1
|
Oliveira VQ, Santos LC, Teixeira SC, Correia TML, Andrade LOSB, Gimenes SNC, Colombini M, Marques LM, Jiménez-Charris E, Freitas-de-Sousa LA, Silva MJB, Magalhães Gusmão ACMD, Ferro EAV, Clissa PB, Melo Rodrigues VD, Lopes DS. Antiangiogenic properties of BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom by VEGF pathway in endothelial cells. Biochem Biophys Res Commun 2024; 706:149748. [PMID: 38460450 DOI: 10.1016/j.bbrc.2024.149748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/11/2024]
Abstract
Angiogenesis is a process that is controlled by a delicate combination of proangiogenic and antiangiogenic molecules and can be disrupted in various illnesses, including cancer. Non-cancerous diseases can also have an abnormal or insufficient vascular growth, inflammation and hypoxia, which exacerbate angiogenesis. These conditions include atherosclerosis, psoriasis, endometriosis, asthma, obesity and AIDS. Based on that, the present work assessed the in vitro and ex vivo antiangiogenic properties stemming from BthMP, a P-I metalloproteinase from Bothrops moojeni snake venom, via the VEGF pathway. BthMP at a concentration of 5 and 40 μg/mL showed no toxicity to endothelial cells (HUVEC) in the MTT assay and was not able to induce necrosis and colony proliferation. Interestingly, BthMP inhibited adhesion, migration and invasion of HUVECs in Matrigel and arrested in vitro angiogenesis by reducing the average number of nodules in toxin-treated cells by 9.6 and 17.32 at 5 and 40 μg/mL, respectively, and the number of tubules by 15.9 at 5 μg/mL and 21.6 at 40 μg/mL in a VEGF-dependent way, an essential proangiogenic property. Furthermore, BthMP inhibited the occurrence of the angiogenic process in an ex vivo aortic ring test by decreasing new vessel formation by 52% at 5 μg/mL and by 66% at 40 μg/mL and by increasing the expression of an antiangiogenic gene, SFLT-1, and decreasing the expression of the proangiogenic genes VEGFA and ANGPT-1. Finally, this toxin reduces the production of nitric oxide, a marker that promotes angiogenesis and VEGF modulation, and decreases the protein expression of VEGFA in the supernatant of the HUVEC culture by about 30 %. These results suggest that BthMP has a promising antiangiogenic property and proves to be a biotechnological mechanism for understanding the antiangiogenic responses induced by snake venom metalloproteinases, which could be applied to a variety of diseases that exhibit an imbalance of angiogenesis mechanisms.
Collapse
Affiliation(s)
- Vinícius Queiroz Oliveira
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Luísa Carregosa Santos
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | - Samuel Cota Teixeira
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil.
| | | | | | | | - Mônica Colombini
- Laboratory of Immunopathology, Institute of Butantan, São Paulo, SP, Brazil
| | - Lucas Miranda Marques
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | | | | - Marcelo José Barbosa Silva
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Eloisa Amália Vieira Ferro
- Department of Immunology, Institute of Biomedical Sciences, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | | | - Veridiana de Melo Rodrigues
- Laboratory of Biochemistry and Animal Toxins, Institute of Biotechnology, Federal University of Uberlandia (UFU), Uberlândia-MG, Brazil
| | - Daiana Silva Lopes
- Institute Multidisciplinary in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil.
| |
Collapse
|
2
|
Ajisebiola BS, Oladele JO, Adeyi AO. Kaempferol from Moringa oleifera demonstrated potent antivenom activities via inhibition of metalloproteinase and attenuation of Bitis arietans venom-induced toxicities. Toxicon 2023; 233:107242. [PMID: 37558138 DOI: 10.1016/j.toxicon.2023.107242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Bitis arietans venom (BAV) can induce severe pathophysiological disorders after envenoming. However, studies have shown that the Moringa oleifera fraction is effective against BAV toxicities and contains bioactive compounds with significant antivenom potency. This research aimed to identify the main active antivenom compound in the M. oleifera fraction responsible for neutralizing the toxicities induced by BAV. The compounds identified from M. oleifera fraction were docked in silico against the catalytic site of the Snake Venom Metalloproteinase (SVMP) to determine the lead inhibitor compound. The antivenom potency of the lead inhibitor compound was tested against BAV toxicities and metalloproteinase isolated from BAV using in vitro and in vivo methods, while EchiTab-Plus polyvalent antivenom served as a standard drug. The in silico prediction revealed kaempferol as the lead inhibitor compound with a docking score of -7.0 kcal/mol. Kaempferol effectively inhibited metalloproteinase activity at 0.2 mg/ml, compared to antivenom (0.4 mg/ml) and demonstrated significant antihaemorrhagic, antihaemolytic and coagulant effects against BAV activities. Furthermore, kaempferol showed a significant dose-dependent effect on altered haematological indices observed in rats challenged with LD50 of BAV. Envenomed rats also showed an increase in oxidative stress biomarkers and antioxidant enzyme activity in the heart and kidney. However, treatment with kaempferol significantly (P < 0.05) decreased malondialdehyde levels and SOD activity with concomitant enhancement of glutathione levels. Severe histopathological defects noticed in the organ tissues of envenomed rats were ameliorated after kaempferol treatment. Kaempferol is identified as the main active antivenom compound in M. oleifera, and this research highlights the potential of the compound as an effective alternative to snakebite treatment.
Collapse
Affiliation(s)
- Babafemi Siji Ajisebiola
- Department of Zoology, Osun State University, Osogbo, Nigeria; Animal Physiology Unit, Department of Zoology, University of Ibadan, Ibadan, Nigeria.
| | | | | |
Collapse
|
3
|
Almeida JR, Gomes A, Mendes B, Aguiar L, Ferreira M, Brioschi MBC, Duarte D, Nogueira F, Cortes S, Salazar-Valenzuela D, Miguel DC, Teixeira C, Gameiro P, Gomes P. Unlocking the potential of snake venom-based molecules against the malaria, Chagas disease, and leishmaniasis triad. Int J Biol Macromol 2023; 242:124745. [PMID: 37150376 DOI: 10.1016/j.ijbiomac.2023.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/09/2023]
Abstract
Malaria, leishmaniasis and Chagas disease are vector-borne protozoal infections with a disproportionately high impact on the most fragile societies in the world, and despite malaria-focused research gained momentum in the past two decades, both trypanosomiases and leishmaniases remain neglected tropical diseases. Affordable effective drugs remain the mainstay of tackling this burden, but toxicicty, inneficiency against later stage disease, and drug resistance issues are serious shortcomings. One strategy to overcome these hurdles is to get new therapeutics or inspiration in nature. Indeed, snake venoms have been recognized as valuable sources of biomacromolecules, like peptides and proteins, with antiprotozoal activity. This review highlights major snake venom components active against at least one of the three aforementioned diseases, which include phospholipases A2, metalloproteases, L-amino acid oxidases, lectins, and oligopeptides. The relevance of this repertoire of biomacromolecules and the bottlenecks in their clinical translation are discussed considering approaches that should increase the success rate in this arduous task. Overall, this review underlines how venom-derived biomacromolecules could lead to pioneering antiprotozoal treatments and how the drug landscape for neglected diseases may be revolutionized by a closer look at venoms. Further investigations on poorly studied venoms is needed and could add new therapeutics to the pipeline.
Collapse
Affiliation(s)
- José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador.
| | - Ana Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Bruno Mendes
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena 150150, Ecuador
| | - Luísa Aguiar
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Mariana Ferreira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | | | - Denise Duarte
- Departamento de Biologia Animal, Instituto de Biologia, UNICAMP, Campinas, São Paulo 13083-862, Brazil.
| | - Fátima Nogueira
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - Sofia Cortes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua Junqueira 100, P-1349-008 Lisboa, Portugal.
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Danilo C Miguel
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Quito 170103, Ecuador.
| | - Cátia Teixeira
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal
| | - Paula Gameiro
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| | - Paula Gomes
- LAQV-REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre 687, P-4169-007 Porto, Portugal.
| |
Collapse
|
4
|
Adeyi AO, Mustapha KK, Ajisebiola BS, Adeyi OE, Metibemu DS, Okonji RE. Inhibition of Echis ocellatus venom metalloprotease by flavonoid-rich ethyl acetate sub-fraction of Moringa oleifera (Lam.) leaves: in vitro and in silico approaches. TOXIN REV 2022. [DOI: 10.1080/15569543.2021.1893334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | | | | | - Olubisi Esther Adeyi
- Department of Biochemistry, Federal University of Agriculture, Abeokuta, Nigeria
| | | | - Raphael Emuebie Okonji
- Department of Biochemistry and Molecular Biology, Obafemi Awolowo University, Ile-Ife, Nigeria
| |
Collapse
|
5
|
Vieira SAPB, Dos Santos BM, Santos Júnior CD, de Paula VF, Gomes MSR, Ferreira GM, Gonçalves RL, Hirata MH, da Silva RA, Brandeburgo MIH, Mendes MM. Isohemigossypolone: Antiophidic properties of a naphthoquinone isolated from Pachira aquatica Aubl. Comp Biochem Physiol C Toxicol Pharmacol 2021; 245:109028. [PMID: 33676005 DOI: 10.1016/j.cbpc.2021.109028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/23/2021] [Indexed: 01/17/2023]
Abstract
We investigated the antiophidic properties of isohemigossypolone (ISO), a naphthoquinone isolated from the outer bark of the Pachira aquatic Aubl. The inhibition of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic activities induced by Bothrops pauloensis venom (Pb) was investigated. For this, we use samples resulting from the incubation of Pb with ISO in different concentrations (1:1, 1:5 and 1:10 w/w), we also evaluated the condition of treatment using ISO after 15 min of venom inoculation. The activities of phospholipase A2, coagulant, fibrinogenolytic, hemorrhagic and myotoxic induced by the B. pauloensis venom were significantly inhibited when the ISO was pre-incubated with the crude venom. For in vivo neutralization tests, the results were observed even when the ISO was applied after 15 min of inoculation of the venom or metalloprotease (BthMP). Also, to identify the inhibition mechanism, we performed in silico assays, across simulations of molecular coupling and molecular dynamics, it was possible to identify the modes of interaction between ISO and bothropic toxins BmooMPα-I, Jararacussin-I and BNSP-7. The present study shows that naphthoquinone isohemigossypolone isolated from the P. aquatica plant inhibited part of the local and systemic damage caused by venom proteins, demonstrating the pharmacological potential of this compound in neutralizing the harmful effects caused by snakebites.
Collapse
Affiliation(s)
| | - Benedito Matheus Dos Santos
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Célio Dias Santos Júnior
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Vanderlúcia Fonseca de Paula
- Laboratory of Natural Products, Department of Sciences and Technology, State University of Bahia Southwest (UESB), Jequié, BA, Brazil
| | - Mario Sergio Rocha Gomes
- Institute of Genetics and Biochemistry, Federal University of Uberlândia (UFU), Uberlândia, MG, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | | | - Mirian Machado Mendes
- Special Academic Unit of Biosciences, Federal University of Goiás (UFG), Jataí, GO, Brazil.
| |
Collapse
|
6
|
Mamede CCN, de Sousa Simamoto BB, da Cunha Pereira DF, de Oliveira Costa J, Ribeiro MSM, de Oliveira F. Edema, hyperalgesia and myonecrosis induced by Brazilian bothropic venoms: overview of the last decade. Toxicon 2020; 187:10-18. [PMID: 32846146 DOI: 10.1016/j.toxicon.2020.08.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/15/2020] [Accepted: 08/19/2020] [Indexed: 01/19/2023]
Abstract
Snakebite accidents are considered serious public health problems. They are often neglected, and individuals who have received insufficient treatment are subjected to various disabling alterations. Snake venoms are secretions composed of biologically active molecules capable of triggering local and systemic effects in envenomation victims. Bothropic snakes are responsible for most of the ophidian accidents in Brazil; their venoms are mainly related to local manifestations, due to a composition that is especially rich in proteases and phospholipases A2. The most common local damages are inflammation, with consequent cellular activation and release of inflammatory mediators, hemorrhage, edema, pain and (myo)necrosis, which may lead to amputation of the affected areas. Antivenom therapy is the main treatment for snakebites. However, the efficiency is mainly due to the neutralization of the toxins responsible for the systemic alterations. Thus, the local damages can evolve to markedly compromise the tissue. The complexity of these local effects associated with the toxicity of the snake venom components of the genus Bothrops, arouse interest in the study of the biochemical and pathophysiological mechanisms involved with the actions caused by toxins of the venom. Therefore, this review aims to analyze the edematogenic, hyperalgesic and myotoxic effects caused by Brazilian bothropic venoms in order to contribute to the study and elucidation of the mechanisms of action of its components and, consequently, enable discoveries of more effective combined therapies in the treatment of local damages resulting from envenoming.
Collapse
Affiliation(s)
| | | | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro (IFTM), Ituiutaba, MG, Brazil
| | | | - Fabio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia, MG, Brazil
| |
Collapse
|
7
|
Torres-Huaco FD, Maruñak S, Teibler P, Bustillo S, Acosta de Pérez O, Leiva LC, Ponce-Soto LA, Marangoni S. Local and systemic effects of BtaMP-1, a new weakly hemorrhagic Snake Venom Metalloproteinase purified from Bothriopsis taeniata Snake Venom. Int J Biol Macromol 2019; 141:1044-1054. [PMID: 31494155 DOI: 10.1016/j.ijbiomac.2019.09.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/16/2019] [Accepted: 09/04/2019] [Indexed: 01/07/2023]
Abstract
A new weak hemorrhagic metalloproteinase named BtaMP-1 was purified from Bothriopsis taeniata snake venom by molecular exclusion followed by anion exchange chromatographies. This protein showed a molecular mass of 25,968.16 Da and is composed of 218 amino acid residues. The multiple alignments of its partial amino acid sequence showed high structural identity with other P-I class SVMP. BtaMP-1 showed caseinolytic activity that was enhanced by Ca2+ ion, completely inhibited by chelating and reducing agents and can be classified as an α-fibrinogenolytic enzyme. Locally, BtaMP-1 induces hemorrhage and edema, but not myotoxicity. These findings were confirmed by histological analysis of mouse gastrocnemius muscle. "In vitro" studies suggest that BtaMP-1 induce cytotoxicity in myoblast C2C12 but not in the myotubes cell line. BtaMP-1 induced systemic alterations in mice with one MHD and two hours exposure; histological analysis of lungs showed hemorrhagic areas, congestion, and increase the thickness of alveolar septum. Also, this protein induced mild effects on kidney and disruption of coagulation by depletion of fibrinogen plasma levels. This work provides insights into the importance of BtaMP-1 biological effects in envenomation by Bothropsis taeniata snake venom and providing further evidence to understand the role of P-I class SVMP in ophidian envenomation.
Collapse
Affiliation(s)
- Frank Denis Torres-Huaco
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil; Universidad Continental, Av. Los Incas, ZIP 4002 Arequipa, Peru.
| | - Silvana Maruñak
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Pamela Teibler
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Soledad Bustillo
- Protein Research Laboratory (LabInPro), Faculty of Natural Sciences and Surveying (FACENA), National Northeastern University (UNNE), Corrientes 3400, Argentina
| | - Ofelia Acosta de Pérez
- Laboratory of Pharmacology, Faculty of Veterinary Science, National Northeastern University (UNNE), Argentina
| | - Laura Cristina Leiva
- Protein Research Laboratory (LabInPro), Faculty of Natural Sciences and Surveying (FACENA), National Northeastern University (UNNE), Corrientes 3400, Argentina
| | - Luis Alberto Ponce-Soto
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil
| | - Sergio Marangoni
- Department of Biochemistry, Institute of Biology, University of Campinas (UNICAMP), PO Box 6109, CEP 13083-970 Campinas, SP, Brazil
| |
Collapse
|
8
|
Zeng X, Hu J, Liang X, Wu Y, Yan M, Zhu M, Fu Y. Acute cerebral infarction following a Trimeresurus stejnegeri snakebite: A case report. Medicine (Baltimore) 2019; 98:e15684. [PMID: 31169670 PMCID: PMC6571248 DOI: 10.1097/md.0000000000015684] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
RATIONALE Acute cerebral infarction after snake bites is rare. The underlying mechanism causing the thrombotic process remains complex and unknown. PATIENT CONCERNS We herein describe a 49-year-old female who was bitten by a Trimeresurus stejnegeri. After 4 days of biting, she developed acute ischemic infarct. DIAGNOSIS The patient exhibited right side weakness and speech disturbances. Brain computed tomography (CT) scan showed no sign about cerebral hemorrhage symptoms, and brain magnetic resonance imaging (MRI) showed acute ischemic infarct in the left territory. The patient confirmed a diagnosis of acute cerebral infarction following a T. stejnegeri bite. INTERVENTIONS The patient received an injection of polyvalent anti-snake venom serum, neuroprotective therapy, and anti-platelet aggregate treatment. OUTCOMES At the 3-month follow-up visit, the patient's left lower extremity swelling disappeared, the right limb muscle strength recovered, and the modified Rankin scale (mRS) score was 4 points. LESSONS The patient was diagnosed with acute ischemic infarct interrelated to snake bite; further investigations were needed to ascertain mechanism. The clinicians should pay more attention to identify potential victims of neurologic complications, to reduce the mortality rate of snake bite.
Collapse
|
9
|
Abdel-Aty AM, Salama WH, Ali AA, Mohamed SA. A hemorrhagic metalloprotease of Egyptian Cerastes vipera venom: Biochemical and immunological properties. Int J Biol Macromol 2019; 130:695-704. [DOI: 10.1016/j.ijbiomac.2019.02.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/27/2019] [Accepted: 02/20/2019] [Indexed: 11/27/2022]
|
10
|
Aparecida Braga M, Silva de Abreu T, Cardoso Trento MV, Henrique Andrade Machado G, Lopes Silva Pereira L, Assaid Simão A, Marcussi S. Prospection of Enzyme Modulators in Aqueous and Ethanolic Extracts of Lippia sidoides Leaves: Genotoxicity, Digestion, Inflammation, and Hemostasis. Chem Biodivers 2019; 16:e1800558. [PMID: 30600918 DOI: 10.1002/cbdv.201800558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 12/27/2018] [Indexed: 11/06/2022]
Abstract
The aqueous and ethanolic extracts of Lippia sidoides Cham. were chemically characterized and tested for their action on enzymes involved in processes such as inflammation, blood coagulation, and digestion. Both extracts potentiated the activity of phospholipases A2 present in the venom of Bothrops atrox in 12 % and completely inhibited the hemolysis induced by B. jararacussu and B. moojeni venoms in the proportions between 1 : 0.5 and 1 : 5 (venom/extracts (w/w)). They inhibited the thrombolysis induced by B. moojeni (10 to 25 %), potentiated the thrombolysis induced by the Lachesis muta muta venom (30 to 80 %), prolonged the coagulation time induced by B. moojeni and L. muta muta venoms, and presented antigenotoxic action. Both extracts reduced the activity of α-glycosidases, the aqueous extract inhibited lipases, and the ethanolic extract inhibited α-amylases. The results demonstrate the modulatory action of the extracts on proteases, phospholipases, and digestive enzymes. In addition, the rich phenolic composition of these extracts highlights their potential for nutraceutical use.
Collapse
Affiliation(s)
- Mariana Aparecida Braga
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Tatiane Silva de Abreu
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Marcus Vinicius Cardoso Trento
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Gustavo Henrique Andrade Machado
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Luciana Lopes Silva Pereira
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Anderson Assaid Simão
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| | - Silvana Marcussi
- Biochemistry Laboratory, Department of Chemistry, Universidade Federal de Lavras (UFLA), Campus Universitario, CEP: 3037, Lavras, 37200-000, Brazil
| |
Collapse
|
11
|
de Queiroz MR, de Sousa BB, da Cunha Pereira DF, Mamede CCN, Matias MS, de Morais NCG, de Oliveira Costa J, de Oliveira F. The role of platelets in hemostasis and the effects of snake venom toxins on platelet function. Toxicon 2017; 133:33-47. [PMID: 28435120 DOI: 10.1016/j.toxicon.2017.04.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/12/2017] [Accepted: 04/19/2017] [Indexed: 12/09/2022]
Abstract
The human body has a set of physiological processes, known as hemostasis, which keeps the blood fluid and free of clots in normal vessels; in the case of vascular injury, this process induces the local formation of a hemostatic plug, preventing hemorrhage. The hemostatic system in humans presents complex physiological interactions that involve platelets, plasma proteins, endothelial and subendothelial structures. Disequilibrium in the regulatory mechanisms that control the growth and the size of the thrombus is one of the factors that favors the development of diseases related to vascular disorders such as myocardial infarction and stroke, which are among the leading causes of death in the western world. Interfering with platelet function is a strategy for the treatment of thrombotic diseases. Antiplatelet drugs are used mainly in cases related to arterial thrombosis and interfere in the formation of the platelet plug by different mechanisms. Aspirin (acetylsalicylic acid) is the oldest and most widely used antithrombotic drug. Although highly effective in most cases, aspirin has limitations compared to other drugs used in the treatment of homeostatic disorders. For this reason, research related to molecules that interfere with platelet aggregation are of great relevance. In this regard, snake venoms are known to contain a number of molecules that interfere with hemostasis, including platelet function. The mechanisms by which snake venom components inhibit or activate platelet aggregation are varied and can be used as tools for the diagnosis and the treatment of several hemostatic disorders. The aim of this review is to present the role of platelets in hemostasis and the mechanisms by which snake venom toxins interfere with platelet function.
Collapse
Affiliation(s)
- Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | | | - Carla Cristine Neves Mamede
- Instituto de Ciências Agrárias, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil
| | | | - Júnia de Oliveira Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Triângulo Mineiro, Ituiutaba, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil.
| |
Collapse
|
12
|
Mamede CCN, de Sousa BB, Pereira DFDC, Matias MS, de Queiroz MR, de Morais NCG, Vieira SAPB, Stanziola L, de Oliveira F. Comparative analysis of local effects caused by Bothrops alternatus and Bothrops moojeni snake venoms: enzymatic contributions and inflammatory modulations. Toxicon 2016; 117:37-45. [PMID: 26975252 DOI: 10.1016/j.toxicon.2016.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/05/2016] [Accepted: 03/08/2016] [Indexed: 11/30/2022]
Abstract
Bothropic envenomation is characterised by severe local damage caused by the toxic action of venom components and aggravated by induced inflammation. In this comparative study, the local inflammatory effects caused by the venoms of Bothrops alternatus and Bothrops moojeni, two snakes of epidemiological importance in Brazil, were investigated. The toxic action of venom components induced by bothropic venom was also characterised. Herein, the oedema, hyperalgesia and myotoxicity induced by bothropic venom were monitored for various lengths of time after venom injection in experimental animals. The intensity of the local effects caused by B. moojeni venom is considerably more potent than B. alternatus venom. Our results also indicate that metalloproteases and phospholipases A2 have a central role in the local damage induced by bothropic venoms, but serine proteases also contribute to the effects of these venoms. Furthermore, we observed that specific anti-inflammatory drugs were able to considerably reduce the oedema, the pain and the muscle damage caused by both venoms. The inflammatory reaction induced by B. moojeni venom is mediated by eicosanoid action, histamine and nitric oxide, with significant participation of bradykinin on the hyperalgesic and myotoxic effects of this venom. These mediators also participate to inflammation caused by B. alternatus venom. However, the inefficient anti-inflammatory effects of some local modulation suggest that histamine, leukotrienes and nitric oxide have little role in the oedema or myotoxicity caused by B. alternatus venom.
Collapse
Affiliation(s)
- Carla Cristine Neves Mamede
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Mariana Santos Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | | | - Leonilda Stanziola
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| | - Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
13
|
de Oliveira F, de Sousa BB, Mamede CCN, de Morais NCG, de Queiroz MR, da Cunha Pereira DF, Matias MS, Homi Brandeburgo MI. Biochemical and functional characterization of BmooSP, a new serine protease from Bothrops moojeni snake venom. Toxicon 2016; 111:130-8. [PMID: 26797102 DOI: 10.1016/j.toxicon.2016.01.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 12/30/2015] [Accepted: 01/10/2016] [Indexed: 09/30/2022]
Abstract
In this work, we describe the purification and characterization of a new serine protease enzyme from Bothrops moojeni snake venom (BmooSP). On SDS-PAGE, BmooSP was found to be a single-chain protein with an apparent molecular mass of 36,000 and 32,000 under reduced and non-reduced conditions, respectively. Mass spectrometry analysis showed that the BmooSP is composed by two isoforms with molecular mass of 30,363 and 30,070, respectively. The purified enzyme consists of 277 amino acid residues, disregarding the cysteine and tryptophan residues that have been degraded by acid hydrolysis, and its N-terminal sequence showed similarity with other serine protease enzymes. BmooSP induced blood-clotting in vitro, defibrination in vivo, caseinolytic and fibrin(ogen)olytic activities. The enzyme is stable at high temperatures (up to 100 °C) and shows maximum activity at pH around 7.0. Preliminary results show that BmooSP can induce the formation of a stable fibrin clot for more than 10 days. BmooSP presents medical interest because it can be used as biodegradable fibrin glue and for the treatment and prevention of cardiovascular disorders because of its ability to promote the defibrination in vivo, decreasing blood viscosity and improving blood circulation.
Collapse
Affiliation(s)
- Fábio de Oliveira
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil.
| | - Bruna Barbosa de Sousa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Carla Cristine Neves Mamede
- Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Nadia Cristina Gomes de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | - Mayara Ribeiro de Queiroz
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte MG, Brazil
| | | | - Mariana S Matias
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia MG, Brazil
| | | |
Collapse
|
14
|
Kayano AM, Simões-Silva R, Medeiros PS, Maltarollo VG, Honorio KM, Oliveira E, Albericio F, da Silva SL, Aguiar ACC, Krettli AU, Fernandes CF, Zuliani JP, Calderon LA, Stábeli RG, Soares AM. BbMP-1, a new metalloproteinase isolated from Bothrops brazili snake venom with in vitro antiplasmodial properties. Toxicon 2015; 106:30-41. [DOI: 10.1016/j.toxicon.2015.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 09/05/2015] [Accepted: 09/07/2015] [Indexed: 10/23/2022]
|
15
|
Menaldo DL, Jacob-Ferreira AL, Bernardes CP, Cintra ACO, Sampaio SV. Purification procedure for the isolation of a P-I metalloprotease and an acidic phospholipase A2 from Bothrops atrox snake venom. J Venom Anim Toxins Incl Trop Dis 2015; 21:28. [PMID: 26273288 PMCID: PMC4535780 DOI: 10.1186/s40409-015-0027-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/21/2015] [Indexed: 11/25/2022] Open
Abstract
Background Snake venoms are complex mixtures of inorganic and organic components, mainly proteins and peptides. Standardization of methods for isolating bioactive molecules from snake venoms is extremely difficult due to the complex and highly variable composition of venoms, which can be influenced by factors such as age and geographic location of the specimen. Therefore, this study aimed to standardize a simple purification methodology for obtaining a P-I class metalloprotease (MP) and an acidic phospholipase A2 (PLA2) from Bothrops atrox venom, and biochemically characterize these molecules to enable future functional studies. Methods To obtain the toxins of interest, a method has been standardized using consecutive isolation steps. The purity level of the molecules was confirmed by RP-HPLC and SDS-PAGE. The enzymes were characterized by determining their molecular masses, isoelectric points, specific functional activity and partial amino acid sequencing. Results The metalloprotease presented molecular mass of 22.9 kDa and pI 7.4, with hemorrhagic and fibrin(ogen)olytic activities, and its partial amino acid sequence revealed high similarity with other P-I class metalloproteases. These results suggest that the isolated metalloprotease is Batroxase, a P-I metalloprotease previously described by our research group. The phospholipase A2 showed molecular mass of 13.7 kDa and pI 6.5, with high phospholipase activity and similarity to other acidic PLA2s from snake venoms. These data suggest that the acidic PLA2 is a novel enzyme from B. atrox venom, being denominated BatroxPLA2. Conclusions The present study successfully standardized a simple methodology to isolate the metalloprotease Batroxase and the acidic PLA2 BatroxPLA2 from the venom of B. atrox, consisting mainly of classical chromatographic processes. These two enzymes will be used in future studies to evaluate their effects on the complement system and the inflammatory process, in addition to the thrombolytic potential of the metalloprotease.
Collapse
Affiliation(s)
- Danilo L Menaldo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Anna L Jacob-Ferreira
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Carolina P Bernardes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Adélia C O Cintra
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| | - Suely V Sampaio
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, (USP), Avenida do Café, s/n, Ribeirão Preto, SP, CEP 14040-903 Brasil
| |
Collapse
|
16
|
Gomes MSR, Naves de Souza DL, Guimarães DO, Lopes DS, Mamede CCN, Gimenes SNC, Achê DC, Rodrigues RS, Yoneyama KAG, Borges MH, de Oliveira F, Rodrigues VM. Biochemical and functional characterization of Bothropoidin: the first haemorrhagic metalloproteinase from Bothrops pauloensis snake venom. J Biochem 2014; 157:137-49. [PMID: 25261583 DOI: 10.1093/jb/mvu058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We present the biochemical and functional characterization of Bothropoidin, the first haemorrhagic metalloproteinase isolated from Bothrops pauloensis snake venom. This protein was purified after three chromatographic steps on cation exchange CM-Sepharose fast flow, size-exclusion column Sephacryl S-300 and anion exchange Capto Q. Bothropoidin was homogeneous by SDS-PAGE under reducing and non-reducing conditions, and comprised a single chain of 49,558 Da according to MALDI TOF analysis. The protein presented an isoelectric point of 3.76, and the sequence of six fragments obtained by MS (MALDI TOF\TOF) showed a significant score when compared with other PIII Snake venom metalloproteinases (SVMPs). Bothropoidin showed proteolytic activity on azocasein, Aα-chain of fibrinogen, fibrin, collagen and fibronectin. The enzyme was stable at pH 6-9 and at lower temperatures when assayed on azocasein. Moreover, its activity was inhibited by EDTA, 1.10-phenanthroline and β-mercaptoethanol. Bothropoidin induced haemorrhage [minimum haemorrhagic dose (MHD) = 0.75 µg], inhibited platelet aggregation induced by collagen and ADP, and interfered with viability and cell adhesion when incubated with endothelial cells in a dose and time-dependent manner. Our results showed that Bothropoidin is a haemorrhagic metalloproteinase that can play an important role in the toxicity of B. pauloensis envenomation and might be used as a tool for studying the effects of SVMPs on haemostatic disorders and tumour metastasis.
Collapse
Affiliation(s)
- Mário Sérgio R Gomes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Dayane L Naves de Souza
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Denise O Guimarães
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Daiana S Lopes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Carla C N Mamede
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Sarah Natalie C Gimenes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - David C Achê
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Renata S Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Kelly A G Yoneyama
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Márcia H Borges
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Fábio de Oliveira
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| | - Veridiana M Rodrigues
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia-MG, Brazil, Departamento de Química e Exatas, Universidade Estadual do Sudoeste da Bahia (UESB), BA, Brazil, INCT, Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica, Belo Horizonte-MG, Brazil, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia (UFU), Uberlândia-MG, Brazil, Fundação Ezequiel Dias, FUNED, Belo Horizonte-MG, Brazil
| |
Collapse
|
17
|
Miranda CAS, Cardoso MG, Mansanares ME, Gomes MS, Marcussi S. Preliminary assessment of Hedychium coronarium essential oil on fibrinogenolytic and coagulant activity induced by Bothrops and Lachesis snake venoms. J Venom Anim Toxins Incl Trop Dis 2014; 20:39. [PMID: 26413083 PMCID: PMC4582949 DOI: 10.1186/1678-9199-20-39] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 08/12/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The search for new inhibitors of snake venom toxins is essential to complement or even replace traditional antivenom therapy, especially in relation to compounds that neutralize the local effects of envenomations. Besides their possible use as alternative to traditional antivenom therapy, some plant species possess bioactive secondary metabolites including essential oils, which can be extracted from weeds that are considered substantial problems for agriculture, such as Hedychium coronarium. METHODS The essential oils of leaves and rhizomes from H. coronarium were extracted by hydrodistillation, and their potential inhibitory effects on the coagulant and fibrinogenolytic activities induced by the venoms of Lachesis muta, Bothrops atrox and Bothrops moojeni were analyzed. Citrated human plasma was used to evaluate the clotting time whereas changes in fibrinogen molecules were visualized by electrophoresis in polyacrylamide gel. The experimental design used for testing coagulation inhibition was randomized in a 3 × 2 factorial arrangement (concentration × essential oils), with three replications. The essential oils were compared since they were extracted from different organs of the same botanical species, H. coronarium. RESULTS The results suggest that the oils interact with venom proteases and plasma constituents, since all oils evaluated, when previously incubated with venoms, were able to inhibit the clotting effect, with less inhibition when oils and plasma were preincubated prior to the addition of venoms. CONCLUSIONS Thus, after extensive characterization of their pharmacological and toxicological effects, the essential oils can be used as an alternative to complement serum therapy, especially considering that these plant metabolites generally do not require specific formulations and may be used topically immediately after extraction.
Collapse
Affiliation(s)
- Cíntia A Sf Miranda
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil
| | - Maria G Cardoso
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil ; Laboratório de Química Orgânica, Departamento de Química, Universidade Federal de Lavras, Caixa postal 3037, CEP 37200-000 Lavras, MG, Brasil
| | - Mariana E Mansanares
- Department of Biology, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil
| | - Marcos S Gomes
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil
| | - Silvana Marcussi
- Department of Chemistry, Federal University of Lavras (UFLA), Lavras, Minas Gerais State, Brazil
| |
Collapse
|
18
|
Rapid purification of a new P-I class metalloproteinase from Bothrops moojeni venom with antiplatelet activity. BIOMED RESEARCH INTERNATIONAL 2014; 2014:352420. [PMID: 24982866 PMCID: PMC4058653 DOI: 10.1155/2014/352420] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/01/2014] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
The present study aimed to evaluate the proteolytic and biological activities of a new metalloproteinase from B. moojeni venom. The purification of BmooMPα-II was carried out through two chromatographic steps (ion-exchange and affinity). BmooMPα-II is a monomeric protein with an apparent molecular mass of 22.5 kDa on SDS-PAGE 14% under nonreducing conditions. The N-terminal sequence (FSPRYIELVVVADHGMFTKYKSNLN) revealed homology with other snake venom metalloproteinases, mainly among P-I class. BmooMPα-II cleaves Aα-chain of fibrinogen followed by Bβ-chain, and does not show any effect on the γ-chain. Its optimum temperature and pH for the fibrinogenolytic activity were 30–50°C and pH 8, respectively. The inhibitory effects of EDTA and 1,10-phenantroline on the fibrinogenolytic activity suggest that BmooMPα-II is a metalloproteinase. This proteinase was devoid of haemorrhagic, coagulant, or anticoagulant activities. BmooMPα-II caused morphological alterations in liver, lung, kidney, and muscle of Swiss mice. The enzymatically active protein yet inhibited collagen, ADP, and ristocetin-induced platelet aggregation in a concentration-dependent manner. Our results suggest that BmooMPα-II contributes to the toxic effect of the envenomation and that more investigations to elucidate the mechanisms of inhibition of platelet aggregation may contribute to the studies of snake venom on thrombotic disorders.
Collapse
|
19
|
Purification and characterization of BmooAi: a new toxin from Bothrops moojeni snake venom that inhibits platelet aggregation. BIOMED RESEARCH INTERNATIONAL 2014; 2014:920942. [PMID: 24971359 PMCID: PMC4058135 DOI: 10.1155/2014/920942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/30/2022]
Abstract
In this paper, we describe the purification/characterization of BmooAi, a new toxin from Bothrops moojeni that inhibits platelet aggregation. The purification of BmooAi was carried out through three chromatographic steps (ion-exchange on a DEAE-Sephacel column, molecular exclusion on a Sephadex G-75 column, and reverse-phase HPLC chromatography on a C2/C18 column). BmooAi was homogeneous by SDS-PAGE and shown to be a single-chain protein of 15,000 Da. BmooAi was analysed by MALDI-TOF Spectrometry and revealed two major components with molecular masses 7824.4 and 7409.2 as well as a trace of protein with a molecular mass of 15,237.4 Da. Sequencing of BmooAi by Edman degradation showed two amino acid sequences: IRDFDPLTNAPENTA and ETEEGAEEGTQ, which revealed no homology to any known toxin from snake venom. BmooAi showed a rather specific inhibitory effect on platelet aggregation induced by collagen, adenosine diphosphate, or epinephrine in human platelet-rich plasma in a dose-dependent manner, whereas it had little or no effect on platelet aggregation induced by ristocetin. The effect on platelet aggregation induced by BmooAi remained active even when heated to 100°C. BmooAi could be of medical interest as a new tool for the development of novel therapeutic agents for the prevention and treatment of thrombotic disorders.
Collapse
|
20
|
Kurtović T, Lang Balija M, Ayvazyan N, Halassy B. Paraspecificity of Vipera a. ammodytes-specific antivenom towards Montivipera raddei and Macrovipera lebetina obtusa venoms. Toxicon 2013; 78:103-12. [PMID: 24378834 DOI: 10.1016/j.toxicon.2013.12.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 11/25/2022]
Abstract
Antivenom raised against the venom of nose-horned viper, Vipera ammodytes (V. a.) ammodytes (European viper venom antiserum, Zagreb antivenom), contains neutralising equine F(ab')₂ fragments that are clinically successful against homologous venom, but also against the venoms of several others medically important European snakes due to its paraspecific action. In this work we demonstrated that Zagreb antivenom is preclinically effective in neutralising lethal toxicity and hemorrhagicity of venoms of Armenian mountain snakes--Montivipera raddei and Macrovipera lebetina obtusa as well. In order to better understand the biochemical basis of the observed paraspecificity, the ability of anti-V. a. ammodytes serum to recognise and neutralise proteinases of the two venoms was also investigated. Anti-V. a. ammodytes serum showed surprisingly low capacity to inhibit metalloproteinases of both venoms included in the study, probably due to weak immunorecognition of their P-I representatives. Also, it completely failed to abolish enzymatic action of serine proteinases from Macrovipera lebetina obtusa venom. Relevance of such finding is yet to be established.
Collapse
Affiliation(s)
- Tihana Kurtović
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10 000 Zagreb, Croatia
| | - Maja Lang Balija
- Institute of Immunology Inc., Rockefellerova 10, 10 000 Zagreb, Croatia
| | - Naira Ayvazyan
- Orbeli Institute of Physiology, National Academy of Sciences, 22, Orbeli Bros. str., Yerevan 0028, Armenia
| | - Beata Halassy
- University of Zagreb, Centre for Research and Knowledge Transfer in Biotechnology, Rockefellerova 10, 10 000 Zagreb, Croatia.
| |
Collapse
|
21
|
Proteomic analysis of Bothrops pirajai snake venom and characterization of BpirMP, a new P-I metalloproteinase. J Proteomics 2013; 80:250-67. [DOI: 10.1016/j.jprot.2013.01.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 11/19/2022]
|
22
|
Mendes MM, Vieira SAPB, Gomes MSR, Paula VF, Alcântara TM, Homsi-Brandeburgo MI, dos Santos JI, Magro AJ, Fontes MRM, Rodrigues VM. Triacontyl p-coumarate: an inhibitor of snake venom metalloproteinases. PHYTOCHEMISTRY 2013; 86:72-82. [PMID: 23141056 DOI: 10.1016/j.phytochem.2012.10.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 08/18/2012] [Accepted: 10/16/2012] [Indexed: 06/01/2023]
Abstract
Snake venom metalloproteinases (SVMPs) participate in a number of important biological, physiological and pathophysiological processes and are primarily responsible for the local tissue damage characteristic of viperid snake envenomations. The use of medicinal plant extracts as antidotes against animal venoms is an old practice, especially against snake envenomations. Such plants are sources of many pharmacologically active compounds and have been shown to antagonize the effects of some venoms and toxins. The present study explores the activity of triacontyl p-coumarate (PCT), an active compound isolated from root bark of Bombacopsis glabra vegetal extract (Bg), against harmful effects of Bothropoides pauloensis snake venom and isolated toxins (SVMPs or phospholipase A(2)). Before inhibition assays, Bg or PCT was incubated with venom or toxins at ratios of 1:1 and 1:5 (w/w; venom or isolated toxins/PCT) for 30 min at 37°C. Treatment conditions were also assayed to simulate snakebite with PCT inoculated at either the same venom or toxin site. PCT neutralized fibrinogenolytic activity and plasmatic fibrinogen depletion induced by B. pauloensis venom or isolated toxin. PCT also efficiently inhibited the hemorrhagic (3MDH - minimum hemorrhagic dose injected i.d into mice) and myotoxic activities induced by Jararhagin, a metalloproteinase from B. jararaca at 1:5 ratio (toxin: inhibitor, w/w) when it was previously incubated with PCT and injected into mice or when PCT was administered after toxin injection. Docking simulations using data on a metalloproteinase (Neuwiedase) structure suggest that the binding between the protein and the inhibitor occurs mainly in the active site region causing blockade of the enzymatic reaction by displacement of catalytic water. Steric hindrance may also play a role in the mechanism since the PCT hydrophobic tail was found to interact with the loop associated with substrate anchorage. Thus, PCT may provide a alternative to complement ophidian envenomation treatments.
Collapse
Affiliation(s)
- M M Mendes
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, UFU, Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Patiño AC, Pereañez JA, Gutiérrez JM, Rucavado A. Biochemical and biological characterization of two serine proteinases from Colombian Crotalus durissus cumanensis snake venom. Toxicon 2012. [PMID: 23178323 DOI: 10.1016/j.toxicon.2012.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two clotting serine proteinases, named Cdc SI and Cdc SII, were isolated and characterized for the first time from Colombian Crotalus durissus cumanensis snake venom. The enzymes were purified using two chromatographic steps: molecular exclusion on Sephacryl S-200 and RP-HPLC on C8 Column. The molecular masses of the proteins, determined by MALDI-TOF mass spectrometry, were 28,561.4 and 28,799.2 Da for Cdc SI and Cdc SII, respectively. The aim of the present study was to evaluate enzymatic, coagulant and toxic properties of the two enzymes. The serine proteinases hydrolyzed specific chromogenic substrate (BaPNA) and exhibited a Michaelis-Menten behavior. Cdc SI had V(max) of 0.038 ± 0.003 nmol/min and K(M) of 0.034 ± 0.017 mM, while Cdc SII displayed values of V(max) of 0.267 ± 0.011 nmol/min and K(M) of 0.145 ± 0.023 mM. N-terminal sequences were VIGGDEXNIN and VIGGDICNINEHNFLVALYE for Cdc SI and Cdc SII, respectively. Molecular masses, N-terminal sequences, inhibition assays, and enzymatic profile suggest that Cdc SI and Cdc SII belong to the family of snake venom thrombin-like enzymes. These serine proteinases differed in their clotting activity on human plasma, showing a minimum coagulant dose of 25 μg and 0.571 μg for Cdc SI and Cdc SII, respectively. Enzymes also showed coagulant activity on bovine fibrinogen and degraded chain α of this protein. Toxins lack hemorrhagic and myotoxic activities, but are capable to induce defibrin(ogen)ation, moderate edema, and an increase in vascular permeability. These serine proteinases may contribute indirectly to the local hemorrhage induced by metalloproteinases, by causing blood clotting disturbances, and might also contribute to cardiovascular alterations characteristic of patients envenomed by C. d. cumanensis in Colombia.
Collapse
Affiliation(s)
- Arley Camilo Patiño
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, A.A. 1226 Medellín, Colombia.
| | | | | | | |
Collapse
|
24
|
Torres FS, Rates B, Gomes MTR, Salas CE, Pimenta AMC, Oliveira F, Santoro MM, de Lima ME. Bmoo FIBMP-I: A New Fibrinogenolytic Metalloproteinase from Bothrops moojeni Snake Venom. ISRN TOXICOLOGY 2012; 2012:673941. [PMID: 23762636 PMCID: PMC3671731 DOI: 10.5402/2012/673941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/08/2012] [Indexed: 06/02/2023]
Abstract
A new fibrinogenolytic metalloproteinase (Bmoo FIBMP-I) was purified from Bothrops moojeni snake venom. This enzyme was isolated through a combination of three chromatographic steps (ion-exchange, molecular exclusion, and affinity chromatography). Analyses by reverse phase chromatography, followed by mass spectrometry, showed the presence of enzyme isoforms with average molecular mass of 22.8 kDa. The SDS-PAGE analyses showed a single chain of 27.6 kDa, in the presence and absence of reducing agent. The protein has a blocked N-terminal. One of the peptides obtained by enzymatic digestion of a reduced and S-alkylated isoform was completely sequenced by mass spectrometry (MS/MS). Bmoo FIBMP-I showed similarity with hemorrhagic factor and several metalloproteinases (MP). This enzyme degraded Aα-chain faster than the Bβ-chain and did not affect the γ-chain of bovine fibrinogen. The absence of proteolytic activity after treatment with EDTA, together with the observed molecular mass, led us to suggest that Bmoo FIBMP-I is a member of the P-I class of the snake venom MP family. Bmoo FIBMP-I showed pH-dependent proteolytic activity on azocasein, but was devoid of coagulant, defibrinating, or hemorrhagic activities. The kinetic parameters of proteolytic activity in azocasein were determined (V max = 0.4596 Uh(-1)nmol(-1) ± 0.1031 and K m = 14.59 mg/mL ± 4.610).
Collapse
Affiliation(s)
- F. S. Torres
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - B. Rates
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. T. R. Gomes
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - C. E. Salas
- Laboratório de Biologia Molecular de Produtos Naturais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - A. M. C. Pimenta
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - F. Oliveira
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biomédicas, Universidade Federal de Uberlândia, 38400-902 Uberlândia, MG, Brazil
- Instituto Nacional de Ciência e Tecnologia em Nano-Biofarmacêutica (N-Biofar), Belo Horizonte, MG, Brazil
| | - M. M. Santoro
- Laboratório de Físico-Química de Proteínas e Enzimologia, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - M. E. de Lima
- Laboratório de Venenos e Toxinas Animais, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| |
Collapse
|
25
|
de Morais ICO, Torres AFC, Pereira GJDS, Pereira TP, Pessoa Bezerra de Menezes RRDP, Mello CP, Coelho Jorge AR, Bindá AH, Toyama MH, Monteiro HSA, Smaili SS, Martins AMC. Bothrops leucurus venom induces nephrotoxicity in the isolated perfused kidney and cultured renal tubular epithelia. Toxicon 2012; 61:38-46. [PMID: 23127898 DOI: 10.1016/j.toxicon.2012.10.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 12/24/2022]
Abstract
Bites from snake (Bothrops genus) cause local tissue damage and systemic complications, which include alterations such as hemostatic system and acute renal failure (ARF). Recent studies suggest that ARF pathogenesis in snakebite envenomation is multifactorial and involves hemodynamic disturbances, immunologic reactions and direct nephrotoxicity. The aim of the work was to investigate the effects of the Bothrops leucurus venom (BlV) in the renal perfusion system and in cultured renal tubular cells of the type MDCK (Madin-Darby Canine kidney). BlV (10 μg/mL) reduced the perfusion pressure at 90 and 120 min. The renal vascular resistance (RVR) decreased at 120 min of perfusion. The effect on urinary flow (UF) and glomerular filtration rate (GFR) started 30 min after BlV infusion, was transient and returned to normal at 120 min of perfusion. It was also observed a decrease on percentual tubular transport of sodium (%TNa(+)) at 120 min and of chloride (%TCl(-)) at 60 and 90 min. The treatment with BlV caused decrease in cell viability to the lowest concentration tested with an IC(50) of 1.25 μg/mL. Flow cytometry with annexin V and propidium iodide showed that cell death occurred predominantly by necrosis. However, a cell death process may involve apoptosis in lower concentrations. BlV treatment (1.25 μg/mL) led to significant depolarization of the mitochondrial membrane potential and, indeed, we found an increase in the expression of cell death genes in the lower concentrations tested. The venom also evoked an increase in the cytosolic Ca(2+) in a concentration dependent manner, indicating that Ca(2+) may participate in the venom of B. leucurus effect. The characterization of the effects in the isolated kidney and renal tubular cells gives strong evidences that the acute renal failure induced by this venom is a result of the direct nephrotoxicity which may involve the cell death mechanism.
Collapse
|
26
|
da Silva IRF, Lorenzetti R, Rennó AL, Baldissera L, Zelanis A, Serrano SMDT, Hyslop S. BJ-PI2, A non-hemorrhagic metalloproteinase from Bothrops jararaca snake venom. Biochim Biophys Acta Gen Subj 2012; 1820:1809-21. [DOI: 10.1016/j.bbagen.2012.07.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Revised: 07/07/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022]
|
27
|
Rebahi H, Nejmi H, Abouelhassan T, Hasni K, Samkaoui MA. Severe envenomation by Cerastes cerastes viper: an unusual mechanism of acute ischemic stroke. J Stroke Cerebrovasc Dis 2012; 23:169-72. [PMID: 22964421 DOI: 10.1016/j.jstrokecerebrovasdis.2012.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 06/04/2012] [Accepted: 07/08/2012] [Indexed: 10/27/2022] Open
Abstract
Cerebral complications after snake bites--particularly ischemic complications--are rare. Very few cases of cerebral infarction resulting from a viper bite have been reported, and we call attention to this uncommon etiology. We discuss 3 authenticated reports of acute ischemic cerebrovascular accidents after 3 typical severe envenomations by Cerastes cerastes vipers. The 3 patients developed extensive local swelling and life-threatening systemic envenomation characterized by disseminated intravascular coagulopathy, increased fibrinolysis, thrombocytopenia, microangiopathic hemolytic anemia, and acute renal failure. This clinical picture involved atypical neurologic manifestations. These patients had either low Glasgow Coma Scale (GCS) or hemiparesis within hours to 4 days after being bitten, and they were found to have computed tomographic evidence of single or multiple ischemic (nonhemorrhagic) strokes of small- to large-vessel territories of the brain. One patient had good clinical recovery without neurologic deficits. Thrombotic complications occurred an average of 36 hours after being bitten, and their importance depends on the degree of envenomation. The possible mechanisms for cerebral infarction in these cases include generalized prothrombotic action of the venom (consumptive coagulopathy), toxin-induced vasculitis, and endothelial damage.
Collapse
Affiliation(s)
- Houssam Rebahi
- Department of Anesthesia and Intensive Care Medicine, Mohammed VI's University-Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco.
| | - Hicham Nejmi
- Department of Anesthesia and Intensive Care Medicine, Mohammed VI's University-Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Taoufik Abouelhassan
- Department of Anesthesia and Intensive Care Medicine, Mohammed VI's University-Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Khadija Hasni
- Department of Anesthesia and Intensive Care Medicine, Mohammed VI's University-Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| | - Mohamed-Abdenasser Samkaoui
- Department of Anesthesia and Intensive Care Medicine, Mohammed VI's University-Hospital of Marrakech, Cadi Ayyad University, Marrakech, Morocco
| |
Collapse
|
28
|
de Morais NCG, Neves Mamede CC, Fonseca KC, de Queiroz MR, Gomes-Filho SA, Santos-Filho NA, Bordon KDCF, Beletti ME, Sampaio SV, Arantes EC, de Oliveira F. Isolation and characterization of moojenin, an acid-active, anticoagulant metalloproteinase from Bothrops moojeni venom. Toxicon 2012; 60:1251-8. [PMID: 22975266 DOI: 10.1016/j.toxicon.2012.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 08/28/2012] [Accepted: 08/29/2012] [Indexed: 12/28/2022]
Abstract
A fibrinogenolytic metalloproteinase from Bothrops moojeni venom, named moojenin, was purified by a combination of ion-exchange chromatography on DEAE-Sephacel and gel filtration on Sephacryl S-300. SDS-PAGE analysis indicated that moojenin consists of a single polypeptide chain and has a molecular mass about 45 kDa. Sequencing of moojenin by Edman degradation revealed the amino acid sequence LGPDIVSPPVCGNELLEVGEECDCGTPENCQNE, which showed strong identity with many other snake venom metalloproteinases (SVMPs). The enzyme cleaves the Aα-chain of fibrinogen first, followed by the Bβ-chain, and shows no effects on the γ-chain. Moojenin showed a coagulant activity on bovine plasma about 3.1 fold lower than crude venom. The fibrinogenolytic and coagulant activities of the moojenin were abolished by preincubation with EDTA, 1,10-phenanthroline and β-mercaptoethanol. Moojenin showed maximum activity at temperatures ranging from 30 to 40 °C and its optimal pH was 4.0. Its activity was completely lost at temperatures above 50 °C. Moojenin induced necrosis in liver and muscle, evidenced by morphological alterations, but did not cause histological alterations in mouse lungs, kidney or heart. Moojenin rendered the blood uncoagulatable when it was intraperitoneally administered into mice. This metalloproteinase may be of medical interest because of its anticoagulant activity.
Collapse
Affiliation(s)
- Nadia C G de Morais
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, Uberlândia-MG, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Girón ME, Rodríguez-Acosta A, Salazar AM, Sánchez EE, Galán J, Ibarra C, Guerrero B. Isolation and characterization of two new non-hemorrhagic metalloproteinases with fibrinogenolytic activity from the mapanare (Bothrops colombiensis) venom. Arch Toxicol 2012; 87:197-208. [PMID: 22918489 DOI: 10.1007/s00204-012-0914-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 07/24/2012] [Indexed: 10/28/2022]
Abstract
Colombienases are acidic, low molecular weight metalloproteinases (Mr of 23,074.31 Da colombienase-1 and 23,078.80 Da colombienase-2; pI of 6.0 and 6.2, respectively) isolated from Bothrops colombiensis snake venom. The chromatographic profile in RP-HPLC and its partial sequence confirmed its high homogeneity. Both colombienases present fibrino(geno)lytic activity, but did not show any hemorrhagic, amidolytic, plasminogen activator or coagulant activities, and no effect on platelet aggregation induced by collagen or ADP. Both enzymes were strongly active on fibrinogen Aα chains followed by the Bβ chains, and colombienases-2, at high doses, also degraded the γ chains. This activity was stable at temperatures ranging between 4 and 37 °C, with a maximum activity at 25 °C, and at pHs between 7 and 9. The homology demonstrated by the comparison of sequences, with zinc-dependent metalloproteinases, as well as the metal chelant effects on, confirmed that the colombienases were metalloproteinases, particularly to α-fibrinogenases belonging to the P-I class of SVPMs (20-30 kDa), which contain only the single-domain proteins. The biological characteristics of the colombienases confer a therapeutic potential, since they contain a high fibrino(geno)lytic activity, devoid of hemorrhagic activity. These metalloproteinases might be explored as thrombolytic agents given that they dissolve fibrin clots or prevent their formation.
Collapse
Affiliation(s)
- María E Girón
- Laboratorio de Inmunoquímica y Ultraestructura, Instituto Anatómico de la Universidad Central de Venezuela, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
30
|
Kurtović T, Leonardi A, Lang Balija M, Brgles M, Habjanec L, Križaj I, Halassy B. The standard mouse assay of anti-venom quality does not measure antibodies neutralising the haemorrhagic activity of Vipera ammodytes venom. Toxicon 2012; 59:709-17. [DOI: 10.1016/j.toxicon.2012.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 02/21/2012] [Accepted: 03/06/2012] [Indexed: 10/28/2022]
|
31
|
Biochemical and enzymatic characterization of BpMP-I, a fibrinogenolytic metalloproteinase isolated from Bothropoides pauloensis snake venom. Comp Biochem Physiol B Biochem Mol Biol 2012; 161:102-9. [DOI: 10.1016/j.cbpb.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/04/2011] [Accepted: 10/05/2011] [Indexed: 11/22/2022]
|
32
|
Sajevic T, Leonardi A, Križaj I. Haemostatically active proteins in snake venoms. Toxicon 2011; 57:627-45. [PMID: 21277886 DOI: 10.1016/j.toxicon.2011.01.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 01/06/2011] [Accepted: 01/07/2011] [Indexed: 11/16/2022]
Abstract
Snake venom proteins that affect the haemostatic system can cause (a) lowering of blood coagulability, (b) damage to blood vessels, resulting in bleeding, (c) secondary effects of bleeding, e.g. hypovolaemic shock and organ damage, and (d) thrombosis. These proteins may, or may not, be enzymes. We review the data on the most relevant haemostatically active proteinases, phospholipases A₂, L-amino acid oxidases and 5'-nucleotidases from snake venoms. We also survey the non-enzymatic effectors of haemostasis from snake venoms--disintegrins, C-type lectins and three-finger toxins. Medical applications have already been found for some of these snake venom proteins. We describe those that have already been approved as drugs to treat haemostatic disorders or are being used to diagnose such health problems. No clinical applications, however, currently exist for the majority of snake venom proteins acting on haemostasis. We conclude with the most promising potential uses in this respect.
Collapse
Affiliation(s)
- Tamara Sajevic
- Department of Molecular and Biomedical Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | | | | |
Collapse
|
33
|
Patiño AC, Pereañez JA, Núñez V, Benjumea DM, Fernandez M, Rucavado A, Sanz L, Calvete JJ. Isolation and biological characterization of Batx-I, a weak hemorrhagic and fibrinogenolytic PI metalloproteinase from Colombian Bothrops atrox venom. Toxicon 2010; 56:936-43. [PMID: 20600221 DOI: 10.1016/j.toxicon.2010.06.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 06/17/2010] [Accepted: 06/18/2010] [Indexed: 11/19/2022]
Abstract
A hemorrhagic metalloproteinase, named Batx-I, was isolated from the venom of Bothrops atrox specimens (from Southeastern Colombian region) by a combination of CM-Sephadex C25 ion-exchange and Affi-gel Blue affinity chromatographies. This enzyme accounts for about 45% of venom proteins, and it has an ESI-MS isotope-averaged molecular mass of 23296.2 Da and a blocked N-terminus. Two internal fragments sequenced by mass spectrometric analysis showed similarity to other SVMPs from Bothrops venoms. To investigate the possible participation of Batx-I in the envenomation pathophysiology, proteolytic, fibrinogenolytic, hemorrhagic, and other biological activities were evaluated. The minimal hemorrhagic dose obtained was 17 microg/20 g body weight. The enzyme showed proteolytic activity on azocasein, comparable with activity of BaP1. This activity was inhibited by EDTA and 1, 10 o-phenanthroline but not by aprotinin, pepstatin A or PMSF. Fibrinogenolytic activity was analyzed by SDS-PAGE, revealing a preference for degrading the A alpha- and B beta-chains, although partial degradation of the gamma-chain was also detected. The protein lacks coagulant and defibrinating activity. The CK levels obtained, clearly reflects a myotoxic activity induced by Batx-I. The hemorrhagic and fibrinogenolytic activities exhibited by the isolated PI-SVMP may play a role in the hemorrhagic and blood-clotting disorders observed in patients bitten by B. atrox in Colombia.
Collapse
Affiliation(s)
- Arley C Patiño
- Programa de Ofidismo/Escorpionismo, Universidad de Antioquia, Medellín 1226, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Costa JDO, Fonseca KC, Mamede CCN, Beletti ME, Santos-Filho NA, Soares AM, Arantes EC, Hirayama SNS, Selistre-de-Araújo HS, Fonseca F, Henrique-Silva F, Penha-Silva N, de Oliveira F. Bhalternin: Functional and structural characterization of a new thrombin-like enzyme from Bothrops alternatus snake venom. Toxicon 2010; 55:1365-77. [PMID: 20184912 DOI: 10.1016/j.toxicon.2010.02.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2009] [Revised: 02/07/2010] [Accepted: 02/16/2010] [Indexed: 11/17/2022]
Abstract
A serine protease from Bothrops alternatus snake venom was isolated using DEAE-Sephacel, Sephadex G-75 and Benzamidine-Sepharose column chromatography. The purified enzyme, named Bhalternin, ran as a single protein band on analytical polyacrylamide gel electrophoresis (SDS-PAGE) and showed molecular weights of 31,500 and 27,000 under reducing and non-reducing conditions, respectively. Its complete cDNA was obtained by RT-PCR and the 708bp codified for a mature protein of 236 amino acid residues. The multiple alignment of its deduced amino acid sequence showed a structural similarly with other serine proteases from snake venoms. Bhalternin was proteolytically active against bovine fibrinogen and albumin as substrates. When Bhalternin and bovine fibrinogen were incubated at 37 degrees C, at a ratio of 1:100 (w/w), the enzyme cleaved preferentially the Aalpha-chain, apparently not degrading the Bbeta and gamma-chains. Stability tests showed that the intervals of optimum temperature and pH for the fibrinogenolytic activity were 30-40 degrees C and 7.0-8.0, respectively. Also, the inhibitory effects of benzamidine on the fibrinogenolytic activity of Bhalternin indicate that it is a serine protease. This enzyme caused morphological alterations in heart, liver, lung and muscle of mice and it was found to cause blood clotting in vitro and defibrinogenation when intraperitoneally administered to mice, suggesting it to be a thrombin-like enzyme. Therefore, Bhaltenin may be of interest as a therapeutic agent in the treatment and prevention of thrombotic disorders.
Collapse
Affiliation(s)
- Júnia de O Costa
- Instituto de Genética e Bioquímica, Universidade Federal de Uberlândia, 38400-902 Uberlândia-MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Boukhalfa-Abib H, Meksem A, Laraba-Djebari F. Purification and biochemical characterization of a novel hemorrhagic metalloproteinase from horned viper (Cerastes cerastes) venom. Comp Biochem Physiol C Toxicol Pharmacol 2009; 150:285-90. [PMID: 19470410 DOI: 10.1016/j.cbpc.2009.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/12/2009] [Accepted: 05/14/2009] [Indexed: 10/20/2022]
Abstract
Snake venoms contain metalloproteinases that contribute to the local effects observed after envenoming. In this study, a hemorrhagic metalloproteinase (CcH1) was purified from Cerastes cerastes venom by a combination of gel filtration, ion exchange, affinity and RP-HPLC chromatography. The hemorrhagin was homogeneous on SDS-PAGE, with a molecular mass of 25 kDa. Isoelectric focusing revealed a pI of 5.5. CcH1 displayed hemorrhagic and proteolytic activities, but no esterolytic activity. The hemorrhagic and proteolytic activities of CcH1 were inhibited by EDTA and 1,10-phenanthroline, but not by PMSF, suggesting that this protein is a zinc-metalloproteinase. Furthermore, the hemorrhagic and proteolytic activities of CcH1 were stable in solution at up to 40 degrees C, with a loss of activity at > or =70 degrees C. The molecular mass and the inhibition assays suggest that the metalloproteinase CcH1 belongs to class P-I of SVMPs.
Collapse
Affiliation(s)
- Hinda Boukhalfa-Abib
- Laboratoire de Biologie Cellulaire et Moléculaire, Faculté des Sciences Biologiques, Université des Sciences et de Technologie Houari Boumédienne Bab Ezzouar, Alger, Algeria
| | | | | |
Collapse
|