently and rapidly internalized by keratinocytes, suggesting that catalysis of intracellular substrates may contribute to LAAO toxicity. A better understanding of LAAO cytotoxicity and its mechanism of action will help to identify potential therapeutic strategies to ameliorate localized snake envenomation symptoms.
Collapse
Affiliation(s)
- Fernanda Costal-Oliveira
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Stephanie Stransky
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-0103, Belo Horizonte, Minas Gerais, Brazil
| | - Dayane L Naves de Souza
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil
| | - Dan E Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Armando Yarlequé
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Eladio Flores Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-0103, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica-Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Minas Gerais, Brazil.
| | - Vania M M Braga
- Cardio-Respiratory Section, National Heart and Lung Institute, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, SW7 2AZ, London, UK
| |
Collapse
|
14
|
Rodrigues CR, Teixeira-Ferreira A, Vargas FFR, Guerra-Duarte C, Costal-Oliveira F, Stransky S, Lopes-de-Souza L, Dutra AAA, Yarlequé A, Bonilla C, Sanchez EF, Perales J, Chávez-Olórtegui C. Proteomic profile, biological activities and antigenic analysis of the venom from Bothriopsis bilineata smaragdina ("loro machaco"), a pitviper snake from Peru. J Proteomics 2018; 187:171-181. [PMID: 30048773 DOI: 10.1016/j.jprot.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
Abstract
In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) μg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - André Teixeira-Ferreira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | | | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Alexandre Augusto Assis Dutra
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39803-371, Teófilo Otoni, Minas Gerais, Brasil
| | | | | | - Eladio Flores Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
15
|
Moridikia A, Zargan J, Sobati H, Goodarzi HR, Hajinourmohamadi A. Anticancer and antibacterial effects of Iranian viper (Vipera latifii) venom; an in-vitro study. J Cell Physiol 2018; 233:6790-6797. [PMID: 29319161 DOI: 10.1002/jcp.26428] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/05/2018] [Indexed: 02/03/2023]
Abstract
Viper venom contains antibacterial and cytotoxic components. The aim of this study was to identify and evaluate the antimicrobial and cytotoxic properties of the crude venom of Vipera latifii (V. latifii). Lyophilized venom of V. latifii was quantified by Bradford method and its antibacterial activity (6.25-400 μg/ml) was assessed using the MTT, MIC, Disc diffusion, and Well diffusion assays. Also, its cytotoxic activity was investigated using MTT reduction, Neutral uptake, and Comet assay on human liver cancer (HepG2) cell line. Crude venom showed antibacterial effects against Bacillus subtilis and Staphylococcus aureus, but was not effective on Escherichia coli. Also, the crude venom showed apoptotic and necrotic effects on human liver cancer cells. The venom of V. latifii can inhibit the growth of bacteria and cancer cells. These findings suggest that this may be a potential source of molecules with antibacterial and anticancer characteristics.
Collapse
Affiliation(s)
- Abdullah Moridikia
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.,Science Biology Research Center, Imam Hussein University, Tehran, Iran
| | - Jamil Zargan
- Science Biology Research Center, Imam Hussein University, Tehran, Iran
| | - Hossein Sobati
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamid R Goodarzi
- Central Laboratory, Razi Vaccine and Serum Research Institute, Agricultural education, Research and Extension Organization, Tehran, Iran
| | | |
Collapse
|
16
|
Stransky S, Costal-Oliveira F, Lopes-de-Souza L, Guerra-Duarte C, Chávez-Olórtegui C, Braga VMM. In vitro assessment of cytotoxic activities of Lachesis muta muta snake venom. PLoS Negl Trop Dis 2018; 12:e0006427. [PMID: 29659601 PMCID: PMC5919693 DOI: 10.1371/journal.pntd.0006427] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/26/2018] [Accepted: 04/03/2018] [Indexed: 12/14/2022] Open
Abstract
Envenomation by the bushmaster snake Lachesis muta muta is considered severe, characterized by local effects including necrosis, the main cause of permanent disability. However, cellular mechanisms related to cell death and tissue destruction, triggered by snake venoms, are poorly explored. The purpose of this study was to investigate the cytotoxic effect caused by L. m. muta venom in normal human keratinocytes and to identify the cellular processes involved in in cellulo envenomation. In order to investigate venom effect on different cell types, Alamar Blue assay was performed to quantify levels of cellular metabolism as a readout of cell viability. Apoptosis, necrosis and changes in mitochondrial membrane potential were evaluated by flow cytometry, while induction of autophagy was assessed by expression of GFP-LC3 and analyzed using fluorescence microscopy. The cytotoxic potential of the venom is shown by reduced cell viability in a concentration-dependent manner. It was also observed the sequential appearance of cells undergoing autophagy (by 6 hours), apoptosis and necrosis (12 and 24 hours). Morphologically, incubation with L. m. muta venom led to a significant cellular retraction and formation of cellular aggregates. These results indicate that L. m. muta venom is cytotoxic to normal human keratinocytes and other cell lines, and this toxicity involves the integration of distinct modes of cell death. Autophagy as a cell death mechanism, in addition to apoptosis and necrosis, can help to unravel cellular pathways and mechanisms triggered by the venom. Understanding the mechanisms that underlie cellular damage and tissue destruction will be useful in the development of alternative therapies against snakebites.
Collapse
Affiliation(s)
- Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, Belo Horizonte, Minas Gerais, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- * E-mail: (CCO); (VMMB)
| | - Vania Maria Martin Braga
- National Heart and Lung Institute, Faculty of Medicine, Imperial College London, London, United Kingdom
- * E-mail: (CCO); (VMMB)
| |
Collapse
|
17
|
Diniz-Sousa R, Caldeira CAS, Kayano AM, Paloschi MV, Pimenta DC, Simões-Silva R, Ferreira AS, Zanchi FB, Matos NB, Grabner FP, Calderon LA, Zuliani JP, Soares AM. Identification of the Molecular Determinants of the Antibacterial Activity of LmutTX, a Lys49 Phospholipase A2
Homologue Isolated from Lachesis muta muta
Snake Venom (Linnaeus, 1766). Basic Clin Pharmacol Toxicol 2017; 122:413-423. [DOI: 10.1111/bcpt.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 10/10/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Rafaela Diniz-Sousa
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Cleópatra A. S. Caldeira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Anderson M. Kayano
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Mauro V. Paloschi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Daniel. C. Pimenta
- Biochemistry and Biophysics Laboratory; Butantan Institute; Sao Paulo SP Brazil
| | - Rodrigo Simões-Silva
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Amália S. Ferreira
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
| | - Fernando B. Zanchi
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Najla B. Matos
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Microbiology Laboratory; Research Center on Tropical Medicine of Rondonia (CEPEM); Porto Velho RO Brazil
- Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | | | - Leonardo A. Calderon
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
| | - Juliana P. Zuliani
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Laboratory of Cellular Immunology Applied to Heath; Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
| | - Andreimar M. Soares
- Center for the Study of Biomolecules Applied to Heath (CEBio); Oswaldo Cruz Foundation (FIOCRUZ), Fiocruz Rondonia; Porto Velho RO Brazil
- Medicine Department; Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Experimental Biology Posgraduate Program (PGBIOEXP); Federal University of Rondonia (UNIR); Porto Velho RO Brazil
- Biodiversity and Biotechnology Posgraduate Program; Rede BIONORTE; Manaus Brazil
- Sao Lucas Universitary Center (UNISL); Porto Velho RO Brazil
| |
Collapse
|
18
|
Effects of resveratrol, epigallocatechin gallate, and epicatechin on mitochondrial functions in C2C12 myotubes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|
19
|
Bustillo S, Van de Velde AC, Matzner Perfumo V, Gay CC, Leiva LC. Apoptosis induced by a snake venom metalloproteinase from Bothrops alternatus venom in C2C12 muscle cells. Apoptosis 2017; 22:491-501. [DOI: 10.1007/s10495-017-1350-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Dias L, Rodrigues MA, Rennó AL, Stroka A, Inoue BR, Panunto PC, Melgarejo AR, Hyslop S. Hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon 2016; 123:1-14. [DOI: 10.1016/j.toxicon.2016.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 11/25/2022]
|
21
|
Dias L, Rodrigues MA, Inoue BR, Rodrigues RL, Rennó AL, de Souza VB, Torres-Huaco FD, Sousa NC, Stroka A, Melgarejo AR, Hyslop S. Pharmacological analysis of hemodynamic responses to Lachesis muta (South American bushmaster) snake venom in anesthetized rats. Toxicon 2016; 123:25-44. [DOI: 10.1016/j.toxicon.2016.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 10/01/2016] [Accepted: 10/04/2016] [Indexed: 01/23/2023]
|
22
|
Pathan J, Martin A, Chowdhury R, Chakrabarty D, Sarkar A. Russell's viper venom affects regulation of small GTPases and causes nuclear damage. Toxicon 2015; 108:216-25. [PMID: 26519780 DOI: 10.1016/j.toxicon.2015.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/15/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Russell's viper with its five sub-species is found throughout the Indian subcontinent. Its venom is primarily hemotoxic. However, its envenomation causes damage to several physiological systems. The present work was aimed to study the dose and time dependent cytotoxic effects of Russell's viper venom (RVV) on human A549 cells grown in vitro. Time dependent changes have been observed in cellular morphology following exposure to RVV. Presence of stress granules, rounding-off of the cells, and formation of punctate structure and loss of cell-cell contact characterized the cellular effects. Fluorescence microscopic studies revealed that apoptotic cell population increased on exposure to RVV. Further to understand the mechanism of these effects, status of small GTPase (smGTPases) expression were studied by Western blot and RT-PCR; as smGTPases play pivotal roles in deciding the cellular morphology, polarity, cell movement and overall signaling cascade. It was shown for the first time that expression patterns of Rac, Rho and CDC42 genes are altered on exposure to RVV. Similarly, significant difference in the expression pattern of HSP70 and p53 at the mRNA levels were noted. Our results confirmed that RVV induces apoptosis in A549 cells; this was further confirmed by AO/EtBr staining as well as caspase-3 assay. All experiments were compared using RVV unexposed cells. We propose for the first time that RVV induces morphological changes in human A549 cells through modulation of smGTPase expression and affects the cellular-nuclear architecture which in turn interferes in proliferation and migration of these cells along with apoptosis.
Collapse
Affiliation(s)
- Jigni Pathan
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Ansie Martin
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Zuarinagar, Goa 403726, India
| | - Rajdeep Chowdhury
- Department of Biological Sciences, BITS Pilani, Pilani Campus, Rajasthan 333031, India
| | - Dibakar Chakrabarty
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| | - Angshuman Sarkar
- Department of Biological Sciences, BITS Pilani, K K Birla Goa Campus, Zuarinagar, Goa 403726, India.
| |
Collapse
|
23
|
Partial in vitro analysis of toxic and antigenic activities of eleven Peruvian pitviper snake venoms. Toxicon 2015; 108:84-96. [DOI: 10.1016/j.toxicon.2015.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Revised: 08/16/2015] [Accepted: 09/07/2015] [Indexed: 11/18/2022]
|
24
|
Marinho AD, Morais ICO, Lima DB, Jorge ARC, Jorge RJB, Menezes RRPPB, Mello CP, Pereira GJS, Silveira JAM, Toyama MH, Orzáez M, Martins AMC, Monteiro HSA. Bothropoides pauloensis venom effects on isolated perfused kidney and cultured renal tubular epithelial cells. Toxicon 2015; 108:126-33. [PMID: 26410111 DOI: 10.1016/j.toxicon.2015.09.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/16/2015] [Accepted: 09/21/2015] [Indexed: 12/18/2022]
Abstract
Snake envenomation (Bothrops genus) is common in tropical countries and acute kidney injury is one of the complications observed in Bothrops snakebite with relevant morbidity and mortality. Here, we showed that Bothropoides pauloensis venom (BpV) decreased cell viability (IC50 of 7.5 μg/mL). Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by apoptosis and late apoptosis, through caspases 3 and 7 activation, mitochondrial membrane potential collapse and ROS overproduction. BpV reduced perfusion pressure, renal vascular resistance, urinary flow, glomerular filtration rate, percentage of sodium, chloride or potassium tubular transportation. These findings demonstrated that BpV cytotoxicity on renal epithelial cells might be responsible for the nephrotoxicity observed in isolated kidney.
Collapse
Affiliation(s)
- Aline D Marinho
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil.
| | - Isabel C O Morais
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Dânya B Lima
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Antônio R C Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Roberta J B Jorge
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Ramon R P P B Menezes
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Clarissa P Mello
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Gustavo J S Pereira
- Department of Pharmacology, Federal University of São Paulo (UNIFESP/EPM), São Paulo, Brazil
| | - João A M Silveira
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| | - Marcos H Toyama
- São Vicente Unit, Paulista Coastal Campus, São Paulo State University (UNESP), São Paulo, Brazil
| | - Mar Orzáez
- Department of Medicinal Chemistry, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Alice M C Martins
- Department of Clinical and Toxicological Analysis, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Helena S A Monteiro
- Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, 60430-270, Fortaleza, Ceará, Brazil
| |
Collapse
|
25
|
de Souza LL, Stransky S, Guerra-Duarte C, Flor-Sá A, Schneider FS, Kalapothakis E, Chávez-Olórtegui C. Determination of Toxic Activities inBothropsspp. Snake Venoms Using Animal-Free Approaches: Correlation BetweenIn VitroVersusIn VivoAssays. Toxicol Sci 2015; 147:458-65. [DOI: 10.1093/toxsci/kfv140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
26
|
Collares-Buzato CB, da Cruz-Höfling MA. Disarray of glomerular and tubular cell adhesion molecules in the course of experimental Bothrops moojeni envenomation. Toxicon 2013; 78:41-6. [PMID: 24291462 DOI: 10.1016/j.toxicon.2013.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 10/26/2022]
Abstract
In this study, we show that administration of Bothrops moojeni venom in rats induces a general disturbance in the distribution and content of the tight junctional protein ZO-1, the cell-matrix receptor beta 1 integrin, the cytoskeletal proteins, vinculin and F-actin, and of the extracellular matrix component laminin in renal corpuscles and cortical nephron tubules. These findings suggest that cell-cell and cell-matrix adhesion proteins may be molecular targets in the B. moojeni-induced kidney injury.
Collapse
Affiliation(s)
- Carla Beatriz Collares-Buzato
- Department of Histology and Embryology, Institute of Biology, P.O. Box 6109, State University of Campinas (UNICAMP), 13 087-130 Campinas, SP, Brazil
| | - Maria Alice da Cruz-Höfling
- Department of Histology and Embryology, Institute of Biology, P.O. Box 6109, State University of Campinas (UNICAMP), 13 087-130 Campinas, SP, Brazil.
| |
Collapse
|
27
|
Girón ME, Guerrero B, Salazar AM, Sánchez EE, Alvarez M, Rodríguez-Acosta A. Functional characterization of fibrinolytic metalloproteinases (colombienases) isolated from Bothrops colombiensis venom. Toxicon 2013; 74:116-26. [PMID: 23958522 DOI: 10.1016/j.toxicon.2013.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/28/2013] [Accepted: 07/30/2013] [Indexed: 11/16/2022]
Abstract
UNLABELLED Researchers trying to improve the safety and efficacy of fibrinolytic therapy have been isolating fibrinolytic enzymes from snake venoms. Two fibrinolytic enzymes, colombienases 1 and 2, with significant activity have been isolated from the venom of Bothrops colombiensis. METHODS The colombienases were characterized for various biological activities which include hemorrhagic, fibrinogenolytic, proteolytic, hemolytic, edematogenic and cytotoxic. RESULTS Colombienases directly acted on fibrin by degrading fibrinogen Aα and Bβ chains without activating the fibrinolytic system (plasminogen/plasmin), additionally colombienase-2 degraded fibrinogen γ chains as well as the fibronectin molecule. Laminin and type IV collagen were colombienases resistant. Gelatin-zymogram activity was present in B. colombiensis venom (BcV) bands between 64 and 148 kDa. All activities were abolished by metalloproteinases inhibitors. Both enzymes lacked hemorrhagic, hemolytic, cytotoxic, plasminogen activator and coagulant activities. CONCLUSIONS Both colombienases had direct fibrino(geno)lytic activity without other toxic side effects including in vivo hemorrhaging, which could be promising in terms of therapeutic potential as thrombolytic agents.
Collapse
Affiliation(s)
- María E Girón
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | |
Collapse
|
28
|
de Morais ICO, Torres AFC, Pereira GJDS, Pereira TP, Pessoa Bezerra de Menezes RRDP, Mello CP, Coelho Jorge AR, Bindá AH, Toyama MH, Monteiro HSA, Smaili SS, Martins AMC. Bothrops leucurus venom induces nephrotoxicity in the isolated perfused kidney and cultured renal tubular epithelia. Toxicon 2012; 61:38-46. [PMID: 23127898 DOI: 10.1016/j.toxicon.2012.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
Abstract
Bites from snake (Bothrops genus) cause local tissue damage and systemic complications, which include alterations such as hemostatic system and acute renal failure (ARF). Recent studies suggest that ARF pathogenesis in snakebite envenomation is multifactorial and involves hemodynamic disturbances, immunologic reactions and direct nephrotoxicity. The aim of the work was to investigate the effects of the Bothrops leucurus venom (BlV) in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin-Darby Canine kidney). BlV (10 μg/mL) reduced the perfusion pressure at 90 and 120 min. The renal vascular resistance (RVR) decreased at 120 min of perfusion. The effect on urinary flow (UF) and glomerular filtration rate (GFR) started 30 min after BlV infusion, was transient and returned to normal at 120 min of perfusion. It was also observed a decrease on percentual tubular transport of sodium (%TNa(+)) at 120 min and of chloride (%TCl(-)) at 60 and 90 min. The treatment with BlV caused decrease in cell viability to the lowest concentration tested with an IC(50) of 1.25 μg/mL. Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by necrosis. However, a cell death process may involve apoptosis in lower concentrations. BlV treatment (1.25 μg/mL) led to significant depolarization of the mitochondrial membrane potential and, indeed, we found an increase in the expression of cell death genes in the lower concentrations tested. The venom also evoked an increase in the cytosolic Ca(2+) in a concentration dependent manner, indicating that Ca(2+) may participate in the venom of B. leucurus effect. The characterization of the effects in the isolated kidney and renal tubular cells gives strong evidences that the acute renal failure induced by this venom is a result of the direct nephrotoxicity which may involve the cell death mechanism.
Collapse
|
29
|
CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. J Transl Med 2010; 90:510-9. [PMID: 20142800 DOI: 10.1038/labinvest.2009.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrins are essential in the complex multistep process of angiogenesis and are thus attractive targets for the development of antiangiogenic therapies. Integrins are antagonized by disintegrins and C-type lectin-like proteins, two protein families from snake venom. Here, we report that CC-PLA2-1 and CC-PLA2-2, two novel secreted phospholipases A(2) (PLA(2)) isolated from Cerastes cerastes venom, also showed anti-integrin activity. Indeed, both PLA(2)s efficiently inhibited human brain microvascular endothelial cell adhesion and migration to fibrinogen and fibronectin in a dose-dependent manner. Interestingly, we show that this anti-adhesive effect was mediated by alpha5beta1 and alphav-containing integrins. CC-PLA2s also impaired in vitro human brain microvascular endothelial cell tubulogenesis on Matrigel and showed antiangiogenic activity in vivo in chicken chorioallantoic membrane assay. The complete PLA(2) cDNAs were cloned from a venom gland cDNA library. Mature CC-PLA2-1 and CC-PLA2-2 contain 121 and 120 amino acids, respectively, including 14 cysteines each and showed 83% identity. Tertiary model structures of CC-PLA2-1 and CC-PLA2-2 were generated by homology modeling. This is thus the first study describing an antiangiogenic effect for snake venom PLA(2)s and reporting first clues to their mechanism of action on endothelial cells.
Collapse
|
30
|
Synthesis, biological, and theoretical evaluations of new 1,2,3-triazoles against the hemolytic profile of the Lachesis muta snake venom. Bioorg Med Chem 2009; 17:7429-34. [DOI: 10.1016/j.bmc.2009.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/16/2009] [Accepted: 09/17/2009] [Indexed: 11/24/2022]
|
31
|
Ferreira T, Camargo EA, Ribela MTC, Damico DC, Marangoni S, Antunes E, De Nucci G, Landucci EC. Inflammatory oedema induced by Lachesis muta muta (Surucucu) venom and LmTX-I in the rat paw and dorsal skin. Toxicon 2009; 53:69-77. [DOI: 10.1016/j.toxicon.2008.10.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Revised: 10/12/2008] [Accepted: 10/16/2008] [Indexed: 10/21/2022]
|
32
|
Assis EB, Estevão-Costa MI, Carmo Valentim A, Silva-Neto A, Agostini Cotta G, Alvarenga Mudado M, Richardson M, Fortes-Dias CL. Purification and Complete Primary Structure of the First PLA2 from Lachesis stenophrys (the Central American Bushmaster) Snake Venom. Protein J 2008; 27:327-33. [DOI: 10.1007/s10930-008-9141-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
33
|
Nascimento JM, Franchi GC, Nowill AE, Collares-Buzato CB, Hyslop S. Cytoskeletal rearrangement and cell death induced by Bothrops alternatus snake venom in cultured Madin–Darby canine kidney cells. Biochem Cell Biol 2007; 85:591-605. [PMID: 17901901 DOI: 10.1139/o07-067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Bothrops snake venoms cause renal damage, with renal failure being the main cause of death in humans bitten by these snakes. In this work, we investigated the cytoskeletal rearrangement and cytotoxicity caused by Bothrops alternatus venom in cultured Madin–Darby canine kidney (MDCK) cells. Incubation with venom (10 and 100 µg/mL) significantly (p <0.05) decreased the cellular uptake of neutral red dye after 1 and 3 h. Venom (100 µg/mL) also markedly decreased the transepithelial electrical resistance (RT) across MDCK monolayers. Staining with rhodamine-conjugated phalloidin revealed disarray of the cytoskeleton that involved the stress fibers at the basal cell surface and focal adhesion-associated F-actin in the cell–matrix contact region. Feulgen staining showed a significant decrease in the number of cells undergoing mitosis and an increase in the frequency of altered nuclei. Scanning electron microscopy revealed a decrease in the number of microvilli and the presence of cells with a fusiform format. Flow cytometry with annexin V and propidium iodide showed that cell death occurred by necrosis, with little apoptosis, a conclusion supported by the lack of DNA fragmentation characteristic of apoptosis. Pretreating the cells with catalase significantly attenuated the venom-induced loss of viability, indicating a possible involvement of H2O2 in the cellular damage; less protection was observed with superoxide dismutase or Nω-nitro-l-arginine methyl ester. These results indicate that Bothrops alternatus venom is cytotoxic to cultured MDCK cells, possibly via the action of reactive oxygen species. This cytotoxicity could contribute to nephrotoxicity after envenoming by this species.
Collapse
Affiliation(s)
- Juliana Minardi Nascimento
- Departamento de Farmacologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, CP 6111, 13083-970, Campinas, SP, Brazil
| | | | | | | | | |
Collapse
|