1
|
Ding SM, Yap MKK. Deciphering toxico-proteomics of Asiatic medically significant venomous snake species: A systematic review and interactive data dashboard. Toxicon 2024; 250:108120. [PMID: 39393539 DOI: 10.1016/j.toxicon.2024.108120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/30/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
Snakebite envenomation (SBE) is a neglected tropical disease (NTD) with an approximate 1.8 million cases annually. The tremendous figure is concerning, and the currently available treatment for snakebite envenomation is antivenom. However, the current antivenom has limited cross-neutralisation activity due to the variations in snake venom composition across species and geographical locations. The proteomics of medically important venomous species is essential as they study the venom compositions within and among different species. The advancement of sophisticated proteomic approaches allows intensive investigation of snake venoms. Nevertheless, there is a need to consolidate the venom proteomics profiles and distribution analysis to examine their variability patterns. This review systematically analysed the proteomics and toxicity profiles of medically important venomous species from Asia across different geographical locations. An interactive dashboard - Asiatic Proteomics Interactive Datasets was curated to consolidate the distribution patterns of the venom compositions, serve as a comprehensive directory for large-scale comparative meta-analyses. The population proteomics demonstrate higher diversities in the predominant venom toxins. Besides, inter-regional differences were also observed in Bungarus sp., Naja sp., Calliophis sp., and Ophiophagus hannah venoms. The elapid venoms are predominated with three-finger toxins (3FTXs) and phospholipase A2 (PLA2). Intra-regional variation is only significantly observed in Naja naja venoms. Proteomics diversity is more prominent in viper venoms, with widespread dominance observed in snake venom metalloproteinase (SVMP) and snake venom serine protease (SVSP). Correlations exist between the proteomics profiles and the toxicity (LD50) of the medically important venomous species. Additionally, the predominant toxins, alongside their pathophysiological effects, were highlighted and discussed as well. The insights of interactive toxico-proteomics datasets provide comprehensive frameworks of venom dynamics and contribute to developing antivenoms for snakebite envenomation. This could reduce misdiagnosis of SBE and accelerate the researchers' data mining process.
Collapse
Affiliation(s)
- Sher Min Ding
- School of Science, Monash University Malaysia, Bandar Sunway, Malaysia
| | | |
Collapse
|
2
|
Wang CR, McFarlane LO, Pukala TL. Exploring snake venoms beyond the primary sequence: From proteoforms to protein-protein interactions. Toxicon 2024; 247:107841. [PMID: 38950738 DOI: 10.1016/j.toxicon.2024.107841] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Snakebite envenomation has been a long-standing global issue that is difficult to treat, largely owing to the flawed nature of current immunoglobulin-based antivenom therapy and the complexity of snake venoms as sophisticated mixtures of bioactive proteins and peptides. Comprehensive characterisation of venom compositions is essential to better understanding snake venom toxicity and inform effective and rationally designed antivenoms. Additionally, a greater understanding of snake venom composition will likely unearth novel biologically active proteins and peptides that have promising therapeutic or biotechnological applications. While a bottom-up proteomic workflow has been the main approach for cataloguing snake venom compositions at the toxin family level, it is unable to capture snake venom heterogeneity in the form of protein isoforms and higher-order protein interactions that are important in driving venom toxicity but remain underexplored. This review aims to highlight the importance of understanding snake venom heterogeneity beyond the primary sequence, in the form of post-translational modifications that give rise to different proteoforms and the myriad of higher-order protein complexes in snake venoms. We focus on current top-down proteomic workflows to identify snake venom proteoforms and further discuss alternative or novel separation, instrumentation, and data processing strategies that may improve proteoform identification. The current higher-order structural characterisation techniques implemented for snake venom proteins are also discussed; we emphasise the need for complementary and higher resolution structural bioanalytical techniques such as mass spectrometry-based approaches, X-ray crystallography and cryogenic electron microscopy, to elucidate poorly characterised tertiary and quaternary protein structures. We envisage that the expansion of the snake venom characterisation "toolbox" with top-down proteomics and high-resolution protein structure determination techniques will be pivotal in advancing structural understanding of snake venoms towards the development of improved therapeutic and biotechnology applications.
Collapse
Affiliation(s)
- C Ruth Wang
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Lewis O McFarlane
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Tara L Pukala
- Discipline of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, 5005, Australia.
| |
Collapse
|
3
|
Thumtecho S, Suteparuk S, Sitprija V. Pulmonary involvement from animal toxins: the cellular mechanisms. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20230026. [PMID: 37727535 PMCID: PMC10506740 DOI: 10.1590/1678-9199-jvatitd-2023-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/11/2023] [Indexed: 09/21/2023] Open
Abstract
Venomous animals and their venom have always been of human interest because, despite species differences, coevolution has made them capable of targeting key physiological components of our bodies. Respiratory failure from lung injury is one of the serious consequences of envenomation, and the underlying mechanisms are rarely discussed. This review aims to demonstrate how toxins affect the pulmonary system through various biological pathways. Herein, we propose the common underlying cellular mechanisms of toxin-induced lung injury: interference with normal cell function and integrity, disruption of normal vascular function, and provocation of excessive inflammation. Viperid snakebites are the leading cause of envenomation-induced lung injury, followed by other terrestrial venomous animals such as scorpions, spiders, and centipedes. Marine species, particularly jellyfish, can also inflict such injury. Common pulmonary manifestations include pulmonary edema, pulmonary hemorrhage, and exudative infiltration. Severe envenomation can result in acute respiratory distress syndrome. Pulmonary involvement suggests severe envenomation, thus recognizing these mechanisms and manifestations can aid physicians in providing appropriate treatment.
Collapse
Affiliation(s)
- Suthimon Thumtecho
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Suchai Suteparuk
- Division of Toxicology, Department of Medicine, Chulalongkorn
University, King Chulalongkorn Memorial Hospital, the Thai Red Cross Society,
Bangkok, Thailand
| | - Visith Sitprija
- Queen Saovabha Memorial Institute and King Chulalongkorn Memorial
Hospital, the Thai Red Cross Society, Bangkok, Thailand
| |
Collapse
|
4
|
Mora-Obando D, Lomonte B, Pla D, Guerrero-Vargas JA, Ayerbe-González S, Gutiérrez JM, Sasa M, Calvete JJ. Half a century of research on Bothrops asper venom variation: Biological and biomedical implications. Toxicon 2022; 221:106983. [DOI: 10.1016/j.toxicon.2022.106983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/24/2022]
|
5
|
Rodrigues CR, Molina Molina DA, de Souza DLN, Cardenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Biological and proteomic characterization of the venom from Peruvian Andes rattlesnake Crotalus durissus. Toxicon 2021; 207:31-42. [PMID: 34968566 DOI: 10.1016/j.toxicon.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022]
Abstract
The Peruvian rattlesnake Crotalus durissus is a venomous species that is restricted to the Peruvian Departments of Puno and Madre de Dios. Although clinically meaningful in this region, Crotalus durissus venom composition remains largely elusive. In this sense, this work aimed to provide a primary description of Peruvian C. durissus venom (PCdV). The enzymatic activities (SVMP, SVSP, LAAO, Hyaluronidase and PLA2) of PCdV were analyzed and compared to Brazilian Crotalus durissus terrificus venom (BCdtV). PCdV showed higher PLA2 activity when compared to the Brazilian venom. PCdV also showed cytotoxicity in VERO cells. For proteomic analysis, PCdV proteins were separated by HPLC, followed by SDS-PAGE. Gel bands were excised and tryptic digested for MALDI-TOF/TOF identification. Approximately 21 proteins were identified, belonging to 7 families. Phospholipases A2 (PLA2, 66.63%) were the most abundant proteins of the venom, followed by snake venom serine proteinases (SVSPs, 13.37%), C-type lectins (Snaclec, 8.98%) and snake venom metalloproteinases (SVMPs, 7.13%), crotamine (2.98%) and phosphodiesterase (PDE, 0.87%). Moreover, antivenom recognition assays indicated that both Brazilian and Peruvian antivenoms recognize PCdV, indicating the presence of antigenically related proteins in crotalic venoms. The results reported here, may impact in the venom selection for the production of effective Pan-American crotalic antivenom.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis A Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Diretoria de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
6
|
Abdelkafi-Koubaa Z, ELBini-Dhouib I, Souid S, Jebali J, Doghri R, Srairi-Abid N, Essafi-Benkhadir K, Micheau O, Marrakchi N. Pharmacological Investigation of CC-LAAO, an L-Amino Acid Oxidase from Cerastes cerastes Snake Venom. Toxins (Basel) 2021; 13:toxins13120904. [PMID: 34941741 PMCID: PMC8704781 DOI: 10.3390/toxins13120904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/01/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
Snake venom proteins, which are responsible for deadly snakebite envenomation, induce severe injuries including neurotoxicity, myotoxicity, cardiotoxicity, hemorrhage, and the disruption of blood homeostasis. Yet, many snake-venom proteins have been developed as potential drugs for treating human diseases due to their pharmacological effects. In this study, we evaluated the use of, an L-amino acid oxidase isolated from Cerastes cerastes snake venom CC-LAAO, as a potential anti-glioblastoma drug, by investigating its in vivo and in vitro pharmacological effects. Our results showed that acute exposure to CC-LAAO at 1 and 2.5 µg/mL does not induce significant toxicity on vital organs, as indicated by the murine blood parameters including aspartate transaminase (AST), alanine transaminase (ALT), lactate dehydrogenase (LDH) activities, and creatinine levels. The histopathological examination demonstrated that only at high concentrations did CC-LAAO induce inflammation and necrosis in several organs of the test subjects. Interestingly, when tested on human glioblastoma U87 cells, CC-LAAO induced a dose-dependent apoptotic effect through the H2O2 generated during the enzymatic reaction. Taken altogether, our data indicated that low concentration of CC-LAAO may be safe and may have potential in the development of anti-glioblastoma agents.
Collapse
Affiliation(s)
- Zaineb Abdelkafi-Koubaa
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (I.E.-D.); (J.J.); (N.S.-A.); (N.M.)
- Correspondence:
| | - Ines ELBini-Dhouib
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (I.E.-D.); (J.J.); (N.S.-A.); (N.M.)
| | - Soumaya Souid
- Laboratoire d’Epidémiologie Moléculaire et de Pathologie Expérimentale (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (S.S.); (K.E.-B.)
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe, LA 71201, USA
| | - Jed Jebali
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (I.E.-D.); (J.J.); (N.S.-A.); (N.M.)
| | - Raoudha Doghri
- Département d’Anatomie Pathologique, Institut Salah Azaiez, Bab Saadoun, Tunis 1006, Tunisia;
| | - Najet Srairi-Abid
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (I.E.-D.); (J.J.); (N.S.-A.); (N.M.)
| | - Khadija Essafi-Benkhadir
- Laboratoire d’Epidémiologie Moléculaire et de Pathologie Expérimentale (LR16IPT04), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (S.S.); (K.E.-B.)
| | - Olivier Micheau
- Lipides Nutrition Cancer, INSERM-UMR 1231, Université de Bourgogne Franche-Comté, UFR Science de Santé, 7 Bd Jeanne d’Arc, 21000 Dijon, France;
| | - Naziha Marrakchi
- Laboratoire des Biomolécules, Venins et Applications Théranostiques (LR20IPT01), Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis 1002, Tunisia; (I.E.-D.); (J.J.); (N.S.-A.); (N.M.)
- Faculté de Médecine de Tunis, Université de Tunis El Manar, Tunis 1068, Tunisia
| |
Collapse
|
7
|
El-Benna J, Hurtado-Nedelec M, Gougerot-Pocidalo MA, Dang PMC. Effects of venoms on neutrophil respiratory burst: a major inflammatory function. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200179. [PMID: 34249119 PMCID: PMC8237995 DOI: 10.1590/1678-9199-jvatitd-2020-0179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 11/24/2022] Open
Abstract
Neutrophils play a pivotal role in innate immunity and in the inflammatory
response. Neutrophils are very motile cells that are rapidly recruited to the
inflammatory site as the body first line of defense. Their bactericidal activity
is due to the release into the phagocytic vacuole, called phagosome, of several
toxic molecules directed against microbes. Neutrophil stimulation induces
release of this arsenal into the phagosome and induces the assembly at the
membrane of subunits of the NAPDH oxidase, the enzyme responsible for the
production of superoxide anion that gives rise to other reactive oxygen species
(ROS), a process called respiratory burst. Altogether, they are responsible for
the bactericidal activity of the neutrophils. Excessive activation of
neutrophils can lead to extensive release of these toxic agents, inducing tissue
injury and the inflammatory reaction. Envenomation, caused by different animal
species (bees, wasps, scorpions, snakes etc.), is well known to induce a local
and acute inflammatory reaction, characterized by recruitment and activation of
leukocytes and the release of several inflammatory mediators, including
prostaglandins and cytokines. Venoms contain several molecules such as enzymes
(phospholipase A2, L-amino acid oxidase and proteases, among others) and
peptides (disintegrins, mastoporan, parabutoporin etc.). These molecules are
able to stimulate or inhibit ROS production by neutrophils. The present review
article gives a general overview of the main neutrophil functions focusing on
ROS production and summarizes how venoms and venom molecules can affect this
function.
Collapse
Affiliation(s)
- Jamel El-Benna
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| | - Margarita Hurtado-Nedelec
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Marie-Anne Gougerot-Pocidalo
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France.,AP-HP, Centre Hospitalier Universitaire Xavier Bichat, UF Dysfonctionnements Immunitaires, Paris, France
| | - Pham My-Chan Dang
- Université de Paris, INSERM-U1149, CNRS-ERL8252, Centre de Recherche sur l'Inflammation (CRI), Laboratoire d'Excellence Inflamex, Faculté de Médecine Xavier Bichat, Paris, France
| |
Collapse
|
8
|
Lima EOVD, Tasima LJ, Hatakeyama DM, Serino-Silva C, Rodrigues CFB, Galizio NDC, Chiarelli T, Nishiduka ES, Rocha MMTD, Sant'Anna SS, Grego KF, Tashima AK, Tanaka-Azevedo AM, Morais-Zani KD. Snake venom color and L-amino acid oxidase: An evidence of long-term captive Crotalus durissus terrificus venom plasticity. Toxicon 2021; 193:73-83. [PMID: 33515573 DOI: 10.1016/j.toxicon.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 01/20/2021] [Indexed: 12/01/2022]
Abstract
The venom color variation of Crotalus durissus terrificus (Cdt) is attributed to the presence of the toxin L-amino acid oxidase (LAAO). During the venom milking routine of Instituto Butantan, we have noticed that most venoms of captive Cdt specimens show a yellowish color, while most venoms of wild specimens are white. Here we describe a comparative analysis of long-term captive (LTC) and recently wild-caught (RWC) Cdt, focusing on LAAO variation. For the identification of LAAO in individual venoms, four different approaches were employed: evaluation of the enzymatic activity, SDS-PAGE, Western blotting, and ELISA. In addition, mass spectrometry analysis was performed using pooled samples. Although some variation among these methodologies was observed, it was possible to notice that the presence of LAAO was significantly higher in the venom of LTC individuals. LAAO was identified in 60-80% LTC specimens and in only 10-12% of RWC specimens. Furthermore, this enzyme accounts for 5.6% of total venom proteins of LTC Cdt pooled venom, while it corresponds to only 0.7% of RWC Cdt pooled venom. These findings strongly suggest that captive maintenance increases the expression of LAAO in Cdt venom.
Collapse
Affiliation(s)
| | - Lídia Jorge Tasima
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Daniela Miki Hatakeyama
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Serino-Silva
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Caroline Fabri Bittencourt Rodrigues
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Nathália da Costa Galizio
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Tassia Chiarelli
- Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | | | | | | | | | - Anita Mitico Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil
| | - Karen de Morais-Zani
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, Brazil; Interunidades em Biotecnologia, Universidade de São Paulo, Instituto de Pesquisas Tecnológicas, Instituto Butantan, São Paulo, Brazil.
| |
Collapse
|
9
|
Heß MC, Bloess S, Risse JM, Friehs K, Fischer von Mollard G. Recombinant expression of an l-amino acid oxidase from the fungus Hebeloma cylindrosporum in Pichia pastoris including fermentation. Microbiologyopen 2020; 9:e1112. [PMID: 32852125 PMCID: PMC7568252 DOI: 10.1002/mbo3.1112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 01/27/2023] Open
Abstract
l‐amino acid oxidases (LAAOs) are flavoenzymes that catalyze the oxidative deamination of l‐amino acids to the corresponding α‐keto acids, ammonia, and hydrogen peroxide. Here, we show the overexpression, purification, and the characterization of LAAO4 from the fungus Hebeloma cylindrosporum in the yeast Pichia pastoris with a 9His‐tag and compare this with the recently characterized 6His‐hcLAAO4 expressed in E. coli. The expression of the enzyme with an ER‐signal sequence in P. pastoris resulted in a glycosylated, secreted protein. The enzymatic activity without activation was higher after expression in P. pastoris compared to E. coli. Due to treatment with acidic pH, a striking increase of activity could be detected for both expression systems resulting in similar specific activities after acid activation. Regarding the substrate spectrum, temperature stability, Km, and vmax values, hcLAAO4 showed very few differences when produced in these two expression systems. A higher yield of hcLAAO4 could be obtained by fermentation.
Collapse
Affiliation(s)
- Marc Christian Heß
- Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Svenja Bloess
- Biochemistry III, Department of Chemistry, Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Engineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Karl Friehs
- Fermentation Engineering, Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | | |
Collapse
|
10
|
Rodrigues CR, Molina DAM, Silva de Assis TC, Liberato C, Melo-Braga MN, Ferreyra CB, Cárdenas J, Costal-Oliveira F, Guerra-Duarte C, Chávez-Olórtegui C. Proteomic and toxinological characterization of Peruvian pitviper Bothrops brazili ("jergón shushupe"), venom. Toxicon 2020; 184:19-27. [PMID: 32479836 DOI: 10.1016/j.toxicon.2020.05.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/21/2020] [Indexed: 11/18/2022]
Abstract
Bothrops brazili is a pitviper from Amazonian region, responsible for many accidents in Peru. Despite its relevance, its venom has not been extensively characterized. In the present work, Bothrops brazili venom (BbV) components were analyzed by RP-HPLC, SDS-PAGE and MALDI-TOF/TOF. Approximately 37 proteins were identified, belonging to 7 families. Snake venom metalloproteinases (SVMPs) were the most abundant proteins of the venom (33.05%), followed by snake venom serine proteinases (SVSPs, 26.11%), phospholipases A2 (PLA2, 25.57%), snake C-type lectins (CTLs, 9.61%), L-aminoacid oxidase (LAAO, 3.80%), cystein-rich secretory proteins (CRISP, 1.67%) and Bradykinin-potentiating peptide (BPP, 0.20%). In vitro enzymatic activities of BbV showed high levels of SVMP activity and reduced Hyal activity in comparison with other bothropic venoms. Furthermore, BbV reduced VERO cells viability. ELISA and Western Blotting showed that both Peruvian and Brazilian bothropic antivenoms were able to recognize BbV components. This work provides an overview of BbV venom content and indicates a potential efficiency of Peruvian and Brazilian antivenoms to treat accidents with this species.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Denis Alexis Molina Molina
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thamyres C Silva de Assis
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Liberato
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Marcella N Melo-Braga
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
11
|
Wiezel GA, Rustiguel JK, Morgenstern D, Zoccal KF, Faccioli LH, Nonato MC, Ueberheide B, Arantes EC. Insights into the structure, function and stability of bordonein-L, the first L-amino acid oxidase from Crotalus durissus terrificus snake venom. Biochimie 2019; 163:33-49. [DOI: 10.1016/j.biochi.2019.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/06/2019] [Indexed: 01/18/2023]
|
12
|
Abu-Tahon MA, Isaac GS. Purification, characterization and anticancer efficiency of L-glutaminase from Aspergillus flavus. J GEN APPL MICROBIOL 2019; 65:284-292. [PMID: 31130583 DOI: 10.2323/jgam.2019.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aim of this work was to purify L-glutaminase from Aspergillus flavus. The enzyme was purified 12.47-fold from a cell-free extract with a final specific activity of 613.3 U/mg and the yield was 51.11%. The molecular weight of the enzyme, as estimated by SDS-PAGE, was found to be 69 kDa. The maximal activity of L-glutaminase was recorded at pH 8 and 40°C. The highest activity was reported towards L-glutamine as substrate, with an apparent Km value of 4.5 mmol and Vmax was 20 Uml-1. The enzyme was activated by Na+ and Co2+, while it was greatly suppressed by iodoacetate, NEM, Zn2+ and Hg2+ at 10 mM. L-glutaminase activity increased with a gradual increase of sodium chloride concentration up to 15%. In vivo, the median lethal dose (LD50) was approximately 39.4 mg/kg body weight after intraperitoneal injection in Sprague Dawley rats. Also, L-glutaminase showed no observed changes in liver and kidney functions and hematological parameters on rates. Purified A. flavus L-glutaminase had neither a cognizable effect on human platelet aggregation nor hemolytic activity. In addition, MTT assay showed that the purified L-glutaminase has a high toxic impact on Hela and Hep G2 cell lines with an IC50 value 18 and 12 μg/ml, respectively, and a moderate cytotoxic effect on HCT-116 and MCF7 cells, with an IC50 value 44 and 58 μg/ml, respectively.
Collapse
Affiliation(s)
- Medhat Ahmed Abu-Tahon
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University
| | - George Saad Isaac
- Biological and Geological Sciences Department, Faculty of Education, Ain Shams University
| |
Collapse
|
13
|
Rodrigues CR, Teixeira-Ferreira A, Vargas FFR, Guerra-Duarte C, Costal-Oliveira F, Stransky S, Lopes-de-Souza L, Dutra AAA, Yarlequé A, Bonilla C, Sanchez EF, Perales J, Chávez-Olórtegui C. Proteomic profile, biological activities and antigenic analysis of the venom from Bothriopsis bilineata smaragdina ("loro machaco"), a pitviper snake from Peru. J Proteomics 2018; 187:171-181. [PMID: 30048773 DOI: 10.1016/j.jprot.2018.07.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/28/2022]
Abstract
In order to determine Bothriopsis bilineata smaragdina venom (BbsV) composition, proteomic approaches were performed. Venom components were analyzed by RP-HPLC, SDS- PAGE and nano LC on line with LTQ Orbitrap XL. Results showed a total of 189 identified proteins, grouped into 11 different subgroups, which include snake venom metalloproteinases (SVMPs, 54.67%), snake C-type lectins (Snaclecs, 15.78%), snake venom serine proteinases (SVSPs, 14.69%), cystein-rich secretory proteins (CRISP, 2.61%), phospholipases A2 (PLA2, 1.14%), phosphodiesterase (PDE, 1.17%), venom endothelial growth factor (VEGF, 1.06%) 5'nucleotidases (0.33%), L-amino acid oxidases (LAAOs, 0.28%) and other proteins. In vitro enzymatic activities (SVMP, SVSP, LAAO, Hyal and PLA2) of BbsV were also analyzed. BbsV showed high SVSP activity but low PLA2 activity, when compared to other Bothrops venoms. In vivo, BbsV induced hemorrhage and edema in mice and showed intraperitoneal median lethal dose (LD50) of 92.74 (± 0.15) μg/20 g of mice. Furthermore, BbsV reduced cell viability when incubated with VERO cells. Peruvian and Brazilian bothropic antivenoms recognize BbsV proteins, as detected by ELISA and Western Blotting. Both antivenoms were able to neutralize in vivo edema and hemorrhage. SIGNIFICANCE In Peru, snakebite is a public health problem, especially in the rain forest, as a result of progressive colonization of this geographical area. This country is the second in Latin America, after Brazil, to exhibit the largest variety of venomous snakes. B. atrox and B. b. smaragdina snakes are sympatric species in Peruvian Amazon region and are responsible for approximately 95% of the envenomings reported in this region. B. b. smaragdina may cause a smaller share (3 to 38%) of those accidents, due to its arboreal habits, that make human encounters with these snakes less likely to happen. Despite B. b. smaragdina recognized medical importance, its venom composition and biological activities have been poorly studied. Furthermore, BbsV is not a component of the antigenic pool used to produce the corresponding Peruvian bothropic antivenom (P-BAV). Our results not only provide new insights on BbsV composition and biological activity, but also demonstrate that both P-BAV and B-BAV polyvalent antivenoms have a considerable recognition of proteins from BbsV and, more importantly, neutralized hemorrhage and edema, the main local effects of bothropic envenomation.
Collapse
Affiliation(s)
- Carolina Rego Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - André Teixeira-Ferreira
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | | | - Clara Guerra-Duarte
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Fernanda Costal-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Stephanie Stransky
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Letícia Lopes-de-Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil
| | - Alexandre Augusto Assis Dutra
- Faculdade de Medicina do Mucuri, Universidade Federal dos Vales do Jequitinhonha e Mucuri, 39803-371, Teófilo Otoni, Minas Gerais, Brasil
| | | | | | - Eladio Flores Sanchez
- Centro de Pesquisa e Desenvolvimento, Fundação Ezequiel Dias, 30510-010, Belo Horizonte, MG, Brazil
| | - Jonas Perales
- Laboratório de Toxinologia, Instituto Oswaldo Cruz, Fiocruz, 21040-360, Rio de Janeiro, Brazil
| | - Carlos Chávez-Olórtegui
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
14
|
Effect of Vipera ammodytes ammodytes Snake Venom on the Human Cytokine Network. Toxins (Basel) 2018; 10:toxins10070259. [PMID: 29941812 PMCID: PMC6070926 DOI: 10.3390/toxins10070259] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 12/18/2022] Open
Abstract
Local inflammation is a well-known symptom of envenomation by snakes of the family Viperidae, attributed primarily to the phospholipase A2s, metalloproteinases and L-amino acid oxidases contained in their venom. The inflammatory effect of snake venoms has been associated with a marked increase of the cytokines IL-1β, IL-6, IL-8, IL-10 and TNF-α. To determine the impact of Vipera ammodytes ammodytes snake venom on the expression of inflammation-related genes, we incubated human U937 monocyte cells with dilutions of snake venom. Gene expression was quantified for 28 different genes using a TaqMan® Array Human Cytokine Network 96-well Plate in a RT-qPCR system. Our results have demonstrated that 1.0 μg/mL Vipera ammodytes ammodytes venom solution induces a notable change in the expression of several cytokine network genes. Among the upregulated genes, there were several that encode interleukins, interferons, and tumor necrosis factors. We further report the downregulation of three interleukin-related genes. Our findings come as supportive information for the known complex effect of snake venoms on the human cytokine network. It also provides relevant new information regarding the expression of genes that have not been previously associated with the effect of snake venoms.
Collapse
|
15
|
Burin SM, Menaldo DL, Sampaio SV, Frantz FG, Castro FA. An overview of the immune modulating effects of enzymatic toxins from snake venoms. Int J Biol Macromol 2018; 109:664-671. [DOI: 10.1016/j.ijbiomac.2017.12.101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 12/15/2017] [Accepted: 12/19/2017] [Indexed: 12/09/2022]
|
16
|
Lu W, Hu L, Yang J, Sun X, Yan H, Liu J, Chen J, Cheng X, Zhou Q, Yu Y, Wei JF, Cao P. Isolation and pharmacological characterization of a new cytotoxic L-amino acid oxidase from Bungarus multicinctus snake venom. JOURNAL OF ETHNOPHARMACOLOGY 2018; 213:311-320. [PMID: 29180043 DOI: 10.1016/j.jep.2017.11.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/18/2017] [Accepted: 11/22/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Bungarus multicinctus snake belongs to Elapidae family and is widely distributed in southern China. It is widely used in traditional Chinese medicine with the effect of dispelling wind and removing obstruction in the meridians. Moreover, it is also as a chief ingredient of many polyherbal formulations for the treatment of cancer. AIM OF THE STUDY To evaluate the antitumor activity of Bungarus multicinctus snake venom components and isolate, characterize the most effective anti-tumor component of Bungarus multicinctus snake venom. MATERIALS AND METHODS The in vitro antitumor activity of Bungarus multicinctus venom components was detected by cytotoxicity assay and cell apoptosis assay. A unique LAAO from Bungarus multicinctus venom named as BM-Apotxin was isolated and characterized by Sephadex G-75 gel filtration, Sephadex G-25 desalting, Q ion-exchange chromatography and subsequent amino acids sequence determination. The LAAO activity and enzyme kinetics of BM-Apotxin was detected by microplate assay. RESULTS BM-Apotxin, a 65KDa glycoprotein, which contributed to the most anti-tumor effects of Bungarus multicinctus venom. BM-Apotxin can selectively kill tumor cells, with less cytotoxicity to the normal cells. BM-Apotxin is an L-amino acid oxidase (LAAO) with high sequence identity to other snake venom LAAOs. Its anti-tumor activity is mainly due to the hydrogen peroxide produced from LAAO oxidation. But the catalase did not reverse its anti-tumor effect completely. Like other snake venom LAAOs, BM-Apotxin can oxidize many L amino acids, not D amino acids. The optimum substrate for BM-Apotxin is L-Phe. Moreover, BM-Apotxin deglycosylation can significantly reduce the LAAO activity and anti-tumor activity of BM-Apotxin. CONCLUSION This study will facilitate the study on anti-tumor mechanism of snake venom and drug development based on Bungarus multicinctus venom.
Collapse
Affiliation(s)
- Wuguang Lu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China; Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lingling Hu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Jie Yang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Xiaoyan Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Huaijiang Yan
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Jinman Liu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Jiao Chen
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Xiaolan Cheng
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Qian Zhou
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China
| | - Ye Yu
- Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji-Fu Wei
- The First Affiliated Hospital with Nanjing Medical University, 300# Guangzhou Road, Nanjing 210029, China
| | - Peng Cao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, Jiangsu, China; Laboratory of Cellular and Molecular Biology, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, Jiangsu, China.
| |
Collapse
|
17
|
Jimenez R, Ikonomopoulou MP, Lopez JA, Miles JJ. Immune drug discovery from venoms. Toxicon 2017; 141:18-24. [PMID: 29170055 DOI: 10.1016/j.toxicon.2017.11.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/14/2017] [Accepted: 11/18/2017] [Indexed: 01/22/2023]
Abstract
This review catalogues recent advances in knowledge on venoms as standalone therapeutic agents or as blueprints for drug design, with an emphasis on venom-derived compounds that affects the immune system. We discuss venoms and venom-derived compounds that affect total immune cell numbers, immune cell proliferation, immune cell migration, immune cell phenotype and cytokine secretion. Identifying novel compounds that 'tune' the system, up-regulating the immune response during infectious disease and cancer and down-regulating the immune response during autoimmunity, will greatly expand the tool kit of human immunotherapeutics. Targeting these pathways may also open therapeutic options that alleviate symptoms of envenomation. Finally, combining recent advances in venomics with progress in low cost, high-throughput screening platforms will no doubt yield hundreds of prototype immune modulating compounds in the coming years.
Collapse
Affiliation(s)
- Rocio Jimenez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Maria P Ikonomopoulou
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Madrid Institute for Advanced Studies (IMDEA) in Food, CEI UAM+CSIC, Madrid, Spain
| | - J Alejandro Lopez
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - John J Miles
- Griffith University, School of Natural Sciences, Brisbane, Queensland, Australia; QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia; School of Medicine, The University of Queensland, Brisbane, Australia; Centre for Biodiscovery and Molecular Development of Therapeutics, AITHM, James Cook University, Cairns, Queensland, Australia; Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
18
|
Bhattacharjee P, Bera I, Chakraborty S, Ghoshal N, Bhattacharyya D. Aristolochic acid and its derivatives as inhibitors of snake venom L-amino acid oxidase. Toxicon 2017; 138:1-17. [PMID: 28803055 DOI: 10.1016/j.toxicon.2017.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/18/2017] [Accepted: 08/03/2017] [Indexed: 02/02/2023]
Abstract
Snake venom L-amino acid oxidase (LAAO) exerts toxicity by inducing hemorrhage, pneumorrhagia, pulmonary edema, cardiac edema, liver cell necrosis etc. Being well conserved, inhibitors of the enzyme may be synthesized using the template of the substrate, substrate binding site and features of the catalytic site of the enzyme. Previous findings showed that aristolochic acid (AA), a major constituent of Aristolochia indica, inhibits Russell's viper venom LAAO enzyme activity since, AA interacts with DNA and causes genotoxicity, derivatives of this compound were synthesized by replacing the nitro group to reduce toxicity while retaining the inhibitory potency. The interactions of AA and its derivatives with LAAO were followed by inhibition kinetics and surface plasmon resonance. Similar interactions with DNA were followed by absorption spectroscopy and atomic force microscopy. LAAO-induced cytotoxicity was evaluated by generation of reactive oxygen species (ROS), cell viability assays, confocal and epifluorescence microscopy. The hydroxyl (AA-OH) and chloro (AA-Cl) derivatives acted as inhibitors of LAAO but did not interact with DNA. The derivatives significantly reduced LAAO-induced ROS generation and cytotoxicity in human embryonic kidney (HEK 293) and hepatoma (HepG2) cell lines. Confocal images indicated that AA, AA-OH and AA-Cl interfered with the binding of LAAO to the cell membrane. AA-OH and AA-Cl significantly inhibited LAAO activity and reduced LAAO-induced cytotoxicity.
Collapse
Affiliation(s)
- Payel Bhattacharjee
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| | - Indrani Bera
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Subhamoy Chakraborty
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Nanda Ghoshal
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India
| | - Debasish Bhattacharyya
- Division of Structural Biology and Bioinformatics, CSIR -Indian Institute of Chemical Biology, 4, Raja S.C. Mullick Road, Jadavpur, Kolkata, 700032, India.
| |
Collapse
|
19
|
de Queiroz MR, de Sousa BB, da Cunha Pereira DF, Mamede CCN, Matias MS, de Morais NCG, de Oliveira Costa J, de Oliveira F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 2017; 133:33-47. [PMID: 28435120 DOI: 10.1016/j.toxicon.2017.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/09/2022]
Abstract
The human body has a set of physiological processes, known as hemostasis, which keeps the blood fluid and free of clots in normal vessels; in the case of vascular injury, this process induces the local formation of a hemostatic plug, preventing hemorrhage. The hemostatic system in humans presents complex physiological interactions that involve platelets, plasma proteins, endothelial and subendothelial structures. Disequilibrium in the regulatory mechanisms that control the growth and the size of the thrombus is one of the factors that favors the development of diseases related to vascular disorders such as myocardial infarction and stroke, which are among the leading causes of death in the western world. Interfering with platelet function is a strategy for the treatment of thrombotic diseases. Antiplatelet drugs are used mainly in cases related to arterial thrombosis and interfere in the formation of the platelet plug by different mechanisms. Aspirin (acetylsalicylic acid) is the oldest and most widely used antithrombotic drug. Although highly effective in most cases, aspirin has limitations compared to other drugs used in the treatment of homeostatic disorders. For this reason, research related to molecules that interfere with platelet aggregation are of great relevance. In this regard, snake venoms are known to contain a number of molecules that interfere with hemostasis, including platelet function. The mechanisms by which snake venom components inhibit or activate platelet aggregation are varied and can be used as tools for the diagnosis and the treatment of several hemostatic disorders. The aim of this review is to present the role of platelets in hemostasis and the mechanisms by which snake venom toxins interfere with platelet function.
Collapse
Affiliation(s)
- Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | | | - Carla Cristine Neves Mamede
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Ituiutaba, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil.
| |
Collapse
|
20
|
Pontes AS, Setúbal SDS, Nery NM, da Silva FS, da Silva SD, Fernandes CFC, Stábeli RG, Soares AM, Zuliani JP. p38 MAPK is involved in human neutrophil chemotaxis induced by L-amino acid oxidase from Calloselasma rhodosthoma. Toxicon 2016; 119:106-16. [PMID: 27242041 DOI: 10.1016/j.toxicon.2016.05.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/11/2016] [Accepted: 05/26/2016] [Indexed: 12/12/2022]
Abstract
The action of LAAO, an L-amino acid oxidase isolated from Calloselasma rhodosthoma snake venom, on isolated human neutrophil function was investigated. Cr-LAAO showed no toxicity on neutrophils. Cr-LAAO in its native form induced the neutrophil chemotaxis, suggesting that its primary structure is essential for stimulation the cell. p38 MAPK and PI3K have a role as signaling pathways of CR-LAAO induced chemotaxis. This toxin also induced the production of hydrogen peroxide and stimulated phagocytosis in neutrophils. Furthermore, Cr-LAAO was able to stimulate neutrophils to release IL-6, IL-8, MPO, LTB4 and PGE2. Together, the data showed that the Cr-LAAO triggers relevant proinflammatory events.
Collapse
Affiliation(s)
- Adriana S Pontes
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da S Setúbal
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Neriane Monteiro Nery
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Francisquinha Souza da Silva
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Faculdade São Lucas, Porto Velho, RO, Brazil
| | - Silvana D da Silva
- Faculdade São Lucas, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Carla F C Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil; Centro de Pesquisa em Medicina Tropical, Porto Velho, RO, Brazil
| | - Rodrigo G Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Andreimar M Soares
- Faculdade São Lucas, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil
| | - Juliana P Zuliani
- Laboratório de Imunologia Celular Aplicada à Saúde, Fundação Oswaldo Cruz, FIOCRUZ Rondônia, Porto Velho, RO, Brazil; Centro de Estudos de Biomoléculas Aplicadas à Saúde (CEBio), Fundação Oswaldo Cruz, FIOCRUZ Rondônia e Departamento de Medicina, Universidade Federal de Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
21
|
Liu Y, Staerk D, Nielsen MN, Nyberg N, Jäger AK. High-resolution hyaluronidase inhibition profiling combined with HPLC-HRMS-SPE-NMR for identification of anti-necrosis constituents in Chinese plants used to treat snakebite. PHYTOCHEMISTRY 2015; 119:62-69. [PMID: 26386983 DOI: 10.1016/j.phytochem.2015.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/05/2015] [Accepted: 09/11/2015] [Indexed: 06/05/2023]
Abstract
Inhibition of the necrotizing hyaluronidase, phospholipase A2 and protease enzymes in four snake venoms by crude water and ethanol extracts of 88 plant species used against snakebites in traditional Chinese medicine was measured. High-resolution hyaluronidase inhibition profiles were constructed for the 22 plants showing highest hyaluronidase inhibition, and the results were used to guide subsequent structural analysis towards specific hyaluronidase inhibitors. Structural analysis was performed by high-performance liquid chromatography, high-resolution mass spectrometry, solid-phase extraction and nuclear magnetic resonance spectroscopy, i.e., HPLC-HRMS-SPE-NMR. This allowed identification of four non-tannin inhibitors, i.e., lansiumamide B (6) from Clausena excavata Burm.f., myricetin 3-O-β-D-glucopyranoside (7) from Androsace umbellata (Lour.) Merr., and vitexin (8) and 4',7-dihydroxy-5-methoxyflavone-8-C-β-D-glucopyranoside (9) from Oxalis corniculata L. Absolute configuration of 2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide (1) was determined using the Mosher method, which revealed two enantiomers, i.e., (2S,3R)-2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide and (2R,3S)-2,3-dihydroxy-N-methyl-3-phenyl-N-[(Z)-styryl]propanamide with a ratio of 7:3.
Collapse
Affiliation(s)
- Yueqiu Liu
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Dan Staerk
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Mia N Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Nils Nyberg
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Anna K Jäger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
22
|
Reda FM. Kinetic properties of Streptomyces canarius L- Glutaminase and its anticancer efficiency. Braz J Microbiol 2015; 46:957-68. [PMID: 26691453 PMCID: PMC4704638 DOI: 10.1590/s1517-838246420130847] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 12/28/2014] [Indexed: 11/22/2022] Open
Abstract
L-glutaminase was produced by Streptomyces canarius FR (KC460654) with an apparent molecular mass of 44 kDa. It has 17.9 purification fold with a final specific activity 132.2 U/mg proteins and 28% yield recovery. The purified L-glutaminase showed a maximal activity against L-glutamine when incubated at pH 8.0 at 40 °C for 30 min. It maintained its stability at wide range of pH from 5.0 11.0 and thermal stable up to 60 °C with Tm value 57.5 °C. It has high affinity and catalytic activity for L-glutamine (Km 0.129 mM, Vmax 2.02 U/mg/min), followed by L-asparagine and L-aspartic acid. In vivo, L-glutaminase showed no observed changes in liver; kidney functions; hematological parameters and slight effect on RBCs and level of platelets after 10 days of rabbit's injection. The anticancer activity of L-glutaminase was also tested against five types of human cancer cell lines using MTT assay in vitro. L-glutaminase has a significant efficiency against Hep-G2 cell (IC50, 6.8 μg/mL) and HeLa cells (IC50, 8.3 μg/mL), while the growth of MCF-7 cells was not affected. L-glutaminase has a moderate cytotoxic effect against HCT-116 cell (IC50, 64.7 μg/mL) and RAW 264.7 cell (IC50, 59.3 μg/mL).
Collapse
Affiliation(s)
- Fifi M. Reda
- Department of Botany and Microbiology, Zagazig University, Zagazig,
Egypt
| |
Collapse
|
23
|
Vargas Muñoz LJ, Estrada-Gomez S, Núñez V, Sanz L, Calvete JJ. Characterization and cDNA sequence of Bothriechis schlegelii l-amino acid oxidase with antibacterial activity. Int J Biol Macromol 2014; 69:200-7. [DOI: 10.1016/j.ijbiomac.2014.05.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 05/09/2014] [Accepted: 05/14/2014] [Indexed: 11/26/2022]
|
24
|
Izidoro LFM, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CFC, Calderon LA, Stábeli RG, Soares AM. Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. BIOMED RESEARCH INTERNATIONAL 2014; 2014:196754. [PMID: 24738050 PMCID: PMC3971498 DOI: 10.1155/2014/196754] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 12/13/2013] [Accepted: 12/16/2013] [Indexed: 11/26/2022]
Abstract
L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far.
Collapse
Affiliation(s)
- Luiz Fernando M. Izidoro
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Juliana C. Sobrinho
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Mirian M. Mendes
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Tássia R. Costa
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto (FCFRP), Universidade de São Paulo (USP), Ribeirão Preto, SP, Brazil
| | - Amy N. Grabner
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Veridiana M. Rodrigues
- Faculdade de Ciências Integradas do Pontal e Departamento de Genética e Bioquímica, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Saulo L. da Silva
- Departamento de Química, Biotecnologia e Engenharia de Bioprocessos, Universidade Federal de São João del Rei (UFSJ), Campus Altoparaopeba, Ouro Branco, MG, Brazil
| | - Fernando B. Zanchi
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Juliana P. Zuliani
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Carla F. C. Fernandes
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Leonardo A. Calderon
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Rodrigo G. Stábeli
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| | - Andreimar M. Soares
- Centro de Estudos de Biomoléculas Aplicadas à Saúde, (CEBio), Fundação Oswaldo Cruz, Fiocruz Rondônia e Departamento de Medicina, Universidade Federal de Rondônia (UNIR), Porto Velho, RO, Brazil
| |
Collapse
|
25
|
El-Sayed AS, Shindia AA, Zaher YA. Purification and characterization of L-amino acid oxidase from the solid-state grown cultures of Aspergillus oryzae ASH. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261713060143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
26
|
Lee ML, Fung SY, Chung I, Pailoor J, Cheah SH, Tan NH. King cobra (Ophiophagus hannah) venom L-amino acid oxidase induces apoptosis in PC-3 cells and suppresses PC-3 solid tumor growth in a tumor xenograft mouse model. Int J Med Sci 2014; 11:593-601. [PMID: 24782648 PMCID: PMC4003544 DOI: 10.7150/ijms.8096] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Accepted: 02/27/2014] [Indexed: 11/05/2022] Open
Abstract
King cobra (Ophiophagus hannah) venom L-amino acid oxidase (OH-LAAO), a heat stable enzyme, has been shown to exhibit very potent anti-proliferative activity against human breast and lung tumorigenic cells but not in their non-tumorigenic counterparts. We further examine its in vitro and in vivo anti-tumor activity in a human prostate adenocarcinoma (PC-3) model. OH-LAAO demonstrated potent cytotoxicity against PC-3 cells with IC50 of 0.05 µg/mL after 72 h incubation in vitro. It induced apoptosis as evidenced with an increase in caspase-3/7 cleavages and an increase in annexin V-stained cells. To examine its in vivo anti-tumor activity, we treated PC-3 tumor xenograft implanted subcutaneously in immunodeficient NU/NU (nude) mice with 1 µg/g OH-LAAO given intraperitoneally (i.p.). After 8 weeks of treatment, OH-LAAO treated PC-3 tumors were markedly inhibited, when compared to the control group (P <0.05). TUNEL staining analysis on the tumor sections showed a significantly increase of apoptotic cells in the LAAO-treated animals. Histological examinations of the vital organs in these two groups showed no significant differences with normal tissues, indicating no obvious tissue damage. The treatment also did not cause any significant changes on the body weight of the mice during the duration of the study. These observations suggest that OH-LAAO cytotoxic effects may be specific to tumor xenografts and less to normal organs. Given its potent anti-tumor activities shown in vitro as well as in vivo, the king cobra venom LAAO can potentially be developed to treat prostate cancer and other solid tumors.
Collapse
Affiliation(s)
- Mui Li Lee
- 1. CENAR and Department of Molecular Medicine
| | | | | | | | - Swee Hung Cheah
- 4. Department of Physiology; Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | | |
Collapse
|
27
|
Vargas LJ, Quintana JC, Pereañez JA, Núñez V, Sanz L, Calvete J. Cloning and characterization of an antibacterial l-amino acid oxidase from Crotalus durissus cumanensis venom. Toxicon 2013; 64:1-11. [DOI: 10.1016/j.toxicon.2012.11.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 11/14/2012] [Accepted: 11/29/2012] [Indexed: 12/09/2022]
|
28
|
Mitra J, Bhattacharyya D. Irreversible inactivation of snake venom l-amino acid oxidase by covalent modification during catalysis of l-propargylglycine. FEBS Open Bio 2013; 3:135-43. [PMID: 23772385 PMCID: PMC3668516 DOI: 10.1016/j.fob.2013.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 01/28/2013] [Accepted: 01/28/2013] [Indexed: 11/18/2022] Open
Abstract
Snake venom l-amino acid oxidase (SV-LAAO, a flavor-enzyme) has attracted considerable attention due to its multifunctional nature, which is manifest in diverse clinical and biological effects such as inhibition of platelet aggregation, induction of cell apoptosis and cytotoxicity against various cells. The majority of these effects are mediated by H2O2 generated during the catalytic conversion of l-amino acids. The substrate analog l-propargylglycine (LPG) irreversibly inhibited the enzyme from Crotalus adamanteus and Crotalus atrox in a dose- and time-dependent manner. Inactivation was irreversible which was significantly protected by the substrate l-phenylalanine. A Kitz-Wilson replot of the inhibition kinetics suggested formation of reversible enzyme-LPG complex, which occurred prior to modification and inactivation of the enzyme. UV-visible and fluorescence spectra of the enzyme and the cofactor strongly suggested formation of covalent adduct between LPG and an active site residue of the enzyme. A molecular modeling study revealed that the FAD-binding, substrate-binding and the helical domains are conserved in SV-LAAOs and both His223 and Arg322 are the important active site residues that are likely to get modified by LPG. Chymotrypsin digest of the LPG inactivated enzyme followed by RP-HPLC and MALDI mass analysis identified His223 as the site of modification. The findings reported here contribute towards complete inactivation of SV-LAAO as a part of snake envenomation management.
Collapse
Key Words
- CHD, 1,2-cyclohexanedione
- Crotalus adamanteus venom
- Crotalus atrox venom
- DEPC, diethylpyrocarbonate
- FAD, flavin adenine dinucleotide
- Gdn-HCl, guanidine hydrochloride
- Irreversible inactivation
- LAAO, l-amino acid oxidase (EC. 1.4.3.2)
- LPG, l-propargylglycine
- MALDI-TOF, matrix-assisted laser desorption ionization-time of flight
- Mechanism-based inhibitor
- TNBS, trinitrobenzene sulfonic acid.
- l-Amino acid oxidase
- l-Phe, l-phenylalaine
- l-Propargylglycine
Collapse
|
29
|
Kong Y, Huang SL, Shao Y, Li S, Wei JF. Purification and characterization of a novel antithrombotic peptide from Scolopendra subspinipes mutilans. JOURNAL OF ETHNOPHARMACOLOGY 2013; 145:182-186. [PMID: 23127646 DOI: 10.1016/j.jep.2012.10.048] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/22/2012] [Accepted: 10/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The centipede has been prescribed for the treatment of cardiovascular diseases in Korea, China and other Far Eastern Asian countries for several hundred years. MATERIALS AND METHODS A novel antithrombotic peptide was isolated from Scolopendra subspinipes mutilans using a combination of ultrafiltration, Sephadex G-50 column, Source 15Q anion exchange column and RP-HPLC C18 column. RESULTS The molecular mass of the purified peptide is 346Da measured by Electrospray Ionization Mass Spectrometry (ESI-MS). The primary structure of the peptide is Ser-Gln-Leu (SQL) determined by Edman degradation. SQL potently prolonged the activated partial thromboplastin time (aPTT), and inhibited platelet aggregation. CONCLUSIONS These results help to clarify the mechanism of the antithrombotic activity of the centipede for effective treatment of cardiovascular and cerebrovascular diseases.
Collapse
Affiliation(s)
- Yi Kong
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| | | | | | | | | |
Collapse
|
30
|
Guo C, Liu S, Yao Y, Zhang Q, Sun MZ. Past decade study of snake venom L-amino acid oxidase. Toxicon 2012; 60:302-11. [PMID: 22579637 DOI: 10.1016/j.toxicon.2012.05.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 04/10/2012] [Accepted: 05/01/2012] [Indexed: 11/28/2022]
Abstract
As one of the major protein (enzyme) components of snake venom (SV), L-amino acid oxidase (LAAO) plays an important role in the toxicities and biological activities for SV. Accumulated researches in the past decade gradually revealed that SV-LAAOs induce platelet aggregation, cell apoptosis and cytotoxicity, and have anti-microbial, anti-leishmaniasis, anti-tumor and anti-HIV activity. Except for the enzymatic and structural characteristics of SV-LAAOs, the biological functions of SV-LAAOs and relevant action mechanisms are also summarized and discussed in the review. This work might provide useful inputs for future studies on SV-LAAOs.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of Biotechnology, Dalian Medical University, Dalian 116044, China
| | | | | | | | | |
Collapse
|
31
|
Lukasheva E, Efremova A, Treshalina E, Arinbasarova A, Medentzev A, Berezov T. L-amino acid oxidases: properties and molecular mechanisms of action. ACTA ACUST UNITED AC 2012; 58:372-84. [DOI: 10.18097/pbmc20125804372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
During previous decade L-amino acid oxidases (LAAO) attracted the steady interest of researchers due to their poly functional effects on different biological systems. The review summarizes information concerning the sources, structure, phisico-chemical and catalytical properties of LAAO which exhibit antibacterial, antifungal, antiprotozoal, antiviral effects as well as the ambiguous action on platelet aggregation. Special attention is devoted to the elucidation of molecular mechanisms of LAAO action. It is proposed that the unique properties of LAAO are based on their catalytic reaction, which causes the decrease of L-amino acid levels, including the essential amino acids and formation of hydrogen peroxide. The action of liberated H2O2 on cells involves the synthesis of oxygen reactive species and the development of necrotic and apoptotic pathways of cell death. The presence of carbohydrate moieties in LAAO molecules promotes their attachment to cell's surface and creation of high H2O2 local concentrations. The wide range of LAAO biological effects is undoubtedly connected with their important functional roles in the organism. In particular, it was shown that in the mice brain the LAAO-catalyzed reaction is the single pathway of L-lysine degradation, while in the mice milk LAAO carry out the antibacterial effect and in human leucocytes LAAO take part in fulfilling their defending role. Protector action may be also attributed to the oxidases from the other numerous sources: microscopic fungi, snake venoms and sea inhabitants.
Collapse
Affiliation(s)
- E.V. Lukasheva
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - A.A. Efremova
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| | - E.M. Treshalina
- N. N. Blokhin Cancer Research Center,Russian Academy of Medical Sciences
| | - A.Ju. Arinbasarova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - A.G. Medentzev
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences
| | - T.T. Berezov
- Department of Biochemistry, Medical Faculty, Russian Peoples’ Friendship University
| |
Collapse
|
32
|
Lukasheva EV, Efremova AA, Treshalina EM, Arinbasarova AY, Medentzev AG, Berezov TT. L-Amino acid oxidases: Properties and molecular mechanisms of action. BIOCHEMISTRY MOSCOW-SUPPLEMENT SERIES B-BIOMEDICAL CHEMISTRY 2011. [DOI: 10.1134/s199075081104007x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 2011; 278:3381-94. [PMID: 21781279 DOI: 10.1111/j.1742-4658.2011.08262.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Although L-amino oxidase (LAAO; EC 1.4.3.2) has been reported to be a potent antibacterial agent, the mechanism responsible for its antibacterial activity has not been identified. The present study aimed to identify the mechanism responsible for the antibacterial activity of Th-LAAO, an LAAO recently isolated from the extracellular proteins of Trichoderma harzianum ETS 323, at the same time as elucidating the nature of this enzyme. The results obtained indicate that the enzyme activity and structure of Th-LAAO are stable at pH 6-8 and less stable at both pH 4-5.5 and pH 9. At pH 7.0, the optimum temperature for Th-LAAO was found to be 40 °C, comprising the temperature at which enzymatic activity is greatest, with enzymatic activity deceasing with further increases in temperature as a result of thermal denaturation of the enzyme, leading to partial denaturation at 50 °C. The results obtained by confocal microscopy and flow cytometry indicate that Th-LAAO interacts with bacteria to cause membrane permeabilization, and this interaction may be promoted by the amphipathic sequence in Th-LAAO and other cytotoxic LAAOs located at the N-terminus. The findings of increased exogenous H(2) O(2) production and reactive oxidative species accumulation in Th-LAAO-treated bacteria indicate that reactive oxidative species accumulation may trigger forms of cell damage, including lipid peroxidation and DNA strand breakage that results in bacterial growth inhibition. Taken together, the results indicate that the processes of bacterial interaction, membrane permeabilization and H(2)O(2) production are involved in the mechanism responsible for the antibacterial activity of Th-LAAO.
Collapse
Affiliation(s)
- Chia-Ann Yang
- Institute of Medical Science, Tzu Chi University, Taiwan
| | | | | | | | | | | |
Collapse
|
34
|
Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng KC. Cloning of a novel L-amino acid oxidase from Trichoderma harzianum ETS 323 and bioactivity analysis of overexpressed L-amino acid oxidase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:9142-9149. [PMID: 21797276 DOI: 10.1021/jf201598z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
L-amino acid oxidases (L-AAOs) have been isolated from many organisms, such as snake, and are known to have antibacterial activity. To the best of the authors' knowledge, this is the first report of the cloning of cDNA encoding a novel Trichoderma harzianum ETS 323 L-amino acid oxidase (Th-L-AAO). The protein was overexpressed in Escherichia coli and purified to homogeneity. Comparisons of its deduced amino acid sequence with the sequence of other L-AAOs revealed the similarity to be between 9 and 24%. The molecular mass of the purified protein was 52 kDa, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme substrate specificity was highest for L-phenylalanine, and its optimal pH and temperature for activity were 7 and 40 °C, respectively; exogenous metal ions had no significant effect on activity. Circular dichroism spectroscopy indicated that the secondary structure of Th-L-AAO is composed of 17% α-helices, 28% β-sheets, and 55% random coils. The bacterially expressed Th-L-AAO also mediated antibacterial activity against both gram-positive and gram-negative food spoilage microorganisms. Furthermore, a three-dimensional protein structure was created to provide more information about the structural composition of Th-L-AAO, suggesting that the N-terminal sequence of Th-L-AAO may have contributed to the antibacterial activity of this protein.
Collapse
Affiliation(s)
- Chi-Hua Cheng
- Institute of Biotechnology, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Ciscotto PHC, Rates B, Silva DAF, Richardson M, Silva LP, Andrade H, Donato MF, Cotta GA, Maria WS, Rodrigues RJ, Sanchez E, De Lima ME, Pimenta AMC. Venomic analysis and evaluation of antivenom cross-reactivity of South American Micrurus species. J Proteomics 2011; 74:1810-25. [PMID: 21803179 DOI: 10.1016/j.jprot.2011.07.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Revised: 07/11/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
Coral snakes from Micrurus genus are the main representatives of the Elapidae family in South America. However, biochemical and pharmacological features regarding their venom constituents remain poorly investigated. Here, venomic analyses were carried out aiming at a deeper understanding on the composition of M. frontalis, M. ibiboboca, and M. lemniscatus venoms. In the three venoms investigated, proteins ranging from 6 to 8 kDa (3FTx) and 12 to 14 kDa (PLA(2)) were found to be the most abundant. Also, the N-terminal sequences of four new proteins, purified from the M. lemniscatus venom, similar to 3FTx, PLA(2) and Kunitz-type protease inhibitor from other Micrurus and elapid venoms are reported. Cross-reactivity among different Micrurus venoms and homologous or heterologous antivenoms was carried out by means of 2D-electrophoresis and immunoblotting. As, expected, the heterologous anti-Elapid venom displayed the highest degree of cross-reactivity. Conversely, anti-M. corallinus reacted weakly against the tested venoms. In gel digestions, followed by mass spectrometry sequencing and similarity searching, revealed the most immunogenic protein families as similar to short and long neurotoxins, weak neurotoxins, PLA(2), β-bungarotoxin, venom protein E2, frontoxin III, LAO and C-type lectin. The implications of our results for the production of Micrurus antivenoms are discussed.
Collapse
Affiliation(s)
- Paula H C Ciscotto
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Naumann GB, Silva LF, Silva L, Faria G, Richardson M, Evangelista K, Kohlhoff M, Gontijo CM, Navdaev A, de Rezende FF, Eble JA, Sanchez EF. Cytotoxicity and inhibition of platelet aggregation caused by an l-amino acid oxidase from Bothrops leucurus venom. Biochim Biophys Acta Gen Subj 2011; 1810:683-94. [DOI: 10.1016/j.bbagen.2011.04.003] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 03/20/2011] [Accepted: 04/14/2011] [Indexed: 12/09/2022]
|
37
|
El-Sayed ASA. Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. J Microbiol 2011; 49:130-40. [PMID: 21369990 DOI: 10.1007/s12275-011-0259-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 09/14/2010] [Indexed: 11/27/2022]
Abstract
L-Methioninase was purified to electrophoretic homogeneity from cultures of Aspergillus flavipes using anion-exchange and gel filtration chromatography by 12.1 fold compared to the crude enzyme preparation. The purified enzyme had a molecular mass of 47 kDa under denaturing conditions and an isoelectric point of 5.8 with no structural glycosyl residues. The enzyme had optimum activity at pH 7.8 and pH stability from 6.8-8.0 at 35°C. The enzyme appeared to be catalytically stable below 40°C. The enzyme activity was strongly inhibited by DL-propargylglycine, hydroxylamine, PMSF, 2-mercaptoethanol, Hg(+), Cu(2+), and Fe(2+), with slight inhibition by Triton X-(100). A flavipes L-methioninase has a higher catalytic affinity towards L-methionine (Km, 6.5 mM and Kcat, 14.1 S(-1)) followed by a relative demethiolating activity to L-homo-cysteine (Km, 12 mM and Kcat, 9.3 S(-1)). The enzyme has two absorption maxima at 280 and 420 nm, typical of other PLP-enzymes. Apo-L-methioninase has the ability to reconstitute its structural catalytic state completely upon addition of 0.15 mM PLP. L-Methioninase has neither an appreciable effect on liver function, platelet aggregation, nor hemolysis of human blood. The purified L-methioninase from solid cultures of A. flavipes displayed unique biochemical and catalytic properties over the currently applied Pseudomonad enzyme.
Collapse
Affiliation(s)
- Ashraf S A El-Sayed
- Microbiology Department, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
38
|
Abstract
New racemic methyl or ethyl α-aminoglycinate derivatives were synthesized by N-alkylation of amines (aniline, 4-methylaniline, 2-methylaniline, 2,4-dimethoxyaniline, 2-nitroaniline, 4-chloro-2-fluoroaniline, 2-naphthylamine, benzylamine, N,N-dibenzylamine, and cyclohexylamine) with methyl or ethyl α-azidoglycinate.
Collapse
|
39
|
Wei JF, Wei XL, Chen QY, He SH. Induction of inflammatory cell accumulation by TM-N49 and promutoxin, two novel phospholipase A(2). Toxicon 2010; 56:580-8. [PMID: 20538012 DOI: 10.1016/j.toxicon.2010.05.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 05/27/2010] [Accepted: 05/28/2010] [Indexed: 11/28/2022]
Abstract
Local inflammation is a prominent characteristic of snakebite wound. Snake venom phospholipase A(2)s (PLA(2)s) are one of the main components which contribute to accumulation of inflammatory cells. We have isolated TM-N49 and promutoxin from Protobothrops mucrosquamatus venom and investigated their ability in induction of cell accumulation by using an in vivo mouse model. The results showed that both TM-N49 and promutoxin are potent stimuli for induction of neutrophil, lymphocyte, macrophage and eosinophil accumulation in the mouse peritoneum. The TM-N49- and promutoxin-induced inflammatory cell accumulation was inhibited by pretreatment of animals with cyproheptadine, terfenadine and Ginkgolide B, indicating that histamine and PAF is likely to contribute to the cells accumulation. Pre-injection of antibodies against adhesion molecules ICAM-1, CD18, CD11a and L-selectin showed that ICAM-1 is a key adhesion molecule of TM-N49- and promutoxin-induced lymphocyte, macrophage and eosinophil accumulation; CD18 and CD11a plays an important role in the migration of neutrophils, eosinophils and macrophages; and L-selectin is involved in the neutrophil and eosinophil accumulation. In conclusion, induction of inflammatory cell accumulation by TM-N49 and promutoxin confirms that group II PLA(2)s is pivotal stimulus for cell infiltration, through which they participate in the formation of snakebite inflammation.
Collapse
Affiliation(s)
- Ji-Fu Wei
- Clinical Experiment Center, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, PR China
| | | | | | | |
Collapse
|
40
|
Singh S, Gogoi BK, Bezbaruah RL. Optimization of medium and cultivation conditions for L-amino acid oxidase production by Aspergillus fumigatus. Can J Microbiol 2010; 55:1096-102. [PMID: 19898552 DOI: 10.1139/w09-068] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A fungal strain was selected from the microbial repository of the North-East Institute of Science and Technology, Jorhat, India, which could produce a high yield of L-amino acid oxidase. 18SrRNA, ITS1, 5.8SrRNA ITS2, and partial 28 S rRNA sequencing and phenotypic characteristics indicate that it belong to the species Aspergillus fumigatus (designated as P13). Maximum production of enzyme (59.55 x 10-3 U/mg dry cell mass) was obtained in a medium containing 10 g/L glucose, 4 g/L yeast extract, and 4 g/L ammonium sulfate, with 20 mmol/L of L-threonine as the inducer. The optimum temperature for enzyme production was 30 degrees C at pH 7.0, with a shaking speed of 200 r/min. At 96 h, the enzyme activity was maximum. The A. fumigatus P13 L-amino acid oxidase accepts a broad substrate range, and the maximum enzyme activity (20.41 x 10-3 U/mg dry cell mass) was obtained with 50 mmol/L of L-tyrosine. In the literature, no reports have been found regarding the production of L-amino acid oxidase by A. fumigatus. The enzyme showed enantiomerically pure amino acid formation, which has tremendous demand in industrial applications.
Collapse
Affiliation(s)
- Susmita Singh
- North-East Institute of Science and Technology, Council of Scientific and Industrial Research, Jorhat, Assam, India.
| | | | | |
Collapse
|
41
|
Sun MZ, Guo C, Tian Y, Chen D, Greenaway FT, Liu S. Biochemical, functional and structural characterization of Akbu-LAAO: a novel snake venom L-amino acid oxidase from Agkistrodon blomhoffii ussurensis. Biochimie 2010; 92:343-9. [PMID: 20100538 DOI: 10.1016/j.biochi.2010.01.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Accepted: 01/18/2010] [Indexed: 12/09/2022]
Abstract
An L-amino acid oxidase (Akbu-LAAO) was isolated from the venom of Agkistrodon blomhoffii ussurensis snake using DEAE Sephadex A-50 ion-exchange, Sephadex G-75 gel filtration, and high performance liquid chromatographies. The homogeneity and molecular mass of Akbu-LAAO were analyzed by SDS-PAGE and MALDI-TOF spectrometry. The sequences of ten peptides from Akbu-LAAO were established by HPLC-nESI-MS/MS analysis. Protein sequence alignment indicated that i) that Akbu-LAAO is a new snake venom LAAO, and ii) Akbu-LAAO shares homology with several LAAOs from the venoms of Calloselasma rhodost, Agkistrodon halys, Daboia russellii siamensis, and Trimeresurus stejnegeri. Akbu-LAAO is a homodimer with a molecular mass of approximately 124.4 kDa. It reacts optimally with its enzymatic substrate, Leu, at pH 4.7 with a K(m) of 2.1 mM. ICP-AES measurements showed that Akbu-LAAO contains four Zn(2+) per dimer that are unessential for the hydrolytic activity of the enzyme. The emission fluorescence intensity of Akbu-LAAO decreases by 61% on removal of Zn(2+) indicating that the zinc probably helps maintain the structural integrity of the enzyme. The addition of exogenous metal ions, including Mg(2+), Mn(2+), Ca(2+), Ce(3+), Nd(3+), Co(2+) and Tb(3+), increases the l-Leu hydrolytic activity of the enzyme. Akbu-LAAO shows apparent anti-aggregation effects on human and rabbit platelets. It exhibits a strong bacteriostasis effect on Staphylococcus aureus, eighteen fold that of cephalosporin C under the same conditions. Taken together, the biochemical, proteomic, structural and functional characterizations reveal that Akbu-LAAO is a novel LAAO with promise for biotechnological and medical applications.
Collapse
Affiliation(s)
- Ming-Zhong Sun
- Department of Biotechnology, Dalian Medical University, Dalian, China
| | | | | | | | | | | |
Collapse
|
42
|
Zhong SR, Jin Y, Wu JB, Jia YH, Xu GL, Wang GC, Xiong YL, Lu QM. Purification and characterization of a new l-amino acid oxidase from Daboia russellii siamensis venom. Toxicon 2009; 54:763-71. [DOI: 10.1016/j.toxicon.2009.06.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/25/2009] [Accepted: 06/02/2009] [Indexed: 11/16/2022]
|
43
|
Wei JF, Yang HW, Wei XL, Qiao LY, Wang WY, He SH. Purification, characterization and biological activities of the l-amino acid oxidase from Bungarus fasciatus snake venom. Toxicon 2009; 54:262-71. [DOI: 10.1016/j.toxicon.2009.04.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2009] [Revised: 04/09/2009] [Accepted: 04/09/2009] [Indexed: 01/21/2023]
|
44
|
Ciscotto P, Machado de Avila R, Coelho E, Oliveira J, Diniz C, Farías L, de Carvalho M, Maria W, Sanchez E, Borges A, Chávez-Olórtegui C. Antigenic, microbicidal and antiparasitic properties of an l-amino acid oxidase isolated from Bothrops jararaca snake venom. Toxicon 2009; 53:330-41. [DOI: 10.1016/j.toxicon.2008.12.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 12/09/2022]
|
45
|
Georgieva D, Kardas A, Buck F, Perbandt M, Betzel C. Isolation, crystallization and preliminary X-ray diffraction analysis of L-amino-acid oxidase from Vipera ammodytes ammodytes venom. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:918-21. [PMID: 18931435 DOI: 10.1107/s1744309108027036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Accepted: 08/21/2008] [Indexed: 11/11/2022]
Abstract
L-Amino-acid oxidase from the venom of Vipera ammodytes ammodytes, the most venomous snake in Europe, was isolated and crystallized using the sitting-drop vapour-diffusion method. The solution conditions under which the protein sample was monodisperse were optimized using dynamic light scattering prior to crystallization. The crystals belonged to space group C2, with unit-cell parameters a = 198.37, b = 96.38, c = 109.11 A, beta = 92.56 degrees . Initial diffraction data were collected to 2.6 A resolution. The calculated Matthews coefficient is approximately 2.6 A(3) Da(-1) assuming the presence of four molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Dessislava Georgieva
- Institute of Biochemistry and Molecular Biology, University of Hamburg, c/o DESY, Gebäude 22a, Notkestrasse 85, 22603 Hamburg, Germany
| | | | | | | | | |
Collapse
|